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Abstract—This article investigates a new challenging problem called defensive few-shot learning in order to learn a robust few-shot

model against adversarial attacks. Simply applying the existing adversarial defense methods to few-shot learning cannot effectively

solve this problem. This is because the commonly assumed sample-level distribution consistency between the training and test sets

can no longer be met in the few-shot setting. To address this situation, we develop a general defensive few-shot learning (DFSL)

framework to answer the following two key questions: (1) how to transfer adversarial defense knowledge from one sample distribution

to another? (2) how to narrow the distribution gap between clean and adversarial examples under the few-shot setting? To answer the

first question, we propose an episode-based adversarial training mechanism by assuming a task-level distribution consistency to better

transfer the adversarial defense knowledge. As for the second question, within each few-shot task, we design two kinds of distribution

consistency criteria to narrow the distribution gap between clean and adversarial examples from the feature-wise and prediction-wise

perspectives, respectively. Extensive experiments demonstrate that the proposed framework can effectively make the existing few-shot

models robust against adversarial attacks. Code is available at https://github.com/WenbinLee/DefensiveFSL.git.

Index Terms—Adversarial attacks, defensive few-shot learning, distribution consistency, episodic training
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1 INTRODUCTION

DEEP convolutional neural networks (CNNs) [1], [2] have
obtained impressive successes on a variety of computer

vision tasks especially in image classification [3], [4]. Unfor-
tunately, several pieces of recent work [5], [6] have shown
that these CNN models are vulnerable to adversarial exam-
ples (attacks), which are crafted based on original clean
examples (i.e., images) with imperceptible perturbations. It
means that the CNN models could easily misclassify these
adversarial examples. Therefore, how to learn robust CNN
models that can effectively defend against adversarial
attacks becomes a crucial problem. Recently, many adversar-
ial defense methods, especially adversarial training based
methods, have been proposed and considerably improved

the robustness of deep CNN models [7], [8], [9], [10], [11],
[12], [13], [14].

The existing adversarial training based studies mainly
focus on generic image classification and try to make
generic deep models robust against adversarial attacks.
They basically rely on a large amount of labeled data avail-
able for each class. However, the robustness of few-shot
learning models against adversarial attacks is rarely consid-
ered in the literature. This problem is truly important in
many real applications, where we not only face the limita-
tion of only accessing a few labeled samples for new, unseen
classes, but also must be concerned about the robustness of
the intelligent deep learning systems. For example, face rec-
ognition on automated teller machine (ATM) and mobile
phones [15] could become vulnerable to adversarial attacks
and ends up with serious consequences. Similarly, in other
applications such as malware classification [16] and medical
image analysis [17], [18], the corresponding deep learning
systems could be compromised by adversarial attacks if the
robustness issue is not sufficiently addressed. What’s worse,
under the few-shot setting, deep models could become
more vulnerable to adversarial attacks due to the serious
lack of training samples [19]. Therefore, how to learn a
robust few-shot model defensive against adversarial attacks
is raised in this work as a new and challenging issue, and
we name it defensive few-shot learning throughout this paper.

However, we cannot directly apply the existing adversar-
ial defense methods in the way that they are applied to
generic image classification, to few-shot learning to effec-
tively tackle the defensive few-shot image classification
issue defined in this paper. The reasons are in two folds.
First, as proved by recent work [19], adversarially robust
generalization requires access to more data, but the few-
shot setting only has access to significantly fewer training
samples (e.g., only 1 or 5 samples per class) than generic
image classification. This makes defensive few-shot image
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classificationmuchmore difficult to achieve. Second, generic
image classification can usually safely assume the sample-
level distribution consistency, i.e., the independently and
identically distributed (i.i.d.) assumption, between the train-
ing and test sets. However, this assumption cannot be made
anymore in the few-shot case. This is because due to the seri-
ous scarcity of training samples, few-shot learning usually
has to resort to a large but class-disjoint auxiliary set to learn
transferable knowledge. This means that the actual training
set often has a somewhat different sample distribution from
the test set of the target few-shot task.

Therefore, defensive few-shot learning should be investi-
gated as a new challenging issue, which is different from both
generic adversarial training and standard few-shot learning.
To address this issue, two key questions need to be answered:
(1) how to transfer adversarial defense knowledge from one
sample distribution (i.e., the auxiliary set) to another (i.e., the
unseen few-shot task)? (2) how to narrow the distribution gap
between clean and adversarial examples under the few-shot
setting? Note that the goal of this paper is to study how to
make existing few-shot learning models defensive against
adversarial attacks, rather than design another new few-shot
learning method. Therefore, to achieve this goal and find
answers to the above two questions, we propose a new and
general defensive few-shot learning (DFSL) framework, which can
be efficiently tailored to the existing few-shot learning meth-
ods to learn a defensive few-shotmodel.

Specifically, to answer the first question, we make a task-
level distribution consistency assumption, instead of the original
sample-level distribution consistency assumption used in current
adversarial defense methods, between the training set (i.e.,
the auxiliary set) and test set (i.e., the target few-shot tasks).
Based on this assumption, we propose an episode-based adver-
sarial training (ET) mechanism to transfer the adversarial
defense knowledge between two sample distributions, by
adversarially training a defensive few-shot model on thou-
sands of adversary-based few-shot tasks (episodes) con-
structed from the training set. The core is that, from the
sample-level perspective, the distribution between the train-
ing set and test set may vary. However, from the task-level
perspective (i.e., a higher level), the task distribution
between them could be assumed to be similar. According to
this assumption, i.e., both the training set and test set share a
similar (or the same) task-distribution, the model adversari-
ally trained on the adversary-based few-shot tasks con-
structed from the training set can generalize well to the
similar adversary-based few-shot tasks of the test set. In this
way, the adversarial defense knowledge can be transferred
from one sample distribution to another through such a task-
level assumption. Note that although the transferability of
adversarial examples, i.e., adversarial examples can be trans-
ferred across different models, has been a common sense in
the adversarial learning community [20], the research on the
transferability of defense knowledge has not beenwell inves-
tigated in the literature of adversarial learning. We highlight
that we take a small step in this direction.

Furthermore, within each adversary-based few-shot task,
we shall enforce a distribution consistency between the clean
and adversarial examples (images) like the existing adversar-
ial defense methods to further improve the classification per-
formance, i.e., the second question above. Note that because

the existing adversarial defensemethods aremainly designed
for generic classification problems, which are assumed to be
able to access sufficient training examples, these methods
mainly work with the pooled global (logit) representations of
the clean and adversarial images and aim to make them con-
sistent. However, in DFSL, i.e., in the few-shot setting, we can
only have access to a small amount of data, which makes the
second question more challenging. To alleviate this scarcity
issue of training data under the few-shot setting, we propose
to switch to the richer local descriptors instead of the global
representations to represent each clean and adversarial
image. For each image, we can extract a large number of local
descriptors to represent this image. Based on such local-
descriptor-based representations, we especially propose a
novel kind of feature-wise consistency criteria to enforce a local-
descriptor-based distribution consistency between the clean
and adversarial examples. Specifically, we design two distri-
bution measures, i.e., a Kullback-Leibler divergence based distri-
bution measure (KLD) and a task-conditioned distribution measure
(TCD), to align the local-descriptor-based distributions
between the clean and adversarial examples. In addition, fol-
lowing the existing adversarial defensemethods [9], [11], [21],
we can also enforce a kind of prediction-wise consistency
between each clean example and its adversarial counterpart,
by making their predicted posterior probability distributions
of the classes to be similar. However, the existing methods
usually employ tight regularizers to achieve this goal, which
we find is no longer suitable for the few-shot setting in DFSL.
The reason is that, in the few-shot setting, the test set generally
has a certain distribution gap with respect to the training set.
Using such tight regularizers on the training set will weaken
the adversarially robust generalization ability of the defensive
few-shot models on the test set. To tackle this issue, different
from the existing methods, we propose a slacker Symmetric
Kullback-Leibler divergence measure (SKL) to obtain a better
adversarially robust generalization ability. In summary, by
taking the above two aspects (i.e., the task-level distribution
consistency assumption and distribution consistency criteria
within each task) into consideration, our proposed DFSL
framework is able to learn a defensive few-shot model against
adversarial attacks.

In addition, we find that the existing adversarial defense
methods often report two kinds of classification accuracy,
i.e., clean example accuracy and adversarial example accu-
racy, to show the effectiveness of their proposed defense
methods. However, there may be a trade-off between these
two kinds of accuracies [13], [21], which means that the gain
of the adversarial accuracy can be the loss of the clean accu-
racy or vice versa. This makes a direct comparison of differ-
ent methods awkward, if not impossible. Therefore, it is
desirable to have a unified criterion to facilitate the evalua-
tion and comparison of different defense methods under
the same principle, which has been largely overlooked in
the existing literature. To this end, we propose a unified F b

score to conveniently evaluate the overall performance of
different defense methods under the same principle.

Last but not least, we also find that randomness matters in
adversarial training, especially in defensive few-shot learn-
ing. In other words, the randomness will make the compari-
son between different defense methods unfair. This is
because different runs of the same defense method on the
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same platformmay end up with quite different results due to
random initializations of network parameters, random data
shuffles, or the randomness of CUDA and CuDNN backends.
In particular, the last point, i.e., the randomness of CUDAand
CuDNN backends, is easily overlooked (See Section 5.7 for
more details). Therefore, in thiswork, tomake the comparison
of different defense methods fairer and make the results
reproducible, we completely control the randomness by fix-
ing both the network initialization and data shuffle, including
the randomness of both CUDA and CuDNN backends, for all
comparison methods. More importantly, all the comparison
methods are implemented under the same framework with
the same single codebase.

In summary, the main contributions of this paper are:

� We define a new challenging issue, i.e., defensive few-
shot learning (DFSL), for the first time in the litera-
ture. This poses two key questions (challenges): how
to transfer defense knowledge during adversarial
training and narrow the distribution gap between
clean and adversarial examples under the few-shot
setting.

� We propose a novel and general DFSL framework to
address the above two challenges, by performing an
episode-based adversarial training at the task level and
enforcing the distribution consistency between clean
and adversarial examples from the feature-wise or pre-
diction-wise perspectives within each task.

� We further design three new distribution consistency
criteria, i.e., Kullback-Leibler divergence based distribu-
tion measure (KLD), task-conditioned distribution mea-
sure (TCD), and Symmetric Kullback-Leibler divergence
measure (SKL), to specially narrow the distribution
gap under the defensive few-shot setting.

� We tailor the proposed DFSL framework to the state-
of-the-art few-shot learning methods and conduct
extensive experiments on six benchmark datasets to
verify the effectiveness of this framework. This pro-
vides rich baseline results for this new problem, i.e.,
defensive few-shot learning, and meanwhile, facili-
tates future research on this topic.

2 RELATED WORK

Our work is related to few-shot learning and adversarial
training, both of which have a large body of work. Here, we
only discuss the most relevant studies in these two fields. In
addition, we will introduce the episodic training mecha-
nism used in the standard few-shot learning and review
multiple state-of-the-art attack methods.

Few-shot learning (FSL) attempts to learn a classifier with
good generalization capacity for new unseen classes with
only a few samples [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36]. Due to the scarcity of
data, a large-scale but class-disjoint auxiliary set is generally
used to learn transferable knowledge for the target few-shot
tasks. Specifically, in [23], Vinyals et al. propose a Matching
Net by directly comparing the query images with the sup-
port classes. In particular, in the work of Matching Net,
they also propose an episodic training mechanism, which is
widely adopted and taken as the default in the subsequent

studies. Along this way, a variety of methods have been
proposed, such as ProtoNet [37], RelationNet [38], IMP [24],
CovaMNet [39], CAN [40], DeepEMD [41] and DN4 [25].

As a special problem setting in FSL, the proposed defen-
sive few-shot learning (DFSL) aims to make the existing FSL
methods robust against adversarial attacks.

Episodic training mechanism plays an important role in the
above FSL methods, which tries to train a few-shot model
by constructing tens of thousands of simulated episodes
(tasks) from an auxiliary set. To be specific, each episode
(task) is a simulation of the target few-shot task, which also
consists of two akin subsets, i.e., a support set and a query
set. At each iteration, one episode (task) is adopted to train
the current model.

However, although the promising performance of the
episodic training mechanism has been verified in the stan-
dard FSL methods [23], [37], [42], the effectiveness of this
mechanism under the defensive few-shot setting has not
been investigated. In this work, we interpret this mecha-
nism from the perspective of task-level distribution consis-
tency and develop transferable adversarial defense upon it.

Adversarial training (AT) is a specific training mechanism
that trains a model with both adversarial examples and
clean examples in order to make the model robust against
adversarial attacks [5], [7], [8], [13], [21], [43]. For example,
to improve the robustness of semi-supervised classification,
Miyato et al. [9] propose a semi-supervised virtual adver-
sarial training method (VAT) by calculating the KL diver-
gence between the predictions on the clean examples and
the adversarial examples. Similarly, Kannan et al. [11] pres-
ent an adversarial logit pairing (ALP) strategy, encouraging
similar logit representations (i.e., unscaled probability dis-
tributions) of the clean and the corresponding adversarial
examples. Recently, Song et al. [44] introduce domain adap-
tation into adversarial training (ATDA) to learn domain
invariant representations for both clean and adversarial
domains. Zhang et al. [21] theoretically identify a trade-off
between robustness and accuracy, and propose TRADES to
optimize a regularized surrogate loss.

The main differences between our DFSL framework and
these methods are: (1) the above methods only consider the
generic image classification setting, rather than the more
challenging few-shot setting considered in this paper; (2)
these methods mainly focus on the global prediction-wise
consistency between the clean and adversarial examples,
while our DFSL framework proposes a new feature-wise
consistency from a perspective of local-descriptor-based dis-
tribution consistency, which provides an effective way for
capturing the distributions of both clean and adversarial
examples in the few-shot case; (3) all these above methods,
taken as regularizers, can be tailored into the proposedDFSL
framework.

Attack Methods can not only be used to attack or test a sys-
tem, but can also be employed to make this system more
robust against such kinds of attacks. A variety of attackmeth-
ods have been proposed in the literature [5], [8], [9], [45], [46],
[47]. For example, both L-BFGS [45] and C&W [47] attempt to
find an adversarial example through an optimizationway, by
optimizing a constrained minimization problem, i.e., a mini-
mum ‘2 norm distance between this misclassified adversarial
example and the corresponding clean example. These kinds
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of methods are generally time-consuming due to the optimi-
zation process adopted. Differently, Goodfellow et al. [5]
propose a one-step fast gradient sign method (FGSM), which
generates an adversarial example through a single backward
propagation of the neural network with respect to the clean
input. In this way, the adversarial examples can be quickly
constructed because FGSM does not need the optimization
process. After that, a stronger iterative variant of FGSM, i.e.,
projected gradient descent (PGD) is proposed in [8], which
mainly applies the FGSM iteratively for multiple times with
a small step size. Different from L-BFGS and C&W, which
try to optimize an ‘2 norm distance, both FGSM and PGD are
usually optimized for an ‘1 norm distance metric. Because
FGSM is much faster than other attack methods to generate
an adversarial example, we will mainly adopt it to generate
adversarial examples in the training phase and adopt it to
test the robustness of the learned DFSL models. In addition,
PGD is also employed and evaluated in Section 5.5.

3 THE PROPOSED DEFENSIVE FEW-SHOT

LEARNING FRAMEWORK

In this section, we first introduce the notations used in this
paper, and then present the definition of the new topic,
defensive few-shot learning (DFSL). Finally, we provide the
details of the proposed defense framework.

3.1 Notation

Following the literature, let S and Q denote the support set
and query set in an FSL task, which corresponds to the
training set and test set in generic image classification,
respectively. Differently, S contains C classes but only has
K images per class (e.g., K ¼ 1 or K ¼ 5). A indicates an
additional auxiliary set A, which contains a larger number
of classes and samples than S but has a totally disjoint label
space with S.

Let g’ð�Þ denote a convolutional neural network based
embedding module, which can learn feature representations
for any input image xxxxxxx, i.e., g’ðxxxxxxxÞ. Suppose fuðg’ðxxxxxxxÞ;SÞ be a
classifier module, which assigns a class label y for a query
image xxxxxxx inQ, according to S. Note that the classifier module
fuð�Þ can be integrated with the embedding module g’ð�Þ into
a unified network and trained in an end-to-end manner. The
cost function Lðfuðg’ðxxxxxxxÞ;SÞ; yÞ is denoted as Lðxxxxxxx;S; yÞ for
simplicity.

It is easy to use a small perturbation ddddddd to construct an
adversarial image xxxxxxxadv¼xxxxxxxþddddddd to fool the classifier, making
fuðg’ðxxxxxxxadvÞ;SÞ 6¼y. Generally, the clean image xxxxxxx and the
adversarial image xxxxxxxadv are perceptually indistinguishable,
and their difference (i.e., the perturbation ddddddd) can be bounded
by a distance metric Dðxxxxxxx; xxxxxxxadvÞ � �, such as the ‘1 norm.
That is to say, if � indicates the maximum magnitude of the
perturbation ddddddd, we have kdddddddk1 � �. Note that, all clean images
are normalized into a range of [0, 1], and all adversarial
images are clipped into the same range. Following the work
in [46], a white-box attack setting [6] is employed to generate
all the training adversarial images in this paper.

3.2 Defensive Few-Shot Learning (DFSL)

As mentioned above, a few-shot task normally consists of a
support set S and a query set Q. Given S, which has C clas-
ses with K images per class, the target of FSL is to infer the
correct class label for each unlabeled sample in Q. This set-
ting is typically called a C-way K-shot classification setting.
Since the number of K is generally small (e.g., 1 or 5), it is
almost impossible to learn an effective classifier only from
S. Therefore, in FSL, an additional auxiliary set A is usually
adopted to learn transferable knowledge to help the classifi-
cation onQ.

Unlike the standard FSL, here, we mainly focus on how
to learn a robust few-shot classification model to defend
against adversarial attacks, i.e., defensive few-shot learning
(DFSL). In DFSL, we always assume that the adversary is
capable of manipulating the query images in the query set
Q, but doesn’t have access to the support set S. In other
words, for one few-shot task which has been adversarially
attacked by the adversary, we will have three kinds of sets
in this task, i.e., a support set S, a clean query set Q, and an
adversarial query set Qadv. Without loss of generality, we
assume each image in Q has one corresponding adversarial
counterpart in Qadv. Typically, we call an attacked few-shot
task as an adversary-based few-shot task. Our goal in DFSL is
to learn a robust model which can correctly classify query
images no matter if they are manipulated, i.e., query images
in bothQ andQadv. The framework can be seen in Fig. 1.

3.3 Analysis and Answers to the Two Questions

Due to the scarcity of training data, few-shot models need to
learn transferable knowledge from a class-disjoint auxiliary
set, which generally has a somewhat different sample distri-
bution with respect to the target few-shot task. This situation

Fig. 1. Proposed framework of the defensive few-shot learning (DFSL) on a 3-way 1-shot task, which is decoupled into two modules, i.e., a
feature embedding module g’ and a classifier module fu. Specifically, a support set S, a clean query set Q and an adversarial query counter-
part Qadv are fed into the model, supervised by three kinds of losses, e.g., the cross entropy loss (i.e., LCE

Q and LCE
Qadv Þ, the feature-wise loss

LFea
Q�Qadv and the prediction-wise loss LClass

Q�Qadv , which will become clear shortly.
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makes the problem of DFSL quite different from the generic
adversarial defense problems, and thus raises two new ques-
tions onDFSL: (1) how to transfer adversarial defense knowl-
edge between two sample distributions (i.e., A and S)? (2)
how to narrow the distribution gap between the clean and
adversarial examples in a specific adversary-based few-shot
task (i.e., the distribution gap betweenQ andQadv)?

The first question does not exist in generic image classifica-
tion, because we can usually make a distribution consis-
tency assumption between the training and test sets (i.e.,
independently and identically distributed data) to guaran-
tee the model trained on the training set can generalize well
to the test set. Such an assumption is also implicitly
assumed in the existing adversarial defense methods [5],
[11], [44]. However, in DFSL, the auxiliary set (for training)
A has a totally class-disjoint label space with the support set
S in the target adversary-based few-shot task. Since the
sample distribution ofA is relatively different from the sam-
ple distribution of S, the generalization performance on the
target data set (i.e., S) cannot be well guaranteed. As a
result, the adversarial defense knowledge learned on A by
directly using the existing adversarial defense methods is
hard to be transferred to S in the target task. This is why we
cannot directly employ the existing adversarial defense
methods to address the DFSL problem. This will be demon-
strated in the experimental part later.

The above phenomenon can be visualized as the left side in
Fig. 2, i.e., there may be a large distribution gap between the
training set (i.e., A) and test set (i.e., S) in the sample space,
making the adversarial defense knowledge hard to transfer.
To address this issue, inspired by the episodic trainingmecha-
nism [23], we can assume the distribution consistency in a task
space instead of the sample space (see the right side of Fig. 2).
From the perspective of the task-level distribution consistency
between the training set and test set, we can construct a large
number of adversary-based few-shot tasks within the auxil-
iary set A, by simulating the target adversary-based few-shot
task in the test set. In doing so, the sample distribution gap
can be dealt with by leveraging the task similarity across the
training and test sets. In other words, although two sample
distributions may be relatively different from the lower sam-
ple-level consistency perspective, they can still have similari-
ties from a higher task-level consistency perspective.

The contribution of our work here is to attempt to
develop transferable adversarial defense upon the episodic
training mechanism [23] in the new setting of DFSL and
especially present a new episode-based adversarial training
mechanism for the DFSL problem. To the best of our knowl-
edge, addressing this new problem in such a setting is the
first time in the literature.

The second question is essentially a common issue that the
existing adversarial defensemethods areworking on.Accord-
ing to the adversarial learning literature [44], there is usually a
large distribution gap between the clean and adversarial
examples, making the deep models prone to misclassifying
the manipulated adversarial examples. Therefore, the latest
adversarial defense methods [11], [21], [44] are focusing on
how to narrow such a distribution gap between the clean and
adversarial examples to improve the classification perfor-
mance. However, these methods are mainly designed for the
generic classification problems, rather than themore challeng-
ing few-shot setting considered in this paper. In fact, few-shot
models are more vulnerable to the adversarial examples than
generic deepmodels, because of the serious scarcity of labeled
training samples in each class. The evidence can be seen in a
recent work of adversarial training [19], where it is proved
that adversarially robust generalization requires access to
more data. As a result, how to make few-shot models robust
against adversarial attacks, especially how to narrow the dis-
tribution gap between the clean and adversarial examples
under the few-shot setting, is of significance but challenging.

Multiple adversarial defense methods have been pro-
posed to address the above issue (i.e., the distribution gap
between clean and adversarial examples) in the generic clas-
sification problems. They mainly focus on using global rep-
resentations for clean and adversarial images. For example,
ATDA [44] tries to minimize the distribution shift (gap)
between the clean and adversarial examples by minimizing
the covariance distance between their covariance matrices,
which are estimated upon the global logit representations.
Clearly, ATDA can not be directly applied in DFSL because
of the scarcity of training examples, which makes the covari-
ancematrix hard to be reliably estimated. Also, these existing
adversarial defense methods are developed under an
implicit i.i.d. assumption for the training set and test set. In
this case, they usually can safely apply some tight regulariza-
tion criteria, e.g., the ‘2 regularization loss presented in
ALP [11]. However, it is found in this work that such tight
regularization criteria will somewhat weaken the generaliza-
tion ability of the few-shot model in DFSL, especially when
the test set has a large distribution gapwith the training set.

Therefore, different from the existing adversarial defense
methods, we propose a new kind of feature-wise consistency
criteria upon richer local descriptors to narrow the distribu-
tion gap between the clean and adversarial examples in
each adversary-based few-shot task. The reason is that,
even in the few-shot setting, a large number of local descrip-
tors can still be extracted from each image. This can be
regarded as a kind of natural data augmentation, which can
significantly enrich the amount of data. On the other hand,

Fig. 2. Changing the distribution consistency assumption from the sample-level to the task-level. As seen, the sample distribution gap (difference)
between the training and test sets in the sample space may be significant, while the task distribution gap (difference) in the task space between them
could be small because of the task similarity. Each color indicates one class. Solid and hollow circles indicate the clean and adversarial examples,
respectively.
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the local descriptors generally contain abundant subtle
information on the visual content. The existing adversarial
defense methods usually work on the global logit represen-
tations that are built on the pooled local descriptors. This
could cause the loss of information, and the impact could
become pronounced in the case of a few-shot setting. There-
fore, by using a kind of local-descriptor-based feature-wise
consistency criteria, the scarcity problem of training exam-
ples in DFSL can be well alleviated.

In addition, we design a slacker prediction-wise consistency
criterion to address the issue caused by existing tight regu-
larization criteria to enhance the adversarially robust gener-
alization ability of the DFSL models. This is because there is
usually a distribution gap between the training set and test
set in DFSL, making the existing tight regularization criteria
easily suffer from the overfitting problem. In contrast, by
using a slack criterion, the DFSL models can gain more gen-
eralization performance.

3.4 The Proposed Adversarial Defense Methods

The above analysis motivates us to propose a novel frame-
work for DFSL in Fig. 1, where a defensive few-shot model
F is explicitly decoupled into an embedding modules g’
and a classifier module fu, i.e., F ¼ g’ � fu. To learn a robust
few-shot model F , we first employ an episode-based adversar-
ial training (ET) mechanism to transfer the adversarial
defense knowledge at the task level. Next, we further design
two kinds of distribution consistency criteria associated with
the two modules (i.e., g’ and fu) in F , respectively. The for-
mer is to address the above first question, and the latter is
used to tackle the second question above.

3.4.1 Episode-Based Adversarial Training (ET)

According to the analysis of the first question in Section 3.3,
we propose the following episode-based adversarial training
(ET) mechanism. Specifically, let fhS1;Q1;Qadv

1 i; . . . ; hSn;Qn;
Qadv

n ig be a set of adversary-based few-shot tasks randomly
constructed from the auxiliary set A. The objective function
of our ET mechanism can be formulated as,

G¼argmin
’;u

Xn

i¼1

X

xxxxxxx2Qi

LCEðxxxxxxx;Si; yÞþ max
xxxxxxxadv¼xxxxxxxþddddddd

LCEðxxxxxxxadv;Si; yÞ
� �

;

(1)

where’ and u denote the parameters of the embeddingmodule
g’ð�Þ and the classifier module fuð�Þ in a DFSL model, respec-
tively, and LCEð�Þ denotes the cross-entropy loss (i.e., LCE

Q and
LCE
Qadv in Fig. 1).Other notations havebeendefined in Section 3.1.

The core idea here is to simulate the target adversary-based
few-shot task by conducting a lot of similar adversary-based
few-shot tasks with the auxiliary set A. In this way, we can
build a task-based distribution to deal with the gap among dif-
ferent sample distributions.

At each training step, we generate adversarial examples
(i.e., Qadv

i ) within each of the sampled few-shot tasks (i.e.,
hSi;Qii) based on the current model, and meanwhile, inject
these adversarial examples into the current few-shot tasks
(i.e., hSi;Qi;Qadv

i i). Both clean and adversarial examples (i.e.,
Qi andQadv

i ) are used to train the model, enhancing its capa-
bility to defend adversarial attacks.

Essentially, the episode-based adversarial training (ET) mech-
anism can be regarded as an integration of episodic training
mechanism (Ep) [23] and adversarial training (AT) [5], i.e.,
ET=Ep+AT. Seemingly, the integration of Ep and AT for
addressing the DFSL problem is straightforward. However,
as mentioned in Section 3.3, the key contribution here is that
we verify that ET can indeed effectively transfer the adver-
sarial defense knowledge between different sample distribu-
tions, which has not been specifically investigated or
confirmed in the literature. More importantly, we further
examine this ET mechanism and improve it to consider the
distribution gap between the clean and adversarial examples
within each adversary-based few-shot task. To tackle this
limitation, especially in the few-shot setting, we develop
new criteria upon this ETmechanism to enforce the distribu-
tion consistency between the clean and adversarial examples
to further boost the classification performance.

3.4.2 Feature-Wise Consistency Criteria

Based on the analysis of the second question in Section 3.3,
we shall further enforce a distribution consistency between
the clean example and its adversarial counterpart, within
each adversary-based few-shot task. Specifically, we can
enforce this consistency by making their feature representa-
tions (or distributions) similar from a feature-wise perspec-
tive. As discussed in Section 3.3, instead of the global
features, we adopt the much richer local descriptors to rep-
resent each image, and design two distribution measures
(regularizers), i.e., a Kullback-Leibler divergence based distribu-
tion measure (KLD) and a task-conditioned distribution measure
(TCD), built on the local-descriptor-based distributions of
both clean and adversarial examples. Moreover, inspired by
ATDA [44], we also implement a new local-descriptor-based
unsupervised domain adaptation measure (Local-UDA).

Given a specific adversary-based few-shot task hS;Q;Qadvi,
S ¼ fsssssss1; sssssss2; . . . ; sssssssNg denotes the support set of a C-way
K-shot few-shot task (where N ¼ C �K), Q ¼ fxxxxxxx1; xxxxxxx2; . . . ;
xxxxxxxNqg indicates the query set which has Nq query images, and
Qadv ¼ fxxxxxxxadv

1 ; xxxxxxxadv
2 ; . . . ; xxxxxxxadv

Nq
g is the corresponding adversarial

query set. As seen in Fig. 1, in DFSL, the embedding module
g’ð�Þwill represent each image xxxxxxxi as a c� h� w feature map,
i.e., a set of local descriptors g’ðxxxxxxxiÞ¼½zzzzzzz1; . . . ; zzzzzzzm� 2 Rc�m

(wherem ¼ h� w), instead of a pooled global feature vector.
Similarly, for an adversarial example xxxxxxxadv, g’ðxxxxxxxadv

i Þ¼½zzzzzzzadv1 ; . . . ;
zzzzzzzadvm � 2 Rc�m. In this work, we assume that the local descrip-
tors of each clean example and each adversarial example fol-
low multivariate normal distributions, i.e., zzzzzzz�Nðmmmmmmm;SSSSSSSÞ and
zzzzzzzadv�Nðmmmmmmmadv;SSSSSSSadvÞ. mmmmmmm and SSSSSSS are the mean vector and covari-
ance matrix of g’ðxxxxxxxÞ, respectively. Also, mmmmmmmadv and SSSSSSSadv are the
mean vector and covariancematrix of g’ðxxxxxxxadvÞ, respectively.

Kullback-Leibler Divergence Based Distribution Measure (KLD).
Since both the clean query image xxxxxxx and the adversarial query
image xxxxxxxadv have been represented by a local-descriptor-based
distribution, the KLD criterion between xxxxxxx and xxxxxxxadv can be for-
mulated as below,

Lfea
KLDðxxxxxxx; xxxxxxxadvÞ ¼ 1

2

�
Tr

�ðSSSSSSSadvÞ	1SSSSSSS
�þ ln

�detSSSSSSSadv

detSSSSSSS
Þ

þ ðmmmmmmmadv 	 mmmmmmmÞ>ðSSSSSSSadvÞ	1ðmmmmmmmadv 	 mmmmmmmÞ 	 c

�
; (2)
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where Trð�Þ is the trace operation of matrix, lnð�Þ denotes the
natural logarithm, det indicates the determinant of a square
matrix, and c is the feature dimension of each local descriptor.
The purpose of the KLD criterion is to align the local-descrip-
tor-based distributions of xxxxxxxadv and xxxxxxx within each adversary-
based few-shot task. The advantage is that KLD can not only
narrow the distribution gap between the clean and adversar-
ial examples to some extent, but also enjoys the characteristic
of being a slacker criterion which is good for the generaliza-
tion performance. The reason why KLD is regarded to be
slacker is that we do not strictly make the features of two
images (i.e., xxxxxxx and xxxxxxxadv) exactly the same, but just enforce their
local-descriptor-based distributions to be aligned.

Task-Conditioned Distribution Measure (TCD). Since we
attempt to apply the proposed episode-based adversarial train-
ing (ET) mechanism to DFSL, many simulated adversary-
based few-shot tasks from the auxiliary set will be used to
train a robust few-shot model. However, different adver-
sary-based few-shot tasks have their own characteristics. To
take the task characteristic into account and make the few-
shot model better handle different adversary-based few-
shot tasks, we further design a task-conditioned distribution
measure (TCD) as follows,

Lfea
TCDðxxxxxxx; xxxxxxxadvÞ ¼ mmmmmmm	 mmmmmmmadv

� �>
SSSSSSS	1
S mmmmmmm	 mmmmmmmadv
� �

þ kSSSSSSS	1
2

S SSSSSSSSSSSSSS
	1
2

S 	 SSSSSSS
	1
2

S SSSSSSS
adv

SSSSSSS
	1
2

S k2F ; (3)

where SSSSSSS
	1
S denotes the inverse covariance matrix of the sup-

port set S. Specifically, we use the local descriptors of all the
samples in S to estimate SSSSSSSS , which can be seen as an overall
characterization of the current adversary-based few-shot task.
In particular, the first term of Eq. (3) is a squaredMahalanobis
distance between mmmmmmm and mmmmmmmadv, depending on S. The second
term aims to measure the distribution distance between the
clean and adversarial examples with the second-order infor-
mation, which is also depended on S. Note that SSSSSSS

	1
2

S is the
square root ofSSSSSSS	1

S , which can be regarded as a transformation
matrix to project both clean and adversarial examples of the
query set (i.e., xxxxxxx 2 Q and xxxxxxxadv 2 Qadv) into another new fea-
ture space. In the new feature space, we use an approximate
2-Wasserstein distance [48] to calculate a distance between
the local-descriptor-based distributions of xxxxxxx and xxxxxxxadv (see the
supplementary material for more analyses). In this way, the distri-
bution gap between the clean and adversarial examples can
be adaptively narrowed according to the task information of
the current adversary-based few-shot task.

It is worth mentioning that the calculation of matrix
square rooting (e.g., obtain SSSSSSS

	1
2

S by eigen-decomposition)
may make the gradient computation of Eq. (3) complicated
in backpropagation. To handle this, we propose Theorem 1
(the proof is provided in the supplementary material) to convert
Eq. (3) into an efficient form without matrix square rooting
to facilitate the gradient computation.

Theorem 1. Suppose SSSSSSS1, SSSSSSS2 and SSSSSSS are all positive semi-definite
matrices, and SSSSSSS

	1
2 is the square root of the inverse of SSSSSSS, it can

be obtained that

TrðkSSSSSSS	1
2SSSSSSS1SSSSSSS

	1
2 	 SSSSSSS

	1
2SSSSSSS2SSSSSSS

	1
2k2F Þ ¼ Tr½SSSSSSS1SSSSSSS

	1 � SSSSSSS1SSSSSSS
	1�

	 2Tr½SSSSSSS1SSSSSSS
	1 � SSSSSSS2SSSSSSS

	1� þ Tr½SSSSSSS2SSSSSSS
	1 � SSSSSSS2SSSSSSS

	1� : (4)

Local-Descriptor-Based Unsupervised Domain Adaptation
Measure (Local-UDA). Seemingly, the recent work of adver-
sarial training with domain adaptation (ATDA) [44], especially
the unsupervised domain adaptation (UDA) loss it pro-
posed, is closely related to the above proposed KLD or TCD
criteria. The difference is clarified as follows. The UDA loss
in ATDA [44] is originally proposed to minimize the distri-
bution gap of the logit representations (i.e., unscaled proba-
bility distributions) between the clean and adversarial
examples. That is to say, ATDA is a kind of prediction-wise
consistency criteria. Unfortunately, because the original
UDA loss in ATDA adopts the logit representations to esti-
mate the mean vectors and covariance matrices of the clean
and adversarial examples, it is not suitable anymore for
DFSL due to the limited examples under the few-shot set-
ting. In this paper, inspired by ATDA, we instead design a
new local-descriptor-based unsupervised domain adaptation mea-
sure (Local-UDA) as follows,

Lfea
Local	UDAðxxxxxxx; xxxxxxxadvÞ ¼ 1

m

��mmmmmmm	 mmmmmmmadv
��
1
þ 1

m2

��SSSSSSS	 SSSSSSSadv
��
1
;

(5)

where k � k1 denotes ‘1 norm of a vector or a matrix, and m
indicates the number of local descriptors of each image. As
seen, like the above proposed KLD and TCD criteria, Local-
UDA attempts to align the local-descriptor-based distribu-
tions of xxxxxxx and xxxxxxxadv by also taking both the first-order (i.e.,
mean vectors mmmmmmm and mmmmmmmadv) and second-order (i.e., covariance
matrices SSSSSSS and SSSSSSSadv) information into account.

3.4.3 Prediction-Wise Consistency Criteria

In addition to the above feature-wise consistency criteria,
we also propose a kind of prediction-wise consistency criteria
Lclass to enforce the class predictions of both clean and
adversarial examples to be similar, following the existing
adversarial defense methods in the literature.

Specifically, we can develop adversarial logit pairing
(ALP) [11], virtual adversarial training (VAT) [9] or
TRADES [21] to achieve this goal. The formulation of ALP
can be defined as

Lclass
ALPðxxxxxxx; xxxxxxxadvÞ ¼ kfu g’ðxxxxxxxÞ;S

� �	 fu g’ðxxxxxxxadvÞ;S� �k22 ; (6)

where y ¼ fuðg’ðxxxxxxxÞ;SÞ 2 RC and yadv ¼ fuðg’ðxxxxxxxadvÞ;SÞ 2 RC

denote the posterior probability distributions of class predic-
tions on the clean query image xxxxxxx and adversarial query image
xxxxxxxadv, respectively. k � k2 indicates the ‘2 norm of a vector.

As for VAT [9] and TRADES [21], they employ an asym-
metric Kullback-Leibler (KL) divergence (for univariate prob-
ability distributions) to minimize the difference between the
class predictions of the clean example and that of its adversar-
ial counterpart, which can be formulated as,

Lclass
KL ðxxxxxxx; xxxxxxxadvÞ ¼

X

y;yadv2Y
fu g’ðxxxxxxxÞ;S
� � � log fu g’ðxxxxxxxÞ;S

� �

fu g’ðxxxxxxxadvÞ;S� � ;

(7)

where Y denotes the probability space of y and yadv.
However, such an asymmetric KL divergence, i.e., Lclass

KL ,
will suffer from saturating gradients as claimed in [11],
which may be unstable during optimization. Although
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ALP [11] has used a symmetric least squares loss (i.e., ‘2 loss)
for two images (i.e., xxxxxxx and xxxxxxxadv), it is too strict and will easily
suffer from the overfitting problem especially in DFSL. As
discussed in the second question in Section 3.3, there is gen-
erally a distribution gap between the actual training set (i.e.,
the auxiliary set A) and the target test set (i.e., the unseen
few-shot tasks). If we employ an overly strict regularization
criterion at the training stage, we can indeed effectively nar-
row the distribution gap between the clean and adversarial
examples on the training set, but will significantly weaken
the model’s generalization ability on the diverse target test
sets (e.g., some cross-domain scenarios).

Symmetric Kullback-Leibler Divergence Measure (SKL). To
overcome the above issue, we further propose a Symmetric
Kullback-Leibler divergence measure (SKL) as

Lclass
SKLðxxxxxxx; xxxxxxxadvÞ ¼ 1

2
Lclass
KL ðxxxxxxx; xxxxxxxadvÞ þ Lclass

KL ðxxxxxxxadv; xxxxxxxÞ	 

: (8)

The key advantages of Lclass
SKL are in two folds: (1) Lclass

SKL is still
a kind of distribution measure, which only requires the class
predictions of xxxxxxxadv close to the class predictions of xxxxxxx and
vice versa, rather than forcing their class predictions exactly
to be the same. In this sense, Lclass

SKL can enjoy a good generali-
zation ability. (2) different from Lclass

KL , the proposed Lclass
SKL is

symmetric, which is more stable during optimization. This
proposed SKL criterion is regarded as our minor contribu-
tion to the topic of DFSL.

Note that Lclass
SKL is different from Lfea

KLD. The main
difference is that Lfea

KLD is built on the intermediate feature
representation(i.e., local descriptors obtained from the
convolutional feature map) to calculate the difference
between the sets of local descriptors from the clean and
adversarial examples, while Lclass

SKL is built on the predic-
tion results to calculate the distance between the class
predictions of the clean example and its adversarial coun-
terpart. In other words, Lfea

KLD tries to make the feature
representation of the clean example and that of the corre-
sponding adversarial example similar. In contrast, Lclass

SKL

aims to make the class prediction of the clean example
and that of its adversarial counterpart similar.

3.4.4 Overall Formulation of DFSL

According to the above analysis, we can define the overall
optimization formulation of DFSL in two ways, i.e., feature-
wise consistency criteria based overall formulation

Gfea
overall ¼ argmin

’;u

Xn

i¼1

X

xxxxxxx2Qi

�
LCEðxxxxxxx;Si; yÞ

þ max
xxxxxxxadv¼xxxxxxxþddddddd

LCEðxxxxxxxadv;Si; yÞ þ � � Lfeaðxxxxxxx; xxxxxxxadvÞ
�
; (9)

or prediction-wise consistency criteria based overall formu-
lation as,

Gclass
overall ¼ argmin

’;u

Xn

i¼1

X

xxxxxxx2Qi

�
LCEðxxxxxxx;Si; yÞ

þ max
xxxxxxxadv¼xxxxxxxþddddddd

LCEðxxxxxxxadv;Si; yÞ þ � � Lclassðxxxxxxx; xxxxxxxadvÞ
�
; (10)

where � is a balancing parameter.

During the training stage, to learn a specific DFSL model,
we can just choose an optimization algorithm, e.g., stochas-
tic gradient descent (SGD) or Adam [49], to minimize the
above objective Goverall to optimize the parameters of both
the embedding module g’ and classifier module fu from
scratch in an end-to-end manner. During the test stage, we
directly apply the learned DFSL model, including g’ and fu,
to the target adversary-based few-shot tasks to classify the
images in a query set based on its support set.

3.5 Generality of the DFSL Framework

We highlight that the proposedDFSL framework is a general
framework. This framework consists of two explicitly
decoupled modules, i.e., an embedding modules g’ and a
classifier module fu, and thus most existing few-shot learn-
ing (FSL) methods, such as ProtoNet [37], RelationNet [38]
and DN4 [25], can be easily tailored into this framework. To
be specific, we can just replace the classifier module fu with
the corresponding few-shot classifier of different FSL meth-
ods, by using the same embedding module g’. Similarly,
because of such a decoupled architecture of this framework,
either the feature-wise consistency criteria or the prediction-
wise consistency criteria (i.e., adversarial defense criteria)
can be easily integrated into this DFSL framework. In sum-
mary, to construct a specific DFSLmodel, we can just select a
specific FSL method and a specific adversarial defense crite-
rion, and tailor them to this framework.

Typically, to demonstrate the effectiveness of the pro-
posed DFSL framework, we take DN4 [25], one of the state of
the arts, as the default FSL method, and compare different
adversarial defense methods (criteria). Specifically, five
state-of-the-art generic adversarial defense methods, includ-
ing the standard adversarial training (AT) [5], VAT [9],
ALP [11], ATDA [44] and TRADES [21], are modified and re-
implemented into this unified framework. Based on the
methods proposed in Sections 3.4.2 and 3.4.3, we can obtain
four new DFSL models, i.e., DFSL-DN4-AT, DFSL-DN4-KL,
DFSL-DN4-ALP and DFSL-DN4-Local-UDA. Note that
DFSL-DN4-Local-UDA essentially can be seen as our own
implementation, inspired by ATDA [44]. Moreover, we fur-
ther construct another three DFSL models, i.e., DFSL-DN4-
KLD (ours), DFSL-DN4-TCD (ours) and DFSL-DN4-SKL
(ours), by using our proposed KLD, TCD and SKL criteria,
respectively.

In addition, we have also tailored another five represen-
tative few-shot learning methods to this DFSL framework,
including ProtoNet [37], RelationNet [38], CovaMNet [39],
CAN [40] and DeepEMD [41]. This part will be discussed in
detail in Section 5.2.

4 A NEW UNIFIED EVALUATION CRITERION

Training a model with adversarial examples can indeed
improve the robustness of this model. At the same time, it
could jeopardise the performance of this model on the origi-
nal clean examples. There may exist a trade-off between
robustness (against adversarial examples) and accuracy (on
clean examples). Several recent works have been trying to
show this issue [13], [21]. In the literature, adversarial train-
ing based work generally reports two kinds of classification
accuracy, i.e., accuracy on clean examples and accuracy on
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adversarial examples. However, in real cases, it could be
awkward to compare two defense methods overall with
two accuracies1. To this end, inspired by the case of Recall
and Precision in information retrieval, we introduce F b

score as a unified criterion to evaluate different defense
methods under the same principle. Specifically, F b score is
formulated with both clean accuracy ACCclean and adversar-
ial accuracy ACCadv as below,

F b ¼ ð1þ b2Þ � ACCclean � ACCadv
b2 � ACCclean þACCadv

: (11)

For instance, if we would like to maintain high accuracy on
the clean examples, and meanwhile, improve the robustness
as higher as possible, we can use F 0:5 score. In contrast, if
we mainly concern the robustness, F 2 score can be adopted.
Similarly, we can use F 1 score to consider these two parts
equally. In addition, we can also generate the curve of F b

scores by varying b as a more comprehensive way to com-
pare different methods.

5 EXPERIMENTS

In this section, we perform defensive few-shot image classi-
fication on six benchmark datasets to demonstrate the effec-
tiveness of the proposed DFSL framework.

Datasets. Following the literature, six datasets are used as
the benchmark datasets, i.e.,miniImageNet [23], tieredImage-
Net [50], CIFAR-100 [51], Stanford Dogs [52], Stanford
Cars [53] and CUB Birds-200-2011 [54]. miniImageNet con-
sists of 100 classes, and there are 600 images in each class
with a resolution of 84�84. We follow [55] and take 64, 16
and 20 classes for training, validation and test, respectively.
tieredImageNet contains 608 classes with more than 1000
images per class. We follow the splits in [50] and take 351, 97
and 160 classes for training, validation and test, respectively.
CIFAR-100 has 100 classes, containing 600 images per class.
For this dataset, we follow [56] and take 60, 20 and 20 classes
for training, validation and test, respectively. Stanford Dogs is
a fine-grained dog dataset, which has 120 classes of dogs and
has a total number of 20,580 images. We follow [39] and take
70, 20 and 30 classes for training, validation and test, respec-
tively. Stanford Cars is a fine-grained car dataset, which con-
tains 196 classes of cars and has a total number of 16,185
images. Following [39], we take 130, 17 and 49 classes for
training, validation and test, respectively. CUB Birds-200-
2011 is a fine-grained bird dataset. It consists of 200 bird clas-
ses containing a total number of 11,788 images. We also fol-
low [39] and adopt 130, 20 and 50 classes for training,
validation and test, respectively. Note that all the images in
the above datasets are resized to a resolution of 84�84.

Network Architecture. A commonly used four-layer CNN
in generic few-shot learning [25], [57] is adopted as the
embedding module g’. It consists of four convolutional
blocks, each of which contains a convolutional layer, a batch
normalization layer, and a LeakyReLU layer. As for the clas-
sifier module fu, it is associated with the selected FSL
method. For example, if we choose ProtoNet [37] as the FSL

method, there will be a fully-connected layer or a global
average pooling layer in fu. Also, if we choose Relation-
Net [38] as the FSL method, fu is consists of two convolu-
tional blocks and two fully-connected layers. In contrast, if
we adopt the DN4 [25] as the base FSL method, the classifier
module fu consists of an image-to-class module and a near-
est neighbor classifier, which does not have trainable
parameters, i.e., fu is non-parametric.

Attack Setting.We apply the popular FGSM [5] attacker to
find adversarial examples to train robust DFSL models. Dur-
ing training, we follow [46] and randomly choose a perturba-
tion � for each training few-shot task from a normal
distribution in the range of ½0; 0:02�. To be specific, for each
input clean image (i.e., query image), we construct its corre-
sponding one adversarial counterpart based on a specific �.
The hype-parameter � in Eq. (9) or Eq. (10) is selected from
� ¼ f0:1; 0:5; 1:0; 2:0; 3:0g by cross-validation according to
the validation set for each defense method. During test, we
evaluate the robustness of the trained DFSL models in
defense of three levels of attacks, i.e., � ¼ f0:003; 0:007; 0:01g.
Basically, the larger �, the stronger the attack.

Experimental Setting. For fairness, all experiments are con-
ducted around a 5-way 5-shot (or 1-shot) task on the bench-
mark datasets. At the training stage, we train all the models
for 20 epochs, and in each epoch, we randomly sample and
construct 10,000 adversary-based few-shot tasks. In each
conducted few-shot task, there are 5 support classes with 5
support images (or 1 support image) and 15 query images
per class. Adam algorithm [49] is used to update all the
models. The initial learning rate is set as 0.001 and halved
per 10 epochs. All the models are trained from scratch in an
end-to-end manner. At the test stage, 5000 adversary-based
few-shot tasks are constructed from the test set for evalua-
tion. The top-1 mean accuracy and the proposed F b score
are taken as the evaluation criteria. Without loss of general-
ity, we set b ¼1, which means that the clean accuracy (the
weight is 1=2) is regarded as equally important as the adver-
sarial accuracy (the weight is 1=2).

Experimental Summary. In Section 5.1, we will first conduct
an experiment on the miniImageNet dataset to verify the
effectiveness (i.e., the defense transfer ability) of the pro-
posed episode-based adversarial training (ET) mechanism. Next,
Section 5.2 provides details of the generality of the proposed
DFSL framework on different few-shot learning methods. In
Section 5.3 and Section 5.4, we conduct experiments on three
general image datasets and three fine-grained image datasets
to compare different DFSL models, respectively. Moreover,
the PGD-adversarial training is also introduced to trainmore
robust DFSL models for defending against various attacks in
Section 5.5. In Section 5.6, we further conduct an experiment
in cross-domain scenarios to verify the defense transfer abil-
ity across domains of the proposed DFSL framework. In Sec-
tion 5.7, we show the important impact of the randomness.
The qualitative comparison, i.e., curves of F b scores,
between different DFSLmodels is given in Section 5.8.

According to the analyses and results in Section 5.7, we
know that randomness indeed matters. That is to say, ran-
domness will make the comparison between different DFSL
models unfair. Therefore, for fairness, we will completely fix
the randomness for all comparison DFSL models, including
implementing all themodels with the same single codebase.

1. If one method achieves a higher adversarial accuracy at the
expense of a lower clean accuracy, we cannot say it is better than
another with a lower adversarial accuracy but a higher clean accuracy.
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5.1 Verifying the Defense Transfer Ability of ET

One of our concerns is how to transfer the adversarial
defense knowledge from a sample distribution to another
different one. We propose an episode-based adversarial training
(ET) mechanism to achieve this. To verify the effectiveness of
ET, we conduct a comparison experiment on miniImageNet,
built on one state-of-the-art FSL method DN4 [25]. Specifi-
cally, four variants of DN4 are constructed by considering
whether to perform the standard adversarial training
(AT) [5] and whether to perform the standard episodic train-
ing mechanism (Ep for short) [23]. They are DN4, DN4+AT,
DN4+Ep, and DN4+ET (i.e., DN4+Ep+AT).

The first variant, i.e., DN4, is trained without any of AT
and Ep. To achieve this, we first train a 64-classes classifica-
tion network on the auxiliary set A (64 classes) of miniIma-
geNet, and then, based on this pre-trained network, we
directly perform the non-parametric classifier module of the
original DN4 in [25] on the test set (20 classes). DN4+AT is
trained in a similar way, but with additional adversarial
training (AT) at the training stage of the 64-classes classifica-
tion network. DN4+Ep is trained on the auxiliary set A by
using Ep like the original work in [25] but without using
any adversarial defense technique. As for DN4+ET, we train
it on A with the proposed episode-based adversarial train-
ing (ET), and evaluate it on the test set.

All the results are reported in Table 1. As seen, without
AT, DN4 is much vulnerable to adversarial attacks, drop-
ping its accuracy from 57:74% (clean accuracy) to 21:54%
(adversarial accuracy) when � ¼ 0:01. In contrast, DN4+AT,
which is trained with AT, can indeed defend the adversarial
attacks as expected (from 21:54% to 38:19%). However, both
clean and adversarial accuracies of DN4+AT are still far
from the normal accuracy on miniImageNet (70:39%).

Fortunately, the episodic training makes DN4+ET per-
form much better than DN4+AT (which is trained without
Ep) on both clean and adversarial examples. For instance,
when �¼0:01, DN4+ET obtains 19:42% and 16:78% improve-
ments over DN4+AT on the clean accuracy and adversarial
accuracy, respectively. More importantly, the clean accuracy
(71:54%) is even better than the normal clean accuracy
(70:39%). Therefore, it suggests that the episode-based
adversarial training (ET) can not only transfer the adversarial
defense knowledge but also maintain the clean classification
knowledge. This verifies that the traditional sample-level
distribution consistency assumption may not guarantee
the model’s generalization on both clean and adversarial
examples, but the task-level distribution consistency
assumption during episodic training can properly make it,
as stated in the first question in Section 3.3.

5.2 Generality of DFSL to Different FSL Methods

To verify the generality of the proposed DFSL framework,
we first extend this framework to six representative FSL
methods, i.e., ProtoNet [58], RelationNet [38], CovaMNet
[39], CAN [40], DeepEMD [41] and DN4 [25], and then com-
pare thesemodels with each other. For fairness, we just select
the standard adversarial training (AT) [5] as the adversarial
defense method for these models. In addition, note that in
the original papers CAN [40] leverages a global classification
as an additional training task by using the global true labels
of the auxiliary set, and DeepEMD [41] employs the pre-
training on the auxiliary set as a pre-processing operation.
This is somewhat not fair for other methods in comparison
and is also not consistent with our setting inDFSL. Therefore,
we re-implement CAN and DeepEMD with their core com-
ponents by removing the global classification part or the pre-
training part. In this sense, we can obtain six corresponding
DFSL models, i.e., DFSL-ProtoNet-AT, DFSL-RelationNet-AT,
DFSL-CovaMNet-AT, DFSL-CAN-AT, DFSL-DeepEMD-AT
andDFSL-DN4-AT.

Moreover, to show the effectiveness of the above models,
we take ProtoNet+AT, DeepEMD+AT and DN4+AT as the
baselines. Specifically, ProtoNet+AT and DeepEMD+AT are
trained in the sameway as DN4+AT (see Section 5.1 for more
details). Note that, we do not implement RelationNet+AT,
CovaMNet+AT and CAN+AT, because their classifier mod-
ules have trainable parameters and thus cannot be directly
integrated with an adversarially pre-trained embedding net-
work like ProtoNet+AT, DeepEMD+AT and DN4+AT at the
test stage without fine-tuning. The comparison results of the
above models on miniImageNet are reported in Table 2. As
seen, all the six DFSL-based methods can significantly
improve both the clean accuracy and adversarial accuracy
over ProtoNet+AT, DeepEMD+AT and DN4+AT. This veri-
fies the generality and effectiveness of the proposed DFSL
framework. In addition, it also verifies that the existing
adversarial method (e.g., AT) indeed should be combined
with the episodic training mechanism to make FSL methods
more robust.

As aforementioned, we prefer to use DN4 [25] as the
default FSL method, because DN4 is one of the state-of-the-
art FSL methods. From Table 2, we can see that DFSL-DN4-
AT indeed performs significantly better than the other five
models on both the clean and adversarial accuracies. For
example, on the clean accuracy, DFSL-DN4-AT gains 7:84%,
9:09%, 11:34%, 6:90% and 6:89% improvements over DFSL-
ProtoNet-AT, DFSL-RelationNet-AT, DFSL-DeepEMD-AT,
DFSL-CAN-AT, and DFSL-CovaMNet-AT, respectively.
Also, on the adversarial accuracy (�¼0:01), DFSL-DN4-AT

TABLE 1
Comparison (%) of DN4, DN4+AT, DN4+Ep and DN4+ETonminiImageNet under the 5-Way 5-Shot Setting

Method AT Ep ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4 without without 57.74 33.99 42.79 24.07 33.97 21.54 31.37
DN4+AT with without 52.12 44.63 48.08 40.99 45.88 38.19 44.08
DN4+Ep without with 70.39 16.18 26.31 9.81 17.22 8.65 15.40
DN4+ET with with 71:5471:5471:5471:5471:5471:5471:54 63:3163:3163:3163:3163:3163:3163:31 67:1767:1767:1767:1767:1767:1767:17 58:9258:9258:9258:9258:9258:9258:92 64:6164:6164:6164:6164:6164:6164:61 54:9754:9754:9754:9754:9754:9754:97 62:1662:1662:1662:1662:1662:1662:16

A FGSM attacker is used.
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obtains 15:92%, 15:11%, 16:62%, 16:07%, and 11:87% improve-
ments over these methods, respectively. This is because
DN4 [25] employs an image-to-class module to perform the
final classification, enjoying the exchangeability of local pat-
terns inside each class, which can significantly improve the
robustness of a DFSLmodel against the adversarial perturba-
tions. Therefore, in the remaining experiments, we will
employ DN4 as the default FSL method of our DFSL
framework.

5.3 Performing DFSL on General Image Datasets

In this section, we perform DFSL on three general image
datasets, i.e., miniImageNet, tieredImageNet and CIFAR-100,
to further verify the effectiveness of this framework. Note
that we don’t perform data augmentation on miniImageNet
and tieredImageNet. We only perform simple data augmen-
tation on CIFAR-100 because it has a much lower resolution.
In addition, because there are no existing methods devel-
oped in the literature for the proposed problem, defensive
few-shot learning (DFSL), we modify and re-implement the
general state-of-the-art adversarial defense methods into the
DFSL framework as the benchmarks. This also can be seen as
our oneminor contribution to the topic of DFSL.

Specifically, as mentioned in Section 3.5, seven DFSL-
based models will be compared with each other, including
DFSL-DN4-AT, DFSL-DN4-KL, DFSL-DN4-ALP and DFSL-
DN4-Local-UDA, DFSL-DN4-KLD (ours), DFSL-DN4-TCD
(ours) and DFSL-DN4-SKL (ours). DN4+Ep is taken as the
baseline, which is just an episodically trained DN4 [25]

without using any adversarial defense technique. The
results on miniImageNet, tieredImageNet and CIFAR-100
are reported in Tables 3, 4, and 5, respectively.

From the results, we can see that all the DFSL models can
significantly improve the adversarial accuracy over DN4+Ep
on all three levels of adversarial attacks. This further verifies
that the proposed episode-based adversarial training (ET) can
effectively defend against the adversarial attacks. As feature-
wise consistency based models, both DFSL-DN4-KLD (ours)
and DFSL-DN4-TCD (ours) can dramatically improve the
clean accuracy. For example, on miniImageNet in Table 3,
DFSL-DN4-TCD (ours) can achieve the best clean accuracy
(72:33%), which is even much higher than DN4+Ep (70:39%)
which is specially trained on the clean examples. Analo-
gously, DFSL-DN4-KLD (ours) obtain the second best clean
accuracy (56:12%) on CIFAR-100 in Table 5, which gains
1:09%, 1:28%, 0:53% and 0:86% improvement over DFSL-
DN4-AT, DFSL-DN4-KL, DFSL-DN4-ALP and DFSL-DN4-
Local-UDA, respectively. This is because KLD and TCD are
distribution measure based criteria, which can effectively
leverage the local-descriptor-based distributions of both clean
and adversarial images. Notably, as explained in Section 3.4.2,
TCD encodes the task informationwith a covariancematrix of
the entire support set of the current task, which is able to
adapt to diverse adversary-based few-shot tasks.

We can also observe that the prediction-wise consistency
based methods, such as DFSL-DN4-KL, DFSL-DN4-ALP and
DFSL-DN4-SKL (ours), tend to significantly improve the
adversarial accuracy, compared to DFSL-DN4-AT. More

TABLE 2
Generality of the Proposed DFSL Framework with Adversarial Training (AT) [5] to Different FSL Methods,

Including ProtoNet [58], RelationNet [38], CovaMNet [39], CAN [40], DeepEMD [41] and DN4 [25]

Method ET Feature ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

ProtoNet+AT without Global 54.61 48.81 51.54 41.51 47.16 36.58 43.81
DeepEMD+AT without Local 55.09 49.13 51.93 42.06 47.70 37.61 44.70
DN4+AT without Local 52.12 44.63 48.08 40.99 45.88 38.19 44.08

DFSL-ProtoNet-AT with Global 63.70 55.68 59.42 45.91 53.36 39.05 48.41
DFSL-RelationNet-AT with Global 62.45 54.94 58.45 46.04 53.00 39.86 48.66
DFSL-DeepEMD-AT with Local 60.20 52.65 56.17 43.97 50.82 38.35 46.85
DFSL-CAN-AT with Local 64.64 56.04 60.03 45.96 53.72 38.83 48.51
DFSL-CovaMNet-AT with Local 64.65 57.57 60.90 49.19 55.87 43.10 51.72
DFSL-DN4-AT with Local 71:5471:5471:5471:5471:5471:5471:54 63:3163:3163:3163:3163:3163:3163:31 67:1767:1767:1767:1767:1767:1767:17 58:9258:9258:9258:9258:9258:9258:92 64:6164:6164:6164:6164:6164:6164:61 54:9754:9754:9754:9754:9754:9754:97 62:1662:1662:1662:1662:1662:1662:16

A FGSM attacker is used onminiImageNet under the 5-way 5-shot setting.

TABLE 3
Comparison (%) of Different DFSL Models onminiImageNet under the 5-Way 5-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 70.39 16.18 26.31 9.81 17.22 8.65 15.40
DFSL-DN4-AT with 71.54 63.31 67.17 58.92 64.61 54.97 62.16
DFSL-DN4-KL with 71.61 64.96 68.12 62.29 66.62 59.55 65.02
DFSL-DN4-ALP with 72.14 64.56 68.13 62.56 67.00 60:8760:8760:8760:8760:8760:8760:87 66:0266:0266:0266:0266:0266:0266:02
DFSL-DN4-Local-UDA with 72:3072:3072:3072:3072:3072:3072:30 64.32 68.07 61.46 66.44 59.07 65.01
DFSL-DN4-KLD (ours) with 72.24 63.38 67.52 61.06 66.18 59.24 65.09
DFSL-DN4-TCD (ours) with 72:3372:3372:3372:3372:3372:3372:33 64:9864:9864:9864:9864:9864:9864:98 68:4568:4568:4568:4568:4568:4568:45 62:7662:7662:7662:7662:7662:7662:76 67:2067:2067:2067:2067:2067:2067:20 60.65 65.97
DFSL-DN4-SKL (ours) with 71.68 66:4466:4466:4466:4466:4466:4466:44 68:9668:9668:9668:9668:9668:9668:96 64:5564:5564:5564:5564:5564:5564:55 67:9267:9267:9267:9267:9267:9267:92 62:6862:6862:6862:6862:6862:6862:68 66:9866:9866:9866:9866:9866:9866:98

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.
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importantly, the proposed DFSL-DN4-SKL (ours) can fur-
ther improve the adversarial accuracy over DFSL-DN4-KL,
DFSL-DN4-ALP. For example, on the miniImageNet dataset
in Table 3, when � ¼ 0:01, DFSL-DN4-SKL (ours) further
gains 3:13% and 1:81% improvements over DFSL-DN4-KL,
DFSL-DN4-ALP, respectively. Also, on the CIFAR-100 data-
set in Table 5, when � ¼ 0:01, such further improvements are
2:42% and 4:2%, respectively. As explained in Section 3.4.3,
the reason is that the proposed SKL is symmetric which is
more stable than the asymmetric KL [9], [21]. On the other
hand, SKL is somewhat slack, and thus it enjoys a good gen-
eralization ability.

In addition to the clean accuracy and adversarial accuracy,
we also calculate F 1 scores for each model by considering
both the clean accuracy and adversarial accuracy together. To
explain the necessity of this unified evaluation criterion, we

can pay attention to a specific example. On the CIFAR-100
dataset, we notice that DFSL-DN4-ALP has higher clean accu-
racy (55:59%) than that (54:84%) of DFSL-DN4-KL, but
obtains a lower adversarial accuracy (45:25%when � ¼ 0:003)
than that (46:15% when � ¼ 0:003) of DFSL-DN4-KL. In this
case, it is difficult to conclude which one of these two models
is better. In contrast, by calculating a unifiedF 1 score for each
of these models, we can concretely draw a conclusion that
DFSL-DN4-KL (F 1 ¼ 50:12%) performs better than DFSL-
DN4-ALP (F 1 ¼ 49:88%). Notably, the proposed methods
(i.e., KLD, TCD and SKL) can obtain the highest F 1 scores on
all three levels of adversarial attacks on all three datasets.

Furthermore, as seen in Tables 6, 7, and 8, we also perform
all the DFSL models on the three general image datasets
under the 5-way 1-shot setting, respectively. From Table 6,
we can see that the seven DFSL models consistently

TABLE 4
Comparison (%) of Different DFSL Models on tieredImageNet under the 5-Way 5-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 74:1174:1174:1174:1174:1174:1174:11 23.99 36.24 12.58 21.50 10.34 18.14
DFSL-DN4-AT with 73:0473:0473:0473:0473:0473:0473:04 63.06 67.68 58.07 64.70 53.73 61.91
DFSL-DN4-KL with 72.31 64.60 68.23 61.96 66.76 59.26 65.13
DFSL-DN4-ALP with 72.61 65.37 68.80 62.84 67.37 60.55 66.03
DFSL-DN4-Local-UDA with 72.48 64.12 68.04 60.65 66.03 57.04 63.83
DFSL-DN4-KLD (ours) with 72.71 66:5866:5866:5866:5866:5866:5866:58 69:5169:5169:5169:5169:5169:5169:51 64:2764:2764:2764:2764:2764:2764:27 68:2368:2368:2368:2368:2368:2368:23 61:8961:8961:8961:8961:8961:8961:89 66:8666:8666:8666:8666:8666:8666:86
DFSL-DN4-TCD (ours) with 72.66 67:3967:3967:3967:3967:3967:3967:39 69:9269:9269:9269:9269:9269:9269:92 65:5565:5565:5565:5565:5565:5565:55 68:9268:9268:9268:9268:9268:9268:92 63:6763:6763:6763:6763:6763:6763:67 67:8667:8667:8667:8667:8667:8667:86
DFSL-DN4-SKL (ours) with 72.43 65.57 68.82 63.73 67.80 61.64 66.60

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 5
Comparison (%) of Different DFSL Models on CIFAR-100 under the 5-Way 5-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 59:9359:9359:9359:9359:9359:9359:93 9.18 15.92 6.87 12.32 6.70 12.05
DFSL-DN4-AT with 55.03 44.88 49.43 43.30 48.46 41.67 47.42
DFSL-DN4-KL with 54.84 46.15 50.12 44.17 48.93 42.37 47.80
DFSL-DN4-ALP with 55.59 45.25 49.88 42.07 47.89 40.59 46.92
DFSL-DN4-Local-UDA with 55.26 45.94 50.17 43.89 48.92 42.22 47.86
DFSL-DN4-KLD (ours) with 56:1256:1256:1256:1256:1256:1256:12 46:3846:3846:3846:3846:3846:3846:38 50:7850:7850:7850:7850:7850:7850:78 44:8644:8644:8644:8644:8644:8644:86 49:8649:8649:8649:8649:8649:8649:86 43:3943:3943:3943:3943:3943:3943:39 48:9448:9448:9448:9448:9448:9448:94
DFSL-DN4-TCD (ours) with 54.77 45.85 49.91 43.89 48.73 42.08 47.59
DFSL-DN4-SKL (ours) with 55.51 48:8848:8848:8848:8848:8848:8848:88 51:9851:9851:9851:9851:9851:9851:98 46:3746:3746:3746:3746:3746:3746:37 50:5350:5350:5350:5350:5350:5350:53 44:7944:7944:7944:7944:7944:7944:79 49:5749:5749:5749:5749:5749:5749:57

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 6
Comparison (%) of Different DFSL Models onminiImageNet under the 5-Way 1-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 50.57 22.73 31.36 17.01 25.45 14.45 22.47
DFSL-DN4-AT with 50.35 44.43 47.20 42.63 46.16 41.01 45.20
DFSL-DN4-KL with 50.65 45.12 47.72 43:6643:6643:6643:6643:6643:6643:66 46.89 42:3242:3242:3242:3242:3242:3242:32 46.11
DFSL-DN4-ALP with 50.32 43.96 46.92 41.29 45.36 39.30 44.13
DFSL-DN4-Local-UDA with 51.08 45.06 47.88 43.58 47.03 42.14 46.18
DFSL-DN4-KLD (ours) with 51:9651:9651:9651:9651:9651:9651:96 46:1046:1046:1046:1046:1046:1046:10 48:8548:8548:8548:8548:8548:8548:85 43.57 47:3947:3947:3947:3947:3947:3947:39 42.12 46:5246:5246:5246:5246:5246:5246:52
DFSL-DN4-TCD (ours) with 50.82 44.56 47.48 42.99 46.57 41.73 45.82
DFSL-DN4-SKL (ours) with 52:0052:0052:0052:0052:0052:0052:00 46:6746:6746:6746:6746:6746:6746:67 49:1949:1949:1949:1949:1949:1949:19 44:1644:1644:1644:1644:1644:1644:16 47:7647:7647:7647:7647:7647:7647:76 42:4642:4642:4642:4642:4642:4642:46 46:7446:7446:7446:7446:7446:7446:74

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.
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improve the adversarial accuracy over DN4+Ep, and the
proposed variants with KLD, TCD and SKL can further
boost the clean accuracy or adversarial accuracy over other
competitors. Notably, the proposed DFSL-DN4-SKL (ours)
consistently performs best on both the clean accuracy and
adversarial accuracy at all the three levels of adversarial
attacks. Moreover, the proposed DFSL-DN4-KLD (ours)
also shows competitive performance in most of cases. The
proposed DFSL-DN4-TCD (ours) is not so competitive as
SKL and KLD. This is because it is truly challenging to
effectively estimate the covariance matrix of the support
set under the 1-shot setting (i.e., only one sample is avail-
able for estimation) for TCD. In addition, in Tables 7
and 8, we can obtain observations similar to Table 6. For
example, the proposed DFSL-DN4-SKL (ours) is consis-
tently superior to other competitors.

5.4 Performing DFSL on Fine-Grained Datasets

To show the consistent effectiveness of the proposed DFSL
framework, we conduct experiments on three fine-grained
image datasets, i.e., Stanford Dogs [52], Stanford Cars [53]
and CUB Birds-200-2011 [54], and report the results in
Tables 9, 10, and 11, respectively. Because the data sizes of
these three datasets are relatively small, we perform simple
data augmentation on these datasets. All the other settings
are similar to the settings in Section 5.3.

Specifically, we can see that DFSL-DN4-SKL (ours), as a
prediction-wise consistency based method, can obtain con-
sistently better results than other competitors on both clean
accuracy and adversarial accuracy on all three fine-grained
datasets. For example, on the CUB Birds-200-2011 dataset in
Table 11, when �¼0:01, DFSL-DN4-SKL (ours) gains signifi-
cantly improvements over DFSL-DN4-AT, DFSL-DN4-KL,

TABLE 7
Comparison (%) of Different DFSL Models on tieredImageNet under the 5-Way 1-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 53:7653:7653:7653:7653:7653:7653:76 14.43 22.75 4.68 8.61 3.01 5.70
DFSL-DN4-AT with 49.27 43.87 46.41 42:2742:2742:2742:2742:2742:2742:27 45:5045:5045:5045:5045:5045:5045:50 40:5140:5140:5140:5140:5140:5140:51 44.46
DFSL-DN4-KL with 49.04 42.93 45.78 41.73 45.09 40.30 44.24
DFSL-DN4-ALP with 49.85 44:1044:1044:1044:1044:1044:1044:10 46:7946:7946:7946:7946:7946:7946:79 41.33 45.19 39.28 43.93
DFSL-DN4-Local-UDA with 49.00 43.55 46.11 41.67 45.03 39.44 43.70
DFSL-DN4-KLD (ours) with 49.60 43.39 46.28 41.91 45.43 40.44 44:5544:5544:5544:5544:5544:5544:55
DFSL-DN4-TCD (ours) with 49.23 42.71 45.73 41.43 44.99 40.06 44.17
DFSL-DN4-SKL (ours) with 50:0650:0650:0650:0650:0650:0650:06 44:8844:8844:8844:8844:8844:8844:88 47:3247:3247:3247:3247:3247:3247:32 43:2443:2443:2443:2443:2443:2443:24 46:4046:4046:4046:4046:4046:4046:40 41:0041:0041:0041:0041:0041:0041:00 45:0745:0745:0745:0745:0745:0745:07

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 8
Comparison (%) of Different DFSL Models on CIFAR-100 under the 5-Way 1-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 37.55 4.37 7.82 1.27 2.45 0.93 1.81
DFSL-DN4-AT with 38.29 31.51 34.57 25.17 30.37 21.26 27.33
DFSL-DN4-KL with 38.71 32.66 35.42 31.37 34.65 30.18 33.91
DFSL-DN4-ALP with 38.46 31.92 34.88 25.64 30.76 21.68 27.72
DFSL-DN4-Local-UDA with 38.20 31.54 34.55 25.16 30.38 21.26 27.31
DFSL-DN4-KLD (ours) with 38:7738:7738:7738:7738:7738:7738:77 33:2833:2833:2833:2833:2833:2833:28 35:8135:8135:8135:8135:8135:8135:81 32:0632:0632:0632:0632:0632:0632:06 35:0935:0935:0935:0935:0935:0935:09 30:8230:8230:8230:8230:8230:8230:82 34:3434:3434:3434:3434:3434:3434:34
DFSL-DN4-TCD (ours) with 38.13 31.83 34.68 25.57 30.61 21.77 27.71
DFSL-DN4-SKL (ours) with 39:4139:4139:4139:4139:4139:4139:41 33:8333:8333:8333:8333:8333:8333:83 36:4036:4036:4036:4036:4036:4036:40 32:8932:8932:8932:8932:8932:8932:89 35:8535:8535:8535:8535:8535:8535:85 31:9831:9831:9831:9831:9831:9831:98 35:3035:3035:3035:3035:3035:3035:30

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 9
Comparison (%) of Different DFSL Models on Stanford Dogs under the 5-Way 5-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 75:9575:9575:9575:9575:9575:9575:95 15.41 25.62 6.89 12.63 5.69 10.58
DFSL-DN4-AT with 74.63 59.98 66.50 53.62 62.40 49.86 59.78
DFSL-DN4-KL with 74.12 60.09 66.37 55.11 63.21 51.81 60.98
DFSL-DN4-ALP with 67.22 55.94 61.06 42.92 52.41 35.63 46.57
DFSL-DN4-Local-UDA with 75.25 61.20 67.50 55.22 63.69 51.48 61.13
DFSL-DN4-KLD (ours) with 75:3575:3575:3575:3575:3575:3575:35 63:9263:9263:9263:9263:9263:9263:92 69:1669:1669:1669:1669:1669:1669:16 60:2660:2660:2660:2660:2660:2660:26 66:9666:9666:9666:9666:9666:9666:96 57:5557:5557:5557:5557:5557:5557:55 65:2565:2565:2565:2565:2565:2565:25
DFSL-DN4-TCD (ours) with 74.47 62.35 67.87 58.53 65.54 55:7955:7955:7955:7955:7955:7955:79 63.79
DFSL-DN4-SKL (ours) with 74.85 62:9262:9262:9262:9262:9262:9262:92 68:3668:3668:3668:3668:3668:3668:36 58:6558:6558:6558:6558:6558:6558:65 65:7665:7665:7665:7665:7665:7665:76 55.73 63:8963:8963:8963:8963:8963:8963:89

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.
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DFSL-DN4-ALP and DFSL-DN4-Local-UDA by 10:84%,
3:33%, 19:38% and 11:38%, respectively. Similarly, the
proposed DFSL-DN4-TCD (ours) and DFSL-DN4-KLD
(ours) also perform superiorly on the three datasets. For
example, DFSL-DN4-KLD (ours) achieves the best adver-
sarial accuracies on all three levels of attacks on the
Stanford Dogs dataset. Also, on the Stanford Cars data-
set, DFSL-DN4-KLD (ours) obtains the best clean accu-
racy (89:72%) than other adversarial defense methods,
which is competitive to the result (90:73%) of DN4+Ep,
which is trained only using clean examples without any
adversarial examples. Typically, on both Stanford Dogs
and CUB Birds-200-2011 datasets, our proposed DFSL
methods (i.e., KLD, TCD and SKL) can achieve the high-
est or second highest F 1 scores on all three levels of
adversarial attacks.

In addition, we also conduct experiments with the 5-way
1-shot setting on the three fine-grained image datasets,
where the results are reported in Tables 12, 13, and 14,
respectively. As seen, on all the three datasets, the proposed
DFSL-DN4-SKL (ours) can obtain the best adversarial accu-
racy and the highest F 1 score at all three levels of adversar-
ial attacks. It is worth noting that our modified DFSL-DN4-
Local-UDA also shows competitive results on the Stanford
Cars dataset. This is because we use the richer local descrip-
tors instead of the original global logit representations
in [44] for the UDA loss, which is more suitable for the
DFSL setting.

5.5 Performing DFSL with PGD-Adversarial Training

Besides the FGSM attacker, we also apply a PGD [8] attacker
to train more robust DFSL models for defending against

TABLE 10
Comparison (%) of Different DFSL Models on Stanford Cars under the 5-Way 5-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 90:7390:7390:7390:7390:7390:7390:73 47.83 62.63 33.18 48.59 30.74 45.92
DFSL-DN4-AT with 89.66 75.30 81.85 63.33 74.22 56.08 69.00
DFSL-DN4-KL with 85.71 76.56 80.87 66.22 74.71 59.12 69.97
DFSL-DN4-ALP with 87.60 79:0379:0379:0379:0379:0379:0379:03 83:0983:0983:0983:0983:0983:0983:09 68:7468:7468:7468:7468:7468:7468:74 77:0377:0377:0377:0377:0377:0377:03 61:5461:5461:5461:5461:5461:5461:54 72:2972:2972:2972:2972:2972:2972:29
DFSL-DN4-Local-UDA with 87.55 72.29 79.19 56.17 68.43 47.35 61.46
DFSL-DN4-KLD (ours) with 89:7289:7289:7289:7289:7289:7289:72 77.42 83:1183:1183:1183:1183:1183:1183:11 63.44 74.32 54.94 68.14
DFSL-DN4-TCD (ours) with 89.33 76.67 82.51 62.92 73.83 54.28 67.52
DFSL-DN4-SKL (ours) with 85.17 79:0979:0979:0979:0979:0979:0979:09 82.01 70:9070:9070:9070:9070:9070:9070:90 77:3877:3877:3877:3877:3877:3877:38 65:2265:2265:2265:2265:2265:2265:22 73:8773:8773:8773:8773:8773:8773:87

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 11
Comparison (%) of Different DFSL Models on CUB Birds under the 5-Way 5-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 88:2488:2488:2488:2488:2488:2488:24 43.95 58.67 30.19 44.98 26.75 41.05
DFSL-DN4-AT with 87.43 75.46 81.00 69.56 77.47 66.15 75.31
DFSL-DN4-KL with 87.69 80.14 83.74 76.36 81.63 73.66 80.06
DFSL-DN4-ALP with 83.89 75.12 79.26 64.46 72.90 57.61 68.30
DFSL-DN4-Local-UDA with 84.00 72.24 77.67 68.69 75.57 65.61 73.67
DFSL-DN4-KLD (ours) with 87.65 80:5180:5180:5180:5180:5180:5180:51 83:9283:9283:9283:9283:9283:9283:92 77:6877:6877:6877:6877:6877:6877:68 82:3682:3682:3682:3682:3682:3682:36 75:0475:0475:0475:0475:0475:0475:04 80:8580:8580:8580:8580:8580:8580:85
DFSL-DN4-TCD (ours) with 87.17 78.52 82.61 74.86 80.54 72.22 78.99
DFSL-DN4-SKL (ours) with 88:0388:0388:0388:0388:0388:0388:03 82:4182:4182:4182:4182:4182:4182:41 85:1285:1285:1285:1285:1285:1285:12 79:5079:5079:5079:5079:5079:5079:50 83:5483:5483:5483:5483:5483:5483:54 76:9976:9976:9976:9976:9976:9976:99 82:1482:1482:1482:1482:1482:1482:14

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 12
Comparison (%) of Different DFSL Models on Stanford Dogs under the 5-Way 1-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 58:0658:0658:0658:0658:0658:0658:06 11.15 18.70 3.39 6.40 1.84 3.56
DFSL-DN4-AT with 51.52 43:0143:0143:0143:0143:0143:0143:01 46.88 40.90 45.59 38:5438:5438:5438:5438:5438:5438:54 44.09
DFSL-DN4-KL with 51.21 42.21 46.27 40.70 45.35 38.45 43.92
DFSL-DN4-ALP with 51.52 42.52 46.58 39.33 44.60 36.73 42.88
DFSL-DN4-Local-UDA with 51.02 42.30 46.25 40.69 45.27 38.08 43.61
DFSL-DN4-KLD (ours) with 52:1152:1152:1152:1152:1152:1152:11 42.86 47:0347:0347:0347:0347:0347:0347:03 40:9840:9840:9840:9840:9840:9840:98 45:8745:8745:8745:8745:8745:8745:87 38.51 44:2844:2844:2844:2844:2844:2844:28
DFSL-DN4-TCD (ours) with 50.65 40.78 45.18 39.79 44.56 37.44 43.05
DFSL-DN4-SKL (ours) with 50.82 43:9143:9143:9143:9143:9143:9143:91 47:1147:1147:1147:1147:1147:1147:11 42:9742:9742:9742:9742:9742:9742:97 46:5646:5646:5646:5646:5646:5646:56 41:1641:1641:1641:1641:1641:1641:16 45:4845:4845:4845:4845:4845:4845:48

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.
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various stronger attacks. Specifically, we set the fixed per-
turbation �, the number of iteration steps and step size of
PGD as 0.02, 10 and 1=255, respectively, i.e., a PGD-10
attacker is used to adversarially train all the DFSL mod-
els. Moreover, various attackers, such as PGD-10 [8],
DeepFool [59], C & W [47] and FGSM [5], are adopted to
verify the robustness of PGD-adversarial trained DFSL
models. For the DeepFool, the maximum number of itera-
tion is set as 30. As for C & W, the learning rate and the
maximum iteration number are set as 0.001 and 10,
respectively.

The results on miniImageNet under both 5-shot and 1-
shot settings are reported in Tables 15 and 16. Comparing
DFSL-DN4-AT (PGD) with DFSL-DN4-AT (FGSM) in
Table 15, we can see that although the FGSM-adversarial
trained model enjoys a great clean accuracy and has a
good defense ability for the FGSM attack, it fails to
defend against the stronger attacks, e.g., PGD, DeepFool
and C & W. In contrast, the PGD-adversarial trained

model, i.e., DFSL-DN4-AT (PGD), has a much stronger
defense ability for these stronger attacks, which gains
more than 10% adversarial accuracy improvements under
the DeepFool and C & W attacks, and gains more than
20% adversarial accuracy improvements under the PGD
attack over DFSL-DN4-AT (FGSM). Nevertheless, the
standard AT will suffer from a loss on the clean accuracy
with a drop of 4:9%.

On the contrary, the proposedKLD, TCD and SKL can not
only improve the clean accuracy, but also significantly
improves the adversarial accuracy under all kinds of attacks.
For example, TCD obtains 8:52%, 1:56%, 2:76% and 4:61%
adversarial accuracy improvements over AT (PGD) under
the attacks of PGD, DeepFool, C & W and FGSM, respec-
tively. The similar results can also be observed in Table 16
under the 5-way 1-shot setting. The above results indicate
that the proposed methods could consistently gain improve-
ments over AT (PGD) in terms of both the clean accuracy
and adversarial accuracy.

TABLE 13
Comparison (%) of Different DFSL Models on Stanford Cars under the 5-Way 1-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 59:6559:6559:6559:6559:6559:6559:65 19.23 29.08 8.65 15.10 5.68 10.37
DFSL-DN4-AT with 47.41 36.75 41.40 36.26 41.09 34.56 39.97
DFSL-DN4-KL with 52.12 40.68 45.69 38.03 43.97 35.97 42.56
DFSL-DN4-ALP with 48.11 37.43 42.10 35.44 40.81 33.77 39.68
DFSL-DN4-Local-UDA with 53:2453:2453:2453:2453:2453:2453:24 40:8840:8840:8840:8840:8840:8840:88 46:2446:2446:2446:2446:2446:2446:24 38.14 44:4444:4444:4444:4444:4444:4444:44 36.22 43:1143:1143:1143:1143:1143:1143:11
DFSL-DN4-KLD (ours) with 52.07 38.99 44.59 38:3438:3438:3438:3438:3438:3438:34 44.16 36:6636:6636:6636:6636:6636:6636:66 43.02
DFSL-DN4-TCD (ours) with 50.25 36.64 42.37 36.12 42.02 34.75 41.08
DFSL-DN4-SKL (ours) with 52.97 41:7841:7841:7841:7841:7841:7841:78 46:7146:7146:7146:7146:7146:7146:71 40:1840:1840:1840:1840:1840:1840:18 45:6945:6945:6945:6945:6945:6945:69 38:5038:5038:5038:5038:5038:5038:50 44:5944:5944:5944:5944:5944:5944:59

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 14
Comparison (%) of Different DFSL Models on CUB Birds under the 5-Way 1-Shot Setting

Method ET ACCclean �¼0:003 �¼0:007 �¼0:01

ACCadv F 1 ACCadv F 1 ACCadv F 1

DN4+Ep without 71:9271:9271:9271:9271:9271:9271:92 28.89 41.22 14.40 23.99 10.42 18.20
DFSL-DN4-AT with 67.08 54.37 60.05 42.24 51.83 36.28 47.09
DFSL-DN4-KL with 69:3669:3669:3669:3669:3669:3669:36 54.61 61.10 41.41 51.85 35.14 46.64
DFSL-DN4-ALP with 66.30 58:2358:2358:2358:2358:2358:2358:23 62:0062:0062:0062:0062:0062:0062:00 47:8047:8047:8047:8047:8047:8047:80 55:5555:5555:5555:5555:5555:5555:55 42:2542:2542:2542:2542:2542:2542:25 51:6151:6151:6151:6151:6151:6151:61
DFSL-DN4-Local-UDA with 66.40 54.24 59.70 43.22 52.35 37.73 48.11
DFSL-DN4-KLD (ours) with 66.75 55.21 60.43 43.74 52.84 37.95 48.38
DFSL-DN4-TCD (ours) with 66.75 55.37 60.52 44.24 53.21 38.58 48.89
DFSL-DN4-SKL (ours) with 66.78 58:6358:6358:6358:6358:6358:6358:63 62:4462:4462:4462:4462:4462:4462:44 48:4848:4848:4848:4848:4848:4848:48 56:1756:1756:1756:1756:1756:1756:17 43:0943:0943:0943:0943:0943:0943:09 52:3852:3852:3852:3852:3852:3852:38

Both training and test are based on a FGSM attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 15
Comparison (%) of Different DFSL Models with PGD-Adversarial Training onminiImageNet under the 5-Way 5-Shot Setting

Method ET Defense ACCclean PGD-10 DeepFool C&W FGSM (�¼0:01)

ACCadv F 1 ACCadv F 1 ACCadv F 1 ACCadv F 1

DFSL-DN4-AT with FGSM 71:8671:8671:8671:8671:8671:8671:86 28.60 40.91 37.25 49.06 19.57 30.76 58.51 64.50
DFSL-DN4-AT with PGD 66.96 50.31 57.45 48.99 56.58 29.63 41.08 59.86 63.21
DFSL-DN4-KLD (ours) with PGD 68.68 58:0358:0358:0358:0358:0358:0358:03 62.90 50:6750:6750:6750:6750:6750:6750:67 58:3158:3158:3158:3158:3158:3158:31 31:9031:9031:9031:9031:9031:9031:90 43:5643:5643:5643:5643:5643:5643:56 64:5864:5864:5864:5864:5864:5864:58 66:5666:5666:5666:5666:5666:5666:56
DFSL-DN4-TCD (ours) with PGD 68.43 58:8358:8358:8358:8358:8358:8358:83 63:2663:2663:2663:2663:2663:2663:26 50:5550:5550:5550:5550:5550:5550:55 58:1458:1458:1458:1458:1458:1458:14 32:3932:3932:3932:3932:3932:3932:39 43:9643:9643:9643:9643:9643:9643:96 64:4764:4764:4764:4764:4764:4764:47 66.39
DFSL-DN4-SKL (ours) with PGD 68:9868:9868:9868:9868:9868:9868:98 58.04 63:0363:0363:0363:0363:0363:0363:03 42.21 52.37 22.77 34.23 64.48 66:6566:6566:6566:6566:6566:6566:65

For each evaluation criterion, the best and the second best results are highlighted in bold.
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5.6 Performing DFSL on Cross-Domain Datasets

It will be interesting to further investigate the defense trans-
fer ability of the proposed DFSL framework in cross-domain
scenarios. To this end, following the cross-domain FSL work
in the literature [60], we conduct an experiment on three
cross-domain scenarios, i.e., miniImageNet ! Stanford
Dogs, miniImageNet ! Stanford Cars and miniImageNet !
CUB Birds. In this experiment, all the models are adversari-
ally trained on the source domain dataset (i.e., miniImage-
Net) and directly tested on the target domain dataset (e.g.,
CUB Birds) without fine-tuning, by using a FGSM attacker
with the attack level of �¼0:01.

Specifically, DN4+AT, DFSL-DN4-AT, DFSL-DN4-KLD
(ours), DFSL-DN4-TCD (ours) and DFSL-DN4-SKL (ours)
are selected as representatives. From Table 17, we can
observe that DFSL-DN4-AT can significantly improve both
the clean and adversarial accuracies over DN4+AT. It veri-
fies that ET (i.e., Ep+AT) indeed has the ability of transfer-
ring defense knowledge even in cross-domain scenarios.
More importantly, DFSL-DN4-KLD (ours), DFSL-DN4-TCD
(ours) and DFSL-DN4-SKL (ours) can further improve the
adversarial accuracy over DFSL-DN4-AT, which also fur-
ther verifies that the proposed feature-wise or prediction-
wise distribution consistency criteria are effective.

5.7 Randomness Matters

There is a highly important but easily overlooked issue in
both fields of the generic adversarial training and generic
few-shot learning in the literature, that is the non-reproduc-
ibility of one model caused by the randomness. One clear
consequence of ignoring the randomness is that the fairness
of the comparison cannot be guaranteed. In other words,
sometimes the improvement obtained may simply be due
to the randomness.

Typically, we can roughly summarize the randomness
into five categories: (1) randomness introduced by different

hardware platforms (e.g., different servers); (2) randomness
introduced by different software platforms (e.g., different
deep learning platforms or releases); (3) randomness intro-
duced by different codebases, including the optimizer,
learning rate and training epochs, etc; (4) randomness intro-
duced by different initializations of network parameters
and different data shuffles; (5) randomness introduced by
the nondeterminism of CUDA and CuDNN backends.

To fix the first two kinds of randomness, we run all the
comparison methods in the same server and use the same
Pytorch release. For the third kind of randomness, we re-
implement all the comparison methods with the same single
codebase including using the same settings of optimization
and learning rate, except the core parts of the method itself
and hyper-parameters. As for the fourth kind of random-
ness, we set the same fixed seed for all comparison methods.
For the last kind of randomness, we seed manually for
CUDA and make CuDNN deterministic. In this way, we
can make sure that both the initialization of network param-
eters and data shuffling is the same for all the comparison
methods, and the results of any methods are reproducible
on the same server.

To further demonstrate the randomness’s impact on the
final results, we fix the first three kinds of randomness and
repeatedly run a method multiple times. Specifically,
under the 5-way 5-shot setting, we run DFSL-DN4-AT,
DFSL-DN4-ALP and DFSL-DN4-KL six times on miniIma-
geNet, respectively. The results are plotted in Fig. 4. As
seen, although the computing environment and code
haven’t changed at all, the performance of each method
varies significantly because of the random initializations
(seeds) at different runs. In this sense, we cannot draw a
conclusion that one method performs strictly better than
another method. Therefore, in all of our experiments, we
have well fixed the randomness to strictly compare differ-
ent methods for fairness.

TABLE 16
Comparison (%) of Different DFSL Models with PGD-Adversarial Training onminiImageNet under the 5-Way 1-Shot Setting

Method ET Defense ACCclean PGD-10 DeepFool C&W FGSM (�¼0:01)

ACCadv F 1 ACCadv F 1 ACCadv F 1 ACCadv F 1

DFSL-DN4-AT with FGSM 50:0050:0050:0050:0050:0050:0050:00 26.40 34.55 35.73 41.67 10.52 17.38 40.77 44.91
DFSL-DN4-AT with PGD 47.87 37.72 42.19 38.09 42.42 16.06 24.05 43.55 45.60
DFSL-DN4-KLD (ours) with PGD 47.93 37.35 41.98 39:2439:2439:2439:2439:2439:2439:24 43:1543:1543:1543:1543:1543:1543:15 17.01 25.10 43.89 45.82
DFSL-DN4-TCD (ours) with PGD 48.34 39:1139:1139:1139:1139:1139:1139:11 43:2343:2343:2343:2343:2343:2343:23 39:4439:4439:4439:4439:4439:4439:44 43:4343:4343:4343:4343:4343:4343:43 17:4117:4117:4117:4117:4117:4117:41 25:6025:6025:6025:6025:6025:6025:60 44:5544:5544:5544:5544:5544:5544:55 46:3646:3646:3646:3646:3646:3646:36
DFSL-DN4-SKL (ours) with PGD 48:7948:7948:7948:7948:7948:7948:79 40:1740:1740:1740:1740:1740:1740:17 44:0644:0644:0644:0644:0644:0644:06 38.43 42.99 17:9417:9417:9417:9417:9417:9417:94 26:2326:2326:2326:2326:2326:2326:23 45:0145:0145:0145:0145:0145:0145:01 46:8246:8246:8246:8246:8246:8246:82

For each evaluation criterion, the best and the second best results are highlighted in bold.

TABLE 17
Cross-Domain Defense Transferability of DFSLWhen the Attack Level is �¼0:01

Method ET miniImageNet ! Stanford Dogs miniImageNet! Stanford Cars miniImageNet ! CUB Birds

ACCclean ACCadv F 1 ACCclean ACCadv F 1 ACCclean ACCadv F 1

DN4+AT without 37.30 22.31 27.92 38.60 24.18 29.73 46.88 33.87 39.32
DFSL-DN4-AT with 55.89 38.67 45.71 48.71 34.54 40.41 65.23 44.21 52.70
DFSL-DN4-KLD (ours) with 56:3056:3056:3056:3056:3056:3056:30 42.01 48.11 49:7349:7349:7349:7349:7349:7349:73 37.69 42.88 66:2066:2066:2066:2066:2066:2066:20 52.95 58.83
DFSL-DN4-TCD (ours) with 56:5256:5256:5256:5256:5256:5256:52 42:9442:9442:9442:9442:9442:9442:94 48:8048:8048:8048:8048:8048:8048:80 50:3150:3150:3150:3150:3150:3150:31 39:2739:2739:2739:2739:2739:2739:27 44:1044:1044:1044:1044:1044:1044:10 65:8165:8165:8165:8165:8165:8165:81 53:7553:7553:7553:7553:7553:7553:75 59:1759:1759:1759:1759:1759:1759:17
DFSL-DN4-SKL (ours) with 55.23 44:8344:8344:8344:8344:8344:8344:83 49:4849:4849:4849:4849:4849:4849:48 49.05 40:6840:6840:6840:6840:6840:6840:68 44:4744:4744:4744:4744:4744:4744:47 65.31 57:0157:0157:0157:0157:0157:0157:01 60:8760:8760:8760:8760:8760:8760:87

Both training and test are based on a FGSM attacker under the 5-way 5-shot setting. For each evaluation criterion, the best and the second best results are
highlighted in bold.
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5.8 Qualitative Comparison: Curve of F b Scores

In addition to the F 1 score, we can also generate the curves
of F b scores by varying the value of b for qualitative com-
parison. To be specific, we first calculate a series of Fb scores
with the clean accuracy ACCclean and adversarial accuracy
ACCadv according to Eq. (11) by varying b from 0 to 2. After
that, we can plot a Fb curve via these Fb scores for each
DFSL model. With the results in Tables 3, 4, 5, 9, 10, and 11,
the Fb curves are worked out and plotted in Fig. 3. As seen,
in most cases, the proposed DFSL-DN4-KLD, DFSL-DN4-
TCD and DFSL-DN4-SKL perform consistently superior to
other competitors for any value of b.

6 CONCLUSION

In this article, we propose a new challenging issue for the
first time, i.e., defensive few-shot learning (DFSL), aiming to
learn robust few-shot models against adversarial attacks. To
tackle this issue, we propose a unified DFSL framework
with solutions from two aspects, i.e., task-level distribution
consistency and distribution consistency within each task.
Extensive experiments have verified that: (1) the proposed
episode-based adversarial training (ET) mechanism can effec-
tively transfer adversarial defense knowledge by leveraging

the task-level distribution consistency; (2) the proposed
feature-wise and prediction-wise consistency criteria, i.e.,
Kullback-Leibler divergence based distribution measure (KLD),
task-conditioned distribution measure (TCD), and Symmetric
Kullback-Leibler divergence measure (SKL) can reliably nar-
row the distribution gap between the clean and adversarial
examples and enjoy good generalization performance.
Moreover, we modify and re-implement multiple existing
adversarial defense methods and multiple representative
FSL methods into this unified framework as well as rich
baseline results, which can significantly facilitate future
research on the topic of DFSL. In addition, we propose a
unified evaluation criterion, i.e., F b scores, which is also of
significance for the community. Many future directions are
worth exploring for the new topic of DFSL. Especially, we
are going to extend the proposed DFSL framework to the
transductive setting and further investigate the cross-domain
scenarios on the large-scale dataset, e.g., Meta-Dataset [61].
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