< w Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Tvpes

CWE Version 1.6

Edited by:
Steven M. Christey, Conor O. Harris,
Janis E. Kenderdine, and Brendan Miles

Project Lead:
Robert A. Martin

MITRE

CWE Version 1.6
2009-10-29

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2009, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 1.6
Table of Contents

Table of Contents

Individual CWE Definitions

CWE-1:
CWE-2:
CWE-3:
CWE-4:
CWE-5:
CWE-6:
CWE-7:
CWE-8:
CWE-9:

CWE-10:
CWE-11.:
CWE-12:
CWE-13:
CWE-14:
CWE-15:
CWE-16:
CWE-17:
CWE-18:
CWE-19:
CWE-20:
CWE-21.:
CWE-22:
CWE-23:
CWE-24.
CWE-25:
CWE-26:
CWE-27:
CWE-28:
CWE-29:
CWE-30:
CWE-31.:
CWE-32:
CWE-33:
CWE-34:
CWE-35:
CWE-36:
CWE-37:
CWE-38:
CWE-39:
CWE-40:
CWE-41.
CWE-42:
CWE-43:
CWE-44.
CWE-45:
CWE-46:
CWE-47:
CWE-48:
CWE-49:
CWE-50:
CWE-51.:
CWE-52:
CWE-53:
CWE-54:
CWE-55:
CWE-56:
CWE-57:

(o o= Vi o] o IO P TP P PP OPPRN
01V 1 (0] 0] 0 0 T=T o | PO TP P PP OPR
Technology-Specific ENVIFONMENT ISSUES.uuiiiiiieiiiie ittt ettt eenaneee s
J2EE ENVIFONMENT ISSUES......eiiiiiiiiiitit ettt ettt ettt et s et ettt e et e s be e e e s it e e anbb e e e snbeeesnneee s
J2EE Misconfiguration: Data Transmission Without ENCryption............ccoccvviiiie e
J2EE Misconfiguration: Insufficient Session-1D LENGtN.........c.cooiiiiiiiiiiiiii e
J2EE Misconfiguration: MisSSing CUStOM EFTOr PAGE.........cuueviiiiiiiiiiieiiiie ettt
J2EE Misconfiguration: Entity Bean Declared RemOte..........cooveiiiiiiiiiiiiiieeereee e
J2EE Misconfiguration: Weak Access Permissions for EJB Methods

ASP.NET Environment Issues

Data Handling
IMProper INPUE ValIAAtION.ooiiiiieiiiie ettt e e sanee s
Pathname Traversal and Equivalence Errors
(e L T =N Y/<T 1= | RO
REIALIVE Path TIAVEISAL.......cooveiiiiiiiii ettt e e e e e e e e e e s e e ettt e e e e e e e e e eeaaabaanaaas
Path Traversal: ".ilEIrttt e e e e e e e e e e et s e e e e e e eeeeseeanans
Path Traversal: '/../filedir'
Path Traversal: dir/. . fIENAMEcooiiiieee e e e e e e e e e e e e e e eraa s
Path Traversal: 'dir/../../flename'
Path Traversal: '..\filedir'
Path Traversal: \..\filename'...
Path Traversal:
Path Traversal:
Path Traversal: "..." (THPIE DOL).....cocuiiiiiieeiit ettt e e nanees
Path Traversal:
Path Traversal:
Path Traversal: '.../...
P o 1] [V (=T =Y A T W = VLT £7= | TR
Path Traversal: '/absolute/pathname/Nere’... ..o
Path Traversal: \absolute\pathname\nere'..............oooiiiiiii e
Path Traversal: "CilifMaAmB,..........uuuuieiiie ettt e e e e e e e et et et eeeeeeeeeeeesabb e e eeeeeeeeeesrees
Path Traversal: WUNC\share\name\' (Windows UNC Share)...........cccoevviiririeiiiiieiniie e

Path Equivalence

Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:

Improper Resolution of Path EQUIVAIENCE...........c..coiiiiiiiii e

:filename.' (Trailing DOt)........veeiiiiee i
filename...." (Multiple Trailing Dot)
file.name' (INTErNAI DOL).......coouiiiiiiie it
file...name' (Multiple Internal DOt)..........ccceieiiiieiiiie e
filename ' (Trailing SPACE)........eiiiiiiiiiiie e
' filename (Leading SPACE).......ccoiurieiiiieiiiiee ittt
'file name' (Internal WhiItESPACE)........cocuveiiriiiiiiiie e
‘filename/' (Trailing Slash)
YImultiple/leading/SIash'..........c..oo i
‘Imultiple//internal/slash'....
IMUltipleArailing/SIasSh/l'........cccuvi e
\multipleNinternal\backslash'.............cccoiiiiiiii
filedir\' (Trailing BacksIash).............couiiiiiiiiii e
11" (SINGIE DOt DIFECIOIY)....vtiiiiiiieiieie ettt ettt s
fIledir (WIACAIA)........veieeicee e
‘fakedir/../realdir/fleNamE...........oooiiiie e

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.6
Table of Contents

CWE-58: Path Equivalence: WIindows 8.3 FileName............ccoiiiiiiiiiiiiiiiie et 56
CWE-59: Improper Link Resolution Before File Access (‘Link FOIOWING")........cccovviieiiiiiiiec e 56
CWE-60: UNIX Path LinK ProbIEMS.iiiiiieiiiee et ettt st e et e e st eennbeee s
CWE-61: UNIX Symbolic Link (Symlink) Following
CWE-62: UNIX Hard LinK.......coooeeveeiiiiiiiee e
CWE-63: Windows Path Link Problems
CWE-64: Windows Shortcut FOIOWING ((LNK)........uiiiiiiiiiii et et e e e e e s aaae e e e e s anene
CWE-65: WINAOWS HAIT LINK......eiiiiiiieiiiie ettt ettt e et e e st e e e sabe e e snbeeeanbeeeennneeesnneeas
CWE-66: Improper Handling of File Names that Identify Virtual RESOUICES..........cc.cccoviviiieeiiiiiiee e 63
CWE-67: Improper Handling of Windows Device Names
CWE-68: WiIindows Virtual File ProbIemsS.........c.cuiiiiiiiiiiiieie ettt s e e n
CWE-69: Failure to Handle Windows ::DATA Alternate Data Stream..........ccccovueeeriiieiiiee e 65
CWE-70: Mac Virtual File ProbIEmS........cooiiiiiiieiiie ettt ettt e et e e sbe e e s nnbe e e anneeenaes 66
(04 1Y ey Y oo [T B S T] (o PRSPPI 67
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path.............cccccooiiiiiiiiiii e, 68
CWE-73: External Control of File Name or Path............c.coiiiiiiiiiii e
CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)..................... 75
CWE-76: Failure to Resolve Equivalent Special Elements into a Different Plane...............ccccovveeeiiiiiieeecceinns 75
CWE-77: Improper Sanitization of Special Elements used in a Command ('Command Injection’)...................... 76
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command Injection)........ 79
CWE-79: Failure to Preserve Web Page Structure ('Cross-site SCripting').......cccccoevvuvierieiiiiiiieee e
CWE-80: Improper Sanitization of Script-Related HTML Tags in a Web Page (Basic XSS)........cccccccevivvveeeenns
CWE-81: Improper Sanitization of Script in an Error Message Web Page...........cccouvvveeiiiiiiieie e
CWE-82: Improper Sanitization of Script in Attributes of IMG Tags in a Web Page...........ccocevveeeiiiiiiiienee e,
CWE-83: Failure to Sanitize Script in Attributes in @ Web Page..........ccccooiiiiiiie i
CWE-84: Failure to Resolve Encoded URI Schemes in a Web Page
CWE-85: Doubled Character XSS ManipUIAtiONS.........cc.uuiiiieiiiiiiiie ettt e s s s e e e eaare e e e e s snbae e e e e e e aanes
CWE-86: Failure to Sanitize Invalid Characters in Identifiers in Web Pages..........c.cccvvvvveiiiiiiieec e
CWE-87: Failure to Sanitize AItErNate XSS SYNTAX........cciiiiiiiiiiieeiiiiiiiee e e riier e e s e e e e e s e e e s e sarr e e e e s s staaaeeeaan
CWE-88: Argument Injection or MOIfICALION.cciuiiiii i e e e e e e e s srreeee e
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection")
CWE-90: Failure to Sanitize Data into LDAP Queries ('LDAP INJeCtioN").........ccovvuiiiieiiiiiiiie e eeireee e
CWE-91: XML Injection (aka Blind XPath INJECHON)..........oiiiiiiiiiiiie e e e e e e
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters...........cccocveeeeiviiieeeeeiciiienennn
CWE-93: Failure to Sanitize CRLF Sequences ('CRLF INJECION").......cuuviieiiiiiiieee e
CWE-94: Failure to Control Generation of Code ('Code INJECION")......cccciiiiiiiieiiiiieiee e
CWE-95: Improper Sanitization of Directives in Dynamically Evaluated Code ('Eval Injection’)...............
CWE-96: Improper Sanitization of Directives in Statically Saved Code ('Static Code Injection’)
CWE-97: Failure to Sanitize Server-Side Includes (SSI) Within a Web Page...........cccooeviieiiiiiiencc e
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File

g Tod [T 7o) o) TR PUPR O UPRN:
CWE-99: Improper Control of Resource Identifiers ('Resource Injection’)
CWE-100: Technology-Specific Input Validation Problems..............cccuiiiiiiiiiiiiei e
CWE-101: Struts Validation ProblEmMS............cooiiiiiiie ettt
CWE-102: Struts: Duplicate Validation FOIMMS.........c..uiiiiiiiiiiiic ettt et e e e s saare e e e
CWE-103: Struts: Incomplete validate() Method Definition.............cocoviiiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class........cc.ccceeviiiiiiieiniiieniie e
CWE-105: Struts: Form Field WithOut ValidatOr...........coiuiiiiiiii ettt
CWE-106: Struts: Plug-in Framework not in Use
CWE-107: Struts: Unused Validation FOMM.........ocuiiiiuiiiiiiie ettt et e et e e sneeeesnnee
CWE-108: Struts: Unvalidated ACHON FOMN......c..iiiiiiiiiiiie ettt e et e e s neee s seneeas
CWE-109: Struts: Validator TUMMEd Off..........oiiiiiieiiieiie ettt e e s ne e s snaee s
CWE-110: Struts: Validator Without FOrm Field...........coouiiiiiiiiiii e
CWE-111: Direct Use Of UNSAE INL......coouiiiiiiiiiiiiie ittt e et e e snte e e s nnteeessbeeennes
CWE-112: MiSSING XML ValidAtiON........ccciiiiiiieeiiiiiieee e eesiie e e e sttt e e e s e st e e e e e s st e e e e e s sabateaeeasntbesaeessnsrrneaaeeanns
CWE-113: Failure to Sanitize CRLF Sequences in HTTP Headers (‘(HTTP Response Splitting')..............c...... 133
CWE-114: PrOCESS CONLIOL....cciutiiiiiiiiieiiite it ee ettt ettt ettt e sttt e et e e s be e e e bee e e sabe e e e bt e e s anteeesnbaeeenbbeeesnteeesnnees 136
CWE-115: Misinterpretation Of INPUL...........ooiiiiiiiie e e e e e e e e st e e e e s st e e e e e e s eaaaeeaeas 138
CWE-116: Improper Encoding or Escaping Of OULPUL..........coiiiiiieiiiiiiiie et e e 138
CWE-117: Improper Output Sanitization fOr LOGS.u.ciiiiuiiieeiiiiiiiee e csite e e st e e e s saae e e e e e st e e e e e s snaaesaesennees 143

iv

CWE Version 1.6
Table of Contents

CWE-118:
CWE-119:
CWE-120:
CWE-121:
CWE-122:
CWE-123:
CWE-124:
CWE-125:
CWE-126:
CWE-127:
CWE-128:
CWE-129:
CWE-130:
CWE-131:
CWE-132:
CWE-133:
CWE-134:
CWE-135:
CWE-136:
CWE-137:
CWE-138:
CWE-139:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-169:
CWE-170:
CWE-171:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:
CWE-178:

Improper Access of Indexable Resource ('Range EITOr).........ccccvveeieiiiiieiee i 145
Failure to Constrain Operations within the Bounds of a Memory Buffer...........cccccceeeeviiiieniceiiinen. 146
Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow")..........cccccveviivieiiiiieeee e, 150
Stack-based BUfer OVEIMIOW.coiiiiiiiiie et e e snreeeenes 153
Heap-based BUffer OVEITIOW.c.uuiiiei et e e e a e e e st 155
Write-What-Where CONAItION..........ocuuiiiiiieiiie ettt e et s see e e sebeeeabaeeenes 157
Buffer Underwrite ('Buffer Underflow')..........ooeiiiiiiiiiee et e 158
OUL-Of-DOUNAS REAT.c..ieiiiiiiie ettt et e s st e e e sbe e e e sbbe e e snbeeesnees 160
21 =T @AY= o (== Lo PRSP
Buffer Under-read .
AV =T o =T do 10 g o B 1 4 (o) RSP PPPPPP
Improper Validation of Array INAEX.........ccciuuiiiiiiiiiiee et e e s e e e e e e sataeee s
Improper Handling of Length Parameter INCONSISIENCYcccuvveeieiiiiiiiie e
Incorrect Calculation of BUfEr SIZ€........cocuiiiiiiiiiii e
DEPRECATED (Duplicate): Miscalculated Null Termination............ccccceeeeiiiiieei e eeiieeee e
Y ([a Lo T = o] £ TP P UPRRRN

Uncontrolled Format String
Incorrect Calculation of Multi-Byte String LeNgGth...........coooiiiiiiiiiiiie e
B LT 1 (o £ ST SR
REPIESENTALION EFTOIS....uiiiiiietieiiiiesiee et ettt e stee et essae et e s steesbeeasbeesseeasbeesseeebeessbeenseesnseenteeanseenseenn
Improper Sanitization of Special EIEMENLS..........cccviiiiiiiiiie e
DEPRECATED: General Special Element Problems...........ccccooiiiiieii e
Failure t0 Sanitize DElIMItErS........coiuiiiiiiie ettt e e sneee s
Failure to Sanitize Parameter/Argument Delimiters...........cocoiiiiiiiiie i
Failure to Sanitize Value DelIMILEIS........cuii ittt e et
Failure to Sanitize Record Delimiters
Failure to Sanitize LiNe DEIIMIEIS.......cccuiiiiiiiiiiiee ettt s e e
Failure to Sanitize Section Delimiters
Failure to Sanitize Expression/Command Delimiters
Improper Sanitization of INPUt TEIMINALOIS.........coiiiiiiie e
Failure to Sanitize INPUL LEAUERIS.c.cciiiiiiiee et e e e e e e e e st e e e e e et e e e e e s etraeaeeeas
Failure to Sanitize QUOLING SYNTAX........uiiiiiiiiiiiii e it eeree e e e e e e e e e s st e e e e s sebbaeeaeseasnraeeaeeasannes
Failure to Sanitize Escape, Meta, or CONtrol SEQUENCES..........ccoociuiriieeeiiiiiee e e e
Improper Sanitization of Comment DeliMILErS............oiiiiiiiiieei e
Improper Sanitization of Macro SYMDBOIS............cooiiiiiiiiiiie e
Improper Sanitization of Substitution Characters............cccoiiiiii i
Improper Sanitization of Variable Name Delimiters.........ccccuviiiiiiiiieee e
Improper Sanitization of Wildcards or Matching SymbolS..........ccccvvieiiiiiiiic e
Improper Sanitization of Whitespace
Failure to Sanitize Paired Delimiters
Failure to Sanitize Null Byte or NUL CharacCter...........cccuiiieiiiiiiiiiee ettt et
Failure to Sanitize Special EIEMENT..........coiiiiiiiiie e e e
Improper Sanitization of Leading Special EIEMENtS...........ccuviiiiiiiiiiiii et
Improper Sanitization of Multiple Leading Special EIEMEeNtS..........cccccvveviieiiiiiiiiie e
Improper Sanitization of Trailing Special EIEMENtS..........coooiviiiiiiiiiiiii e
Improper Sanitization of Multiple Trailing Special Elements............cccccvvviieiiiiiiiee e
Improper Sanitization of Internal Special EIEMENtS.........cccvviiiiiiiiiiiei e
Improper Sanitization of Multiple Internal Special EIements...........ccceveeiiiiiiiie e
Improper Handling of Missing Special EIEMENt............coooiiiiiiiiiie e
Improper Handling of Additional Special EIEmMEeNt...........ccoviviiiiiiiiiee e
Failure to Resolve Inconsistent Special EIEMENTS..........ccveiiiiiiiiiiie e
Technology-Specific Special EIEMENTS...........oiiiiiiii it
IMproper NUll TerMINALION.uviii e e e s e e e s et e e e e s s saare e e e e s satrereeesanes
Cleansing, Canonicalization, and Comparison Errors .
[a1t To [TaTo =t o SR PP PPRP
Failure to Handle Alternate ENCOTING.......cccoiiuiiiiieiiiiiiie e sttt e et e st e e e e e s e e e e e s snareeeeeaanens
Double Decoding of the Same Data
Failure to Handle MiXxed ENCOING........ccieiiiiiiiiie ettt et e et e e ntre e e e e e e
Failure to Handle Unicode ENCOAING........c.uueiiiiiiiiiiie ettt e e e e e snranee e
Failure to Handle URL Encoding (Hex Encoding)
Failure t0 ReSOIVE Case SENSHIVILY........cccuiiiieiiiiiiiee e e e e e e searaaea s

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.6
Table of Contents

CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-189:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-199:
CWE-200:
CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-217:
CWE-218:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-225:
CWE-226:
CWE-227:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:
CWE-239:

Incorrect Behavior Order: Early Validation..............oeeeiiiiiiiiiec e 212
Incorrect Behavior Order: Validate Before CanoniCalize.............ooovveveiiiiiivivirieieeiiieeeeeeeeee e 213
Incorrect Behavior Order: Validate Before Filter..........cooooiiiiviiiiiiiiiiiiieeeeee e eeeeeccevvvrarreees 214
Collapse of Data INto UNSafe ValUE...........oeeiiiiiiiiiie ettt e et e e 215
Permissive Whitelist

Incomplete Blacklist
Incorrect Regular Expression
Overly Restrictive Regular EXPreSSIiON.........c..uuiiciiiiiiiee ettt e et e e e eavaee s
Partial COMPATISON.ccciiiiiiiie e ettt e e e e s st e e e s st a e e e e e satb e e e e e e saabaaeeaeeeasnsaeeeeesansreeeaeean
Reliance on Data/MemOry LAYOUL.........c..uuiieiiiiiiieee e ittt e s ettt e e e e st e e e e s eba e e e s e earaa e e e e e sntaeraaeaan
N UL T=T ol o =T PP PRSPPI
Integer Overflow or WraparOUNG.............oeeiiiiiiiirieeiiiieee e ettt e e e et e e e e s st e e e e s e e e e e e s sntaeaeeesannes
Integer Underflow (Wrap or Wraparound)
Ty Yo Lo a0 1= (od o] T o PSPPSR
(015 o) 2T o] LT I o SRR
Unexpected SigN EXIENSION..........uiiiiiiiiiee et e e e e e e e e e e s e et e e e e e e s s ara e e e e s satbaeeaeeaanes
Signed to Unsigned Conversion Error
Unsigned to Signed Conversion Error
NUMETIC TIUNCALION EITOF ...ttt e et e et e e s bt e e ssb e e e snteeeenees
Use Of INCOITect BYte OFUEIING......ccciuuiiieieiiiiiii e ettt e e ettt e e e e e e e s et e e e e e s st e e e e s s entbaeeaeeennnenes
Information ManagemENt EITOIS........oiii it e e e et e e e e st e e e e s e enbraaeaeas
Information Leak (INformation DiSCIOSUIE).........cccuvuiieiiiiiiiiii ettt 236
Information Leak Through Sent Data..........c.coiiiiiiiieiiiiiiie e e e e e et r e e 238
Privacy Leak through Data Queries
Discrepancy INfOrmation LEAKS...........cciiiiiiiiiieiiiiiiiee et e s e st e e s e e e e e e st e e e e e e sntreeeeeaan
Response Discrepancy INformation Leak.............cooiiiiiiiiiiiiiiiee et
Behavioral Discrepancy INfOrmation LEaK..........cuuviieiiiiiiiiiee ittt eiaaee e
Internal Behavioral Inconsistency Information Leak.............

External Behavioral Inconsistency Information Leak
Timing Discrepancy INformation LEaK.............ccooiiiiiiiieiiiiiiiie et
Error Message INfOrmMation LEAK..........cccuuiiiiiiiiiiiie ettt e ettt e e e e re e e e e s enbaeaaeean
Product-Generated Error Message Information Leak.............ceoeiiiiiiiieciiiiiiiee e
Product-External Error Message Information LeakK............ceeoeiiiiiiiieiiiiiiiiie e
Cross-boundary Cleansing Information LEaK.............cccveiiiiiiiiiiiie i
Intended INFOrMALION LEAK.........cuuiiiiiiieiiiie ittt st e et snee e e sebeeas
Process Environment INfOrmation LEaK...........cooiiiiiiiiiiiiiie i
Information Leak Through Debug INformation............cccouviiiiiiiiiiic e
Containment Errors (CONLAINEr EITOIS)......cciiiuiiiiieiiiiiiiee ettt e ettt e e e e e e e e s satree e e e s anees
DEPRECATED: Failure to Protect Stored Data from Modification............c.ccceviiiiiieieniiee i
DEPRECATED (Duplicate): Failure to provide confidentiality for stored data
Sensitive Data UNder WED ROOL.........c.uiiiiiiiiiiii ettt e e snbeee e
Sensitive Data UNAEr FTP ROOL........ccoiiuiiiiiiieiiiiie ittt sttt st et e e sane e e nnee s
Information LoSS or OMiSSiON.........c.coevvveeriieeenninenn.

Truncation of Security-relevant Information
Omission of Security-relevant INfOrMation..............cooiiiiiiii i
Obscured Security-relevant Information by Alternate Name...........ccoccovviieeiiiiiiiee e
DEPRECATED (Duplicate): General Information Management Problems............cccccccoevvvveeeecnnee,
Sensitive Information Uncleared Before RelEaSE...........oocueieiiiiiiiiiiiiiieece e
Failure to Fulfill API Contract (APl ADUSE)......c.uuiiieie ittt et a e
Improper Handling of Syntactically Invalid Structure
Improper Handling of Values...........cccvvveiiiiiiiiiee e

Improper Handling of MISSING ValUES.........cooiuiiiiieiiiieiee ettt et e e e sare e e e aeaees
Improper Handling Of EXIra ValUES..........coocuiiiiiiiiiiiiie ettt e e
Improper Handling of Undefined ValUES............ccuviiii ittt
Parameter PrODIEMS.ooiiiiiiiie ettt e e an
Failure to Handle MiSSING Parameter.........cc.uuiiiiiiiiiiiie ettt
Improper Handling of Extra Parameters
Improper Handling of Undefined Parameters..............eeiiiiiiieiie ittt
Improper Handling of Structural EIEMENTS............ooiiiiiiiiiiie e e
Improper Handling of Incomplete Structural Elements
Failure to Handle Incomplete EIEMENT...........ocuiiiii it e e

Vi

CWE Version 1.6
Table of Contents

CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-247:
CWE-248:
CWE-249:
CWE-250:
CWE-251:
CWE-252:
CWE-253:
CWE-254:
CWE-255:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-264:
CWE-265:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:
CWE-274:
CWE-275:
CWE-276:
CWE-277:
CWE-278:
CWE-279:
CWE-280:
CWE-281.:
CWE-282:
CWE-283:
CWE-284:
CWE-285:
CWE-286:
CWE-287:
CWE-288:
CWE-289:
CWE-290:
CWE-291:
CWE-292:
CWE-293:
CWE-294:
CWE-295:
CWE-296:
CWE-297:
CWE-298:
CWE-299:
CWE-300:

Improper Handling of Inconsistent Structural EIements............cccccvevieiiiiiiiii e 267
Improper Handling of Unexpected Data TYPE.....ccccvuviiiieiiiiieiie ettt e e 267
Use of Inherently Dangerous FUNCHON...........oooiiiiiiiiiiiii ettt e e 268
Failure to Change Working Directory in chroot Jail.............ccccceeeiiiiiiiii e 269
Failure to Clear Heap Memory Before Release ("Heap INSPECtion’).........ccceevvviviveeeeiiiiieee e 270
J2EE Bad Practices: Direct Management of CONNECLIONS..........cccuvevieiiiiiiiiiee e e 272
J2EE Bad Practices: DireCt USE Of SOCKELS.......c.uiiiiiiiiiiiieiiiie et 272
Reliance on DNS LooOKUPS in @ SeCurity DECISION...........ciieiiiiiiieeeiiiiiiee e e e e 273
UNCAUGNE EXCEPLION. ... ittt e et e e e e e et e e e e e s st e e e e e saabb e e e e e e easbebeeaeesssbaeaeessannes 274
DEPRECATED: Often Misused: Path Manipulation.............ccccccovuviiri i 275
Execution with UnNNeCeSSary PriVIIEgES.ccviiiii ittt e e s sarae e e
Often Misused: StriNg ManNagEMENT........c.coiiiuiiiiie et e e eeree e e e e e e e s s e e e e s ssbbaeeaesasaraeeaeeanannes
UNChecked RETUIN VAIUE........oouiiiiiiiieeii ettt e e anb e e sbe e e naeee s
Incorrect Check of FUNCLION REUIN ValUE..........oocuiiiiiiiiiiie e
SECUNEY FAIUIES. ... uuiiii ettt et e e et e e e e e e e e e e e s et e e e e e saaa b e e e e e e sataeeeeesssbeeeeaean
Credentials Man@gEMIENT..........cciiiiiiiei ettt e e e e et e e e et e e e e e s e et r e e e e e s entbeeeeessansraeeaeas
Plaintext Storage of a Password.............cccccveeeviiiiieeeeeens

Storing Passwords in a Recoverable Format

Empty Password in Configuration File..............ociiuiiiiiiiiiiiiie et e e
HAard-Coded PasSWOI.uiiiiiiiiiiiee ittt ettt sttt e nbb e e snb e e sbbe e s sbbeeeanbeeesneeeenebeeean
Password in Configuration FilE.............coiiiiiiiie it e e e e e e e e aataee s
Weak Cryptography for PasSSWOITS.cccuuiiiiiiiiiiiee ettt e e e e e e e eaeaee s
NOt USING PASSWOIT AQING.....uriiieeiiiiiiiee ettt e e e e e e e e e st e e e s et e e e e e e aata e e e e e s sataeeeeesasrnees
Password Aging With LONG EXPIratioN...........ueiiiiiiiiiiiee et e e e e e e e e eanvaeeas
Permissions, Privileges, and ACCESS CONLIOIS.........cccoiiiiiiieieiiiiiir e eavaee e 295
Privilege / SAndBOX ISSUES.......oiiiiiiiiiiie ettt e e e e e e e e e e e e st e e e e e s st e e e e e e etaaes
INCOITECt PrivIlege ASSIGNIMENL......cciiiiiiii et e e e e s e e e e st e e e e e s entb e e e e e e eeanenes
Privilege Defined With Unsafe Actions

e A1 [=To TR @1 F= Tl 1 o T PRSPPI
Improper Privilege ManagemENt...........coiiiiiiiie ittt e e e et e e e e e et e e e e s st e e e e e s asreaeaeas
Privilege Context SWItChING EFTON.........coiiiiiiiiiie et e e e et e e e st e e e e s eaaaeeas
Privilege Dropping / LOWEING EITOIS......uiiiiiiiiiiie ettt ettt e e e e e et e e e e e entraeeeeaaans
Least Privilege VIOIation..........c.iiiiiiiiei ettt e et e e e e et e e e e st e e e e e araaea s
Improper Check for Dropped PriVIlEgES.uuviiie it r e e 304
Improper Handling of INSUfficient PriVIlEgES...........coviiiiiiiie e 306
PEIMISSION ISSUBS.uteieiiitie ettt ettt et ettt e sttt e s be e e e ettt e e saba e e s ebb e e e anbeeesabneeesbbeeeanbeeennn 307
INcorrect Default PeIMISSIONS.uiiiiiiieiiie ettt sttt e st e e s ba e e e snbeeennes 307
Insecure INNErited PeIMISSIONS.uiiiiiie ittt ettt s b et e et e e st e e s bt e e e snbeeennes 308
Insecure Preserved Inherited PErmiSSIONS.........coiuiiiiiiiiiiiii e 309
Incorrect Execution-AsSigned PermMiSSIONS.c.ciiiiiiiiieeiiiiiiiee e et e st e e e esare e e e e s saareeaeeaeens 310
Improper Handling of Insufficient Permissions or Privilegescccccvvviieiiiiiiiee e 310
Improper Preservation of PermMiSSIONS..........cciiiiiiiiiie it ee ettt et e e e et e e s eeabaeeeae s 312
Improper OWNErship ManagemMENT..........ceiiiiiiiiiiri e et e et e e e e e e e s s e e e s s saer e e e e e s sabaeaeesaanees 312
(8 a1V =Y) 1= Te @ Y g T=T £ o 1] o PR UPPPPROt 313
Access Control (AUthOZAtION) ISSUES..........uiiiiiiiiiiie et e e et e e et e e e s eearaaeaaeas 314
Improper Access Control (AUtNOFIZAtION)...........ciiiiiiiie i 315
[aTete]d(=Tol MO R gV = Ta = Vo [T 1= o | SO 316
IMPrOPEr AUtNENTICATION.cciiiiiiie ettt e e s e e e e e e e e e e et e e e e e s sabr e e e e e s antbereaeseannnees 317
Authentication Bypass Using an Alternate Path or Channel............cccccceeiiiiiiiiiiiciiicc e 319
Authentication Bypass by Alternate Name ... 320
Authentication Bypass by Spoofing.............. .
Trusting Self-reported 1P AQUIrESS.......ovii i e e s e e e e e s st e e e e e s earaeeas
Trusting Self-reported DNS NAME.......ccoiiiiiiie e e s e et e e e e s saba e e e e s s natreeeaeaan
Using Referer Field for Authentication

Authentication Bypass by Capture-replay...........cccciiiiiiiie it e s eeraaee e e 326
CertIfICALE ISSUBS.ttt bttt ettt sttt e sab e e et e e s bt e e e sabe e e e bt e e e anbeeesnnes 327
Improper Following of Chain of Trust for Certificate Validation...............ccccovveeiiiiiiei e 328
Improper Validation of Host-specific Certificate Data............cccceiviviiiieiiiiiiiee e
Improper Validation of Certificate EXPiration.............coooiiuiiiiiiiiiiiiic et
Improper Check for Certificate REVOCALION...........coiiiiiiiiiiee et
Channel Accessible by Non-Endpoint (‘Man-in-the-Middle")

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.6
Table of Contents

CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-310:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-320:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351:
CWE-352:
CWE-353:
CWE-354:
CWE-355:
CWE-356:
CWE-357:
CWE-358:
CWE-359:
CWE-360:
CWE-361.:

Reflection Attack in an Authentication ProtOCOL...........cccuiiiiiiiiiiiie e
Authentication Bypass by Assumed-Immutable Data............ccccuvveiieiiiiiiiie e
Incorrect Implementation of Authentication Algorithm............ccocviviiiiiiiie e

Missing Critical

Authentication Bypass by Primary Weakness

Step iN AUTHENTICALION.........oiiii e

No Authentication for Critical FUNCtion...........ccvvvvvvvieeeiieeeeee...

Failure to Restrict Excessive Authentication Attempts

Use of Single-factor AUThENtICAtION............oooiiiiiiee e e e
Use of Password System for Primary Authentication............ccccooociieii i,
CryptographiC ISSUES........uviiiiiiiiiiie ettt e e et e e e e e e e e e e st e e e e e s etbaeeeeesaaareeaeeeaas
Failure to ENCrypt SENSItIVE Datal..........uveviiiiiiiiiii ettt e s e e e s e e e e e e e saae e e e e s snees
Cleartext Storage of Sensitive INfOrmation..............cooiiiiiiiie i
Plaintext Storage in @ File 0r 0N DiSK..........uiiiiiiiiiiic e
Plaintext Storage in the REQISIIY......ccoiiiiiie it e e e e e e s e e e e s seaareeeeeseaees
Plaintext Storage in @ COOKIE...........oiiiiiiiiiie e e s e e e e st e e e e
PlainteXt STOrage iN MEMIOIY.......cii ittt e e e e e e e e e e e s st e e e e e s atba e e e e e s s iatbeeaeesanees
PlainteXt STOrage iN GUIL......coiiiiiiie et e et e e e e s et e e e e s e stbar e e e e e aataaeaeessnees
Plaintext Storage in EXECULADIE.c..uviiiiiiiii et
Cleartext Transmission of Sensitive INfOrMation..............ccooiiiiiiii i
KEY MaNAGEMENT EITOIS. ..c.viiiiieitieeit e sttt et e sttt ettt e st e e teessaeebeessteesseessbeesseeanbeesbeeanbeesteeanseenneen
Use of Hard-coded CryptographiC KEY.........ccuuiiiiiiiiiiieee ettt e e e satae e e e e
Key Exchange without Entity AUthentiCation..............cooiiiiiii i
Reusing a Nonce, Key Pair in ENCIYPLON.........coiiiiiiie et e e saeve s
Use of a Key Past its EXPIration Date..........c.uuiiieiiiiiiiie ettt este e eentre e e et e e e e eaarae e e e e e snnaes
Missing Required CryptographiC STEP.......ccuvviii it e e e s eaaeees
Inadequate ENCryption Srength............ooiiiiiiiiiec e
Use of a Broken or Risky Cryptographic Algorithm............ccouviiiiiiiiiiiiciceee e

Reversible One

SWAY HASN...cciice e
Not Using a Random IV with CBC Mode

Use of Insufficiently RANAOmM ValUES..........cooiuiiiiiiiiiiiiie ettt e e
oI 0] (o T=T L = a1 0] o) PRSPPI
Insufficient ENtropy iN PRING.........uuiiiiiiiiiee ettt e et e e s et e e e e e et e e e e e e sntbeeeae s
Improper Handling of Insufficient Entropy in TRNG...........cooiiiiiiiiiie e

Small Space of
PRNG Seed Er

RANAOM VAIUEBS.....cutiiiiiiiiiiiieiieee et e e e e e e e e e e e e e e e e e e e s e e e eesassararees
(o) SRR

SAME SEEA IN PRINGo oottt e et e e e e e e e e e et et bbb r e a e e e e e e e e e e e eeeaeaeeeeeeeeeeeaas
Predictable SEEA IN PRING.........coiiiiiiiieeee ettt e e e e e e e e e e e e e e e e e e bbbt a b e rraeraeeeeeeeas
Use of Cryptographically Weak PRNG.........c.c.uiiiiiiiiiiiie ettt e et e et a e e e e e sarae e e e e e nannes

Small Seed Space in PRNG
Predictability Problems..........c.ccoociiiieiiiiiiiiee e
Predictable from Observable State

Predictable Exact Value from Previous ValUES..........cociiiiiiiiiiiiieiniie e
Predictable Value Range from Previous ValUES.............cccuviiiiiiiiiiiiii et
Use of Invariant Value in Dynamically Changing ConteXt...........ccccecvuviieeiiiiiiiiee e e e
Insufficient Verification of Data AUtNENTICITY..........cciuiiiiiiiiiee e e
Origin ValidatiOn EFTOT........uiiiiiiiiiiie e ettt e e e s s e e e e e et e e e e e e s atb e e e e e s satbaeeeaeeananareeeeaans
Improper Verification of CryptographiC SIgnature............ccccuviviiiiiiiieiie e
USE Of LESS TIUSIEA SOUICE.....ceiueeiiiiiieeiiie ettt ettt ettt bt et e e st e e nnee e e snb e e e sntaeeenees
Acceptance of Extraneous Untrusted Data With Trusted Data

Improperly Trusted REVEISE DINS........ccooiiiiiiii ettt et e e e et e e e e e s arreeeas
INSUFFICIENt TYPE DISHINCHON. .. .eiiiiiiiiiiiee et e e e e e e st e e e e e s et e e e e s e ntbeeeeessnraeeas
Cross-Site Request FOrgery (CSRIF) ...ttt e s e e e eearaeea s
Failure to Add Integrity CheCk ValUE............cooiiiiiiiii ittt
Improper Validation of Integrity Check ValUe..........cc.veiiiiiiiiiiiic e
USEr INtEIACE SECUIMLY ISSUBS.....uuiiiiiiiiiiiii ettt e e e et e e e e e st e e e e s e anara e e e e e e saereeeeeaan
Product Ul does not Warn User of Unsafe ACHONS.........cocuiiiiiiiiiiiieneee e
Insufficient Ul Warning of Dangerous OPErationsS............ccuuvieeiiiiiiieeeeiiiiiereeesesieree e e s e siveeeeessesnenas
Improperly Implemented Security Check for Standard............ccccceeeiiiiiiiie i
e A2 10y YA/ To] F= L1 (o] PSPPSR

Trust of System Event Data

Time and State

viii

CWE Version 1.6
Table of Contents

CWE-362:
CWE-363:
CWE-364:
CWE-365:
CWE-366:
CWE-367:
CWE-368:
CWE-369:
CWE-370:
CWE-371:
CWE-372:
CWE-373:
CWE-374:
CWE-375:
CWE-376:
CWE-377:
CWE-378:
CWE-379:
CWE-380:
CWE-381.:
CWE-382:
CWE-383:
CWE-384:
CWE-385:
CWE-386:
CWE-387:
CWE-388:
CWE-389:
CWE-390:
CWE-391.:
CWE-392:
CWE-393:
CWE-394:
CWE-395:
CWE-396:
CWE-397:
CWE-398:
CWE-399:
CWE-400:
CWE-401.:
CWE-402:
CWE-403:
CWE-404:
CWE-405:
CWE-406:
CWE-407:
CWE-408:
CWE-409:
CWE-410:
CWE-411:
CWE-412:
CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-417:
CWE-418:
CWE-419:
CWE-420:
CWE-421.:
CWE-422:

(R Tot I O] o o [1 o o FHN PR
Race Condition Enabling Link Following

Signal Handler RAce CONITION..........ccuiiiiieiiiiiiie et e e e s e e s e e e e e s st e e e e e s stbaeeaeeannes
Race Condition iN SWITCN......cooiiiiiii ettt e e n
Race Condition Within @ TRrEAU.ccoouiiiiiiie e e
Time-of-check Time-of-use (TOCTOU) Race Condition...........ccccuvverieiiiiieiee e eeireee e e 400
Context Switching RAcCe CONILION..........cc.uviiieiiiiiiiie e e e e e e e e e e aareeeas 403
D\ o Lo A= o T PRSPPI 404
Missing Check for Certificate Revocation after Initial CheckK............cocovvieeiiiiie e, 406
State Issues .
Incomplete Internal State DiStINCHON.c.uviiiiiiiiiee e e eaanes 407
State SYNCHIONIZAtION ETO........iiiiiiiiee e e e st e e e e st e e e e e e enaaees 408
Mutable Objects Passed by REfEIENCE...........cviiiiiiiiiii e e 409
Passing Mutable Objects to an Untrusted Method...............cooiiiiiiiiiiiiiiie e 410
TEMPOTAY FlE ISSUES.....uiii i ittt e e e e e e et e e e s st et e e e satbaeeaeeeantaeeaeesanees 411
INSECUre TEMPOTANY FilE.....oiiii i e e e e e e e e e e s e e e e e e e s aareeaeeaaas 412
Creation of Temporary File With INnSecure PermiSSiONS............ccceiiiiiiiieeiiiiiiiee s e 413
Creation of Temporary File in Directory with Incorrect Permissions...........cccccoeevvvveeeeeiiciieee e e, 415
Technology-Specific TIMe and State ISSUES...........uveiieiiiiiiiiee et eaaeeas 416
J2EE TIimME @GN0 SEALE ISSUES.....cuviiiiiiie ittt ettt ettt sttt e st et e st et e sbe e e e bt eesnbeeesnnees 416
J2EE Bad Practices: Use Of SYStemM.eXIt().......cocurrieeiiiiiiiiie ettt e et e e sivaea e 416
J2EE Bad Practices: Direct Use Of Threads..........cooviiiiiiiiiiiiiee et 417
YIS (o] g e 11T] o PP 418
Covert TIMING Channel..........oooo e e e s et e e e e s eara e e e e e 420
Symbolic Name not Mapping t0 CorreCt ODJECT..........ccuiiiie i 422
Y [o | F= I A4 (o] £ USSP

L o = Vo o {11 To TP PP PPPPR
Error Conditions, Return Values, Status Codes

Detection of Error Condition WithOUt ACLION..........coiiiiiiiiiie e
Unchecked Error CONQITION.........oiuiiiiiiieiiiee ettt sttt et e e st e e sebe e e abreesneeeenanes
Failure to Report Error in StatuS COOE.........coiiiiiiiiee et e e e e e e e saare e e e
Return of Wrong Status COOE..........uuiiiiiiiiiiiiie e et e e s et e e e e e s e e e e e e aanreeeas
Unexpected Status Code Or REUIMN VAlUE..........ccuiiiiiiiiiiiie et
Use of NullPointerException Catch to Detect NULL Pointer Dereference...........ccoccveeeeeiiiveeeeeninns 433
Declaration of Catch for Generic EXCEPLION........ccvvviiiiiiiiieie et 433
Declaration of Throws for Generic EXCEPLION..........cviiiiiiiiiii ettt e 435
Indicator of POOr Code QUANILY.........eeeiiiiiiiiie et e e e e s e e e e et e e e e e s st a e e e e s e enraaaeaeas
ResoUrce ManagemENt EITOIS........cciuiii ittt ettt ettt st et e e e e bb e e e anteeenaneas
Uncontrolled Resource Consumption ('Resource Exhaustion’)

Failure to Release Memory Before Removing Last Reference (‘Memory Leak’)

Transmission of Private Resources into a New Sphere ('Resource Leak)........ccccceeevviiveeeeeiinnnnn.

UNIX File DESCHPION LEAK......ciiuiriiiiei ittt e e ettt e ettt e e e sttt e e e s st e e e e e e at s e e e e e e sabaeeeessasbaneeessanes
Improper Resource Shutdown Or REIEASE.coiiiiiiiii it
Asymmetric Resource Consumption (Amplification)............coooviiirieiiiiiiiie e
Insufficient Control of Network Message Volume (Network Amplification)...........cccccoovviveneeeiinnee.
AlGOrItNMIC COMPIEXITY .. .uviiieiiiiiiie et e e e e e s e e e e s st e e e e e eetbaeeeesasasaeeeeesanees
Incorrect Behavior Order: Early AMPIfiCation...........cccuviiiiiiiiiiiie e e
Improper Handling of Highly Compressed Data (Data Amplification).............ccccccvvveeeeiiiiienee e,
Insufficient RESOUICE POOL.........c.oiiiiiiiiiie e

Resource Locking Problems
Unrestricted Externally Accessible Lock
INSUFfiCient RESOUICE LOCKING.......iiiiiiiiiiii e e e e e e e e e s staa e e e e e anees
MISSING LOCK CHECK.....ciiiiiiiiiie ettt e e s e e e e e et e e e e s e ratb e e e e e s sanbraeeaeas
(Do 10 o] (oI (T T PSPPSR
L0 N (=T (= TSP
Channel and Path EITOTS........ooouiiiiiiie ettt st e e st e sbee e e neaeeean
(O3 F=T o] 0 1= I 0 () £ T PSPPSR
Unprotected Primary Channel...........oooi it e e et e e eatveeea e
Unprotected Alternate Channel............oooiiiiiiii e e et
Race Condition During Access to Alternate Channel............cccooiiiiiiieiiiiiiiee e
Unprotected Windows Messaging Channel ('Shatter')..........ccccooiiiiiii i

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.6
Table of Contents

CWE-423:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-429:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-438:
CWE-439:
CWE-440:
CWE-441.:
CWE-442:
CWE-443:
CWE-444:
CWE-445:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-452:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-458:
CWE-459:
CWE-460:
CWE-461.:
CWE-462:
CWE-463:
CWE-464:
CWE-465:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.:
CWE-482:
CWE-483:

DEPRECATED (Duplicate): Proxied Trusted Channel............cccccoiiiiiiiii i 464
Failure to Protect Alternate Path
Direct Request (‘Forced Browsing')
UNtrusted SEArCh Path.........c..oo i
Uncontrolled Search Path Element
Unquoted Search Path or Element
[Eo T a0] [T gy (o PP PP
Deployment of Wrong HandIEr............cooiiiiiiiii ettt e e eaaae e

T EE] T To I F- T o | (=] G PP O UPUPRt
Dangerous Handler not Disabled During Sensitive Operations.............cccoccvuvveeeiiiiiiiee v 473
Unparsed Raw Web Content DEIIVEIY.......ccccuiiiiiiiiiiiei ettt e e e e e
Unrestricted File UPIOAU..........oooiiiiiiiee et e e e e et e e e e st e e e e s e anbaaeeee s

101 C=T = Tot i o] o T = (o] PRSP
INterpretation CONTlICE.........ii e e e e e e e s et e e e e s e tbar e e e e e antaaeaeesanees
Incomplete Model of ENAPOINt FEATUIES...........ccciiiiiiiiie it e e
Behavioral ProbBIEIMS.oo ittt e e e e e
Behavioral Change in New Version or ENVIFONMENL.............vieiiiiiiieec e
Expected Behavior VIOIatioN.........c..ueiiiiiiiiiee ettt e e et e e e st e e e e e s etbeaeee s
Unintended ProxXy/INtEIMEIAIY........cccoiiiiiiiee et e e e e s e e e e s e e e e e e sntreraaeaan
WED PrODIEIMS. ... ittt ettt e e bt e e sab e e e e bb e e e anteeesnbeeeerbeeenn
DEPRECATED (Duplicate): HTTP response splitting
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling’)........ccccceevvvveeeeeiinnnenn.. 482
USET INLEITACE EITOIS. ... ittt ettt ettt ettt e et e e sttt e e sabe e e et b e e e anteeesnneas

Ul Discrepancy for Security Feature
Unimplemented or Unsupported Feature in Ul............occviiieiiiiiiiiec et
ODbSO0lEtE FEAIUIE 1N Ul...iiiiiiiiiiii ettt ettt e et st e e snbe e e ebb e e e snbeeesnbeee s
The Ul Performs the WIroNg ACHION..........oiii ittt ettt e e e e e et e e e e e s saraeeeeeeanees
Multiple Interpretations Of Ul INPUL...........coiiiiiiii e e e e e
Ul Misrepresentation of Critical Information...
Initialization and CleaNUP EFTOIS...........eeiiiiiiiiiie ettt e e e e e e st e e e e e satre e e e e s eaneees
Insecure Default Variable INItIaliZation............coociiiiiiiiii e
External Initialization of Trusted Variables
Non-exit on Failed INItAlIZAION.eiiiiiie et e s nnee
MISSING INILANIZATION.cceiiiiiiiie e e e e e e e st e e e e e s st b e e e e e s s tarreeeeeaasraeeas
Use of Uninitialized Variable.............oooiiiiii et
DEPRECATED: INCOIrect INItIAlIZAtION.coiiiiiiiiiie e
[aToTo] o] o] (=] (SR @4 (== T U] o T PSPPI
Improper Cleanup on Thrown Exception
Data Structure ISSUES...........cceoviiuiieeieeiiiiieeeeenis

Duplicate Key in Associative List (Alist).............

Deletion of Data StruCture SENLINEL..........cciiiiiiiiiiiie e
Addition of Data StruCtUre SENTINEL........cooiiiiiiiiie et e e sraee e
L] (= g E U PP
Return of Pointer Value Outside of Expected Range
Use Of SiZ€OT() ON @ POINIET TYPE...iiii ittt e e e e e e e e e st e e e e e s etbaeeaeean
INCOITECE POINTEI SCAIING.....cciiitiiiii ettt e e e e e e e e e e e s st e e e e e satbareeesessaraeeaeesanees
Use of Pointer Subtraction t0 DEterming SIiZe.........cccceiiuiiiiiiiiiiiiee e
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection')..............c......... 505
Modification of Assumed-Immutable Data (MAID).........ccccuviiiieiiiiiiiee e

External Control of Assumed-Immutable Web Parameter
PHP External Variable MOIfiCatioN..........c.cooiiiiiiiiieiiie e
Use of Function with Inconsistent Implementations..............cccvveeei e
Undefined Behavior for INPUL 10 APL.........eiiiiiiiiee et a e e et e e e s stvaeaa e
N[O] o1 (=T g D=1 = =] €= ool J PRSP
Use Of ODSOIEtE FUNCLONS. ..ottt s e e s
Missing Default Case in SWItCh StatemMENt............oeiiiiiiiiiie e
Unsafe Function Call from a Signal Handler..............occuiiiiiiiiiiiiee et
USE Of INCOITECE OPEIALOT.....ceutiiiiieieeiitie ettt ettt s et e ettt ettt e st e e e bt e e sabe e e s abbeeeasbeeesbeeeesnbeeeanneeenns
Assigning instead Of COMPAIING.........ccuiiiiiiiiiiiie e e e e e e s s r e e e e s st e e e e e s eabaeeeeeaaans
Comparing inStead Of ASSIGNING......cc.uuiiiieiiiiiit e e e s e e e e e st e e e e s satreeeaeseaneees
Incorrect BIOCK DelIMItAtiON........ccuuiiiiiiieiiie ettt s e et e e st snnes

CWE Version 1.6
Table of Contents

CWE-484:
CWE-485:
CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-490:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-503:
CWE-504:
CWE-505:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-513:
CWE-514:
CWE-515:
CWE-516:
CWE-517:
CWE-518:
CWE-519:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-533:
CWE-534:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-542:
CWE-543:
CWE-544:

Omitted Break Statement in SWILCH.........cooiiiiiiiiii e 524
INSUfICIENt ENCAPSUIALION.oiiiiii it e e e e e e et e e e e e et b e e e e e eensrneas 525
Comparison of Classes DY NAME.........uoiiiiiiiiiiiie e e e e e e e s e e e e s saees 527
Reliance on Package-1eVel SCOPE........cccuiiii it 527
Data Leak Between Sessions

Leftover Debug Code
MODIIE COUE ISSUBS......eiiiiiiie ittt ettt et e e st e e seb e e bb e e e snteeesnbeeesbbeenans

Public cloneable() Method Without Final (‘Object Hijack')...........cccoveuviieeiiiiiiiie e 531
Use of Inner Class Containing SenSitive Data.............ccoiiiuiiiieiiiiiiiee et 532
Critical Public Variable Without Final MOGIfier...........c.ccoiiiiiiiiiiii e 533
Download of Code Without INntegrity CheCK...........eeiiiiiiiiiiie e 535
Private Array-Typed Field Returned From A Public Method..............cccviieiiiiiiici e, 537
Public Data Assigned to Private Array-Typed Field..........ccoouiiiiiiiiiiiiiee e 537
Information Leak Of SYStEM Datal...........eeviiiiiiiiiiii ettt e e e e e e e e e e s saaree e e s enees 538
Information Leak through Class ClONING............eiieiiiiiiiiee e e e e 540
Serializable Class Containing SenSitive Data.............cooiiiieiiiiiiiiiiee e 541
Public Static Field Not Marked Final
Trust BOUNAry VIOIAtON.c.cciiiiiiiie ettt e et e e e s et e e e e et e e e e e st b e e e e e s sanbaneeaeas
Deserialization Of UNIrUSTEA Data..........cuveeiiiriiiiiiieiiiee ettt e et e e nnee s
2L (=TL@] oT=Tot A o o L PR PRSPPI
Motivation/Intent
Intentionally INtroduced WEAKNESS...........ciiiiiiiiiiie ettt e e e et e e e e s s etveeeaesenes
Embedded MaliCIOUS COUE.......uuiiiiiiiiiiiie ettt ettt e et e e sne e e e nnaeees
I o) F= L [] 6T T PP PPPP
Non-Replicating MaliCioUS COE...........ooiiiiiiiiiiie et e e e s rtba e e e e e e nees
Replicating Malicious Code (Virus or Worm)
I =0 Lo [0 1o | PP PPPPRPNt
Logic/Time Bomb

Covert Storage Channel
DEPRECATED (Duplicate): Covert Timing Channel............cccoovvieiiiiiiiiie e
Other Intentional, NONMAaliCIOUS WEAKNESS..........ccuuiiiiiiiiiiiee et
Inadvertently INtroduced WEAKNESS...........uoiiiiiiiiiiiie ettt e e e et e s earaeae e
NET ENVIFONMENT ISSUES......eiiitiii ittt ettt e sttt e st e ettt e e st e e s nte e e ssb e e e anbeeesanneeennbeeas
.NET Misconfiguration: Use of IMPersonation.............cccoiiiuieiieiiiiiiiee et e e eesirre et
Weak Password REQUITEMENTS.cciiiiieei ittt ettt e e e et e e e e s st e e e e s e tber e e e s s aataeeeeesanees
Insufficiently Protected Credentials........
Unprotected Transport of Credentials
Information Leak Through Caching...........ciiiiiiiiiiie i e e e
Information Leak Through Browser Caching..........cccueiiiiiiiiiiiec i
Information Leak Through Environmental Variables..............ccoovviiiiiiiiiiii e
Information Leak Through CVS REPOSIIONY........cccuuiiiieiiiiiiiie ettt eete e e e e e e e eaareee s
Information Leak Through Core DUMP FilES..........cooiiiiiiiiieici et
Information Leak Through Access Control List Files..........cccccoouiiiiieiiiiiiiie e
Information Leak Through Backup (.~bK) Fil€S........cc.ueiiiiiiiiiiiei e
Information Leak Through TeSt COUE........cciiiiiiiiie et e e e e e s eare e e e e s e
Information Leak Through LOg FilES.........cocoiiiiiiiiii ettt
Information Leak Through Server Log Files
Information Leak Through Debug Log Files
Information Leak Through Shell Error MESSAQE.........uuviieiiiiiiiee e ieiiieee ettt e et e e
Information Leak Through Servlet Runtime Error MESSage.......ccvvvveeiiiiiiieiie e eeiieee e
Information Leak Through Java Runtime Error MESSAQE.........cceeeiiurieiieeiiiiiiieeeseiirieeeeessrvreee e s s
File and Directory INfOrmMation LEAKS.........cciiiiuiiiiieiiiiiiie e ettt e e e et e e st e e e e e e e e e e e snareeeeeaeans
Information Leak Through Persistent COOKIES...........ccciiiiiiiieiiiiiiiie e
Information Leak Through SoUrce COE...........ueiiiiiiiiiiiiee et e e e e e
Information Leak Through Include Source COde..........cccoiiiiiiiieiiiiiiiiie e
Information Leak Through Cleanup LOg FilES..........ccoiiiiiiiii it
Use of Singleton Pattern in a Non-thread-safe Manner...................

Failure to Use a Standardized Error Handling Mechanism

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.6
Table of Contents

CWE-545:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-557:
CWE-558:
CWE-559:
CWE-560:
CWE-561.:
CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-569:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-592:
CWE-593:
CWE-594:
CWE-595:
CWE-596:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-604:
CWE-605:

Use of DYNamic Class LOAAING.........uuiiieiiiiiiiee e e it e e et e e et e e e e e s rtae e e e e s e stbaa e e e e s s sanbaeeeessensaneas 569
Suspicious Comment
Use of Hard-coded, Security-relevant CONSIANTS..........c.ueieeeiiiiiiiee s e e
Information Leak Through DireCtory LiStING.........ceeeiiiiiiiiiie it e e e
Missing Password Field Masking...........coiiiiiiioiiiiie e e e e
Information Leak Through Server Error Message
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization..............ccccc.cccoeuneee. 572
Files or Directories Accessible to EXternal Parties..........cococe i 573
Command Shell in Externally Accessible Dir€CtOry..........cccoiiiiiiiie i 574
ASP.NET Misconfiguration: Not Using Input Validation Framework..............cccccovvuvieeeeiiiiieeeeeeiinns 574
J2EE Misconfiguration: Plaintext Password in Configuration File.............cccccooiiiiiieiiiiiien e, 575
ASP.NET Misconfiguration: Use of Identity IMpersonation............ccccceeeeiiiiiireeiiiiiveiee e esiineee e e 575
CONCUITEINCY ISSUEBS... . ututuittiiittittettettttaeeeeeeaeeesssassssasa s aeas e b bt s eaeeeeeeeeteaaaaaeaaeaaesssssssasasasssnsnensnsssnnnrnes 576
Use of getlogin() in Multithreaded AppliCAtioN............cooiiiiiiiiii e 576
Often Misused: Arguments and Parameters...........c.ccooiiuviiieeiiiiiiiee et e e e e earaeee e 577
Use of umask() with chmod-style ArgUMENL...........coiiiiiiiiiee e 577
Dead Code
Return of Stack Variable AQAreSS..........uii ittt
UNUSEA VATBDIE.......eiiiiiiie ettt e sat e e srb e e ettt e e snaeeesbeee s
SQL INJECHION: HIDEIMNALE......eiiiiiiiiieee e e e e s e e e e e st e e e e e s saareeeeeaan
Reliance on Cookies without Validation and Integrity Checking
Access Control Bypass Through User-Controlled SQL Primary Key........ccccceovvivieieeiiiiieree e, 583
Unsynchronized Access t0 Shared Data.............eeeeiiiiuiiiieiiiiiiie et stvae e e e 584
finalize() Method Without sSUPer.finaliZe()........c.ceiiiiieiiieiiiiii e 585
EXPIESSION [SSUEBS.....ccciiitiiiie e ettt e et e ettt e e e ettt e e e e ettt e e e e e e s eabaeeeeesetbeaeaaesansbaeaeessastreseeenannes
EXPression is AIWAYS FalSE...........oii ittt e e s et e e e e et e e e e s sentreaeeesannes
EXPresSion iS AIWAYS TTUE........uuiiiie it ee e ettt e e sttt e e e et e e e e e st e e e e e s stb e e e e e e eaasaeeaeessntreseeesanes
Call to Thread run() instead of start()
Failure to FOIOW SPECIfICAtION........c.uiiiiie it e e e e e e e e ataeee s
EJB Bad Practices: Use of Synchronization Primitives............cccoocuiieeeiiiiiieee e 590
EJB Bad Practices: Use Of AWT SWINQ......ccuuiiiiiiiiiiei ettt e e st e e e e st e e e e s sabaee e e e s eannes 591
EJB Bad Practices: Use of Java I/O
EJB Bad Practices: USe Of SOCKELS........uiiiiiiiiiiiie it
EJB Bad Practices: Use Of Class LOAUEN..........ccoiiiiiiiiiiiiiie ettt
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without SUPEI.CIONE()......cciiiiieiie et e e e e ennaes
Object Model Violation: Just One of Equals and Hashcode Defined...........cccccceeoiviiieiiciiiciiiee e, 594
Array Declared Public, Final, and StatiC...........c.cccccveveeiiiiiiiiee e

finalize() Method Declared Public
Return Inside Finally Block....................

Empty Synchronized BIOCK...........cooiiiiiiii et
o] ([l A OF= 1| I (o g T 1 4= PSPPI
Assignment of a Fixed AdAress t0 @ POINTEI...........ciiiiiiiiei e
Attempt to Access Child of a NON-Structure POINTE............coiiiuiiiiiiiiiiiiie e
Call to NON-UDIQUItOUS AP ...t e et e e e e e e e e st e e e e e s etbaeaaeean
Free of Memory NOt 0N the HEAP......cciii i e et raaee s
Sensitive Data Storage in Improperly Locked Memory
AULheNtiCatioN BYPASS ISSUES.ciii it ice et e e e st e e e e e st e e e e e s eesbareeaeeasaraaeeeesaanees
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created................. 604
J2EE Framework: Saving Unserializable Objects t0 DiSK........cccccccoviiiiiiiiiiiiieiie e 605
Comparison of Object References Instead of Object CoONteNtS.........c.uvveveeiiiiieiee e 606
Incorrect Semantic ObJECt COMPAIISON.........ccuviiiieiiiieiee et e e e e e e e e e e e e e s saraeeeesaaaees
Use of Wrong Operator in String COMPAriSON.........cc.uuiiieiiiiiiiee e e e ciiiee e e e s seiveeeeeeseanre e e e e s snareseeesanes
Information Leak Through Query Strings in GET Request
Trust of OpenSSL Certificate Without Validation...............ocooiiiiiiieiiiiice e
Failure to Catch All EXCEPLIONS iN SEIVIETevviiieiiiiie et e
URL Redirection to Untrusted Site ('Open ReIreCt)........uuvvieiiiiiiiiee e
Client-Side Enforcement of Server-Side SECUNLY.........ccuuiiei i
Use of Client-Side AUthENTICALION.........ouiiiiiieeiiiee ettt anee s
[DTCT o] (=Tor= 1=To I = 011 =TT PSP UPUPOt
Multiple Binds t0 the SAME POIM.........cuiiiiii et e et a e e s s e e e e e s aees

Xii

CWE Version 1.6
Table of Contents

CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:
CWE-628:
CWE-629:
CWE-630:
CWE-631.:
CWE-632:
CWE-633:
CWE-634:
CWE-635:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-658:
CWE-659:
CWE-660:
CWE-661.:
CWE-662:
CWE-663:
CWE-664:
CWE-665:
CWE-666:

Unchecked Input for LOOP CONITION..........ccuuiiieiiiiiiiee et e et re e e e e eaaeeas 616
Public Static Final Field References Mutable ODbJECt..........cccvvviiiiiiiiiiie e 617
Struts: Non-private Field in ACHONFOIrM CIassS.........coiiiiiiiieiiiiiiiie e 617
DoUDbIE-CheCKed LOCKING.........uviiiie ettt ettt e e e e e e et e e e e e st e e e e e s sntaeeeaesennnees 618
Externally Controlled Reference to a Resource in Another Sphere..........ccoooveeiiiiiiiecc e, 619
Information Leak Through XML External Entity File DiSCIOSUIe.............cccvuveeeiiiiiiieee e, 619
Information Leak Through Indexing of Private Data............cccccoecuvviieiiiiiiieice e 620
INSUFfiCIENt SESSION EXPITALION.cciiiiiiiiirieeiiiiie e sttt e e e e e e e e et e e e e s st e e e e s esabareeeesasnsbreaeesanees 621
Sensitive Cookie in HTTPS Session Without 'Secure’ AHMbULE............oovviiiiieiiiieeeece e 622
Information Leak Through COMMENTS..........uuiiiiiiiiiieie e e e e s eeaaeas 622
Incomplete Identification of Uploaded File Variables (PHP).........cccccooeiiiiiiiie e 623
REACNADIE ASSEITION.cciiiiiiiiii ittt ettt e st e et b e e sabe e e s breeesnbeeennes 624
Exposed Unsafe ACtIVEX METhOU...........oooiiiiiiii e e 625
Dangling Database Cursor ('CUrsor INJECHION")........ciciuiiiei e eraae e 626
Unverified Password ChanQe.........coiiiiiiiiiii ettt e e e e e e e e e s et e e e e e e snarreeaeeaan
Variable EXIFACHON EFTOT.......uuiiiiiiieiiite ettt ettt et sst et bt e et e e st e e e sate e e anb e e e snneeenneeas
Unvalidated Function Hook Arguments

Unsafe ActiveX Control Marked Safe For Scripting

Executable Regular EXPreSSION EITON...........ciiiiiiiiiiieeiiiiiiee e eeiite e e s etaee e e et e e e e s s st e e e e s snataaeeae s
Permissive ReQUIAI EXPIrESSION.ciiciiiiiiiieeiieitie e e e ettt e e e st e e e e s et e e e e e s saba e e e e e sstbareeessesbaneeaeaaan
Null Byte Interaction Error (PoiSON NUIl BYIE)........coieiiiiiiiiiiiiiiiiiie ettt
Dynamic Variable EValUation.............ccooiiiiiiiiiiiiee et e e e et e e e e tbe e e e
Function Call with Incorrectly Specified ArgUMENES..........cooiiiiiiiiiiiiiiiie e 634
Weaknesses in OWASP TOp TN (2007).....uuiiiiiiiiieeee e ittt e et e e e st e e e s s e e e e e eanraeee s 635
Weaknesses EXamined DY SAMATEooi ittt e e e e e e s e e e e e e s araaeaeeaans 636
RESOUICE-SPECITIC WEAKNESSES.......ciiiiiiiee ettt e e e e e e et e e e s st ae e e e s e antaeeaeeaaanees 637
Weaknesses that Affect Files Or DIr€CtOMES.cuuiiiiiiiiiiiie e 637
Weaknesses that Affect Memory..........ccccceeeeen.

Weaknesses that Affect System Processes

Weaknesses USEd DY NVD..........oiiiiiiiiiiii ettt e et e e s et e e e e e st e e e e e s sataeeeeesannes
Not Failing Securely ('"Failing OPEN")......cciiiiiiiie et e e e e e e s earaeeas
Failure to Use ECONomy Of MECNANISIM.........ccoiiiiiiiei et e et e s etraeea e
Failure to Use Complete MeIation............ociuiiiieiiiiiiiie et e et e s e e e e e s e annes
Access Control Bypass Through User-Controlled KeY..........ocouuiiiiiiiiiieiic e
Weak Password Recovery Mechanism for Forgotten Password

Insufficient Filtering of File and Other Resource Names for Executable Content..............cccceeeeae 647
External Control of CritiCal State Datal...........c.ceeiiuriiiiiiiiiiieeeiiee et 648
Failure to Sanitize Data within XPath Expressions ("XPath injection’)............cccccccveveeviiiiierees i, 651
Improper Sanitization of HTTP Headers for Scripting SyntaX..........ccccvevieeiiiiiiiieeciiiiiiee e esiieeeee
Overly Restrictive Account Lockout Mechanism...............cccccvveeee.

Reliance on File Name or Extension of Externally-Supplied File

Use of Non-Canonical URL Paths for Authorization DeCISIONS...........ccceeviiiiiiieeeiiiee e
INCOIrect USe Of PriVIIEgEA APIS......coo ettt e e e st e e e e s entbae e e e s aaes
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking...... 658
Trusting HTTP Permission Methods on the Server Side..........ccccooviieiie i 660
Information Leak through WSDL File........coiiiiiiiiiiii et a et a e 661
Failure to Sanitize Data within XQuery Expressions ('XQuery Injection)...........ccccevvuvveeeeiiiiieneennn. 662
Insufficient CompartmentaliZation..............cooiiuiiiiii i 663
Reliance on a Single Factor in a Security DECISION..........ccuviieiiiiiiieee e 664
Insufficient Psychological ACCEPLability...........cccuiiiiiiiiiiiiie e
Reliance on Security through ODSCUIILY.........coiiiiiiiiiie e
Violation of Secure Design PriNCIPIES..........ccooiiiiiiiii et
Weaknesses in Software WHEN iN C......ooouuiiiiiiiiiiiee et
Weaknesses in Software Written in C++

Weaknesses in Software WHEEN IN JAVA..........ccoiuiiiiriiiiiieie ettt 673
Weaknesses in Software WHten in PHP ..o e 674
Insufficient Synchronization
Use of a Non-reentrant Function in an Unsynchronized Context............c.cccvvvveeeiiiiiiireeeiiiieeee e 676
Improper Control of a Resource Through its Lifetime...........ccovviiiiiiiiiii e 676
IMProper INIGAIZALION.........ooiiiiieee e e e e s s e e e e s st ee e e e e e antaeeaeesanees 677
Operation on Resource in Wrong Phase of Lifetime..........cccciiiiiiiiiiiei e 681

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.6
Table of Contents

CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-677:
CWE-678:
CWE-679:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-699:
CWE-700:
CWE-701.:
CWE-702:
CWE-703:
CWE-704:
CWE-705:
CWE-706:
CWE-707:
CWE-708:
CWE-709:
CWE-710:
CWE-711:
CWE-712:
CWE-713:
CWE-714:
CWE-715:
CWE-716:
CWE-717:
CWE-718:
CWE-719:
CWE-720:
CWE-721.:
CWE-722:
CWE-723:
CWE-724:
CWE-725:
CWE-726:
CWE-727:

oIS 0] (o1 1=T 1 A o Tod (] o PSPPSR
Exposure of Resource to Wrong Sphere
Incorrect Resource Transfer BEtWeen SPNEreS........c.coiiiiiiiiiiiiie et
Always-Incorrect Control FIow Implementation............ccvuveieiiiiiiiee e
Lack of Administrator CONrol OVEI SECUILY.......ciciiiiiiiiieeeiciiiiee e et e e e e e e saeae e e e e s annee
Use of a Resource after EXpiration or REIEASE...........cccuviiieiiiiiiiiiec et
External Influence of Sphere DefinitioN...........coooiiiiiiii e
(8] Tote] gluge]|[=To I 2 =T o N[€] To] o TSP
Duplicate Operations 0N RESOUICE.cciiiiuiiiee e ittt e e s et e e e e et e e e e s sstr e e e e e s asbtreeaesassareeeesanaees
Use of Potentially Dangerous FUNCHON...........coioiiiiiiiie et e et e e e eannes
WeEaKNess Base EIEMENLS........cooiiiiiiiiie ittt et st e e
(070] 1 0] 00 FY 1 1= O UR RSP PUPOt
CRAIN EIBIMENTS.....eiiiiiie ettt st e sttt e e st e e e be e e e abbe e e sabeeeabbeeeanteeenanee
Integer Overflow to BUffer OVEIMIOW...........ooiiiiiiiiiic e
Incorrect Conversion between NUMEIC TYPES.....coiiiiiiiieeiiiiiieee e eeiiee e e e s st e e e e s esibrr e e e e e asasaaeeeeesanees
[a oo]q (=To1 QO 1 o1 0 - L1 o] o PO PSRRI
Function Call With Incorrect Order of Arguments
Failure to Provide Specified FUNCHONAIILY..........cccoiiiiiiiieiiiiiiie e
Function Call With Incorrect Number of ArgUMENTS........c.cooiiiiiiiiee i e e e 703
Function Call With INCOIrrect ArgUMENT TYPE....uuuiiieeiiiiiiiie e ettt e e e et e e e st e e e s etbae e e e e s e sanaeeeaeeaas 704
Function Call With Incorrectly Specified Argument Value...........ccceoeeiiiiiiiee e 705
Function Call With Incorrect Variable or Reference as Argument..........cccccoocvvviieeeeiiiiier e s 706
Permission Race Condition DUring RESOUICE COPY.....ccceiiiuiiriieeiiiiiiiieeeeiiiieeeeesssirereeesesnsaeaeessnnnns 707
Unchecked Return Value to NULL Pointer Dereference..........ooceevveeiiieeiniiee i 708
Insufficient Control FIOW Management..........c.uveiiiiiiiiiiee et e e e e e e e s e e e e e e e
Incomplete Blacklist t0 Cross-Site SCHPLNG......ceiiiiiiiirie e eesaaees
Protection Mechanism Failure.............ccccoooieiiiiiiiieiiieene

Use of Multiple Resources with Duplicate Identifier
Use 0Of LOW-Level FUNCHONAILY.......cccoiiiiiiiii et e e e e e e e e anaa e e e e
INCOITECE BENAVIOT OFUEN eiiiiiiiieiiiie ettt et sttt e e st e e snee e e neneeas
INSUFFICIENT COMPAIISON. .. .uuiiiiiiiitiiie ettt e e e e e e e s e e e e e e e b e e e e e e s atbeeeeesetbraeeeeeananareeeeeaas
REAITECT WItNOUL EXI.....eeieiiiiiiiiieiiie ettt ettt e et s et e e bt e e anbe e e sbaee e nnbeeeanbeeenans
(DAt o] o] g 1T o A O o] g o= o] £ RO OPRTIN
Seven Pernicious KINGOOMIS.coiiiiiiie ettt e e e e e e e e st e e e s et e e e e e aatbaeeeessenrrees
Weaknesses Introduced DUNNG DeSIGN.........ciiiiiiiiiiiee e ettt e e e s e e e e raraeeas
Weaknesses Introduced During Implementation...............eeeieiiiieeiee i
Failure to Handle Exceptional Conditions
Incorrect Type Conversion or Cast..............
INCOrrect Control FIOW SCOPING......uuiiiieiiiiiie ettt e e e e e e e e s e e e e s s satb e e e e e s anaaaeeaeas
Use of Incorrectly-Resolved Name or REfErENCE.........ccuviiiii i
Improper Enforcement of Message or Data StrUCUIE..........ccovuiieiiiieniieee e
Incorrect OWNErShiP ASSIGNMENT.........vuiiii i e e e e e e st e e e s et ae e e e e s enannes
N E=T a0 T=To IO o T T L3PPSR
Coding Standards ViolatioN...........cc.uveiiee it e e s e e e s et e e e e s st e e e e e snraaes
Weaknesses in OWASP TOp TN (2004)......cccciiiuiiieie ettt e et e e e st e e e e e e e e eaaraeae s
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS).....ccccceeiviiiiiieeeeiiiiee e
OWASP Top Ten 2007 Category A2 - Injection FIaws..........cccccviieiiiiiiiiiice e
OWASP Top Ten 2007 Category A3 - Malicious File EXeCUtion...........ccccceoveiiiieeceiiiiece e
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference............cccocovvveveeiiiinennenn.
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling............. 744
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management.............. 744
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage.........ccccoevvvveveeeiiiiiineeeennnns 744
OWASP Top Ten 2007 Category A9 - Insecure COMMUNICALIONS.........ccocuviereeeiiiiiieeeeeiiiieeee e 745
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS........ccceeevviiieiieeiiiiiiieeeees 745
OWASP Top Ten 2004 Category Al - Unvalidated INPUL...........ocoiieeiiiiiiiee e 745
OWASP Top Ten 2004 Category A2 - Broken Access CONtrol..........ccccvveeeeiiiiieieeeiiiiieeee e 746
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management.............. 747
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws..........ccccocvvvveeeiiiiiieneen, 748
OWASP Top Ten 2004 Category A5 - Buffer OVerflows..........ccocvveiieiiiiiiiee e 748
OWASP Top Ten 2004 Category A6 - Injection FIaws...........cccccvvieiiiiiiiiiiiie e 748

Xiv

CWE Version 1.6
Table of Contents

CWE-728:
CWE-729:
CWE-730:
CWE-731:
CWE-732:
CWE-733:
CWE-734:
CWE-735:
CWE-736:
CWE-737:
CWE-738:
CWE-739:
CWE-740:
CWE-741.:
CWE-742:
CWE-743:
CWE-744:
CWE-745:
CWE-746:
CWE-747:
CWE-748:
CWE-749:
CWE-750:
CWE-751.:
CWE-752:
CWE-753:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-769:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:
CWE-786:
CWE-787:
CWE-788:

OWASP Top Ten 2004 Category A7 - Improper Error Handling
OWASP Top Ten 2004 Category A8 - Insecure Storage........cccccvvveeeennn..

OWASP Top Ten 2004 Category A9 - Denial Of SEIVICE..........ociiiiiiiiiie e
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management..............c..cccccvveeennn. 750
Incorrect Permission Assignment for Critical RESOUICE............ccccuviiiieiiiiiiiie e
Compiler Optimization Removal or Modification of Security-critical Code
Weaknesses Addressed by the CERT C Secure Coding Standard.............ccccvveeeeiiiiieneecicciienenn.
CERT C Secure Coding Section 01 - Preprocessor (PRE).........ccccoeoiiiiiiiee e
CERT C Secure Coding Section 02 - Declarations and Initialization (DCL).........ccccceeeeviiivieeeeninns 755
CERT C Secure Coding Section 03 - EXPressions (EXP).......cccveiieiiiiiiiiee e 755
CERT C Secure Coding Section 04 - Integers (INT).....uuiiie it 756
CERT C Secure Coding Section 05 - Floating Point (FLP)..........coooiiiiiiiiie e 756
CERT C Secure Coding Section 06 - Arrays (ARR).......cccuiiiieiiiiiiiie ettt 757
CERT C Secure Coding Section 07 - Characters and Strings (STR)......ccccceeeviviiiieeeeeiiiieee e 757
CERT C Secure Coding Section 08 - Memory Management (MEM)............ccooovvveeiiiiiiiiee e, 758
CERT C Secure Coding Section 09 - Input Output (FIO)......ccuvvieiiiiiiec e 758
CERT C Secure Coding Section 10 - Environment (ENV).........coooiiiiiiiiiiiieiee e esiieee e 759
CERT C Secure Coding Section 11 - Signals (SIG)......ccoivuiiiieiiiiiiiie ettt 760
CERT C Secure Coding Section 12 - Error Handling (ERR)..........coooiiiiiiiiiiiiiiiieee e 760
CERT C Secure Coding Section 49 - Miscellaneous (MSC)........cccoviiiiiiieeiiiiiiiiee e 761
CERT C Secure Coding Section 50 - POSIX (POS).....cccueiiiiiiiiiie ettt 761
Exposed Dangerous Method OF FUNCHON............iiiiiiiiiiiiee e e e e stree e e e 762
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors..................... 763
Insecure Interaction Between Components
Risky RESOUICE MaNAGEMENT........cciiiiiiiie e et ee e et e s et e e e e s e e e e e e st e e e e e s estbareeaesasnsareeeeeaanees
POTOUS DEIENSES.eiiiiiiieiiiee ettt ettt e e st e e s abb e e e bt e e e ssbe e e anbbeesnnteeesnbeeean
Improper Check for Exceptional ConditioNS..............cooiiiiiiei i
Improper Handling of Exceptional Conditions
MiSSING CUSTOM EITOF PAQE......cciuiiiiie ittt e e et e e e ettt e e e et e e e e e e s atb e e e e e s saranaaeean
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade")............cccvveeenn. 766
Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
Use of a One-Way Hash without @ Salt.............cccceeeiiiiiin e,

Use of a One-Way Hash with a Predictable Salt..............ccccooiiiiiiiic e
Free of Pointer not at Start Of BUEr...........ooiiiiiii e
Mismatched Memory Management ROULINES.c.ccoiiiiiiieiiiiiiei e e e e sarae e
Release of Invalid Pointer or REfEIENCE.........ccoiiiiiiiii e s
Multiple LOCKS Of @ CritiCal RESOUICE.ccciiuiiiei e ittt e s e et r e e e s e eaanes
Multiple Unlocks of a Critical Resource
Critical Variable Declared PUDIIC...........ccuiiiiiii e e
Access to Critical Private Variable via Public Method............ccooeeiiiiiiiiiii e
Incorrect Short CirCUit EVAIUALION..........cuuiiiiiieiiie ettt s
File DeSCriptor EXNAUSTION.cccoiiiiiiii e ettt et e e e e e s et e e e s et e e e e e s satb e e e e e s sanaraaeaeas
Allocation of Resources Without Limits or Throttling
Missing Reference to Active Allocated RESOUICE...........coeiiiiiuiiiiie et e e
Missing Release of Resource after Effective Lifetime.........cccovveiiiiiiiiiic e
Missing Reference to Active File Descriptor or Handle
Allocation of File Descriptors or Handles Without Limits or Throttling............ccccceveeeiiiiiiiee i,
Missing Release of File Descriptor or Handle after Effective Lifetime..........ccccccovviiiiiiiiiiiiieeece,
Unrestricted Recursive Entity References in DTDs (‘XML Bomb").......cccoveviiiiiiiiieeiicceee e,
Regular EXpression WIithOUL ANCNOIS.coiiiiiiie it e e et a e e e nnees

oI 0] el [=T L A oo o |1 o T PRSPPI
LOQQINg Of EXCESSIVE DaAlal.......ccuvviiiiiiiiiiiiie ettt s ettt e e e e e et e e e e e s st e e e e e s atbaneeeeeanes
Use of RSA Algorithm WithOUt OAEP.............oiiiiiiee e s et
Improper Address Validation in IOCTL with METHOD_NEITHER /O Control Code...........cc.......... 791
Exposed IOCTL with Insufficient ACCESS CONLrol...........coiiiviiiieiiiiiiiee e 793
Operator PreCedence LOGIC EITOr........coiiiiiiie ettt e e e et e e e e s earaeaaeean 794
Reliance on Cookies without Validation and Integrity Checking in a Security Decision................... 795
Use of Path Manipulation Function without Maximum-sized BUffer...........ccccccooviiiiiciiicien e, 797
Access of Memory Location Before Start of BUfer............ccooiiiiiiiiiiiiiie e 798
OUL-OF-DOUNAS WIITE.....eei ittt ettt et e sttt e s sbb e e e en b e e sbeee s nabeeeanbeeennes 799
Access of Memory Location After ENd of BUFfer............oooiiiiiieiiiice e 799

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.6
Table of Contents

CWE-789: Uncontrolled Memory AlIOCALION...........uuiieiiiiiiiee e e eciiee ettt e e e e e e e e s sar e e e e s st aeeaesannnees 800
CWE-1000: RESEAICH CONCEPLS. ...uiiiiiiiiiiiiie e ettt e e et e e e e e e e e e e e e e e e st e e e e e s stbaeeeeesastbaseeeeeaataeeeeessanreneas 801
CWE-2000: Comprehensive CWE DICHONAIY.........c.uuvieeiieiiei e e eeciie e e e esiive e e e e s eettae e e e e s staaeeaeesantaeeeeessabreeeessanses 802
Appendix A: Graph Views

CWE-629: Weaknesses in OWASP TOP TN (2007).......uuuiiieiiiiiiiie e it e e eestte e e e e st e e e s s sitae e e e e s saaaeeaesennnnnes 819
CWE-631: ReSOUICE-SPECITIC WEAKNESSES. .. .oeiiiiiiiiiiiee e ittt e e e e ettt e e e s ettt e e e e e ettt e e e e e s tb et e e e s eesbaeeeeeeannsbaeaeeeaas 821
CWWE-B78: COMPOSITES. ..eiiiiiiiiiiee ettt e e e e ettt e e e e e sttt e e e s e b et e e e e e tbaaeeee e e assseeeeeaatbeeeeessasbsesaeesassssaeeeaasssbenaeesssres 823
CWE-699: DEVEIOPMENT COMCEPLS. . .ueiieiiiitiiiee e ittt e e e e ettt e e e s et e e e e s et a e e e e e e sataeeeeesstbeeeeeesassaseeeesssssneeaeesasnes 824
CWE-700: Seven Pernicious KINGOOMIS.coiuiiiieeiiiiiiiee ettt e et e e e ettt e e e e s st e e e e e stae e e e e e s e atreeaeessnerees 846
CWE-709: NAMEA CRaAINS.......tiiiiiiiieiiiee ittt ettt ettt e st e e s bb e e e sttt e e ssbe e e ek b e e e asteeesnbeeeebbeeeasteeesnbeeeansbeeen 848
CWE-711: Weaknesses in OWASP TOP TN (2004)........uueiiiiiiiiieie et e e eestte e e e st e e e s eiare e e e e s staae e e e e e nannnes 849
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard.............ccccvveeeeiviiiereeeiiciienennn. 852
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors.................... 855
CWE-1000: RESEAICH CONCEPLS. .. uiiiiiiiiiiiiie e ettt e e et e e et e e e e e e e e e e e st e e e e e s sbba e e e e e saataseeeeeeastaeeeeesssseneas 856
1Yo =GOSO 876

XVi

CWE Version 1.6
CWE-1: Location

CWE-1: Location

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.
Relationships

Nature Type ID Name Page
ParentOf 2 Environment 699 1
ParentOf 16 Configuration 699 13
ParentOf 17 Code 699 13
MemberOf 699 Development Concepts 699 715

CWE-2: Environment

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 3 Technology-specific Environment Issues 699 1
ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 700 2
ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 3
ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 700 4
ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 5
ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 700 6
Methods
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 700 7
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 8
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 700 9
ParentOf (B] 14 Compiler Removal of Code to Clear Buffers 699 10
700
ParentOf (B] 15 External Control of System or Configuration Setting 699 12
ParentOf [C] 435 Interaction Error 699 476
ParentOf (B) 552 Files or Directories Accessible to External Parties 699 573
ParentOf (V] 650 Trusting HTTP Permission Methods on the Server Side 699 660
MemberOf 700 Seven Pernicious Kingdoms 700 716

CWE-3: Technology-specific Environment Issues

Category ID: 3 (Category) Status: Draft
Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 699 1
ParentOf 4 J2EE Environment Issues 699 2

=

uoIe207 :T-IMD

CWE-4: J2EE Environment Issues

CWE Version 1.6
CWE-4: J2EE Environment Issues

Nature Type ID Name Page
ParentOf 519 .NET Environment Issues 699 553

CWE-4: J2EE Environment Issues

Description
Summary
J2EE framework related environment issues with security implications.
Relationships

Nature Type ID Name Page

ChildOf 3 Technology-specific Environment Issues 699 1

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 750
Management

ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 699 2

ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-1D Length 699 3

ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 699 4

ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 699 5

ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 699 6
Methods

ParentOf (V] 555 J2EE Misconfiguration: Plaintext Password in Configuration 699 575
File

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission
Without Encryption

Weakness ID: 5 (Weakness Variant)
Description
Summary
Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.
Time of Introduction
« Implementation
e Operation
Applicable Platforms
Languages
» Java
Potential Mitigations
The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.
Other Notes
If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: - (1) A user manually enters URL and
types "HTTP" rather than "HTTPS". - (2) Attackers intentionally send a user to an insecure URL. -
(3) A programmer erroneously creates a relative link to a page in the application, failing to switch
from HTTP to HTTPS. (This is particularly easy to do when the link moves between public and
secured areas on a web site.)
Relationships

CWE Version 1.6
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 319 Cleartext Transmission of Sensitive Information 1000 348

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport
CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Description

Summary

The J2EE application is configured to use an insufficient session ID length.
Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.
Time of Introduction
* Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Integrity
If an attacker can guess an authenticated user's session identifier, they can take over the user's
session.
Enabling Factors for Exploitation
If attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to
assume that they could attempt tens of thousands of guesses per second. If the web site in
question is large and popular, a high volume of guessing might go unnoticed for some time.
Potential Mitigations
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.
Implementation
A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.
Background Details
Session ID's can be used to identify communicating parties in a web environment.
The expected number of seconds required to guess a valid session identifier is given by the
equation: (2°B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CWE Version 1.6
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 334 Small Space of Random Values 1000 367

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction
References

< http://lwww.securiteam.com/securityreviews/5STPOFOUEVQ.html >.

CWE-7: J2EE Misconfiguration: Missing Custom Error
Page

Weakness ID: 7 (Weakness Variant) Status: Incomplete

Description
Summary
The default error page of a web application should not display sensitive information about the
software system.
Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServietException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

CWE Version 1.6
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Potential Mitigations
Handle exceptions appropriately in source code.

Always define appropriate error pages.
Do not attempt to process an error or attempt to mask it.

Verify return values are correct and do not supply sensitive information about the system.

Other Notes
When an attacker explores a web site looking for vulnerabilities, the amount of information that
the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's
job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.
This information enables the attacker to target known vulnerabilities in these components.
The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 749
Handling
ChildOf [C] 756 Missing Custom Error Page 699 765
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

CWE-8: J2EE Misconfiguration: Entity Bean Declared

Remote
Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.
Time of Introduction
 Architecture and Design
¢ Implementation
Demonstrative Examples
XML Example: Bad Code

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

ajoway paltejoaq ueag Aug :uonesnBiyuoaSIA IIZC 8-IMD

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE Version 1.6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

</entity>

;./enterprise-beans>
</ejb-jar>

Potential Mitigations
Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that your application logic performs
appropriate validation of any data that might be modified by an attacker.

Other Notes
Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 682

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods

Weakness ID: 9 (Weakness Variant) Status: Draft
Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.
Time of Introduction
« Architecture and Design
¢ Implementation
Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

<Jejb-jar>
Potential Mitigations
Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.
Other Notes

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully

CWE Version 1.6
CWE-10: ASP.NET Environment Issues

thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 266 Incorrect Privilege Assignment 1000 296
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 746

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

CWE-10: ASP.NET Environment Issues

Description
Summary
ASP.NET framework/language related environment issues with security implications.
Relationships

Nature Type ID Name Page
ChildOf 519 .NET Environment Issues 699 553
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 750
Management
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 699 7
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 699 8
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 699 9
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 574
Framework
ParentOf (V] 556 ASP.NET Misconfiguration: Use of Identity Impersonation 699 575
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific Insecure Configuration Management
CWE-11: ASP.NET Misconfiguration: Creating Debug
Binary
Description
Summary

Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.
Time of Introduction
¢ Implementation
e Operation
Applicable Platforms
Languages
* .NET
Common Consequences

S9NSS| JuswuoliAug 19N'dSV -0T-aMD

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE Version 1.6
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Confidentiality
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.
XML Example: Bad Code
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"

debug="true"
/>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.

Potential Mitigations
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production (See demonstrative example).

Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 215 Information Leak Through Debug Information 1000 251

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary
CWE-12: ASP.NET Misconfiguration: Missing Custom Error
Page
Description

Summary

An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework's built-in responses.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
* .NET
Common Consequences
Confidentiality
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.

CWE Version 1.6
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Demonstrative Examples
Example 1:
Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
ASP.NET Example: Bad Code

<customErrors ... mode="0Off" />

Example 2:

Custom error message mode for remote user only. No defaultRedirect error page is specified.

The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET
error message with the server customError configuration setting and the platform version will be
returned.

ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Potential Mitigations
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as shown
in the following example.
Good Code

<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:
Good Code

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

Do not attempt to process an error or attempt to mask it.
Verify return values are correct and do not supply sensitive information about the system.
ASP .NET applications should be configured to use custom error pages instead of the framework
default page.

Background Details
The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf ® 756 Missing Custom Error Page 1000 765

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET _Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in
Configuration File

Weakness ID: 13 (Weakness Variant) Status: Draft

Description

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD

CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 1.6
CWE-14: Compiler Removal of Code to Clear Buffers

Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.
Time of Introduction
 Architecture and Design
« Implementation
Demonstrative Examples
The following connectionString has clear text credentials.
XML Example: Bad Code
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"

providerName="System.Data.Odbc" />
</connectionStrings>

Potential Mitigations
Good password management guidelines require that a password never be stored in plaintext.
Implementation
credentials stored in configuration files should be encrypted.
Implementation
Use standard APIs and industry accepted algorithms to encrypt the credentials stored in
configuration files.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 260 Password in Configuration File 1000 291

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.
Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."
Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.
Time of Introduction
¢ Implementation
¢ Build and Compilation

10

CWE Version 1.6
CWE-14: Compiler Removal of Code to Clear Buffers

Applicable Platforms
Languages
« C
o C++
Detection Factors
Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.
White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.
Demonstrative Examples
The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().
C Example: Bad Code
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {

if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value
is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the
correct region of memory, they may use the recovered password to gain control of the system.
It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core
dump or runtime mechanism to access the memory used by a particular application and recover
the secret information. Once an attacker has access to the secret information, it is relatively
straightforward to further exploit the system and possibly compromise other resources with which
the application interacts.
Potential Mitigations

Implementation

Store the sensitive data in a "volatile" memory location if available.
Build and Compilation

If possible, configure your compiler so that it does not remove dead stores.
Architecture and Design

Where possible, encrypt sensitive data that are used by a software system.

Relationships

11

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE-15: External Control of System or Configuration Setting

CWE Version 1.6
CWE-15: External Control of System or Configuration Setting

Nature Type ID Name Page
ChildOf 2 Environment 699 1
700
ChildOf 503 Byte/Object Code 699 545
ChildOf 633 Weaknesses that Affect Memory 631 638
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 749
ChildOf (B] 733 Compiler Optimization Removal or Modification of Security- 1000 753
critical Code
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 761
Affected Resources
* Memory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization
PLOVER Sensitive memory uncleared by compiler
optimization
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSCO06-C Be aware of compiler optimization when
dealing with sensitive data
References

Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >.

< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/
securel10102002.asp >.

Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security". Bugtrag.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration

Setting
Description
Summary

One or more system settings or configuration elements can be externally controlled by a user.
Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.
Time of Introduction
¢ Implementation
Modes of Introduction
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.
Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

;éthostid(argv[l]);

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the

12

CWE Version 1.6
CWE-16: Configuration

value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServietRequest and sets it as the
active catalog for a database Connection.

Java Example: Bad Code

conn.setCatalog(request.getParameter(“catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

Potential Mitigations
Compartmentalize your system and determine where the trust boundaries exist. Any input/control
outside the trust boundary should be treated as potentially hostile.
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.
In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of your attacker.

Relationships

Nature Type ID Name Page

ChildOf 2 Environment 699 1

ChildOf ® 20 Improper Input Validation 700 15

ChildOf [C] 610 Externally Controlled Reference to a Resource in Another 1000 619
Sphere

ChildOf [C] 642 External Control of Critical State Data 1000 648

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Setting Manipulation
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables

CWE-16: Configuration

Description
Summary
Weaknesses in this category are typically introduced during the configuration of the software.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
MemberOf 635 Weaknesses Used by NVD 635 639
CWE-17: Code
Description

13

uonemﬁuuo:) OT-9AMOD

CWE-18: Source Code

CWE Version 1.6
CWE-18: Source Code

Summary
Weaknesses in this category are typically introduced during code development, including
specification, design, and implementation.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 18 Source Code 699 14
ParentOf 503 Byte/Object Code 699 545
ParentOf [C] 657 Violation of Secure Design Principles 699 668

CWE-18: Source Code

Description
Summary
Weaknesses in this category are typically found within source code.
Relationships

Nature Type ID Name Page
ChildOf 17 Code 699 13
ParentOf 19 Data Handling 699 14
ParentOf (C] 227 Failure to Fulfill API Contract ('API Abuse’) 699 258
ParentOf 254 Security Features 699 283
ParentOf 361 Time and State 699 390
ParentOf 388 Error Handling 699 423
ParentOf ® 398 Indicator of Poor Code Quality 699 435
ParentOf 417 Channel and Path Errors 699 460
ParentOf 429 Handler Errors 699 471
ParentOf 438 Behavioral Problems 699 479
ParentOf 442 Web Problems 699 481
ParentOf 445 User Interface Errors 699 483
ParentOf 452 Initialization and Cleanup Errors 699 488
ParentOf 465 Pointer Issues 699 500
ParentOf (C] 485 Insufficient Encapsulation 699 525

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Source Code

CWE-19: Data Handling

Description
Summary
Weaknesses in this category are typically found in functionality that processes data.
Relationships

Nature Type ID Name Page
ChildOf 18 Source Code 699 14
ParentOf ® 20 Improper Input Validation 699 15
ParentOf [C] 116 Improper Encoding or Escaping of Output 699 138
ParentOf ® 118 Improper Access of Indexable Resource ('Range Error’) 699 145
ParentOf 133 String Errors 699 167
ParentOf 136 Type Errors 699 172
ParentOf 137 Representation Errors 699 172

14

CWE Version 1.6
CWE-20: Improper Input Validation

Nature Type ID Name Page

ParentOf 189 Numeric Errors 699 223

ParentOf 199 Information Management Errors 699 236

ParentOf [C] 228 Improper Handling of Syntactically Invalid Structure 699 260

ParentOf 461 Data Structure Issues 699 497

ParentOf (B] 471 Modification of Assumed-Immutable Data (MAID) 699 507
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

99 XML Parser Attack

100 Overflow Buffers

CWE-20: Improper Input Validation

Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.
Extended Description
When software fails to validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.
Terminology Notes
The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships.
Some people use "input validation" as a general term that covers many different techniques for
ensuring that input is appropriate, such as cleansing/filtering, canonicalization, and escaping.
Others use the term in a more narrow context to simply mean "checking if an input conforms to
expectations without changing it."
Time of Introduction
 Architecture and Design
e Implementation
Applicable Platforms
Languages
o All
Platform Notes
Modes of Introduction
If a programmer believes that an attacker cannot modify certain inputs, then the programmer
might not perform any input validation at all. For example, in web applications, many programmers
believe that cookies and hidden form fields can not be modified from a web browser (CWE-472),
although they can be altered using a proxy or a custom program. In a client-server architecture,
the programmer might assume that client-side security checks cannot be bypassed, even when a
custom client could be written that skips those checks (CWE-602).
Common Consequences
Availability
An attacker could provide unexpected values and cause a program crash or excessive
consumption of resources, such as memory and CPU.
Confidentiality
An attacker could read confidential data if they are able to control resource references.

15

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.6
CWE-20: Improper Input Validation

Integrity
An attacker could use malicious input to modify data or possibly alter control flow in unexpected
ways, including arbitrary command execution.
Likelihood of Exploit
High
Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.
Java Example: Bad Code

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

C Example: Bad Code

#define MAX_DIM 100

int m,n, error; /* board dimensions */
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");

printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");

}
if (m > MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker'\n");

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it fails to check for negative values supplied by the user. As a result, an attacker
can perform a resource consumption (CWE-400) attack against this program by specifying two,
large negative values that will not overflow, resulting in a very large memory allocation (CWE-789)
and possibly a system crash. Alternatively, an attacker can provide very large negative values
which will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on
how the values are treated in the remainder of the program.

Example 3:

The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.

PHP Example: Bad Code

$birthday = $_GET['birthday'];
$homepage = $_GET['homepage'];

16

CWE Version 1.6
CWE-20: Improper Input Validation

echo "Birthday: $birthday
Homepage: click here"

The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the webserver echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Attack

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences in a failed protection mechanism of this nature. Depending on the context of the
code, CRLF Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77)
may also be possible.

Example 4:
This function attempts to extract a pair of numbers from a user-supplied string.
C Example: Bad Code
void parse_data(char *untrusted_input){

int m, n, error;

error = sscanf(untrusted_input, "%d:%d", &m, &n);

if (EOF == error){

die("Did not specify integer value. Die evil hacker'\n");

}

/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However,
if an attacker were to provide an input of the form:
Attack

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 5:

The following example takes a user-supplied value to allocate an array of objects and then

operates on the array.

Java Example: Bad Code
private void buildList (int untrustedListSize){

if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");

Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Observed Examples
Reference Description
CVE-2006-3790 size field that is inconsistent with packet size leads to buffer over-read
CVE-2006-5462 use of extra data in a signature allows certificate signature forging
CVE-2006-5525 incomplete blacklist allows SQL injection
CVE-2006-6658 request with missing parameters leads to information leak

17

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.6
CWE-20: Improper Input Validation

Reference

CVE-2006-6870
CVE-2007-2442
CVE-2007-3409
CVE-2007-5893
CVE-2008-0600
CVE-2008-1284
CVE-2008-1303
CVE-2008-1440
CVE-2008-1625
CVE-2008-1737
CVE-2008-1738

CVE-2008-2223
CVE-2008-2252
CVE-2008-2309

CVE-2008-2374
CVE-2008-3174
CVE-2008-3177
CVE-2008-3464
CVE-2008-3477

CVE-2008-3494
CVE-2008-3571
CVE-2008-3660
CVE-2008-3680
CVE-2008-3812
CVE-2008-3843
CVE-2008-4114
CVE-2008-5285
CVE-2008-5305
CVE-2008-5563

Description

infinite loop from DNS packet with a label that points to itself

zero-length input causes free of uninitialized pointer

infinite loop from DNS packet with a label that points to itself

HTTP request with missing protocol version number leads to crash

kernel does not validate an incoming pointer before dereferencing it

NUL byte in theme name cause directory traversal impact to be worse

missing parameter leads to crash

lack of validation of length field leads to infinite loop

lack of validation of input to an IOCTL allows code execution

anti-virus product allows DoS via zero-length field

anti-virus product has insufficient input validation of hooked SSDT functions, allowing code
execution

SQL injection through an ID that was supposed to be numeric.

kernel does not validate parameters sent in from userland, allowing code execution
product uses a blacklist to identify potentially dangerous content, allowing attacker to
bypass a warning

lack of validation of string length fields allows memory consumption or buffer over-read
driver in security product allows code execution due to insufficient validation
zero-length attachment causes crash

driver does not validate input from userland to the kernel

lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,
array index errors, and memory corruption.

security bypass via an extra header

empty packet triggers reboot

crash via multiple "." characters in file extension

packet with invalid version number leads to NULL pointer dereference

router crashes with a malformed packet

insufficient validation enables XSS

system crash with offset value that is inconsistent with packet size

infinite loop from a long SMTP request

Eval injection in Perl program using an ID that should only contain hyphens and numbers.
crash via a malformed frame structure

Potential Mitigations

Architecture and Design
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design

Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, request headers as
well as content, URL components, e-malil, files, databases, and any external systems that provide
data to the application. Perform input validation at well-defined interfaces.

Architecture and Design
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
Use a standard input validation mechanism to validate all input for length, type, syntax, and
business rules before accepting the input for further processing. As an example of business rule
logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."

18

CWE Version 1.6
CWE-20: Improper Input Validation

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation
Be especially careful to validate your input when you invoke code that crosses language
boundaries, such as from an interpreted language to native code. This could create an
unexpected interaction between the language boundaries. Ensure that you are not violating any
of the expectations of the language with which you are interfacing. For example, even though
Java may not be susceptible to buffer overflows, providing a large argument in a call to native
code might trigger an overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

19

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.6

CWE-20: Improper Input Validation

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The

Relationships

software's operation may slow down, but it should not become unstable, crash, or generate

incorrect results.

Nature
ChildOf
CanPrecede
CanPrecede
CanPrecede
ChildOf
ChildOf
ChildOf
ChildOf

ChildOf
ChildOf
ChildOf
ParentOf
ParentOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf
ParentOf

@ 606 G660 COCO6CCRE @ © @ RoREE RREGGOeRS
©
()

@ e

ID
19
22
41
74
693
722
738
742

746
747
751
15
21
73

1

79

89

99

100
102
103
104
105

106
107
108

109
110
111

112

113

114

117
119

Name

Data Handling

Path Traversal

Improper Resolution of Path Equivalence

Failure to Sanitize Data into a Different Plane ('Injection’)
Protection Mechanism Failure

OWASP Top Ten 2004 Category Al - Unvalidated Input
CERT C Secure Coding Section 04 - Integers (INT)

CERT C Secure Coding Section 08 - Memory Management
(MEM)

CERT C Secure Coding Section 12 - Error Handling (ERR)
CERT C Secure Coding Section 49 - Miscellaneous (MSC)
Insecure Interaction Between Components

External Control of System or Configuration Setting
Pathname Traversal and Equivalence Errors

External Control of File Name or Path

Improper Sanitization of Special Elements used in a
Command (‘Command Injection’)

Failure to Preserve Web Page Structure ('Cross-site
Scripting")

Improper Sanitization of Special Elements used in an SQL
Command ('SQL Injection’)

Improper Control of Resource Identifiers (‘Resource Injection’)

Technology-Specific Input Validation Problems
Struts: Duplicate Validation Forms

Struts: Incomplete validate() Method Definition
Struts: Form Bean Does Not Extend Validation Class
Struts: Form Field Without Validator

Struts: Plug-in Framework not in Use
Struts: Unused Validation Form
Struts: Unvalidated Action Form

Struts: Validator Turned Off
Struts: Validator Without Form Field
Direct Use of Unsafe JNI

Missing XML Validation

Failure to Sanitize CRLF Sequences in HTTP Headers
(HTTP Response Splitting")
Process Control

Improper Output Sanitization for Logs

Failure to Constrain Operations within the Bounds of a
Memory Buffer

699
1000
1000
1000
1000
711
734
734

734
734
750
700
699

699
700
700

700
700

700
699
700
700
700
700
1000
700
700
700
1000
700
700
699
700
699
700
1000
700

699
700
1000
700
699
700

Page
14
23
45
72
710
745
756
758

760
761
763
12
23
69

76
85
101

119
121
122
123
124
125

126
126
127

128
129
130

132

133

136

143
146

20

CWE Version 1.6
CWE-20: Improper Input Validation

Nature
ParentOf

ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf

ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

MemberOf

ParentOf
ParentOf
ParentOf
MemberOf

ParentOf

ParentOf

<IN < 6!888! GCG60e 06 & COOOLE © &%‘
(¢]

ParentOf

Relationship Notes

ID
120

129

134
170
190
466
470

554

601
606

621
622
626

635

680
690
692
700

781

785

789

Name

Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow")
Improper Validation of Array Index

Uncontrolled Format String

Improper Null Termination

Integer Overflow or Wraparound

Return of Pointer Value Outside of Expected Range

Use of Externally-Controlled Input to Select Classes or Code
(‘'Unsafe Reflection')

ASP.NET Misconfiguration: Not Using Input Validation
Framework

URL Redirection to Untrusted Site (‘'Open Redirect’)

Unchecked Input for Loop Condition

Variable Extraction Error
Unvalidated Function Hook Arguments
Null Byte Interaction Error (Poison Null Byte)

Weaknesses Used by NVD

Integer Overflow to Buffer Overflow

Unchecked Return Value to NULL Pointer Dereference
Incomplete Blacklist to Cross-Site Scripting

Seven Pernicious Kingdoms

Improper Address Validation in IOCTL with
METHOD_NEITHER I/O Control Code

Use of Path Manipulation Function without Maximum-sized
Buffer

Uncontrolled Memory Allocation

700

699
1000
700
700
700
700
699
700
699
1000
699
699
1000
699
699
699
1000
635
1000
1000
1000
700
699
1000
699
700
1000

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name

is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a

common last name in the English language. However, it cannot be directly inserted into the

database because it contains the ™" apostrophe character, which would need to be escaped or

Page
150

163

168
200
223
501
505

574

610
616

628
629
632

639

698
708
710
716

791
797

800

otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps

There is not much research into the classification of input validation techniques and their

application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input

validation" without providing more specific details that might contribute to a deeper understanding

of validation techniques and the weaknesses they can prevent or reduce. Validation is over-

emphasized in contrast to other sanitization techniques such as cleansing and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings

Mapped Taxonomy Name

7 Pernicious Kingdoms
OWASP Top Ten 2004

CERT C Secure Coding

Node ID Fit Mapped Node Name
Input validation and representation
Al CWE More Specific Unvalidated Input
ERRO7-C Prefer functions that support error checking

over equivalent functions that don't

21

uonepifeA induj Jadosdwyi :02-3MD

CWE-20: Improper Input Validation

CWE Version 1.6
CWE-20: Improper Input Validation

Mapped Taxonomy Name Node ID Fit Mapped Node Name

CERT C Secure Coding INT06-C

Use strtol() or a related function to convert
a string token to an integer

CERT C Secure Coding MEM10-C Define and use a pointer validation function
CERT C Secure Coding MSCO08-C Library functions should validate their
parameters

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

18 Embedding Scripts in Nonscript Elements

22 Exploiting Trust in Client (aka Make the Client Invisible)

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies

32 Embedding Scripts in HTTP Query Strings

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

47 Buffer Overflow via Parameter Expansion

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

63 Simple Script Injection

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic

66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic

72 URL Encoding

73 User-Controlled Filename

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

81 Web Logs Tampering

83 XPath Injection

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

88 OS Command Injection

91 XSS in IMG Tags

99 XML Parser Attack

101 Server Side Include (SSI) Injection

104 Cross Zone Scripting

106 Cross Site Scripting through Log Files

108 Command Line Execution through SQL Injection

109 Object Relational Mapping Injection

110 SQL Injection through SOAP Parameter Tampering
References

Jim Manico. "Input Validation with ESAPI - Very Important”. 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.

"OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.

22

CWE Version 1.6
CWE-21: Pathname Traversal and Equivalence Errors

Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

Maintenance Notes
Input validation - whether missing or incorrect - is such an essential and widespread part of secure
development that it is implicit in many different weaknesses. Traditionally, problems such as
buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism available
for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun
capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more
work is needed.

CWE-21: Pathname Traversal and Equivalence Errors

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).
Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.
Applicable Platforms
Languages
e All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page

ChildOf (C] 20 Improper Input Validation 699 15

ParentOf ® 22 Path Traversal 699 23

ParentOf (B] 41 Improper Resolution of Path Equivalence 699 45

ParentOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 699 56

ParentOf (B] 66 Improper Handling of File Names that Identify Virtual 699 63
Resources

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Pathname Traversal and Equivalence Errors
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic

CWE-22: Path Traversal

Description
Summary

23

S10443 92uajeAlnbg pue [esianel] sweuyred TZ-IMD

CWE-22: Path Traversal

CWE Version 1.6
CWE-22: Path Traversal

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize special elements that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
One of the most common special elements is the ".." sequence, which in most modern operating
systems is interpreted as the parent directory of the current location.
Alternate Terms
Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal."
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).
Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable.
Any combination of the items below can provide its own variant, e.g. "//../" is not listed
(CVE-2004-0325).

Like other Weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying Weaknesses.

24

CWE Version 1.6
CWE-23: Relative Path Traversal

Some people use "directory traversal" only to refer to the injection of ".." and equivalent sequences
whose specific meaning is to traverse directories. Other variants like "absolute pathname" and
"drive letter" have the *effect* of directory traversal, but some people may not call it such, since it
doesn't involve ".." or equivalent.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 23
ChildOf 632 Weaknesses that Affect Files or Directories 631 637
ChildOf (C] 668 Exposure of Resource to Wrong Sphere 1000 682
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 738
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object 629 743
Reference
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 746
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 758
CanFollow (C] 20 Improper Input Validation 1000 15
ParentOf (B) 23 Relative Path Traversal 699 25
1000
ParentOf (B) 36 Absolute Path Traversal 699 40
1000
CanFollow [C] 73 External Control of File Name or Path 1000 69
CanFollow [C] 172 Encoding Error 1000 205
MemberOf 635 Weaknesses Used by NVD 635 639

Relationship Notes
Pathname equivalence can be regarded as a type of canonicalization error.
Research Gaps
Most of these issues are probably under-studied
Affected Resources
 File/Directory
Relevant Properties
« Equivalence
Functional Areas
 File processing
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Path Traversal

OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control

CERT C Secure Coding F1002-C Canonicalize path names originating from

untrusted sources

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls

CWE-23: Relative Path Traversal

Weakness ID: 23 (Weakness Base) Status: Draft
Description
Summary

25

[esianel] yred aAle|ay :£z2-IMD

CWE-23: Relative Path Traversal

CWE Version 1.6
CWE-23: Relative Path Traversal

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize sequences such as ".." that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
The following URLs are vulnerable to this attack:

Bad Code
http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html
A simple way to execute this attack is like this:
Attack

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../../../etc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf [C] 22 Path Traversal 699 23
1000
ParentOf (V] 24 Path Traversal: '../filedir' 699 27
1000
ParentOf (V) 25 Path Traversal: '/../filedir' 699 28
1000
ParentOf (V) 26 Path Traversal: '/dir/../flename' 699 29

26

CWE Version 1.6
CWE-24: Path Traversal: "../filedir'

Nature Type ID Name Page
1000
ParentOf (V] 27 Path Traversal; 'dir/../../[filename’ 699 30
1000
ParentOf (V] 28 Path Traversal: "..\filedir' 699 31
1000
ParentOf V] 29 Path Traversal: \..\filename' 699 32
1000
ParentOf (V] 30 Path Traversal: \dir\..\filename' 699 33
1000
ParentOf (V] 31 Path Traversal: 'dir\..\..\filename' 699 34
1000
ParentOf (V] 32 Path Traversal: '..." (Triple Dot) 699 35
1000
ParentOf (V] 33 Path Traversal: '...." (Multiple Dot) 699 37
1000
ParentOf (V) 34 Path Traversal: "..../I' 699 38
1000
ParentOf (V) 35 Path Traversal: ".../.../I' 699 39
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Relative Path Traversal
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls
References

OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.

CWE-24: Path Traversal: '../filedir'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which /" is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
e All
Potential Mitigations

27

;[esianel] yred Z-4MOD

AIPSIY/

. [filedir'

CWE-25: Path Traversal:

CWE Version 1.6
CWE-25: Path Traversal: '/../filedir'

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER " ffiledir
CWE-25: Path Traversal: '/../filedir’
Weakness ID: 25 (Weakness Variant) Status: Incomplete
Description

Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
* Implementation
Applicable Platforms
Languages
e All
Potential Mitigations

28

CWE Version 1.6
CWE-26: Path Traversal: '/dir/../filename'

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '/..Mfiledir

CWE-26: Path Traversal: '/dir/../filename’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '/dir/../filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
« Implementation
Applicable Platforms
Languages
e All
Technology Classes
* Web-Server (Often)
Potential Mitigations

29

.Jlesianel] yred :92-ImMo

Sweus|y//Ip/,

'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 1.6
CWE-27: Path Traversal: 'dir/../../filename'

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘/directory/../filename

CWE-27: Path Traversal: 'dir/../../filename’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'directory/../../flename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0298

Potential Mitigations

30

CWE Version 1.6
CWE-28: Path Traversal: "..\filedir'

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘directory/../../filename

CWE-28: Path Traversal: . \filedir'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "..\" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.
Time of Introduction
« Implementation
Applicable Platforms
Languages
e All
Operating Systems
* Windows
Observed Examples

31

.Jlesianel] yred :82-IMD

ARSI,

\..\filename'

CWE-29: Path Traversal:

CWE Version 1.6
CWE-29: Path Traversal: ‘\..\filename'

Reference Description

CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.

CVE-2002-1042

CVE-2002-1178

CVE-2002-1209

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ".Mfilename' (‘dot dot backslash')

CWE-29: Path Traversal: '\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize ‘\..\filename" (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.
Time of Introduction
¢ Implementation

32

CWE Version 1.6
CWE-30: Path Traversal: \dir\..\filename'

Applicable Platforms

Languages
o All
Operating Systems
¢ Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.
CVE-2005-2142

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER \..\filename' ('leading dot dot backslash")
CWE-30: Path Traversal: "\dir\..\filename'
Weakness ID: 30 (Weakness Variant) Status: Draft
Description

Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize \dir\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

33

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,

'dir\..\..\filename'

CWE-31: Path Traversal:

CWE Version 1.6
CWE-31: Path Traversal: 'dir\..\..\filename'

This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is
useful for bypassing some path traversal protection schemes. Sometimes a program only checks
for "..\" at the beginning of the input, so a "\..\" can bypass that check.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 7 - \directory\..\filename

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID: 31 (Weakness Variant)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.
Extended Description

34

CWE Version 1.6
CWE-32: Path Traversal: "..." (Triple Dot)

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'din\..\..\filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "..\" at the
beginning of the pathname, moving up more than one directory level.

Time of Introduction

« Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-0160

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 8 - 'directory\..\..\filename

CWE-32: Path Traversal: '..." (Triple Dot)

Description
Summary

35

.Jlesianel] yred :2e-amMo

(rog eiduy)

..' (Triple Dot)

CWE-32; Path Traversal:

CWE Version 1.6
CWE-32: Path Traversal: "..." (Triple Dot)

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '..." (triple dot) sequences that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to “..\.." and might bypass checks that assume only two dots
are valid. Insufficient filtering, such as removal of "./" sequences, can ultimately produce valid "..
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2001-0467 "\..."in web server
CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-based FTP

server.
CVE-2001-0615 ".."or"..."in chat server
CVE-2001-0963 "..."in cd command in FTP server
CVE-2001-1131 "..."in cd command in FTP server
CVE-2001-1193 "..."iin cd command in FTP server

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.

CVE-2003-0313 Directory listing of web server using "...
CVE-2005-1658 Triple dot

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are how assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000

36

CWE Version 1.6
CWE-33: Path Traversal: "...." (Multiple Dot)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "..." (triple dot)

Maintenance Notes
This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need to be
split. The manipulation is effective in two different contexts: (1) it is equivalent to "..\.." on Windows,
or (2) it can take advantage of insufficient filtering, e.g. if the programmer does a single-pass
removal of "./" in a string (collapse of data into unsafe value)

CWE-33: Path Traversal: '...." (Multiple Dot)
Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Insufficient filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
CVE-2000-0240 read filesvial.......... /" in URL
CVE-2000-0773 read files via "...." in web server

CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
CVE-2001-0615 ".."or"..."in chat server
CVE-2004-2121 read files via"......" in web server (doubled triple dot?)

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

37

|lesianel] yred :€€-ImMD

(o@ aydnininy)

Al

CWE-34: Path Traversal:

CWE Version 1.6
CWE-34: Path Traversal: "..../I"

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf (B) 23 Relative Path Traversal 699 25
1000

CanFollow (B] 182 Collapse of Data Into Unsafe Value 1000 215

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '...." (multiple dot)

Maintenance Notes
Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

CWE-34: Path Traversal: "..../I"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '..../I' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Observed Examples
Description
Merak Mail Server with Icewarp, Sep. 10, 2004

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '"inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

38

CWE Version 1.6
CWE-35: Path Traversal: ".../.../I"

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There

are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation

before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000
ChildOf (B] 182 Collapse of Data Into Unsafe Value 1000 215
CanFollow (B] 182 Collapse of Data Into Unsafe Value 1000 215

Relationship Notes

This could occur due to a cleansing error that removes a single "../" from "..../["
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER "..../I' (doubled dot dot slash)

CWE-35; Path Traversal: '.../...II"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize ".../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.
Time of Introduction
* Implementation
Applicable Platforms

Languages
« All
Observed Examples
Reference Description

CVE-2005-0202 ".../..../II" bypasses regexp's that remove "./* and "../"
CVE-2005-2169 chain: ".../.../I" bypasses protection mechanism using regexp's that remove "../" resulting in
collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations

39

.[esianel] yred :Ge-IMOD

e

Il

CWE-36: Absolute Path Traversal

CWE Version 1.6
CWE-36: Absolute Path Traversal

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 25
1000
ChildOf (B] 182 Collapse of Data Into Unsafe Value 1000 215
CanFollow (B] 182 Collapse of Data Into Unsafe Value 1000 215

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /A

CWE-36: Absolute Path Traversal

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object without having been sanitized. Ideally, the path should be resolved relative to
some kind of application or user home directory.

40

CWE Version 1.6
CWE-37: Path Traversal: '/absolute/pathname/here'

Java Example: Bad Code

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);
Potential Mitigations
see "Path Traversal" (CWE-22)
Relationships

Nature Type ID Name Page
ChildOf [C] 22 Path Traversal 699 23
1000
ParentOf (V] 37 Path Traversal: /absolute/pathname/here' 699 41
1000
ParentOf (V] 38 Path Traversal: \absolute\pathname\here' 699 42
1000
ParentOf (V) 39 Path Traversal: 'C:dirname’ 699 43
1000
ParentOf (V] 40 Path Traversal: \\UNC\share\name\' (Windows UNC Share) 699 44
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Absolute Path Traversal

CWE-37: Path Traversal: ‘'/absolute/pathname/here'

Description
Summary
A software system that accepts input in the form of a slash absolute path (‘/absolute/pathname/
here") without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.

CVE-2001-1269 ZIP file extractor allows full path

CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses

CVE-2002-1818 Path traversal using absolute pathname

CVE-2002-1913 Path traversal using absolute pathname

CVE-2005-2147 Path traversal using absolute pathname

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

41

,SJSU/GLU'BULHEd/G],n|OSC]B/, .lesianel] ylred :.&-aMND

CWE-38: Path Traversal: \absolute\pathname\here'

CWE Version 1.6
CWE-38: Path Traversal: \absolute\pathname\here'

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There

are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation

before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 36 Absolute Path Traversal 699 40
1000
ChildOf (V] 160 Improper Sanitization of Leading Special Elements 1000 192
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 758

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER /absolute/pathname/here
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-38: Path Traversal: \absolute\pathname\here'

Description
Summary
A software system that accepts input in the form of a backslash absolute path (\absolute
\pathname\here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-1999-1263
CVE-2002-1525
CVE-2003-0753

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and *;" which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

42

CWE Version 1.6
CWE-39: Path Traversal: 'C:dirname’

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There

are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation

before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf (B) 36 Absolute Path Traversal 699 40
1000

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 758

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER \absolute\pathname\here (‘backslash absolute path’)

CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CWE-39: Path Traversal: 'C:dirname'
Weakness ID: 39 (Weakness Variant) Status: Draft
Description

Summary

An attacker can inject a drive letter or Windows volume letter ('C:dirname’) into a software system
to potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
e Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2001-0038
CVE-2001-0255
CVE-2001-0687
CVE-2001-0933
CVE-2002-0466
CVE-2002-1483
CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

43

.[esianel] yred :6£-IMD

2weulp:D,

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

CWE Version 1.6
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There

are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation

before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they

have been checked.

Relationships

Nature Type ID Name Page

ChildOf (B) 36 Absolute Path Traversal 699 40
1000

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 758

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER 'C:dirname’ or C: (Windows volume or 'drive letter")

CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CWE-40: Path Traversal: "\UNC\share\name\' (Windows
UNC Share)
Weakness ID: 40 (Weakness Variant) Status: Draft
Description

Summary

An attacker can inject a Windows UNC share (\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2001-0687

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

44

CWE Version 1.6
CWE-41: Improper Resolution of Path Equivalence

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf @ 36 Absolute Path Traversal 699 40
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘WUNC\share\name\' (Windows UNC share)

CWE-41: Improper Resolution of Path Equivalence

Description
Summary
The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.
Extended Description
Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
Some of these manipulations could be effective in path traversal issues, too.

Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 23
ChildOf 632 Weaknesses that Affect Files or Directories 631 637
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 738

45

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

CWE Version 1.6
CWE-42: Path Equivalence: filename.' (Trailing Dot)

Nature Type ID Name Page
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 746
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 758
CanFollow [C] 20 Improper Input Validation 1000 15
ParentOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 46
1000
ParentOf (V] 44 Path Equivalence: ‘file.name' (Internal Dot) 699 48
1000
ParentOf (V] 46 Path Equivalence: ‘filename ' (Trailing Space) 699 49
1000
ParentOf (V] a7 Path Equivalence: ' filename (Leading Space) 699 49
1000
ParentOf (V] 48 Path Equivalence: ‘file name' (Internal Whitespace) 699 50
1000
ParentOf (V] 49 Path Equivalence: ‘filename/' (Trailing Slash) 699 50
1000
ParentOf (V] 50 Path Equivalence: '//multiple/leading/slash’ 699 51
1000
ParentOf (V] 51 Path Equivalence: '/multiple//internal/slash’ 699 52
1000
ParentOf (V] 52 Path Equivalence: '/multiple/trailing/slash//' 699 52
1000
ParentOf 9 53 Path Equivalence: "\multiple\\internal\backslash' 699 53
1000
ParentOf (V] 54 Path Equivalence: ‘filedir\' (Trailing Backslash) 699 53
1000
ParentOf (V] 55 Path Equivalence: '/./' (Single Dot Directory) 699 54
1000
ParentOf (V] 56 Path Equivalence: ‘filedir*' (Wildcard) 699 54
1000
ParentOf (V] 57 Path Equivalence: ‘fakedir/../realdir/filename’ 699 55
1000
ParentOf (V] 58 Path Equivalence: Windows 8.3 Filename 699 56
1000
CanFollow ® 73 External Control of File Name or Path 1000 69
CanFollow (C] 172 Encoding Error 1000 205

Affected Resources
* File/Directory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

Description
Summary
A software system that accepts path input in the form of trailing dot (‘filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction

46

CWE Version 1.6
CWE-43: Path Equivalence: filename...." (Multiple Trailing Dot)

¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-1114 Source code disclosure using trailing dot

CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
CVE-2002-1986, Source code disclosure using trailing dot

CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-2213 Source code disclosure using trailing dot

CVE-2005-3293 Source code disclosure using trailing dot

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 1000 194

ParentOf (V] 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 699 47
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Dot - ‘filedir.!

CWE-43: Path Equivalence: 'filename...." (Multiple Trailing

Dot)
Description
Summary

A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

BUGTRAQ:200402@fche + Resin Reveals JSP Source Code ...

CVE-2004-0281 Multiple trailing dot allows directory listing
Potential Mitigations

see the vulnerability category "Pathname Traversal and Equivalence Errors"
Relationships

Nature Type ID Name Page

ChildOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 46
1000

ChildOf (V] 163 Improper Sanitization of Multiple Trailing Special Elements 1000 195

Taxonomy Mappings

47

“aweus|ly, :eoue|19/\!nb;| yred -amM>o

(yo@ Buijreay sdny) |,

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

CWE Version 1.6
CWE-44: Path Equivalence: file.name' (Internal Dot)

Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Dot - ‘filedir...."

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Description
Summary
A software system that accepts path input in the form of internal dot (‘file.ordir) without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might remove a dot
from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ParentOf (V] 45 Path Equivalence: ‘file...name' (Multiple Internal Dot) 699 48
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Dot - 'file.ordir'

CWE-45: Path Equivalence: 'file...name' (Multiple Internal
Dot)

Weakness ID: 45 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
see the vulnerability category "Path Equivalence”
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might use a regular
expression that removes ".." sequences from a string to produce an unexpected string.
Relationships

48

CWE Version 1.6
CWE-46: Path Equivalence: ‘filename ' (Trailing Space)

Nature Type ID Name Page

ChildOf (V] 44 Path Equivalence: ‘file.name' (Internal Dot) 699 48
1000

ChildOf (V] 165 Improper Sanitization of Multiple Internal Special Elements 1000 197

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Mapped Node Name
Multiple Internal Dot - file...dir'

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Description
Summary
A software system that accepts path input in the form of trailing space (filedir *) without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
« All
Observed Examples
Reference Description

CVE-2001-0054

CVE-2001-0693
CVE-2001-0778
CVE-2001-1248
CVE-2002-1451
CVE-2002-1603
CVE-2004-0280
CVE-2004-2213
CVE-2005-0622
CVE-2005-1656

Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using
Web encodings such as "%20"; certain manipulations have unusual side effects.
Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Trailing space ("+" in query string) leads to source code disclosure.

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000
ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 1000 194
CanPrecede 289 Authentication Bypass by Alternate Name 1000 320

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Mapped Node Name
Trailing Space - ffiledir '

CWE-47: Path Equivalence: ' filename (Leading Space)

Description
Summary
A software system that accepts path input in the form of leading space (' filedir’) without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

49

(e2eds bBuljreul) , sweus|ly, :22useAinb3 yred :9-3MD

CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

CWE Version 1.6
CWE-48: Path Equivalence: file name' (Internal Whitespace)

Time of Introduction

¢ Implementation
Applicable Platforms

Languages

o All

Potential Mitigations

see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Space - ' filedir'

CWE-48: Path Equivalence: 'file name' (Internal

Whitespace)
Weakness ID: 48 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal space (‘file(SPACE)name’)
without appropriate validation can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly
guote them; some overlap with path traversal.

CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal
space), leading to bypass of access restrictions to the file.

Potential Mitigations
see the vulnerability category "Path Equivalence"

Other Notes
This is not necessarily an equivalence issue, but it can also be used to spoof icons or conduct
information hiding via information truncation (see user interface errors).

This weakness is likely to overlap quoting problems, e.g. the "Program Files" untrusted search path
variants. It also could be an equivalence issue if filtering removes all extraneous spaces.
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

50

CWE Version 1.6
CWE-50: Path Equivalence: '//multiple/leading/slash’

Weakness ID: 49 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
¢ Operation
Applicable Platforms
Languages
< All
Observed Examples
Reference Description
BID:3518
CVE-2001-0446
CVE-2001-0892
CVE-2001-0893 Read sensitive files with trailing "/*
CVE-2002-0253 Overlaps infoleak
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
CVE-2004-1101 Failure to handle filename request with trailing "/" causes multiple consequences, including
server crash and a Visual Basic error message that enables XSS and information leak.
CVE-2004-1814

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 1000 194

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)

CWE-50: Path Equivalence: '//multiple/leading/slash’

Weakness ID: 50 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of multiple leading slash (‘//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
« Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-1999-1456

CVE-2000-1050 Access directory using multiple leading slash.

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.

CVE-2002-0275

51

.yse|s/buipesj/e|dninwy/, :2ouafeAinb3 yred :05-3MD

CWE-51: Path Equivalence: '/'multiple//internal/slash’

CWE Version 1.6
CWE-51: Path Equivalence: ''multiple//internal/slash’

Reference Description

CVE-2002-1238

CVE-2002-1483

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.
CVE-2004-0578

CVE-2004-1032

CVE-2004-1878

CVE-2005-1365

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 161 Improper Sanitization of Multiple Leading Special Elements 1000 193

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /Imultiple/leading/slash (‘'multiple leading slash')

CWE-51: Path Equivalence: '/multiple//internal/slash’

Description
Summary
A software system that accepts path input in the form of multiple internal slash (‘/multiple//
internal/slash/') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
« Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-1483 Read files with full pathname using multiple internal slash.

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple//internal/slash (‘'multiple internal slash')

CWE-52: Path Equivalence: '/multiple/trailing/slash//’
Description
Summary
A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction

52

CWE Version 1.6
CWE-53: Path Equivalence: "\multiple\\internal\backslash'

¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-1078 Directory listings in web server using multiple trailing slash

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000
ChildOf (V] 163 Improper Sanitization of Multiple Trailing Special Elements 1000 195
CanPrecede & 289 Authentication Bypass by Alternate Name 1000 320

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple/trailing/slash// (‘'multiple trailing slash’)

CWE-53: Path Equivalence: "\multiple\\internal\backslash'’

Description
Summary
A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 165 Improper Sanitization of Multiple Internal Special Elements 1000 197

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \multiple\\internal\backslash

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

Description
Summary
A software system that accepts path input in the form of trailing backslash (‘filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation

53

.yse[syoeq\feusaiun\a|dinwy, :@2ausjeainb3 yred :£5-3MD

CWE-55: Path Equivalence: '/.I' (Single Dot Directory)

CWE Version 1.6
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2004-0847

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 1000 194

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER filedin\ (trailing backslash)
CWE-55: Path Equivalence: '/./' (Single Dot Directory)
Weakness ID: 55 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description
BID:6042

CVE-1999-1083 Possibly (could be a cleansing error)
CVE-2000-0004

CVE-2002-0112

CVE-2002-0304

CVE-2004-0815 "l./l/lletc" cleansed to ".///etc" then "/etc"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER 1./ (single dot directory)
CWE-56: Path Equivalence: 'filedir* (Wildcard)
Description

Summary

54

CWE Version 1.6
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

A software system that accepts path input in the form of asterisk wildcard (‘filedir*') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0433 List files in web server using "*.ext"
CVE-2004-0696 List directories using desired path and "*"

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 155 Improper Sanitization of Wildcards or Matching Symbols 1000 187

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER filedir* (asterisk / wildcard)
CWE-57: Path Equivalence: 'fakedir/../realdir/filename'
Weakness ID: 57 (Weakness Variant) Status: Incomplete
Description

Summary

The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of ‘fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2001-1152
CVE-2005-1366 CGl source disclosure using "dirname/../cgi-bin"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Theoretical Notes
This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).
Taxonomy Mappings

55

DUIRUS|IY/IIp[eal/ /1Ipase), :9oudfeAInbl yred :/G-IMO

CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 1.6
CWE-58: Path Equivalence: Windows 8.3 Filename

Mapped Taxonomy Name Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename

CWE-58: Path Equivalence: Windows 8.3 Filename

Description
Summary
The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.
Extended Description
On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names

CVE-2001-0795 Source code disclosure using 8.3 file name.

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,
which become predictable in 8.3 format.

Potential Mitigations
Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Research Gaps
Probably under-studied
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows 8.3 Filename

References
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-59: Improper Link Resolution Before File Access
('Link Following")

Weakness ID: 59 (Weakness Base)
Description
Summary

56

CWE Version 1.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.
Alternate Terms
insecure temporary file
Some people use the phrase "insecure temporary file" when referring to a link following
weakness, but other weaknesses can produce insecure temporary files without any symlink
involvement at all.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Operating Systems
¢ Windows (Sometimes)
¢ UNIX (Often)
Likelihood of Exploit
Low to Medium
Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Background Details
: Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.
Other Notes
Windows simple shortcuts, sometimes referred to as soft links, can be exploited remotely since an
".LNK" file can be uploaded like a normal file.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 23
ChildOf 632 Weaknesses that Affect Files or Directories 631 637
ChildOf (C] 706 Use of Incorrectly-Resolved Name or Reference 1000 738
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 758
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 761
ParentOf 60 UNIX Path Link Problems 699 58
ParentOf Y 61 UNIX Symbolic Link (Symlink) Following 1000 58
ParentOf (V) 62 UNIX Hard Link 1000 60
ParentOf 63 Windows Path Link Problems 699 61
ParentOf (V] 64 Windows Shortcut Following (.LNK) 1000 61
ParentOf (V] 65 Windows Hard Link 1000 62
CanFollow ® 73 External Control of File Name or Path 1000 69
CanFollow (B] 363 Race Condition Enabling Link Following 1000 395
MemberOf 635 Weaknesses Used by NVD 635 639

Relationship Notes
Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of
multiple elements: file or directory permissions, filename predictability, race conditions, and in
some cases, a design limitation in which there is no mechanism for performing atomic file creation
operations.
Some potential factors are race conditions, permissions, and predictability.

Research Gaps
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.

57

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-60: UNIX Path Link Problems

CWE Version 1.6
CWE-60: UNIX Path Link Problems

Affected Resources
* File/Directory
Functional Areas
* File processing, temporary files
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C Secure Coding POS01-C Check for the existence of links when dealing with files

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
76 Manipulating Input to File System Calls

CWE-60: UNIX Path Link Problems

Description
Summary
Weaknesses in this category are related to improper handling of links within Unix-based operating
systems.
Applicable Platforms

Languages
« All
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 699 56

ChildOf 632 Weaknesses that Affect Files or Directories 631 637

ParentOf o 61 UNIX Symbolic Link (Symlink) Following 631 58
699

ParentOf (V) 62 UNIX Hard Link 631 60
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX Path Link problems
CWE-61: UNIX Symbolic Link (Symlink) Following
Compound Element ID: 61 (Compound Element Variant: Composite) Status: Incomplete
Description

Summary

The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.

Extended Description
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker
to read/write/corrupt a file that they originally did not have permissions to access.

Alternate Terms
Symlink following

58

CWE Version 1.6
CWE-61: UNIX Symbolic Link (Symlink) Following

symlink vulnerability
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-1999-1386
CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.
CVE-2000-1178
CVE-2003-0517
CVE-2004-0217
CVE-2004-0689 Possible interesting example
CVE-2005-0824 Signal causes a dump that follows symlinks.
CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations
Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Other Notes
Fault: filename predictability, insecure directory permissions, non-atomic operations, race
condition.
These are typically reported for temporary files or privileged programs.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 56
ChildOf 60 UNIX Path Link Problems 631 58
699

Requires [C] 216 Containment Errors (Container Errors) 1000 252
Requires 275 Permission Issues 1000 307
Requires [C] 340 Predictability Problems 1000 371
Requires (C] 362 Race Condition 1000 392
Requires (E] 386 Symbolic Name not Mapping to Correct Object 1000 422

Research Gaps
Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages
can have this problem. Even shell programs are probably under-reported.
"Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used. Reference: [Christey2005]

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

59

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD

CWE-62: UNIX Hard Link

CWE Version 1.6
CWE-62: UNIX Hard Link

Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX symbolic link following

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
27 Leveraging Race Conditions via Symbolic Links

References

Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtrag. 2005-06-07. < http://
www.securityfocus.com/archive/1/401682 >.

Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004-04-12. <
http://www.infosecwriters.com/texts.php?op=display&id=159 >.

CWE-62: UNIX Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file,
the attacker can assume the privileges of that process.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* UNIX
Observed Examples
Reference Description
BUGTRAQ:2003028nBSD chpass/chfn/chsh file content leak
ASA-0001

CVE-1999-0783

CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links
CVE-2002-0793

CVE-2003-0578

CVE-2004-1603

CVE-2004-1901

CVE-2005-1111 Hard link race condition

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 56

ChildOf 60 UNIX Path Link Problems 631 58
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 758

60

CWE Version 1.6
CWE-63: Windows Path Link Problems

Nature Type ID Name Page
PeerOf (V] 71 Apple '.DS_Store' 1000 67

Research Gaps
Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER UNIX hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CWE-63: Windows Path Link Problems
Category ID: 63 (Category) Status: Draft
Description

Summary

Weaknesses in this category are related to improper handling of links within Windows-based
operating systems.
Applicable Platforms

Languages
o All
Operating Systems
e Windows
Relationships
Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access (‘Link Following') 699 56
ChildOf 632 Weaknesses that Affect Files or Directories 631 637
ParentOf (V] 64 Windows Shortcut Following (.LNK) 631 61
699
ParentOf V] 65 Windows Hard Link 631 62
699

CWE-64: Windows Shortcut Following (.LNK)

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.
Extended Description
The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.
Alternate Terms
Windows symbolic link following
symlink
Time of Introduction
e Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows

61

Swa|qo.id Huli yred SMOpUIp €9-3MO

CWE-65: Windows Hard Link

CWE Versi