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Consistent Meta-Regularization for Better
Meta-Knowledge in Few-Shot Learning

Pinzhuo Tian, Wenbin Li, and Yang Gao , Member, IEEE

Abstract— Recently, meta-learning provides a powerful par-
adigm to deal with the few-shot learning problem. However,
existing meta-learning approaches ignore the prior fact that good
meta-knowledge should alleviate the data inconsistency between
training and test data, caused by the extremely limited data,
in each few-shot learning task. Moreover, legitimately utilizing
the prior understanding of meta-knowledge can lead us to design
an efficient method to improve the meta-learning model. Under
this circumstance, we consider the data inconsistency from the
distribution perspective, making it convenient to bring in the
prior fact, and propose a new consistent meta-regularization
(Con-MetaReg) to help the meta-learning model learn how to
reduce the data-distribution discrepancy between the training
and test data. In this way, the ability of meta-knowledge on
keeping the training and test data consistent is enhanced, and
the performance of the meta-learning model can be further
improved. The extensive analyses and experiments demonstrate
that our method can indeed improve the performances of differ-
ent meta-learning models in few-shot regression, classification,
and fine-grained classification.

Index Terms— Deep learning, few-shot learning, meta-learning,
meta-regularization.

I. INTRODUCTION

LEARNING quickly is a kind of ability of human intel-
ligence, e.g., children can recognize objects only from

a few examples. However, this poses a great challenge to
the existing deep learning models, which requires large-scale
annotated training data to achieve promising performance.
Moreover, collecting plenty of labeled training data is labo-
rious and time-consuming. In some real environments, it is
even impossible because of the intrinsic lack of data [1].
Hence, equipping a deep model with the ability to learn new
concepts from a few labeled data is meaningful for practical
use. Recently, meta-learning (or learning to learn) has drawn
increasing interest in the machine learning community [2]–[4].
Casting few-shot learning as a meta-learning problem provides
a promising paradigm to tackle this problem [5]–[7].
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The goal of meta-learning is to gain experience over mul-
tiple learning episodes by learning how learning algorithms
perform on these tasks [8]. With this experience, meta-learning
can help the model learn fast or adapt quickly to new tasks, that
is to say, effective meta-knowledge is critical for meta-learning
to achieve this goal. However, in few-shot learning, training
data in each training episode (or task) is limited, making it
difficult to comprehensively describe the real data distribution.
In this sense, the training data in each few-shot learning task
can be considered as a biased representation of the whole data.
Thus, there exists data inconsistency between training and test
data in the few-shot learning task, as shown in Fig. 1. The
similar problem caused by the limited data is also discussed
in semisupervised learning [9]. Regarding this fact, the oracle
meta-knowledge for few-shot learning should know how to
eliminate the inconsistency and help the model trained by a
few training data work well on the test data.

However, few existing meta-learning approaches for
few-shot learning take notice of the above prior fact that can
be utilized to improve the quality of meta-knowledge. To this
end, we propose a new consistent meta-regularization (Con-
MetaReg) method to reinforce the ability of the meta-learning
model on alleviating the data inconsistency for better general
meta-knowledge. In order to achieve this purpose, we use the
data-distribution discrepancy between training and test data
to encapsulate the data inconsistency. From this perspective,
it is convenient to bring in the prior understanding of good
meta-knowledge. In particular, we suppose that if the data
distributions of two datasets are similar, the learning models
trained by these two datasets should be close to each other
in the hypothesis space. In other words, there exists a one-
to-one mapping between the dataset and the learned model.
Eliminating the gap between models could implicitly make the
data distributions similar. Hence, Con-MetaReg is designed to
align the models trained by the training and test data in each
task for eliminating the data-distribution discrepancy between
them. In this way, the ability of meta-knowledge on keeping
the data consistent can be improved.

To comprehensively explain our method, we analyze the
effect of Con-MetaReg on learning the parameter of the
meta-learner in the linear few-shot regression. The result
shows that Con-MetaReg can adapt the learned parameter
based on the discrepancies of the training and test data
and their corresponding labels in training tasks. In exper-
iments, we adopt three few-shot scenarios to evaluate
the proposed Con-MetaReg, i.e., few-shot linear regression,
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Fig. 1. Illustration of the motivation of our method. Because of the lack of annotated examples in few-shot learning, there exists data inconsistency between
support and query set. For example, in this figure, although the images in support and query set belong to dog and cat, they are from different subcategories.
Good meta-knowledge should alleviate this inconsistency. Thus, we propose Con-MetaReg to align the models trained by support and query set for implicitly
eliminating the data discrepancy. In this way, the ability of the learned meta-knowledge on alleviating the data inconsistency can be improved.

few-shot classification, and few-shot fine-grained classifi-
cation. In these scenarios, we compare the performance
of some state-of-the-art meta-learning approaches integrated
with Con-MetaReg or not to verify the superiority of the
proposed method. The experimental results show that our
method can help these meta-learning algorithms achieve better
performance.

In summary, our contributions in this article are listed as
follows.

1) We consider a new problem of meta-learning model
when applied to few-shot learning. The learned
meta-knowledge should help alleviate the data incon-
sistency between training and test data in each few-shot
learning task. How can we bring in this prior knowledge
to improve the meta-learning model?

2) We consider this problem from the data-distribution
perspective and develop a novel Con-MetaReg to help
the meta-learning method learn better meta-knowledge.

3) Extensive experiments highlight that with Con-MetaReg,
the conventional meta-learning methods can indeed
achieve better performance. We also provide an expla-
nation to further analyze the inner mechanism of the
proposed method.

II. RELATED WORK

This article is mainly related to meta-learning and few-shot
learning. Few-shot learning has been studied for decades.
Recently, many approaches for few-shot learning are devel-
oped on the meta-learning framework and achieve a significant
breakthrough. Hence, in this section, we briefly introduce
some categories of approaches for few-shot learning besides
meta-learning and detail some impressive meta-learning
methods.

A learning algorithm for few-shot learning needs to rapidly
generalize to new concepts with only a few labeled sam-
ples [10], [11]. Generally, the learning model needs some prior
knowledge to solve this problem. Besides meta-learning-based
methods, Li et al . [12] proposed a probabilistic model to
represent objects by decomposable components, e.g., shapes
and appearances of objects. The components are obtained
on seen categories and expected to generalize over novel
categories as the prior knowledge. The Bayesian program
learning (BPL) [13] uses a generative model to represent
concepts and generates a new concept hierarchically from
subparts, parts, and spatial relations. These approaches need

to find a large dictionary of common parts shared by all
categories. However, it is usually difficult to define common
parts for unconstrained objects with vast variations.

With the help of meta-learning, deep neural networks
can be applied to few-shot learning and achieve great suc-
cess. Meta-learning hopes to learn how machine learning
approaches perform on a wide range of learning tasks and
then use this experience to learn new tasks much faster than
otherwise possible [14]. When the learned experience (meta-
knowledge) aims to improve the performance of the learning
algorithm with a few labeled training data, the meta-learning
framework can be utilized to solve the few-shot learning
problem. This kind of method can be broadly divided into
four categories.

1) Data Augmentation Approaches: A straightforward way
is to learn how to generate additional data to augment the
number of training data. Hariharan and Girshick [15]
showed that the classifiers trained on the small data
can be improved by synthesizing additional training
examples for data-starved classes. Following this way,
Wang et al . [16] combined a GAN-like generator as
the part of meta-learner with the aim of learning how
to hallucinate additional training images for training the
task-specific classifier. Chen et al . [17] designed a novel
image deformation network based on the meta-learning
framework, which learns to produce additional train-
ing samples by fusing a pair of reference images.
Antoniou et al . [18] developed a data augmentation
GAN to generate samples for improving the classifier
in the low-data regime. Inspired by the metric-based
few-shot learning approaches, MatchingGAN [19] uses
a learned metric to generate images based on a single or
a few conditional images to augment the training data.
F2GAN [20] improves the quality of generated images
by enhancing the fusion ability of the model. However,
how to ensure the diversity of the synthesized data and
contain necessary semantic details are big challenges for
data augmentation approaches.

2) Model-Based Approaches: In these approaches,
the meta-learner can be designed as a parameterized
predictor to define the base learner. For example,
Ravi and Larochelle [5] used a recurrent neural
network as a meta-learner to direct the updating for
the base learner. Munkhdalai and Yu [21] designed
a meta-learner using loss gradients from base learner
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to predict parameters for it. Some methods adopt
an extra memory to store the past experience,
which can also be regarded as a model-based algorithm.
Santoro et al . [22] used an external memory-augmented
neural network to hold the seen examples and leveraged
them to make predictions with a few examples. This
kind of method is usually very complex and difficult to
train. It also needs extra memory.

3) Metric-Based Approaches: The idea of these approaches
can be considered as learning to compare, and a non-
parametric similarity function is used to evaluate the
similarity between examples. The meta-learner is trained
to learn a useful meta-representation in the prede-
fined metric space. Vinyasls et al . [23] first developed
an end-to-end differentiable nearest neighbor method,
i.e., matching networks to perform the comparison.
Snell et al . [24] proposed a prototypical network that
represents each category by a prototype (also known
as mean embedding of the examples) and utilized the
Euclidean distance to measure the similarity between
test images and prototypes. Sung et al . [25] used a
neural network as the task-agnostic metric. However,
metric-based meta-learning approaches are far largely
restricted to the few-shot classification because it is very
difficult to design an appropriate metric to measure the
similarity in other situations, e.g., regression.

4) Gradient-Based Approaches: Gradient-based approaches
employ gradient descent methods to directly adjust the
parameters of the meta-learner to learn cross-task meta-
knowledge. Finn et al . [2] proposed model-agnostic
meta-learning (MAML) for deep models. MAML aims
to learn a good initialization for all tasks, and the
task-specific learning model of a new task can be
obtained by a few gradient steps from this initialization.
However, there are still many limitations of MAML.
Some works [26]–[28] are developed to further improve
it. Besides MAML, some gradient-based approaches aim
to learn a cross-task representation as meta-knowledge,
which can generalize to new classes [29], [30]. How to
efficiently optimize the gradient-based approaches is a
challenge for these methods, because of second-order
derivatives and differentiating through the inner loop
learning process.

Although there exists the problem of time efficiency in
the gradient-based approach, the number of inner loop for
optimizing the base learner can be small in few-shot learn-
ing. Therefore, the time of training gradient-based approach
for few-shot learning is acceptable. Compared with the
metric-based approach, the gradient-based approach can be
broadly used in many few-shot scenarios, such as few-shot
classification [30], regression [2], and object detection [31].
Moreover, the gradient-based method does not need addi-
tional parameters or requires a particular architecture. These
factors make the gradient-based method a promising and
hot research topic in meta-learning. Our work depends on
the gradient-based approach to improve their performance in
few-shot learning.

III. PRELIMINARY

In this section, we first describe the problem definition
of meta-learning in the context of few-shot learning. Then,
the two-level hierarchical framework is introduced, which is
popular in the current gradient-based meta-learning approach
for few-shot learning. Finally, some typical gradient-based
approaches following this framework are enumerated.

A. Problem Definition

Different from conventional machine learning, the train-
ing sample in meta-learning is task (episode) rather than
data instance. Meta-learning algorithm needs to learn general
meta-knowledge over the multiple training episodes, which can
be adopted to learn new tasks.

Following previous literature [5], [14], there exists a
meta-training set containing T training tasks to train the
meta-learning model, i.e., Str = {T (1),T (2), . . . ,T (T )}. Each
task contains a training dataset (or support set) and a test
dataset (or query set), i.e., T (i) = {S(i)

tr , S(i)
ts }. The number

of training data in S(i)
tr is very small in few-shot learning.

According to the different learning problem, the form of the
training task is different. For example, in few-shot classifica-
tion, learning task T (i) can be regarded as an N-way K -shot
classification task, i.e., recognizing N categories given K
samples per category. To be specific, suppose that the overall
set of training categories is Ctr, the training dataset S(i)

tr of
task T (i) contains N categories drawn from Ctr, and each
category includes K examples, i.e., S(i)

tr = {(x(i)
j , y(i)

j )}N×K
j=1 .

The test dataset S(i)
ts also consists of the same N categories

and each category has Q examples. As for few-shot regression,
the learning task T (i) can be considered as a K -shot regres-
sion task. The training dataset S(i)

tr and the test dataset S(i)
ts

consist of K training data and Q test data, respectively, i.e.,
S(i)

tr = {(x(i)
j , y(i)

j )}Kj=1 and S(i)
ts = {(x(i)

j , y(i)
j )}Qj=1.

Besides the meta-training set, we also access a
meta-validation set and a meta-testing set. The meta-validation
set is used to choose a model during the meta-training stage.
The meta-testing set is used to evaluate the learned
meta-learning model. The tasks from these three sets are
normally considered to follow the same task distribution τ .

B. Hierarchical Gradient-Based Method

How to learn useful meta-knowledge over Str is impor-
tant for the meta-learning model. Current gradient-based
meta-learning methods are highly based on two-level hierar-
chical architecture and achieve the state-of-the-art performance
in many few-shot scenarios [30], [32]. This architecture can
be formulated as a bilevel optimization problem [33], and we
can use the episodic training paradigm [23] to train the whole
model. Following [34], the two-level meta-learning framework
can be defined as

min
θ

T∑
i=1

Lmeta
(
θ, ω∗(i)(θ); S(i)

ts

)
(1)

s.t. ω∗(i)(θ) = arg min
ω

�
(
ω; θ, S(i)

tr

)
(2)
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where Lmeta and � refer to the function of meta loss (as
the outer objective in bilevel optimization) and the function
of task loss (as the inner objective in bilevel optimization),
respectively, and Lmeta and � usually adopt the same loss
function. In particular, the inner part (2) aims to learn a
task-specific base learner for every single task with the training
dataset Str in this task, whereas the upper part (1) learns
meta-knowledge from how to improve these base learners with
the query sets, which can be utilized to help learn unseen tasks.

Next, we introduce three typical two-level gradient-based
approaches that are used as the benchmark methods in our
experiments.

MAML: MAML is a significant gradient-based
meta-learning method, which has been applied to many
fields [35]–[37]. The initialization of the deep model is
regarded as meta-knowledge in MAML. Thus, the goal of
MAML is to meta-learn the initial model parameter θ , which
could generalize over the task distribution. The loss function
of MAML can be written as

min
θ

1

T

T∑
i=1

L
(
w(i)(θ); S(i)

ts

)
(3)

s.t. w(i)(θ) = θ − α∇θL
(
θ; S(i)

tr

)
(4)

where α is the step size and L is the loss function, e.g.,
cross-entropy loss in few-shot classification. θ−α∇θL(θ; S(i)

tr )
means one step of inner updating and aims to obtain a
task-specific learning model (base learner) for task T (i). When
encountering a new task T ( j), the task-specific predictor can
be easily obtained in a single (or a few) inner gradient step
from the initial θ . In fact, MAML is a special case of the
bilevel gradient-based meta-learning method, which is ana-
lyzed in [27]. However, there exists a problem of calculating
second-order derivative and storing Hessian matrix when we
optimize MAML. To solve them, we can just update top layers
in the inner loop instead of the whole model when MAML is
applied to deep networks. Raghu et al . [38] implemented this
idea by ANIL and showed that ANIL can achieve the same
performance compared with the MAML.

MetaOptNet and R2D2: MetaOptNet [30] and R2D2 [29]
use support vector machine [39] and ridge regression as the
base learner in (2), respectively. Both of them want to learn a
cross-task meta-representation by (1), which can help the base
learner of the new task learn from a few training data.

IV. METHOD

As mentioned above, high-quality meta-knowledge, which
can generalize well over the task distribution τ , is very impor-
tant for the meta-learning algorithm to improve the perfor-
mance of the base learner in the low-data regime. Considering
that the number of training data in each few-shot task is 1 ∼ 25
and too limited data certainly lead to a biased representation of
the whole dataset, e.g., a few training data from one category
just contains a small part of the variations, and there are still
many other unseen variations in this category, high-quality
meta-knowledge in the few-shot setting should overcome this
problem and make the model trained on the small training

dataset work well on the test data, which may contain other
unseen variations. Although the gradient-based method indeed
achieves success in few-shot learning, most of them ignore the
fact that we can further improve the meta-learning method by
enhancing the ability on eliminating the effect of the biased
representation.

According to this consideration, we think about this problem
from a data-distribution perspective. The distribution of the
training data in a few-shot learning task can be regarded as fol-
lowing a biased data-sampling distribution due to the limited
data. Therefore, there exists a data-distribution discrepancy
between the training and test data. We hope to design a method
to reinforce the ability of meta-knowledge on alleviating the
discrepancy to further improve the traditional meta-learning
model.

However, accurately estimating the distribution from a few
data is very difficult. We propose a proxy task to achieve
this goal. Specifically, we assume that the model trained by
a certain dataset can represent the distribution of this dataset.
If the data-distribution discrepancy of two datasets is small,
the learning models of the two datasets are near to each other
in the hypothesis space. Hence, instead of directly aligning
the distributions, we propose a Con-MetaReg to help the
meta-learning model learn how to keep the models trained
by the training and test data consistent in each few-shot task.
Under this constraint, the base learner trained by the training
data is supposed to be close to the learning model of the test
data. Moreover, the data distributions of the training and test
data are implicitly aligned.

Next, we introduce our method in detail. For task T (i),
the base learner M (i)

tr trained by the support set S(i)
tr is first

obtained, the same as the traditional meta-learning method.
Then, we exploit the query set S(i)

ts in task T (i) to train a
new specific learning model M (i)

ts . The difference between
M (i)

tr and M (i)
ts can be considered as a metric to measure

the data-distribution discrepancy between the support and the
query set. In our method, we directly use the Frobenius
norm of the difference between parameters of M (i)

tr and M (i)
ts

as the meta-regularization and minimize it to help eliminate
the data-distribution discrepancy for better meta-knowledge.
Though the form of M (i)

tr and M (i)
ts are various in different

meta-learning models, e.g., ω∗(i)(θ) in (2) and w(i)(θ) in (4),
the proposed regularization can be easily calculated. For
example, Con-MetaReg in the bilevel gradient-based method
can be defined as

min
θ

T∑
i=1

Lmeta
(
θ, M (i)

tr (θ); S(i)
ts

)
+ δ

∥∥∥M (i)
tr (θ)− M (i)

ts (θ)
∥∥∥

F

s.t. M (i)
tr (θ) = arg min

ω
�
(
ω; θ, S(i)

tr

)

M (i)
ts (θ) = arg min

ω
�
(
ω; θ, S(i)

ts

)
(5)

where δ is the regularization parameter and � · �F is the
Frobenius norm. If we consider that the base learner is a neural
network, e.g., MAML or ANIL, which contains K layers.
Algorithm 1 summarized the proposed Con-MetaReg in this
situation.
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Algorithm 1 Consistent Meta-Regularization for MAML or
ANIL With Deep Networks

Require: Str: a meta-training set, {θk}Kk=1: a deep network
containing K layers, J : layers needing to be updated in
the inner optimization

Require: δ: regularization parameter, α: step size of the inner
optimization, β: step size of the outer optimization

1: Randomly initialize θ = {θk}Kk=1
2: Set θmeta = {θk}Jk=1, Mtr = {θk}Kk=J , and

Mts = {θk}Kk=J
3: while not done do
4: for task T (i) = {S(i)

tr , S(i)
ts } in Str do

5: Computer adapted parameters of Mtr with gradient
descent:
M (i)�

tr ← Mtr − α�MtrL{θmeta ,Mtr}(S(i)
tr )

6: Computer meta loss Lmeta = L{θmeta ,M(i)�
tr }(S(i)

ts )

7: Computer adapted parameters of Mts with gradient
descent:
M (i)�

ts ← Mts − α�MtsL{θmeta,Mts}(S(i)
ts )

8: end for
9: Update

θ ← θ − β�θ (Lmeta + δ�M (i)�
tr − M (i)�

ts �F )
10: end while

Remarks: In fact, because the label space of different tasks is
different, the data distribution in each task is naturally diverse.
For example, let consider the N-way K -shot classification
task, and different tasks contain different N categories, causing
that the data distributions in tasks vary. Therefore, a method
that can precisely estimate various data distributions with a
few data is required. In our method, representing the data
distribution by a learning model can be adaptive to different
situations, making it appropriate to solve this problem.

V. EXPLANATION BY LINEAR REGRESSION

In this section, a useful analysis is given to help us gain
insight into the nature of the proposed Con-MetaReg. We com-
pare and analyze the solutions for MAML and MAML-CM
in linear few-shot regression following [40], i.e., learning a
good initialization of the linear regression model over multiple
regression tasks. MAML-CM represents MAML integrated
with Con-MetaReg. This analysis illustrates that Con-MetaReg
can provide nontrivial gains by considering the differences
between support and query data and their labels in each
few-shot task.

First, we present some definitions for the linear regression
task. Supposed that a task T (i) contains D(i) = {(x(i)

j , y(i)
j }nj=1,

where x(i)
j ∈ R

d , y(i)
j ∈ R, we consider that a linear regression

model with squared loss is used to learn the function between
training data and their ground truth in T (i), such as

�(i) = 1

2
min

w
E(x,y)∈D(i)�wT x − y�2. (6)

However, in the few-shot setting, training data are limited in
each task, and we want to learn a cross-task meta-initialization
of w, which can generalize well on new linear regression tasks,

by MAML. Following the definitions in Section III-A, each
training task contains a support set Str and a query set Sts.
The optimization problem of MAML with one inner gradient
updating over T tasks can be written as

min
w

1

T

T∑
i=1

Lmeta
(

U (i)
tr (w); S(i)

ts

)

where U (i)
tr (w) = w − α∇�(i)

(
w; S(i)

tr

)
(7)

where Lmeta is the meta loss, and we also use squared loss. w
is the initialized cross-task weight that MAML wants to learn.
U (i)

tr is the base learner of task T (i) (one-step gradient descent
updating from the meta-weight w).

Compared with MAML, MAML-CM integrated with
Con-MetaReg is formulated as

min
w

1

T

T∑
i=1

Lmeta
(

U (i)
tr (w); S(i)

ts

)
+ 1

2α

∥∥∥U (i)
ts (w)−U (i)

tr (w)
∥∥∥2

F

(8)

where

U (i)
tr (w) = w − α∇�(i)

(
w; S(i)

tr

)

U (i)
ts (w) = w − α∇�(i)

(
w; S(i)

ts

)

with U (i)
ts the specific learning model for the query set S(i)

ts .
In our analysis, we denote X(i) = [x(i)

1 , . . . , x(i)
n ]T , X(i) ∈

R
n×d and y(i) = [y(i)

1 , . . . , y(i)
n ]T , y(i) ∈ R

n and use the matrix
form to represent the linear regression task with squared loss.
Specifically, considering a collection of objective functions:
{ fi : w ∈ R

d → R}Ti=1

fi (w) = 1

2
wT A(i)w + wT b(i) + c(i) (9)

each function fi (w) can be regarded as a linear regression task
in (6), corresponding to A(i) = X(i)T

X(i), b(i) = −X(i)T
y(i),

c(i) = y(i)T
y(i). Next, we study the difference between MAML

and MAML-CM.
MAML: We first show the learned meta-weight in MAML

by solving the optimization problem in (7). The exact form of
U (i)

tr can be obtained as

U (i)
tr = w − αA(i)

tr w − αb(i)
tr

and in the case of the quadratic objective, this leads to

Lmeta
(

U (i)
tr (w); S(i)

ts

)

= 1

2

(
w− αA(i)

tr w − αb(i)
tr

)T
A(i)

ts

(
w − αA(i)

tr w− αb(i)
tr

)

+
(

w − αA(i)
tr w− αb(i)

tr

)T
b(i)

ts + c(i)
ts .

The corresponding gradient can be written as

∇Lmeta
(

U (i)
tr (w); S(i)

ts

)

=
(

I − αA(i)
tr

)
A(i)

ts

(
I − αA(i)

tr

)
w +

(
I − αA(i)

tr

)2
b(i)

ts .
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For notational convenience, we define

A† := 1

T

T∑
i=1

(
I− αA(i)

tr

)2
A(i)

ts

b† := 1

T

T∑
i=1

(
I− αA(i)

tr

)2
b(i)

ts .

Finally, the solution to the optimization problem of
MAML (7) is given: w∗MAML = −A−1

† b†.
MAML-CM: We define the overall meta loss of MAML-CM

as Lmeta
cm . According to the results of MAML, we can easily

get the gradient of Lmeta
cm with respect to w

∇Lmeta
cm

(
U (i)

tr (w), U (i)
ts (w); S(i)

ts

)

= ∇w

[
1

2

(
w − αA(i)

tr w − αb(i)
tr

)T
A(i)

ts

(
w − αA(i)

tr w − αb(i)
tr

)

+
(

w− αA(i)
tr w − αb(i)

tr

)T
b(i)

ts

+1

2

∥∥∥(
A(i)

ts − A(i)
tr

)
w+

(
b(i)

ts − b(i)
tr

)∥∥∥2

F

]

=
(

I− αA(i)
tr

)
A(i)

ts

(
I − αA(i)

tr

)
w +

(
I − αA(i)

tr

)2
b(i)

ts

+
[(

A(i)
ts − A(i)

tr

)2
w +

(
A(i)

ts − A(i)
tr

)(
b(i)

ts − b(i)
tr

)]

=
[(

I − αA(i)
tr

)2
A(i)

ts +
(

A(i)
ts − A(i)

tr

)2
]

w

+
[(

I− αA(i)
tr

)2
b(i)

ts +
(

A(i)
ts − A(i)

tr

)(
b(i)

ts − b(i)
tr

)]
.

For notational convenience, we define

A‡ := 1

T

T∑
i=1

[(
I − αA(i)

tr

)2
A(i)

ts +
(

A(i)
ts − A(i)

tr

)2
]

b‡ := 1

T

T∑
i=1

[(
I − αA(i)

tr

)2
b(i)

ts +
(

A(i)
ts − A(i)

tr

)(
b(i)

ts − b(i)
tr

)]
.

Finally, the solution to optimization problem of MAML-CM
in (8) is given: w∗MAML-CM = −A−1

‡ b‡.
Remarks: Although this setting is simple and restrictive,

it can also explain some insights into our method. In general,
w∗MAML 
= w∗MAML-CM based on our analysis. Next, we point
out the difference between them. Let us consider that there
exists a discrepancy between the training and test data in the
few-shot task; however, there exists a mapping matrix between
them, i.e., X(i)

ts =M(i)X(i)
tr .

Then, we can compare the solutions of these two methods
more carefully. First, we pay attention to

A† := 1

T

T∑
i=1

(
I − αA(i)

tr

)2
A(i)

ts

A‡ := 1

T

T∑
i=1

[(
I − αA(i)

tr

)2
A(i)

ts +
(
X(i)

tr
T
(

M(i)T
M(i) − I

)
X(i)

tr

)2
]
.

Note that the different term between A† and A‡ takes
care of the difference between support and query set in each
few-shot task. Depending on the difference, MAML-CM can
dynamically adapt the meta-initialization w∗MAML-CM.

TABLE I

MEAN SQUARED ERROR (MSE) OF FEW-SHOT REGRESSION, LOWER IS
BETTER. ANIL-CM IS OUR METHOD

Next, we think about

b† := 1

T

T∑
i=1

(
I− αA(i)

tr

)2
b(i)

ts

b‡ := 1

T

T∑
i=1

[(
I − αA(i)

tr

)2
b(i)

ts

−
(

A(i)
ts − A(i)

tr

)
X(i)

tr
T
(

M(i)T
y(i)

ts − y(i)
tr

)]
.

Compared with b†, b‡ even considers the difference between
the ground truth of support and query set, apart from the
discrepancy between samples.

This example and analysis reveal that there is a clear sep-
aration in solutions between MAML and MAML-CM in the
case of linear few-shot regression. Con-MetaReg can improve
MAML by considering the differences between training and
test data and their corresponding labels in each few-shot task.

Apart from analyzing the linear setting, in our experi-
ments, improved performance of Con-MetaReg in different
meta-learning approaches is noted empirically with nonconvex
loss landscapes, such as neural networks.

VI. EXPERIMENTS

In order to comprehensively investigate our method,
we evaluate the proposed method in three challenging
scenarios, i.e., few-shot regression, few-shot classification,
and few-shot fine-grained classification. Three state-of-
the-art gradient-based meta-learning methods, i.e., ANIL [38],
MetaOptNet [30], and R2D2 [29], are chosen as the bench-
mark algorithms. Moreover, every benchmark meta-learning
method is implemented based on neural networks leading to
determine the performance of our method in the nonconvex
loss landscapes. To accurately and clearly show the effect of
the proposed meta-regularization on the meta-learning model,
we remove the tricks used in benchmark methods that are
adopted to improve their performance to the state of the art.

Next, we describe some details about datasets and experi-
mental settings. In each scenario, we show the performances
of the benchmark algorithms integrated with Con-MetaReg or
not to verify the superiority of our method. Adopting different
datasets in our experiment can also evaluate the performance
of our method in different settings of data inconsistency.

A. Few-Shot Regression

1) Experimental Setting: We start with a simple regression
problem to illustrate the effect of Con-MetaReg in regression.
Each task involves regressing from the input to the output of
a linear function f (x) = a ∗x + b, where a and b of the lines
are varied between tasks. The constants a and b are uniformly
sampled within [0.0, 3.0] and [−9.0, 9.0], respectively, and
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TABLE II

AVERAGE ACCURACIES OF DIFFERENT META-LEARNING METHODS WITH CON-METAREG OR NOT ON MINIIMAGENET AND TIEREDIMAGENET.
± REPRESENTS 95% CONFIDENCE INTERVAL. CM MEANS THE PROPOSED CON-METAREG

data point x is sampled uniformly from [−5.0, 5.0], during
the training and testing. The loss is the mean-squared error
between the prediction f (x) and the true value. The regressor
is a neural network model with two hidden layers of size 40
with ReLU nonlinearities. Since R2D2 and MetaOptNet are
designed for classification, we just use ANIL as the benchmark
method. Two fully connected layers with 40 and 20 hidden
units are used as the classification head in ANIL. All the
models are trained by 3000 iterations, and each iteration
contains ten tasks. The number of test (or query) data of each
training task is ten. We use Adam [41] as the meta-optimizer.
The meta-learning rate is 0.001. The inner learning rate is
0.01 and the inner updating step is three. The value of the
regularization parameter δ is one.

2) Experimental Result: During the meta-test stage, 2000
new tasks are randomly sampled. In each task, 100 data
points are sampled from [−5.0, 5.0] by equal distance as
the test dataset (or query set) Sts. Table I shows the average
performance of ANIL and ANIL-CM over the sampled 2000
new tasks in one- and five-shot settings. ANIL-CM means
ANIL integrated with Con-MetaReg. Compared with ANIL,
ANIL-CM can achieve better performance. Results verify that
our method can work well in the regression problem.

B. Few-Shot Classification on ImageNet Derivatives

1) Dataset: We evaluate our method on two derivatives
of the ImageNet dataset [42], i.e., miniImageNet [23] and
tieredImageNet [43].

1) MiniImageNet is a standard benchmark for few-shot
image classification, consisting of 100 randomly cho-
sen classes from ILSVRC-2012 [44]. These classes are
randomly split into 64, 16, and 20 classes for meta-
training, meta-validation, and meta-testing, respectively.
Each class contains 600 images.

2) TieredImageNet benchmark is a larger subset of
ImageNet, composed of 608 classes grouped into
34 high-level categories. These are divided into 20
categories for meta-training, 6 categories for meta-
validation, and eight categories for meta-testing. This
corresponds to 351, 97, and 160 classes for meta-
training, meta-validation, and meta-testing, respectively.

Categories in three splits are totally different, making
this dataset more challenging.

2) Experimental Setting: First, we introduce the model
configurations. The same four-layer ConvNet in [24] are used
as a kind of embedding model, which has four modules with
a 3 × 3 convolution with 64 filters, followed by a batch
normalization, a ReLU nonlinearity, and a 2 × 2 max pooling.
Similar to [45], ResNet-12 is also used as a kind of embedding
model to show the effect of the deeper embedding model
on the proposed method. There are four residual blocks in
ResNet-12 with 64, 128, 256, and 512 filters, and each block
consists of three {3 × 3 convolution with k filters, batch
normalization, ReLU} followed a 2 × 2 max-pooling layer.
In ANIL, we adopt two fully connected layers containing 800
and the number of classes hidden units, respectively, as the
classification head.

All the images are resized to 84 × 84. Adam with a learning
rate of 0.001 is used as the meta-optimizer for all the methods.
The inner learning rate of ANIL is 0.01, and the step of
inner gradient descent is five. All the models are trained
by 30 000 iterations on miniImagNet and 60 000 iterations
on tieredImageNet, and each iteration includes one training
task. The number of test data in each training task is ten.
The regularization parameter δ in ANIL-CM is one, and the
regularization parameter δ in R2D2-CM and MetaOptNet-CM
is 5.

3) Experimental Result: We insert Con-MetaReg into
ANIL, MetaOptNet, and R2D2 to validate its effectiveness.
Table II reports the results on the five-way few-shot classifi-
cation on miniImageNet and tieredImageNet. All the reported
results are averaged over 2000 tasks randomly sampled from
the meta-testing set. Each task contains ten queries of per
category.

MiniImageNet: First, we pay attention to the results on
miniImageNet. As seen, by mitigating the data-distribution
discrepancy, Con-MetaReg can improve the performance of
ANIL, MetaOptNet, and R2D2 on miniImageNet in five-way
one-shot and five-shot settings with ConvNet and Resnet-12.
When we use ConvNet as the embedding model, the effect of
Con-MetaReg is more obvious in the five-way five-shot than
five-way one-shot setting. Although deeper embedding model,
i.e., ResNet-12, can extra more effective meta-representation to
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TABLE III

AVERAGE ACCURACIES OF DIFFERENT META-LEARNING METHODS WITH
CON-METAREG OR NOT ON OMNIGLOT.± REPRESENTS 95%

CONFIDENCE INTERVAL

help baseline models achieve higher accuracies than ConvNet,
Con-MetaReg can also effectively improve the performance
of three baseline models, that is to say, merely adopting a
powerful embedding model cannot completely eliminate the
data inconsistency between the training and test data.

We observe that Con-MetaReg provides a higher increase
of the accuracy with ResNet-12 than ConvNet in the one-shot
setting. This might be due to that the ability of the represen-
tation of ConvNet is limited. Hence, it is challenging for the
linear base learner to represent the data distribution, especially
in the one-shot setting (extreme lack of training data to learn a
good base learner), suppressing Con-MetaReg to alleviate the
data inconsistency.

TieredImageNet: Similar phenomena appear on tieredIm-
ageNet. When ResNet-12 is used as the embedding model,
the effect of our method is obvious in the five-way one-shot
and five-shot settings, especially in the one-shot setting. How-
ever, with ConvNet, ANIL-CM does not outperform ANIL,
and similar results also occur in R2D2 and R2D2-CM in
the one-shot setting, yet the performance of Con-MetaReg
is competitive. This result might due to that tieredImageNet
is more challenging than miniImageNet and the capacity of
ConvNet is limited, accurately representing the data distribu-
tion by the base learner with ConvNet is more difficult than
miniImageNet. When ResNet-12 is adopted as the embedding
model, the superiority of Con-MetaReg appears.

C. Few-Shot Classification on Omniglot

1) Dataset: Omniglot [46] is a dataset containing 20
instances of 1623 handwritten characters from 50 alphabets.
Each instance is drawn by a different human subject. We
follow the procedure in [23] by resizing the grayscale images
to 28 × 28 and augmenting the character classes with rotations
in multiples of 90◦. The same 1200 characters as in [23] are
selected for training and the remaining classes for testing.

2) Experimental Setting: We conduct the experiments on
the 20-way classification setting. The same four-layer Con-
vNet in our experiments on ImageNet derivatives is used as
the embedding model. Because of the time consumption for
optimizing support vector machine in high-way setting, ANIL
and R2D2 are adopted as the baseline models to verify the
superiority of our method. All the models are trained by 30 000
tasks via Adam with a learning rate of 0.001. The number of
the test data in each training task is ten. The inner learning
rate of ANIL is 0.1, and the step of inner gradient descent is
five.

Fig. 2. Illustration to show images from different datasets. The images in
the same column belong to the same category.

TABLE IV

AVERAGE ACCURACIES OF DIFFERENT META-LEARNING METHODS WITH
CON-METAREG OR NOT ON CUB2011.± REPRESENTS 95%

CONFIDENCE INTERVAL

3) Experimental Result: We report the results in Table III.
All the results are averaged over 2000 new tasks, and per class
in the query set of each task consists of 15 query images. The
results show that our method can also improve the performance
of different meta-learning methods in the high-way setting.

D. Few-Shot Fine-Grained Classification

1) Dataset: For few-shot fine-grained classification,
we use the fine-grained image classification benchmark
CUB-200-2011 [47] (referred to as CUB2011 hereafter).
This dataset contains 200 classes and 11 788 images in total.
We follow the same class split proposed in [48].

2) Experimental Setting: We use ConvNet in Section VI-B
as the embedding model. The same image size is adopted.
Adam with the same learning rate in few-shot classification
on ImageNet derivatives is also used to optimize ANIL,
R2D2, and MetaOptNet. All the models are trained by 30 000
iterations, and each iteration includes one training task. The
number of the test data in each training task is also ten.
The regularization parameter δ of ANIL-CM is 0.1 and 5 for
R2D2-CM and MetaOptNet-CM.

3) Experimental Result: Table IV shows the results on
CUB2011. All the results are averaged over 2000 new tasks,
and each task contains 15 query images per category. The
proposed Con-MetaReg can improve the performance of all
the benchmark meta-learning methods in five-way one-shot
and five-shot settings.

There exist various data inconsistencies in these four clas-
sification datasets. Compared with miniImageNet and tiered-
ImageNet, CUB2011 and Omniglot contain smaller intraclass
differences, where the images in support and query set are
much similar. The experiments on different datasets prove
that the proposed method can work well in different sce-
narios. Fig. 2 summarizes the differences between three
datasets.
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Fig. 3. Average accuracy of five-way five-shot classification task on miniImageNet. The horizontal axis represents the different numbers of the query data
in each training task during the meta-training stage.

VII. DISCUSSION

In this section, we discuss and answer the following ques-
tions: how do the number of the query data and the classifi-
cation way influence our method? when does Con-MetaReg
help improve the performance in the learning process?
what is the effect of different tricks used in meta-learning
methods on Con-MetaReg? how sensitive is the perfor-
mance of Con-MetaReg to regularization parameter δ? can
Con-MetaReg be easily optimized? Discussing these problems
gives a comprehensive understanding of Con-MetaReg.

A. Influence of the Number of the Query Data

According to (5), the performance of our method is influ-
enced by whether the learning model can accurately represent
the data distribution or not. As we know, the number of the
query data can be changed in the meta-training stage, and
providing more query data means that we can obtain a learning
model to accurately estimate the data distribution of the query
data. Thus, we investigate the influence of the number of query
data on our method.

We conduct the experiments on five-way five-shot classifi-
cation. The number of the query data in each training task
is set 1, 5, 10, and 15. Fig. 3 shows the results of three
benchmark meta-learning methods with Con-MetaReg or not.
All the results are averaged over 2000 tasks, and ConvNet
is used as the embedding model. As shown in Fig. 3, our
method outperforms the corresponding benchmark method
with different numbers of the query data, even with just
one query data. The experimental results on five-shot linear
regression show the same conclusion.

Note that in the traditional meta-learning methods, S(i)
ts is

only used to optimize the meta-learner. Increasing the number
of the query data can help learn better meta-knowledge, which
is also proved in [49]. The results of three baseline methods
trained by different numbers of the query data also confirm this
conclusion. Similar to the traditional meta-learning methods,
our method also generally follows this rule.

B. Influence of the Different Training Ways

Compared with five-way classification, higher way, e.g.,
ten ways, classification brings a challenge for our method
because more base learners need to be aligned. In this section,
we show the experimental results on the ten-way five-shot

TABLE V

RESULTS OF TEN-WAY CLASSIFICATION ON MINIIMAGENET. THESE
RESULTS ARE USED TO SHOW THE PERFORMANCE OF OUR METHOD

ON DIFFERENT WAYS

classification to determine the performance of Con-MetaReg
in such a challenging scenario.

Table V shows the results averaged over 2000 new
tasks on miniImageNet. The same experimental settings in
Section VI-B are followed. We can observe that with Con-
MetaReg, the performance of different baselines can be
improved.

C. Influence of Con-MetaReg on the Learning Process

We show the classification accuracies of the baseline models
with our method or not in the different training epochs to
exhibit how Con-MetaReg improves the performance during
the learning process.

All the results are averaged on 2000 new tasks. As shown
in Fig. 4, we can observe that with our method, R2D2-CM
and MetaOptNet-CM achieve higher accuracy at the beginning
of the training and take the lead until convergence. Although
the superiority of ANIL-CM is not obvious at the begin-
ning, the advantage of our method stands out after the 15th
epoch. The analogous conclusion can be found on CUB2011,
as shown in Fig. 5.

D. Influence of the Different Tricks

In order to achieve state-of-the-art performance, differ-
ent meta-learning models adopt some customized tricks. For
example, MetaOptNet and R2D2 use the learnable scale factor
to adjust the prediction score predicted by the base learner,
which is widely used in few-shot classification [50], [51].
ANIL and MAML utilize multiple tasks to train the meta-
learner. However, in our experiments, the tricks in baseline
methods are removed to accurately and clearly show the effect
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Fig. 4. Classification accuracies on 2000 test tasks in different training epochs on MiniImageNet. The shaded region denotes the 95% confidence interval.

Fig. 5. Classification accuracies on 2000 test tasks in different training epochs on CUB2011. The shaded region denotes the 95% confidence interval.

TABLE VI

RESULTS OF FIVE-WAY FIVE-SHOT CLASSIFICATION ON MINIIMAGENET.
THESE RESULTS ARE USED TO SHOW THE INFLUENCE OF DIFFERENT

TRICKS ON OUR METHOD

of our method. In a sense, Con-MetaReg can be regarded as
a kind of trick that is model-agnostic and can be applied to
different learning problems.

Considering that with the customized tricks, R2D2,
MetaOptNet, and ANIL had achieved state-of-the-art perfor-
mance, and in this section, we investigate that whether our
method can further improve the performance. The results are
shown in Table VI. Inserting the customized tricks into base-
line models indeed improves the performance. Our method can
still work in such a difficult setting, although the increasing
accuracy is lower than the results in Table II. Note that
the scale factor can largely improve the performance of
meta-learning models in the classification problem, while it
tailors for classification. We also determine the effect of the
scale factor in the regression problem. The results in Table VII
show that compared with our method, the superiority of the
scale factor is not obvious.

Fig. 6. Some analysis results in few-shot linear regression. (a) Influence of
the number of test data on Con-MetaReg. (b) Impact of the regularization
parameter on our method.

E. Influence of the Regularization Parameter

To evaluate the influence of the regularization parameter δ
on our method, we train ANIL-CM and R2D2-CM with differ-
ent values of the regularization parameter δ on miniImageNet.
Also, the performances of these models on the meta-testing
set are shown in Fig. 7. The shaded region denotes the 95%
confidence interval.

We can find that the performance of ANIL-CM and
R2D2-CM are both influenced by the value of the reg-
ularization parameter. Contrasted to the results without
Con-MetaReg (δ = 0), the classification accuracies increase
when Con-MetaReg is inserted into R2D2 and ANIL. How-
ever, with increasing the value of the regularization parameter,
the performances of ANIL-CM and R2D2-CM appear down-
trend at δ = 1.6 and δ = 4.0, respectively. Fig. 7(b) shows
the influence of the regularization parameter on our method
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TABLE VII

EFFECT OF THE LEARNABLE SCALE FACTOR ON FEW-SHOT REGRESSION

Fig. 7. Classification accuracies of ANIL-CM and R2D2-CM on miniIma-
geNet with different regularization parameters.

Fig. 8. Loss curves of Con-MetaReg with different embedding models.
Left: R2D2-CM with ConvNet. Right: R2D2-CM with ResNet-12.

in few-shot linear regression. In the beginning, Con-MetaReg
improves the performance of ANIL and, however, declines
after δ = 1.0.

F. Loss Curves of Con-MetaReg

In this section, we exhibit the loss curves of Con-MetaReg
in the meta-training stage to investigate whether the proposed
meta-regularization can be easily optimized.

Fig. 8 shows the loss curves of our method with different
embedding models on miniImageNet. We can find that the
values of the proposed meta-regularization keep decline what-
ever we use four-layer ConvNet or ResNet-12 as the feature
extractor. In other words, the proposed meta-regularization
is easily optimized irrespective of the architecture of the
embedding model.

VIII. CONCLUSION

In this article, we take the prior understanding of the
good meta-knowledge in few-shot learning into considera-
tion, i.e., effective meta-knowledge should alleviate the data
inconsistency between the training and test data in each task,
caused by the limited data. Based on this fact, we propose a
novel meta-regularization from the data distribution perspec-
tive to help meta-learning models learn better meta-knowledge.
In our method, the learning models trained by the training
and test data are used to represent their corresponding data

distributions, and the Frobenius norm is adopted to align the
models for implicitly alleviating the gap between the distrib-
utions. For a clear understanding, we compare the solutions
of MAML and MAML-CM to demonstrate the advantages of
our method. The experimental results also validate that our
meta-regularization can improve the performance of different
state-of-the-art meta-learning methods in various few-shot
scenarios. In the future, we will explore designing a new metric
method to make the proposed method more robust in different
situations.
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