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a b s t r a c t 

As for few-shot image classification, recently, some works revisit the standard transfer learning paradigm, 

i.e., pre-training and fine-tuning, and have achieved some success. However, we find that this kind of 

methods heavily relies on a naive image-level data augmentation (e.g., cropping and flipping) at the 

fine-tuning stage, which will easily suffer from the overfitting problem because of the limited-data 

regime. To tackle this issue, in this paper, we attempt to perform a novel feature-level semantic aug- 

mentation at the fine-tuning stage and propose a Global- and Local-aware Feature Augmentation method 

(GLFA) from both the channel- and spatial-wise perspectives. In addition, at the pre-training stage, we 

further propose a Semantic Orthogonal Learning Framework (SOLF) to make the learned feature chan- 

nels more independently, orthogonal and diverse. Extensive experiments demonstrate that the proposed 

method can obtain significant performance improvements over the state of the arts. Code is available at 

https://github.com/onlyyao/GLFA-SOLF. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The huge and rich labeled data has tremendously promoted 

he development of deep learning [1–4] , such as ResNet [5] , 

enseNet [6] , MAE (Masked Autoencoders) [7] , ViT (Vision Trans- 

ormer) [8] and CLIP (Contrastive Language-Image Pre-training) [9] . 

owever, in many specific scenarios, the annotation of data is 

ostly and only limited labeled samples are accessible. To over- 

ome this challenge, few-shot learning (FSL) aiming to learn from 

he limited-data regime has attracted a wide range of inter- 

sts and attention from the community. Also, a variety of ad- 

anced FSL methods has been proposed, including metric-based 

ethods [10–12] , optimization-based methods [13,14] , fine-tuning- 

ased methods [15,16] and other interdisciplinary fields [17,18] , 

uch as Graph Neural Network (GNN). The metric-based meth- 

ds adopt an episodic-training paradigm to learn a good em- 

edding feature space from a metric-learning perspective. The 

ptimization-based methods employ a meta-learning paradigm to 

earn how to quickly adapt to new tasks with a good initializa- 

ion. Both of these two kinds of methods belong to a task (episode) 
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earning paradigm by learning from thousands of mimetic few-shot 

asks built on a disjoint auxiliary set. 

Different from the above metric- and optimization-based meth- 

ds, some latest works [15,16] have tried to revisit the traditional 

ransfer learning paradigm, i.e., pre-training and fine-tuning in FSL, 

howing much promising results. That is to say, at the training 

tage, a single large-way classification task is pre-trained on the 

een base classes to obtain a good feature extractor. At the meta- 

est stage, fixing the pre-trained feature extractor, only a new 

inear classifier is fine-tuned for the unseen novel classes with 

he few labeled training examples. However, we notice that these 

ethods still suffer from the underlying issues of FSL: (1) Dur- 

ng the pre-training stage, the feature extractor may overfit to the 

ase seen classes, leading to reduce its generalization ability on 

ovel classes. Overfitting occurs when the feature extractor be- 

omes too specialized in detecting specific features of the base 

lasses, which can make it less adaptable to detecting new features 

f novel classes. (2) During the fine-tuning stage, the scarcity of 

upport images for unseen novel classes can result in overfitting of 

he new linear classifier. Overfitting occurs when the model only 

emorizes the few available samples for novel classes, rather than 

earning generalizable feature. Morever, data augmentation tech- 

iques such as cropping and flipping can help increase the number 

f training samples, but may not be enough to prevent overfitting 

n the limited data. 
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Fig. 1. Our semantic augmentation in a feature level. (a) Feature channels with the higher weight scores contain more meaningful class-specific semantics. (b) Channel-wise 

feature augmentation can be interpolated between different feature maps, by guaranteeing the orthogonality cross channels. (c) Spatial-wise feature clustering could be 

performed to cluster the similar semantics together. 
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In this paper, to tackle the above first issue, we first introduce 

n additional self-supervised learning (SSL) task (e.g., rotation pre- 

iction) at the pre-training stage like the latest works [19] to al- 

eviate the overfitting problem on the base classes, which will be 

egarded as a strong baseline. In addition, as shown in Fig. 1 (a), for

 well trained convolutional neural network (CNN), different chan- 

els of the feature map generally can generate responses to differ- 

nt semantics. However, the semantic relationships between dif- 

erent feature channels are normally not independently and iden- 

ically distributed ( non-i.i.d. ). Although these learned non-i.i.d. rela- 

ionships may be suitable for the seen base classes, they may no 

onger suit the disjoint unseen novel classes. Therefore, to further 

educe the risk of overfitting, we propose a novel semantic orthog- 

nal learning framework (SOLF) at the pre-training stage to learn 

ore diverse and discriminative features, by making the feature 

hannels independent and orthogonal. 

Moreover, to address the above second issue, we present a new 

lobal- and local-aware feature augmentation method (GLFA) at the 

ne-tuning stage from both the channel- and spatial-wise perspec- 

ives. To learn an effective classifier for the novel few-shot tasks, 

he existing methods usually rely on an image-level data augmen- 

ation, such as cropping or flipping. However, because the train- 

ng examples are extremely scarce, this kind of image-level data 

ugmentation can not effectively avoid the overfitting problem. In 

ontrast, as shown in Fig. 1 (a), because different f eature chan- 

els are able to learn different global semantics for an input im- 

ge (e.g., dog’s paw and bird’s beak in the yellow box), it will 

e promising to explore the rich and informative feature channels 

or a feature-level augmentation. Benefiting from the orthogonality 

reated by SOLF, our global-aware feature augmentation is to ran- 

omly replace the class-independent (small weights) feature chan- 

els with class-specific (large weights) channels in both intra- and 

nter-class, making the augmented features contain more diverse 

nd discriminative semantics. The process is shown in Fig. 1 (b). 

urthermore, inspired by the idea of Luo et al. [20] that the back- 

round information is harmful for FSL, we propose a new local- 

ware background smoothing method to suppress the background 

erturbations for FSL. Compared to Luo et al. [20] , without any ad- 

itional learning-based operations, our proposed method can rec- 

gnize the local foreground and background regions (see Fig. 1 (c)) 

espectively in an unsupervised manner and naturally smooth the 

ackground noises. 
i

2

In summary, the contributions of our paper are as follows: 

• We propose a semantic orthogonal learning framework (SOLF) to 

obtain orthogonal and diverse feature channels. This framework 

aims to learn and generate better features for Few-Shot Learn- 

ing (FSL) in a purely semantic-aware manner. By using SOLF, 

we can achieve better performance on FSL tasks by obtaining 

high-quality features. 
• We propose a global- and local-aware feature augmentation 

(GLFA) method to augment features in terms of improving the 

diversity of the augmented samples and alleviating the overfit- 

ting problem. GLFA achieves this by incorporating global and lo- 

cal awareness into the augmentation process, which allows for 

more effective and diverse feature. 
• hrough extensive experimentation on four standard bench- 

marks, we have demonstrated that our proposed method signif- 

icantly outperforms baseline methods on both 5-way and large- 

way settings, without introducing excessive parameters. These 

results indicate the effectiveness of our approach, and suggest 

that our approach has practical applications for real-world sce- 

narios. 

In the remainder of this paper, we first summarize the related 

ork in Section 2 . Next, we review the definition of the few-shot 

earning problem and introduce a strong baseline in Section 3 . In 

he Section 4 , we present the technical details of the proposed 

ethod, including Global-aware Feature Interpolation with Seman- 

ic Orthogonality and Local-aware Background Smoothing. After 

hat, we introduce the details and results of the experiments and 

blation study in Section 5 . Finally, our work is concluded in the 

ast section. 

. Related works 

In this section, we introduce mainstream methods which are 

elevant to our work including three categories: (1) metric-based 

ethods [21–25] , which focus on representing a task-agnostic em- 

edding that can distinguish novel categories under a distance 

etrics, (2) optimization-based methods [13,14,26] , which target 

t searching for good parameters that can quickly adapt to novel 

amples, and (3) fine-tuning based methods [16,27–30] , which cer- 

ify that pre-training on the whole base dataset can bring a huge 

mprovement. 
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.1. Metric-based FSL methods 

Metric-based FSL methods aim to learn an informative embed- 

ing space, in which data from different classes can be distin- 

uishable with simple distance metrics. There is a broad range 

f methods in this direction. For example, MatchingNet [31] ap- 

lies a new nearest neighbor method with an embedded feature 

xtractor and combines the advantages of both parametric and 

on-parametric methods. ProtoNet [32] represents the mean vec- 

or of samples as its class prototype in a representation space 

nd uses the nearest neighbor classifier between prototypes and 

uery images to make predictions. IMP [33] infinite mixture pro- 

otypes to adaptive different data distributions. BD-CSPN [34] be- 

ieves that there is a significant bias between the prototype gen- 

rated by ProtoNet and the true prototype and rectifies it from 

wo aspects: the intra-class bias and the cross-class bias. In ad- 

ition, instead of using the global feature representations in the 

eature space, some recent methods have tried to apply local fea- 

ure representations to FSL. For instance, DN4 [11] does not use 

mage-level feature vectors but uses the rich local descriptors and 

mploys the image-to-class measure to perform the final classi- 

cation. DC-IMP [35] directly studies local activations and fuses 

hese local activations and features to learn task-specific features. 

rossTransformers [36] find coarse spatial correspondence between 

he query and the support images and then calculate distances 

etween their spatially-corresponding features for the final clas- 

ification. DeepEMD [22] applies the Earth Mover’s Distance as a 

easurement method to find the optimal matching distance be- 

ween images. Moreover, DeepBDC [37] measures the discrepancy 

etween the product of the marginals of embedded features and 

he joint characteristic functions. Relational Embedding Network 

RENet) [38] combines both a global classifier and a local classi- 

er to learn relational embedding. This method introduces a cross- 

orrelational attention module to learn the self-correlational repre- 

entation and transferable structure. 

.2. Optimization-based FSL methods 

Optimization-based FSL methods aim to learn a good initial- 

zation so that the model could rapidly adapt to unseen novel 

asks through a sequence of training episodes. As a representa- 

ive, model-agnostic meta-learning (MAML) [39] follows a pure 

eta-training paradigm, employs the second-order gradients, and 

earns to fast adapt to a new task with a small number of gradi-

nt updates. Reptile [40] adopts a simpler way to update the slow 

eight, without dividing the task into a support set and a query 

et. Specifically, Reptile only uses first-order derivatives for the 

ate-learning updates. Almost No Inner Loop (ANIL) [41] further 

xplores the effectiveness of MAML [39] , and finds that feature 

euse is key for learning. ANIL [41] removes all inner loop updates 

xcept the head of the network, significantly improving computing 

fficiency. Latent embedding optimization (LEO) [42] learns a low- 

imensional latent embedding space and performs optimization- 

ased adaptation in this space to obtain a better initialization 

ore effectively. MetaOptNet [43] learns better generalization fea- 

ure embedding under linear classification. To learn feature em- 

edding effectively, MetaOptNet fellows two properties: the im- 

licit differentiation of optimality conditions for convex problems 

nd the dual formula for optimal problems, which can improve 

omputational and memory efficiency. Category Traversal Mod- 

le (CTM) [14] extracts feature relevance to each task through 

he context of support samples and uses inter-class uniqueness 

nd intra-class commonality for better classification. This method 

ould identify discriminatively and learning effectively features. 

OIL [44] means learning the body of the model only in the inner 

oop. This method could solve overfitting and improve robustness 
3 
o hyperparameters change. iMAMl [45] solve to the inner level op- 

imization instead of inner loop optimizer. 

.3. Fine-tuning-based FSL methods 

Fine-tuning-based FSL methods apply pre-training on the base 

lasses as a pre-processing for FSL, which brings great improve- 

ents. It has been found that a simple pre-training can be help- 

ul for few-shot learning, even without episodic training. These 

ethods have significant effectiveness and received increasing at- 

ention. For example, MTL [46] learns to transfer the pre-trained 

etwork weights to new tasks by fine-tuning some parameters at 

he test stage. Specifically, MTL first fixes the parameters of the 

re-trained model and then relearns the scale and shift parame- 

ers to fine-tune the network. RFS-simple [16] employs the logistic 

egression instead of the fully connected layer as new classifiers at 

he fine-tuning stage. In the training stage, a CNN model (extrac- 

or) is trained through the entire training set by a common clas- 

ifier. Then, the pre-trained fixed extractor combines a learnable 

inear classifier for each task is used in the stage of meta-testing. 

he work in Gidaris et al. [27] considers predicting the rotation 

egrees of images as an auxiliary self-supervision task at the pre- 

raining stage to help the model obtain better generalize when fac- 

ng novel classes. Meta-Baseline [29] firstly discusses why meta- 

earning is not as good as fine-tuning-based methods and finds 

hat in the process of meta-training, improving the generalization 

bility of base classes will lead to the deterioration of the gener- 

lization ability of the model to new classes. As for transductive 

ne-tuning [47] , this method uses a large number of meta-training 

lasses to pre-train a model in order to obtain high few-shot ac- 

uracy and introduces a soft-max classifier during the fine-tuning 

tage. Neg-Cosine [48] adopts an appropriate negative margin in 

tandard softmax loss during the pre-training stage which could 

void falsely mapping the same class of new samples to other clus- 

ers or peaks in the base class and improve the ability to identify 

ew classes. 

Following this paradigm, in this paper, we also propose a two- 

tage model by pre-training on the base classes via standard cross- 

ntropy loss and fine-tuning on the novel classes with the trained 

mbedding model. The main difference is that at the pre-training 

tage, we orthogonalize the semantic information cross channels 

o learn more diverse features and at the meta-testing stage we 

ropose a global- and local-aware feature augmentation from both 

hannel- and spatial-wise perspectives. We have sorted out the 

athematical notations in Table 1 . 

. Preliminaries 

This section has three parts. We first review the definition of 

he few-shot learning problem and then detail how to pre-training 

nd fine-tuning, and finally introduce a strong baseline with self- 

upervision. 

.1. Problem formulation 

Few-shot image classification aims to generalize to new tasks 

iven only a few labeled training examples. Following the common 

etting of FSL in the literature [22,31,39] , a given dataset is gener- 

lly divided into D base and D nov el , where D base containing C base base 

lasses is used for training, D nov el consists of C nov el novel classes 

or testing, and C base ∩ C nov el = ∅ . For the episodic-training mecha- 

ism, each N -way K -shot task of {T = 〈S, Q〉} is randomly sampled 

rom the dataset, where the support set S = { (X i , y i ) } N K i =1 
includes N

lasses with K samples per class and the query set Q = { (Q i , y i ) } N M 

i =1 
ontains the same N classes with M samples per class. 
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Table 1 

Definition of mathematical notations. 

Mathematical notation Definition 

D base , D nov el Dataset for training and testing 

C base , C nov el Number of categories for D base and D nov el 

T = 〈S, Q〉 Few-shot tasks, support and query set 

f θ Feature extractor to extract feature representation 

g φ Block to learn a weight of each channel 

C ω The classifier at pre-training stage 

F = { f 1 , f 2 , . . . , f C } Feature map F ∈ R C×H×W and f C ∈ R 1 ×HW 

w i Weight of each channel, w i = g φ (a v g( f θ (X i ))) ∈ R C 
V = { v i } A set of local descriptors, v i ∈ R C | HW 

i =1 

Z = {Z i } A set of foreground and background clusters features 

c = { c i } The cluster center, i = 1 , 2 

p = { p i } The weighted cluster representations, i = 1 , 2 

D i, j The cosine similarity between channel pair 

L CE The cross-entropy loss function 

Γce The classification loss 

Γss The self-supervised loss 

Γos The proposed semantic orthogonal loss 

Γtotal The total loss to optimize network 

λ A weight parameter to balance label 

α A weight parameter to balance different losses 
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.2. Pre-training and fine-tuning 

Recent works [16,29] have demonstrated that a good feature 

mbedding is beneficial to the generalization on novel classes. This 

ind of methods generally adopt a two-stage learning paradigm: 

re-training (i.e., meta-training) and fine tuning (i.e., meta-testing). 

n the pre-training phase, there is a CNN as the feature extractor f θ
nd a fully-connected (FC) layer as the classifier C ω . At this stage, 

he whole D base is used to train a C base -class classifier by using the

tandard cross-entropy loss as below: 

ce = arg min 

θ,ω 

|D base | ∑ 

i =1 

L 

CE ( C ω ( f θ ( X i ) ) , y i ) , (1) 

here L 

CE is the cross-entropy loss function, |D base | is the number 

f base class samples and C ω is classifier. 

In the fine-tuning phase, a new classifier will be individually 

earned for each novel few-shot task T = 〈S, Q〉 sampled from 

 nov el and the parameters of the feature extractor are normally 

xed. In general, a logistic regression or a FC layer will be taken 

s the new classifier to obtain the corresponding logits and fur- 

her calculate the cross entropy loss Γnew 

= −∑ N K 
i =1 y i log(p(y i | X i )) , 

here (X i , y i ) ∈ S . After that, the learned classifier is used to pre-

ict the labels of the samples in Q . In this paper, we will follow

his pre-training and fine-tuning paradigm and employ logistic re- 

ression as the new classifier for the novel classes. 

.3. A Strong Baseline with self supervision 

Recent studies [28,49] have attempted to enhance few-shot 

earning by introducing self-supervised learning (SSL) to improve 

he transferability of feature extraction. These studies combine the 

ew-shot classification task with a self-supervised learning task, 

haring a feature extraction network. The self-supervised learning 

ask is employed to enhance the feature extraction network’s abil- 

ty, thus improving the effectiveness of the few-shot classification 

ask. 

To make a fair comparison with these methods, we follow them 

nd introduce rotation prediction [50] as an auxiliary task at the 

re-training stage to make a strong baseline. On the other hand, 

he SSL-based auxiliary task [51] can also somewhat alleviate the 

verfitting problem on the base classes. Specifically, given an image 

 i , we first rotate it by r degrees to create four copies { X r 
i 
| r ∈ R} ,

here R = { 0 o , 90 o , 180 o , 270 o } . For each rotated image, we use
4 
he same feature extractor f θ to extract its feature representation 

nd then perform a 4-class classification task with an additional 

otation-angle prediction classification head R γ to predict its cor- 

esponding angle. To be specific, the self-supervised loss of this ro- 

ation task can be defined as: 

ss = arg min 

γ ,θ

|D base | ∑ 

i =1 

∑ 

r∈R 

L 

CE 
(
R γ

(
f θ

(
X 

r 
i 

))
, r 

)
, (2) 

here L 

CE is the cross-entropy loss function, X r 
i 

is an image ro- 

ated by r degrees with the original images X i . Therefore, the over- 

ll objective function of our strong baseline is Γtotal = Γce + αΓss , 

here α is a balance weight parameter. This method can improve 

he generalization ability to adapt to new classes with few training 

ata. Note that we do not take the strong baseline as our contri- 

ution. 

. Method 

In this section, we will present the proposed semantic orthogo- 

al learning framework (SOLF) and global- and local-aware feature 

ugmentation method (GLFA) in detail. The overview of the pro- 

osed method is shown in Fig. 2 . 

.1. Global-aware feature interpolation with semantic orthogonality 

CNN has been known to be good at extracting the abstract 

igh-level feature representations in a deep feature space, where 

ifferent channels of the feature representations can generate re- 

ponse to different semantics. That is to say, each channel can be 

een as an individual global view (semantics) of one input im- 

ge [52] . Also, channels with larger weights have higher response 

o the class-specific semantics (e.g., dog’s paw and bird’s beak in 

he yellow box in Fig. 1 ), while the channels with smaller weights 

re more focused on unimportant semantics (e.g., grass and sky 

n the blue box in Fig. 1 ). However, the existing fine-tuning based 

SL methods [53] mainly focus on the summarized global feature 

ector after the global average pooling (GAP) layer, which do not 

ake full use of the informative feature channels. This will loses 

ome important and discriminative semantics information. There- 

ore, in this paper, we focus on the feature representations before 

he Global Average Pooling (GAP) layer, and offer a novel channel- 

ise and spatial-wise perspective on improving few-shot learning. 

Semantic orthogonal learning framework (SOLF) Unfortunately, 

e can not straightforward perform the channel-wise feature aug- 

entation with the standard CNN. This is because the relationships 

etween different f eature channels are normally not independently 

nd identically distributed ( non-i.i.d. ), as stated in Zeiler and Fergus 

52] . On the other hand, there is generally a feature redundancy in 

he learned feature channels. Several studies [54] have shown that 

he diversity of features learned by a convolutional neural network 

CNN) can significantly improve classification accuracy. Therefore, 

t is beneficial to enable the CNN to learn diverse feature chan- 

els, which has the potential to lead to improved few-shot Learn- 

ng performance. To this end, many existing methods [55] apply 

rthogonality regularization during training to solve this problem. 

owever, previous works have either used complex structures that 

ncrease model complexity or approximated the full-rank identity 

atrix with a non-full rank Gram matrix. In contrast, our proposed 

ethod is much simpler yet highly effective in enforcing orthogo- 

ality in the feature channels. 

Given an image X , we feed it to a CNN-based feature extrac- 

or to obtain its feature map F ∈ R 

C×H×W = { f 1 , f 2 , . . . , f C | f C ∈
 

1 ×HW } . Meanwhile, we apply a two-layer linear block g φ to learn 

 weight of each channel like the squeeze-and-excitation net- 

ork [56] (which will be used in the following module M g ). After 
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Fig. 2. The overview of proposed method for a 5-way 1-shot task. The above line indicates the meta-training flow, and the below line indicates the meta-testing flow. (a) In 

meta-training, the proposed SOLF enforces the channel orthogonality of features extracted from f θ . (b) In meta-testing, with f θ fixed, a new classifier f φ is fine-tuned using 

the novel task T . In GLFA , the global-aware module M g generates diverse features based on i.i.d. channels. The local-aware module M l is adopted for spatial-wise background 

smoothing. 
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Fig. 3. The framework of the proposed global-aware (channel-wise) feature augmen- 

tation module M g for a 5-way 1-shot task. 
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hat, we can easily calculate the cosine similarity D i, j between any 

hannel pair of f i and f j : 

 i, j = 

f i × f 
T 
j 

|| f i || × || f T j || 
, (3) 

here f T j ∈ R 

HW ×1 is the transpose of f j , and thus we can obtain 

 C × C square matrix D . Next, we can make this similarity matrix 

 to be close to the identity matrix I: 

os = arg min 

θ

|| D − I|| 2 F , (4) 

here ‖ · ‖ F is the Frobenius norm of a matrix. 

As seen, our orthogonalization operation can ensure the similar- 

ty between channel and channel itself (diagonal elements) tends 

o 1, and the similarity between channel and other channels (non- 

iagonal elements) tends to 0, so that it can not only encour- 

ge the channel’s diversity, but also guarantee the independence 

etween channels. In addition, our proposed semantic orthogonal 

earning framework enhances the orthogonality between different 

eature channels. leading to reduced disturbances in our subse- 

uent global-aware feature augmentation process. Additionally, we 

onduct experimrnts to feature explore the benefits of channel or- 

hogonalization, providing deeper insights into the effectiveness of 

ur proposed approach. 

Global-aware feature augmentation ( M g ) As seen in Fig. 3 , af- 

er uncoupling the non-i.i.d. relationships between different fea- 

ure channels, we are able to conduct the global-aware (channel- 

ise) feature augmentation. For each support image X i in the sup- 

ort set S , to further enhance the diversity of feature channels, we 

ropose a feature interpolation-based approach that selects unim- 

ortant feature channels, such as background information, from 

he same or other classes, and generates multiple diverse fea- 

ure augmentations via interpolation. By doing so, we can obtain 

 larger set of diverse feature representations. Specifically, each 

mage X i will be represented as a three-dimensional (3D) tensor 

 i = f θ (X i ) ∈ R 

C×H×W . In order to selectively perturb the channel’s

emantics, we first apply g φ learned in SOLF module to acquire a 

eight of each channel, i.e., w i = g φ(a v g( f θ (X i ))) ∈ R 

C , where a v g
ndicates the global average pooling operation. w i is adapted to 

odulate F i and produces F 

′ 
i 

= w i � F i . Next, we choose the top- k
5 
hannels F 

Top 
i 

= { f Top 
i, j 

| k 
j=1 

} from F 

′ 
i 
. For each instance ( f Top 

i, j 
, y ) , we

andomly select another instance ( f y 
′ 

j 
, y ′ ) from the feature maps 

f other images F 

y ′ 
j 

= { f y ′ 
j,m 

| k 
m =1 

} (see Fig. 3 for intuitive details).

ventually, a new feature map 

˜ F = { ˜ f i } is synthesized as follows: 

˜ f i = 

{
λ f 

Top 
i 

+ (1 − λ) f y 
′ 

j 
if f i ∈ F 

Top 

f i others 
(5) 

here λ ∈ [0 . 5 , 1 . 0] is a tradeoff between the selected class label

nd the original class label. Specifically, we calculate the similar- 

ty between f 
Top 
i 

and f 
y ′ 
j 

as λ’s selection measure. If the similar- 

ty is greater than a threshold, it indicates that the semantics are 

imilar between f 
Top 
i 

and f 
y ′ 
j 

. In such cases, we use a relatively 

maller λ to obtain larger disturbances from other channel’s se- 

antics, which helps to maximize the diversity of the augmented 

amples while ensuring class identification. Conversely, if the simi- 
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Fig. 4. The framework of the proposed local-aware (spatial-wise) feature augmenta- 

tion module M l for a 5-way 1-shot task. 
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arity is lower, a larger λ should be allocated between the channel 

air to preserve the class label. 

.2. Local-aware background smoothing ( M l ) 

In general, different spatial positions of the feature map have 

ifferent responses to the foreground or background. For an im- 

ge, not all spatial positions are contributing to the classification 

qually and sometimes the background information is harmful to 

he final classification, as described in Luo et al. [20] . To reduce 

he classification error resulted from background noises, as shown 

n Fig. 4 , we propose a spatial-wise background smoothing method 

 M l ), which is regarded as another augmentation module, generat- 

ng a background smoothed (augmented) version of each samples in 

. Specifically, M l consists of two steps: 

Local-aware clustering Firstly, given the feature map F ∈ 

 

C×H×W of an image, it can be further flatted as a set of local de-

criptors V = { v i ∈ R 

C | HW 

i =1 
} ∈ R 

C×HW . Because the local descriptors

ith similar semantics trends to be clustered together, we directly 

pply the K -means clustering on V , where K = 2 , and obtain clus-

ers Z = {Z 

i ∈ R 

L i ×C | i = 1 , 2 } centered on c = { c i ∈ R 

C | i = 1 , 2 } . Af-

er that, the weighted cluster representations could be represented 

s p = { p i | p i ∈ R , i = 1 , 2 } , and p i is calculated as 

p i = 

∑ L i 
j=1 

∑ C 
m =1 Z 

i 
j,m 

L i × C 
, (6) 

here L i denotes the number of local descriptors in the i th cluster, 

nd Z 

i 
j,m 

represents the m th response of the jth local descriptor 

n the i th cluster. [57] believes that the background response is 

elatively smaller than the class-related foreground, we select the 

luster with smaller p ∗ ∈ p as the background, which is marked as 

 

∗ ∈ Z centered on c ∗ ∈ c . 

Background smoothing Mean filtering [58] is an effective image 

moothing algorithm, which simply replaces the center value with 

he average of all the pixel values in a window. Analogously, given 

he background cluster Z 

∗ and the weighted center c ∗, our method 

et the each local descriptor in Z 

∗ to c ∗ in a feature level. The 

ugmented feature could be formulated as ˜ F = 

˜ F b ∪ 

˜ F f ∈ R 

C×H×W , 

here ˜ F b = { f i = c ∗| f i ∈ Z 

∗, i = 1 , 2 , . . . , H b W b } , H b W b represents

he number of local descriptors in the background cluster and 

˜ F f 

epresents smoothed background and foreground, respectively. 

Note that the clustering algorithm is not perfectly accurate, es- 

ecially when the inter-cluster discrepancy is too small and thus 

he foreground may be misclassified as background or vice versa. 
6 
or example, as shown in Fig. 1 , the bird’s paw and the pole con-

ains less discriminative color semantics. In this paper, the con- 

ributions of the foreground and background for classification are 

odulated by the weight scores w learned by g φ . Therefore, our 

roposed method could be more robust and balanced to distinct 

emantics, producing discriminative and diverse augmented fea- 

ures, i.e. , ˜ F . 

. Experiments 

In this section, we introduce the details and results of the ex- 

eriments. Firstly, we present dataset information and important 

mplementation details in our design. In addition, we also explored 

valuation metrics for few-shot image classification accuracy. Next, 

e compare our model with the state-of-the-art methods on all 

enchmark datasets and conduct various ablation studies to ver- 

fy that each component in our method can effectively boost the 

lassification performance. Finally, we visually verify the effect of 

hannel de-correlation and experimental results of our model on 

arge-way 1-shot classification. 

.1. Datasets 

We evaluate the proposed method on four popular FSL bench- 

ark datasets following RENet [38] , namely miniImageNet [31] , 

ieredImageNet [59] , CIFAR-FewShot (CIFAR-FS for shot) [60] and 

UB-200-2011 (CUB for short) [61] . 

miniImageNet . The miniImageNet is the subset of Ima- 

eNet [62] and is the most popular benchmark datasets in few- 

hot classification task. It contains 100 classes in total, with 600 

amples in each class. Following [63] , we split all classes into 64 

lasses for training, 16 classes for validation and 20 classes for test- 

ng. The images in miniImageNet are resized to 84 × 84. 

tieredImageNet . The tieredImageNet is also the subset of Im- 

geNet [62] . It contains 608 classes from 34 super-classes, with 

79,165 images in total. The dataset is partitioned into 20, 6 and 

 disjoint sets of meta-training, meta-validation and meta-testing 

ccording to the super-classes. This split could lessen the similar- 

ty between training samples and testing samples. The images in 

ieredImageNet are resized to 84 × 84 . 

CIFAR-FewShot . The CIFAR-FS is randomly sampled from CIFAR- 

00 [72] . It contains 64, 15, and 20 classes for training, validation, 

nd testing, respectively. The average inter-class similarity is satis- 

actory high bringing a challenge. Specially, The images in CIFAR-FS 

ave limited original resolution of 32 × 32. Therefore, we resize 

hem to 32 × 32 . 

CUB-200-2011 . The CUB is the most popular dataset for fine- 

rained classification task. It consists of 11,788 images from 200 

ird classes. Following [15] , we randomly split all classes into 100 

lasses for training, 50 classes for validation and 50 classes for 

valuation. The images in CUB are resized to 84 × 84 . 

.2. Implementation 

Network Following the literature [73] , we adopt ResNet12 as 

he embedding backbone, consisting of four residual blocks along 

ith a skip connection layer, in which the numbers of filters 

f these blocks are { 64 , 160 , 320 , 640 } , respectively. In the pre-

raining stage, for the classification and the rotation prediction 

eads, we apply a fully-connected (FC) layer. For our proposed 

OLF , the block g φ is implemented by two linear FC layers. Spe- 

ially, for the GLFA module, it doesn’t introduce any additional pa- 

ameters and we use logistic regression as the new classifier at 

eta-testing stage. 

Training For training, the 5-way 1-shot task has 5 × 1 = 5 sup- 

ort images and 5 × 15 = 75 query images and the 5-way 5-shot 
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Table 2 

Performance comparison of both 5-way 1-shot and 5-shot tasks in terms of top-1 mean accuracy (%) with 95% confidence intervals on 

miniImageNet and tieredImageNet datasets. ∗Results from original papers. † Results from [64] with pre-training. 

Method Backbone miniImageNet tieredImageNet 

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 

R2D2 ∗ [60] 96-192-384-512 51 . 20 ± 0 . 60 68 . 80 ± 0 . 10 – –

PPA ∗ [65] WRN-28-10 59 . 60 ± 0 . 41 73 . 74 ± 0 . 19 65 . 65 ± 0 . 92 83 . 40 ± 0 . 65 

LEO 

∗ [42] WRN-28-10 61 . 76 ± 0 . 08 77 . 59 ± 0 . 12 66 . 33 ± 0 . 05 81 . 44 ± 0 . 09 

SimpleShot ∗ [66] ResNet18 62 . 85 ± 0 . 20 80 . 02 ± 0 . 14 69 . 09 ± 0 . 22 84 . 58 ± 0 . 16 

CTM 

∗ [14] ResNet18 64 . 12 ± 0 . 82 80 . 51 ± 0 . 13 68 . 41 ± 0 . 39 84 . 28 ± 1 . 73 

S2M2 ∗ [19] ResNet18 64 . 06 ± 0 . 18 80 . 58 ± 0 . 11 – –

TADAM 

∗ [25] ResNet12 58 . 50 ± 0 . 30 76 . 70 ± 0 . 30 – –

MTL ∗ [46] ResNet12 61 . 20 ± 1 . 80 75 . 50 ± 0 . 80 – –

RFS-simple ∗ [16] ResNet12 62 . 02 ± 0 . 63 79 . 64 ± 0 . 44 69 . 74 ± 0 . 72 84 . 41 ± 0 . 55 

ProtoNet † [32] ResNet12 62 . 39 ± 0 . 21 80 . 53 ± 0 . 14 68 . 23 ± 0 . 23 84 . 03 ± 0 . 16 

MetaOptNet ∗ [43] ResNet12 62 . 64 ± 0 . 61 78 . 63 ± 0 . 46 65 . 99 ± 0 . 72 81 . 56 ± 0 . 53 

MatchingNet † [31] ResNet12 65 . 64 ± 0 . 20 78 . 72 ± 0 . 15 68 . 50 ± 0 . 92 80 . 60 ± 0 . 71 

CAN 

∗ [67] ResNet12 63 . 85 ± 0 . 48 79 . 44 ± 0 . 34 69 . 89 ± 0 . 51 84 . 23 ± 0 . 37 

DeepEMD 

∗ [22] ResNet12 65 . 91 ± 0 . 82 82 . 41 ± 0 . 56 71 . 16 ± 0 . 87 86 . 03 ± 0 . 58 

FEAT ∗ [24] ResNet12 66 . 78 ± 0 . 20 82 . 05 ± 0 . 14 70 . 80 ± 0 . 23 84 . 79 ± 0 . 16 

ArL ∗ [68] ResNet12 65 . 21 ± 0 . 58 80 . 41 ± 0 . 49 – –

MCL ∗ [69] ResNet12 64.40 78.60 70.62 83.84 

P-Transfer ∗ [70] ResNet12 64 . 21 ± 0 . 77 80 . 38 ± 0 . 59 – –

UAFS ∗ [71] ResNet12 64 . 22 ± 0 . 67 79 . 99 ± 0 . 49 69 . 13 ± 0 . 84 84 . 33 ± 0 . 59 

FRN 

∗ [64] ResNet12 66 . 45 ± 0 . 19 82 . 83 ± 0 . 13 71 . 16 ± 0 . 22 86 . 01 ± 0 . 15 

Strong Baseline ResNet12 65 . 56 ± 0 . 36 82 . 05 ± 0 . 30 69 . 92 ± 0 . 39 83 . 93 ± 0 . 28 

GLFA (Ours) ResNet12 67 . 25 ± 0 . 36 82 . 80 ± 0 . 30 72 . 25 ± 0 . 40 86 . 37 ± 0 . 27 

Table 3 

Performance comparison in terms of top-1 mean accuracy (%) with 95% confi- 

dence intervals on CUB dataset. ∗Results from original papers. † Results from [22] 

with pre-training. 

Method Backbone 5-way 1-shot 5-way 5-shot 

RelationNet † [75] ResNet34 66 . 20 ± 0 . 99 82 . 30 ± 0 . 58 

S2M2 ∗ [19] ResNet34 72 . 92 ± 0 . 83 86 . 55 ± 0 . 51 

MAML † [39] ResNet34 67 . 28 ± 1 . 08 83 . 47 ± 0 . 59 

S2M2 ∗ [19] ResNet18 71 . 81 ± 0 . 43 86 . 22 ± 0 . 53 

RAP ∗ [76] ResNet18 74 . 09 ± 0 . 60 89 . 23 ± 0 . 31 

ProtoNet † [32] ResNet12 66 . 09 ± 0 . 92 82 . 50 ± 0 . 58 

MatchingNet † [31] ResNet12 71 . 87 ± 0 . 85 85 . 08 ± 0 . 57 

FEAT ∗ [24] ResNet12 73 . 27 ± 0 . 22 85 . 77 ± 0 . 14 

P-Transfer ∗ [70] ResNet12 73 . 88 ± 0 . 87 87 . 81 ± 0 . 48 

DeepEMD 

∗ [22] ResNet12 75 . 65 ± 0 . 83 88 . 69 ± 0 . 50 

Strong Baseline ResNet12 74 . 93 ± 0 . 36 89 . 36 ± 0 . 35 

GLFA (Ours) ResNet12 76 . 52 ± 0 . 37 90 . 27 ± 0 . 38 
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Table 4 

Performance comparison in terms of top-1 mean accuracy (%) with 95% con- 

fidence intervals on CIFAR-FS dataset. ∗Results from original papers. † Results 

from [74] with pre-training. 

Method Backbone 5-way 1-shot 5-way 5-shot 

R2D2 ∗ [60] 96-192-384-512 65 . 30 ± 0 . 20 79 . 40 ± 0 . 10 

Boosting ∗ [27] WRN-28-10 73 . 62 ± 0 . 31 86 . 05 ± 0 . 22 

S2M2 ∗ [19] ResNet18 63 . 66 ± 0 . 17 76 . 07 ± 0 . 19 

Shot-Free ∗ [77] ResNet12 69.15 84.70 

RFS-simple ∗ [16] ResNet12 71 . 50 ± 0 . 80 86 . 00 ± 0 . 50 

ProtoNet † [32] ResNet12 72 . 2 ± 0 . 70 83 . 5 ± 0 . 50 

MetaOptNet ∗ [43] ResNet12 72 . 0 ± 0 . 70 84 . 2 ± 0 . 50 

MABAS ∗ [74] ResNet12 73 . 51 ± 0 . 92 85 . 49 ± 0 . 68 

Strong Baseline ResNet12 72 . 57 ± 0 . 40 86 . 67 ± 0 . 27 

GLFA (Ours) ResNet12 74 . 01 ± 0 . 40 87 . 02 ± 0 . 27 
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ask has 5 × 5 = 25 support images and 5 × 15 = 75 query im-

ges. We use stochastic gradient descent (SGD) optimizer with the 

omentum of 0.9, the weight decay of 5e −4 and the initial learn- 

ng rate is set to 0.05 and decreased by a factor of 10 every 30

pochs. The total training epochs are 100 and each epoch include 

0 0 0 episodes. 

Evaluation metrics We focus on the few-shot learning task for 

he evaluation of model performance based on the classification 

ccuracy. More specifically, a large number of N-way K-shot tasks 

re sampled from the novel test classes, as shown in 3.1 . We eval-

ate the models on 5 ∗600 sampled tasks to avoid introducing high 

ariance and report the mean accuracy (in %) as well as the 95% 

onfidence interval. 

.3. Comparison with the state of the arts 

The results on four benchmark datasets are reported in Tables 2 , 

 and 4 , respectively. Because the superiority of pre-training on 

ase classes has been demonstrated in many recent FSL works, 

.g., SimpleShot [66] , RFS-simple [16] and FEAT [24] , in this paper, 

ost of the compared methods have employed the pre-training, 

xcept MetaOptNet [43] , Boosting [27] , ArL [68] and MABAS. How- 

ver, note that both Boosting and ArL use an additional SSL task 
7

uring training. MABAS [74] also generates samples at the test- 

ime by using adversarial samples, which is closely related to our 

ork. In addition, although CAN [67] and TADAM [25] do not 

se pre-training, they leverage a global classification as an auxil- 

ary training task by using the global labels of the base classes. 

2M2 [19] also applies an SSL auxiliary loss at the pre-training 

tage, which is closely related to our work. RFS-simple [16] firstly 

roposes to learn a extractor on mete-training stage by supervised 

r self-supervised ways and relearn a classifier on meta-testing 

tage. SimpleShot [66] uses a nearest-neighbor classifier conbina- 

ion with mean-subtraction and L2-normalization. FEAT [24] ap- 

lies a embedding adaptation to customize task-specific embed- 

ing spaces on the meta-testing satge. We propose corresponding 

ethods in the meta-training and meta-testing stages, and demon- 

trated excellent results in comparison with the above methods. 

First, from all the tables, we can see that the presented Strong 

aseline have already achieved very competitive results with the 

omparison methods, which effectively demonstrates the promis- 

ng potential of the pre-training and fine-tuning paradigm. Second, 

he proposed GLFA method can further consistently improve the 

erformance over the Strong Baseline on all the datasets. For ex- 

mple, under the 5-way 1-shot setting, GLFA obtains 1 . 69% , 2 . 33% ,

 . 59% and 1 . 44% improvements over the Strong Baseline on four 

atasets, respectively. This confidently verifies the effectiveness of 
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Table 5 

Ablation studies on miniImageNet, tieredImageNet and CUB on 5-way 1-shot tasks. GA Augmentation: 

global-aware feature augmentation; LA Smoothing: local-aware background smoothing; SOLF: seman- 

tic orthogonal learning framework. 

SOLF GA Augmentation LA Smoothing miniImageNet tieredImageNet CUB 

✗ ✗ ✗ 65 . 56 ± 0 . 35 69 . 92 ± 0 . 39 74 . 93 ± 0 . 37 √ 

✗ ✗ 66 . 69 ± 0 . 37 72 . 14 ± 0 . 41 75 . 93 ± 0 . 36 

✗ 
√ 

✗ 66 . 43 ± 0 . 36 71 . 46 ± 0 . 40 75 . 32 ± 0 . 37 

✗ ✗ 
√ 

65 . 78 ± 0 . 37 70 . 08 ± 0 . 40 75 . 11 ± 0 . 37 √ √ 

✗ 67 . 03 ± 0 . 36 72 . 37 ± 0 . 40 76 . 34 ± 0 . 36 √ √ √ 

67 . 25 ± 0 . 36 72 . 54 ± 0 . 40 76 . 52 ± 0 . 37 

Fig. 5. Visualization of channel correlation matrices from the same local view. The horizontal axis and vertical axis denote the channels. The colors give the cross-channel 

similarities. The darker red color means the greater similarity between channels. In contrast, the darker blue color means the smaller similarity between channels. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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he proposed SOLF framework and GLFA method. Finally, compared 

ith the latest FSL methods, no matter pre-training based meth- 

ds, e.g., DeepEMD [22] , FEAT [24] and FRN [64] , nor methods us-

ng SSL auxiliary tasks, e.g., ArL [68] and Boosting [27] , our pro- 

osed GLFA consistently outperforms these comparison FSL meth- 

ds and could achieve new state of the arts on all datasets under 

oth the 5-way 1-shot and 5-way 5-shot settings. 

In summary, according to the results and analyses, we could 

onclude that (1) the pre-training paradigm is indeed effective in 

he field of FSL; (2) the proposed global- and local-aware feature 

ugmentation module as well as the semantic orthogonal learning 

ramework (SOLF) are indeed effective owing to the ability of alle- 

iating the over-fitting issue in the meta-testing phase. 

.4. Ablation study 

To investigate the effects of the core components in our 

ethod, we conduct ablation studies on miniImageNet, tieredIm- 

geNet and CUB under the 5-way 1-shot setting. Note that there 

re three core components in our proposed methods, i.e., semantic 

rthogonal learning framework (SOLF), global-aware feature augmen- 

ation (GA Augmentation) and local-aware background smoothing (LA 

moothing) . We verify the role of different components individually 

nd together. 

The experimental results are shown in Table 5 , here the results 

n the first row are the results of the strong baseline. As seen, com- 

ared with the strong baseline, all components are able to further 

mprove the classification accuracy on all three datasets. More- 

ver, we observe that both the GA augmentation and SOLF alone 

ould obtain significant improvements over the baseline. Integrat- 

ng the LA smoothing with GA augmentation together can also 

learly boost the performance. These results successfully demon- 
8 
trate that the operation of feature de-correlation (orthogonality), 

.e., SOLF, is beneficial to the classification. Also, it shows that the 

A augmentation is effective to alleviate the overfitting problem at 

he fine-tuning stage, obtaining a better classification performance. 

n addition, the background smoothing operation for the spatial re- 

ions, i.e., LA smoothing, can also effectively reduces the interfer- 

nce of the background noises to further improves the classifica- 

ion performance. The combination of different components in our 

ethod will further improve the model performance. 

.5. Visualization of the channels de-correlation 

The fine-tuning based methods have been fruitful in FSL with 

 much simpler pre-training methodology. Compared to the tra- 

itional meta- or episodic-training, the pre-training mechanism 

eems to be able to obtain better representations. Why is the pre- 

raining mechanism so much better than episodeic-training on the 

ew-shot problems? To explore this point, we visualize the corre- 

ation matrices of feature channels learned by different learning 

aradigms. As seen in Fig. 5 , where (a) represents the learned cor- 

elation matrix by episodic-training, (b) shows the result learned 

y the strong baseline mentioned in this paper, and (c) is the 

esult when the proposed SOLF is further applied to the strong 

aseline. Compare (a) with (b), we can see that the pre-training 

ased model have a better ability on channel de-correlation than 

he episodic-training based model. This may be attributed to the 

act that the features extracted after pre-training will greatly re- 

uce the correlations between channels, so as to extract more dis- 

riminative features for classification. The orthogonal and diverse 

eatures may boost performance. For this reason, similarly, when 

ur proposed semantic orthogonal learning operation, i.e., SOLF, is 

dded, the correlation between channels is further weakened, the 
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Fig. 6. Classification results under the large-way 1-shot setting on miniImageNet. 
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iscriminative features are further enriched, and the performance 

f the classification is further improved. 

.6. Large-way 1-shot classification 

To further verify the superiority of our proposed method, we 

ompare the proposed method with other closely related fine- 

uning based methods, such as RFS [16] and MTL [46] , on the large-

ay 1-shot tasks. In addition, ProtoNet [32] and R2D2 [60] are also 

e-implemented with pre-training for comparison. From the results 

n Fig. 6 , Our proposed method is shown to be significantly supe- 

ior to other methods across all settings of 10-way 1-shot, 15-way 

-shot, and 20-way 1-shot tasks. This further highlights the ex- 

eptional generalization ability of our method, enabling it to per- 

orm well even in the face of challenging tasks. One of the rea- 

ons behind the superior performance of our method is the pro- 

osed SOLF technique. The SOLF method enhances feature extrac- 

ion by making feature channels de-correlated, which leads to the 

xtraction of more discriminative features. Moreover, our proposed 

hannel-wise and spatial-wise feature augmentations further con- 

ribute to the improved performance of our method. These aug- 

entations make the augmented features more diverse, which is 

eneficial to the classification results. By combining the SOLF tech- 

ique with the proposed feature augmentations, we obtain a pow- 

rful method for one-shot learning, which outperforms other state- 

f-the-art methods in the field. 

. Conclusion 

In this paper, we follow the pre-training and fine-tuning 

aradigm to tackle the FSL problem. At the pre-training stage, 

e propose a semantic orthogonal learning framework (SOLF) to 

ake the learned feature channels semantically diverse and or- 

hogonal. At the meta-test stage, we propose a global- and local- 

ware feature augmentation method (GLFA) from both channel and 

patial perspectives. Extensive experiments demonstrate that (1) 

OLF can efficiently remove the correlations between feature chan- 

els, which can learn more diverse and discriminative features; (2) 

LFA performs augmentation in a feature level, effectively allevi- 

ting the overfitting problem at the fine-tuning stage. We expect 

hat our study can benefit the field of few-shot learning by in- 

piring new feature augmentation methods. Our approach can ad- 

ress the inadequacy of Generative Adversarial Networks (GANs) 

hat are highly unstable during training. Moever, this methods can 

erve as a plug-and-play module to match any feature extractor 

nd classifier. This flexibility makes the proposed method easily 

mplementable in existing systems and enhances the potential for 
9 
ider adoption in the field. Overall, our study can contribute to 

he development of more effective and efficient few-shot learning 

lgorithms. Morever, we can investigate the effectiveness of our 

ethods on other related tasks such as few-shot object detection 

r segmentation. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

ata availability 

Data will be made available on request. 

cknowledgements 

This work is supported in part by the National Natural Sci- 

nce Foundation of China ( 62106100 , 62192783 , 62276128 ), Jiangsu 

atural Science Foundation ( BK20221441 ), the Collaborative Inno- 

ation Center of Novel Software Technology and Industrialization, 

nd Jiangsu Provincial Double-Innovation Doctor Program (JSS- 

BS20210021). 

eferences 

[1] L. Zhang, J. Shen, J. Zhang, J. Xu, Z. Li, Y. Yao, L. Yu, Multimodal marketing

intent analysis for effective targeted advertising, IEEE Transactions on Multi- 
media, 2022 . 

[2] J. Shen, N. Robertson, BBAS: towards large scale effective ensemble adversarial 
attacks against deep neural network learning, Information Sciences, 2021 . 

[3] J. Zeng, J. Zhou, T. Liu, Robust multimodal sentiment analysis via tag encoding 
of uncertain missing modalities, IEEE Transactions on Multimedia, 2022 . 

[4] M. Zhang, S. Huang, W. Li, D. Wang, Tree structure-aware few-shot image clas- 

sification via hierarchical aggregation, in: European Conference onComputer 
Vision (ECCV), 2022. 

[5] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 
2015 . 

[6] G. Huang, Z. Liu, K.Q. Weinberger, Densely connected convolutional networks, 
in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 . 

[7] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are

scalable vision learners, in: IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2022 . 

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, 
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An 

image is worth 16 × 16 words: transformers for image recognition at scale, in: 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020 . 

[9] A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, 

A. Askell, P. Mishkin, J. Clark, et al., Learning transferable visual models from 

natural language supervision, in: International Conferenceon Machine Learning 

(ICML), 2021 . 
[10] H. Xilang, C. Seon Han, Sapenet: self-attention based prototype enhancement 

network for few-shot learning, Pattern Recognition, 2022 . 
[11] W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, J. Luo, Revisiting local descriptor based im-

age-to-class measure for few-shot learning, in: IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), 2019 . 
[12] B. Zhang, H. Ling, P. Li, Q. Wang, Y. Shi, L. Wu, R. Wang, J. Shen, Multi-head

attention graph network for few shot learning, CMC-COMPUTERS MATERIALS 
& CONTINUA, 2021 . 

[13] L. Zijun, H. Zhengping, L. Weiwei, XiaoHua, Sabernet: self-attention based ef- 
fective relation network for few-shot learning, Pattern Recognition, 2022 . 

[14] H. Li, D. Eigen, S. Dodge, M. Zeiler, X. Wang, Finding task-relevant features 

for few-shot learning by category traversal, in: IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 2019 . 

[15] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C.F. Wang, J.-B. Huang, A closer look at few-shot
classification, in: International Conference on Learning Representations (ICLR), 

2018 . 
[16] Y. Tian, Y. Wang, D. Krishnan, J.B. Tenenbaum, P. Isola, Rethinking few-shot im- 

age classification: a good embedding is all you need? in: European Conference 
on Computer Vision (ECCV), 2020 . 

[17] B. Zhang, H. Ling, J. Shen, Q. Wang, J. Lei, Y. Shi, L. Wu, P. Li, Mixture distribu-

tion graph network for few shot learning, IEEE Transactions on Cognitive and 
Developmental Systems, 2022 . 

[18] T. Yu, S. He, Y.-Z. Song, T. Xiang, Hybrid graph neural networks for few-shot 
learning, in: Proceedings of the AAAI Conference on Artificial Intelligence 

(AAAI), 2022 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004608
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0001
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0002
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0003
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0004
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0005
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0006
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0007
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0008
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0009
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0010
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0011
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0012
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0013
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0014
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0015
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0016
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0017


B. Shi, W. Li, J. Huo et al. Pattern Recognition 142 (2023) 109702 

[  

 

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[  

[

[

[

[  

[

[

[

[

[  

[

[

[

[  

[  

[

[

[

[

[

[

[

[  

[

[

[

[

[  

[

[  

[

[

[  

[

 

[

[19] P. Mangla, M. Singh, A. Sinha, N. Kumari, V.N. Balasubramanian, B. Krishna- 
murthy, Charting the right manifold: manifold mixup for few-shot learning, 

in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2020 . 
20] X. Luo, L. Wei, L. Wen, J. Yang, L. Xie, Z. Xu, Q. Tian, Rectifying the shortcut

learning of background: shared object concentration for few-shot image recog- 
nition, Neural Information Processing Systems (NeurIPS), 2021 . 

[21] X. Li, X. Yang, Z. Ma, J.-H. Xue, Deep metric learning for few-shot image clas-
sification: a review of recent developments, Pattern Recognition, 2023 . 

22] C. Zhang, Y. Cai, G. Lin, C. Shen, DeepEMD: few-shot image classification with 

differentiable earth mover’s distance and structured classifiers, in: IEEE Con- 
ference on Computer Vision and Pattern Recognition (CVPR), 2020 . 

23] Z. Ji, X. Chai, Y. Yu, Y. Pang, Z. Zhang, Improved prototypical networks for 
few-shot learning, Pattern Recognition, 2020 . 

24] H.-J. Ye, H. Hu, D.-C. Zhan, F. Sha, Few-shot learning via embedding adaptation 
with set-to-set functions, in: IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2020 . 

25] B.N. Oreshkin, P.R. López, A. Lacoste, TADAM: task dependent adaptive met- 
ric for improved few-shot learning, Neural Information Processing Systems 

(NeurIPS), 2018 . 
26] Z. Lei, Z. Fei, W. Wei, Z. Yanning, Meta-hallucinating prototype for few-shot 

learning promotion, Pattern Recognition, 2022 . 
27] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, M. Cord, Boosting few-shot visual 

learning with self-supervision, in: IEEE International Conference on Computer 

Vision (ICCV), 2019 . 
28] J. Rajasegaran, S.H. Khan, M. Hayat, F.S. Khan, M. Shah, Self-supervised knowl- 

edge distillation for few-shot learning, 2020 . 
29] Y. Chen, Z. Liu, H. Xu, T. Darrell, X. Wang, Meta-baseline: exploring simple 

meta-learning for few-shot learning, in: IEEE International Conference on Com- 
puter Vision (ICCV), 2021 . 

30] H.-J. Ye, L. Ming, D.-C. Zhan, W.-L. Chao, Few-shot learning with a strong 

teacher, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022 . 
[31] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra, Matching net- 

works for one shot learning, Neural Information Processing Systems (NeurIPS), 
2016 . 

32] J. Snell, K. Swersky, R.S. Zemel, Prototypical networks for few-shot learning, 
Neural Information Processing Systems (NeurIPS), 2017 . 

33] K.R. Allen, E. Shelhamer, H. Shin, J.B. Tenenbaum, Infinite mixture prototypes 

for few-shot learning, in: International Conferenceon Machine Learning (ICML), 
2019 . 

34] J. Liu, L. Song, Y. Qin, Prototype rectification for few-shot learning, in: European 
Conference on Computer Vision (ECCV), 2020 . 

35] Y. Lifchitz, Y. Avrithis, S. Picard, A. Bursuc, Dense classification and implant- 
ing for few-shot learning, in: IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2019 . 

36] C. Doersch, A. Gupta, A. Zisserman, Crosstransformers: spatially-aware 
few-shot transfer, Neural Information Processing Systems (NeurIPS), 2020 . 

37] J. Xie, F. Long, J. Lv, Q. Wang, P. Li, Joint distribution matters: deep brownian
distance covariance for few-shot classification, in: IEEE Conference on Com- 

puter Vision and Pattern Recognition (CVPR), 2022 . 
38] D. Kang, H. Kwon, J. Min, M. Cho, Relational embedding for few-shot classifi- 

cation, in: IEEE International Conference on Computer Vision (ICCV), 2021 . 
39] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation 

of deep networks, in: International Conferenceon Machine Learning (ICML), 

2017 . 
40] A. Nichol, J. Schulman, Reptile: a scalable metalearning algorithm, 2018 . 

[41] S.B. Aniruddh Raghu, M. Raghu, O. Vinyals, Reptile: a scalable metalearning 
algorithm, in: International Conference on Learning Representations (ICLR), 

2020 . 
42] A .A . Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, R. Hadsell,

Meta-learning with latent embedding optimization, in: International Confer- 

ence on Learning Representations (ICLR), 2019 . 
43] K. Lee, S. Maji, A. Ravichandran, S. Soatto, Meta-learning with differentiable 

convex optimization, in: IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2019 . 

44] J. Oh, H. Yoo, C. Kim, S.-Y. Yun, Boil: towards representation change for 
few-shot learning, in: International Conference on Learning Representations 

(ICLR), 2021 . 

45] A. Rajeswaran, C. Finn, S.M. Kakade, S. Levine, Meta-learning with implicit gra- 
dients, Neural Information Processing Systems (NeurIPS), 2019 . 

46] Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learn- 
ing, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

2019 . 
[47] G.S. Dhillon, P. Chaudhari, A. Ravichandran, S. Soatto, A baseline for few-shot 

image classification, in: International Conference on Learning Representations 

(ICLR), 2020 . 
48] B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, H. Hu, Negative margin matters:

understanding margin in few-shot classification, in: European Conference on 
Computer Vision (ECCV), 2020 . 

49] J.-C. Su, S. Maji, B. Hariharan, When does self-supervision improve few-shot 
learning? in: International Conference on Learning Representations (ICLR), 

2020 . 

50] N. Komodakis, S. Gidaris, Unsupervised representation learning by predict- 
ing image rotations, in: International Conference on Learning Representations 

(ICLR), 2018 . 
10 
[51] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, A .A . Efros, Context encoders: 
feature learning by inpainting, in: IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2016 . 
52] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, 

2013 . 
53] M. Chen, Y. Fang, X. Wang, H. Luo, Y. Geng, X. Zhang, C. Huang, W. Liu,

B. Wang, Diversity transfer network for few-shot learning, Association for the 
Advancement of Artificial Intelligence (AAAI), 2020 . 

54] L. Huang, X. Liu, B. Lang, A.W. Yu, Y. Wang, B. Li, Orthogonal weight normal-

ization: Solution to optimization over multiple dependent stiefel manifolds in 
deep neural networks, Association for the Advancement of Artificial Intelli- 

gence (AAAI), 2018 . 
55] H. Xu, Z. Wang, H. Yang, D. Liu, J. Liu, Learning simple thresholded features 

with sparse support recovery, 2019 . 
56] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2018 . 

57] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad–
cam: visual explanations from deep networks via gradient-based localization, 

in: IEEE International Conference on Computer Vision (ICCV), 2017 . 
58] T.S. Huang, Two-dimensional digital signal processing II. Transforms and me- 

dian filters, Two-Dimensional Digital Signal Processing II. Transforms and Me- 
dian Filters, 1981 . 

59] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J.B. Tenenbaum, 

H. Larochelle, R.S. Zemel, Meta-learning for semi-supervised few-shot classi- 
fication, in: International Conference on Learning Representations (ICLR), 2018 . 

60] L. Bertinetto, J.a.F. Henriques, P.H.S. Torr, A. Vedaldi, Meta-learning with differ- 
entiable closed-form solvers, in: International Conference on Learning Repre- 

sentations (ICLR), 2019 . 
61] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, The caltech-ucsd 

birds-200-2011 dataset, 2011 . 

62] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., Imagenet
large scale visual recognition challenge, International Journal of Computer Vi- 

sion, 2015 . 
63] S. Ravi, H. Larochelle, Optimization as a model for few-shot learning, in: Inter- 

national Conference on Learning Representations (ICLR), 2017 . 
64] W.D.T. Luming, Few-shot classification with feature map reconstruction net- 

works, in: IEEE International Conference on Computer Vision (ICCV), 2021 . 

65] S. Qiao, C. Liu, W. Shen, A.L. Yuille, Few-shot image recognition by predicting 
parameters from activations, in: IEEE Conference on Computer Vision and Pat- 

tern Recognition (CVPR), 2018 . 
66] Y. Wang, W.-L. Chao, K.Q. Weinberger, L. van der Maaten, Simpleshot: revisiting 

nearest-neighbor classification for few-shot learning, 2019 . 
67] R. Hou, H. Chang, B. Ma, S. Shan, X. Chen, Cross attention network for few-shot

classification, Neural Information Processing Systems (NeurIPS), 2019 . 

68] H. Zhang, P. Koniusz, S. Jian, H. Li, H.S. Torr Philip, Rethinking class relations: 
absolute-relative supervised and unsupervised few-shot learning, in: IEEE Con- 

ference on Computer Vision and Pattern Recognition (CVPR), 2021 . 
69] Y. Liu, W. Zhang, C. Xiang, T. Zheng, D. Cai, X. He, Learning to affiliate: mutual

centralized learning for few-shot classification, in: IEEE Conference on Com- 
puter Vision and Pattern Recognition (CVPR), 2022 . 

70] S. Zhiqiang, L. Zechun, Q. Jie, S. Marios, C. Kwang-Ting, Partial is better than 
all: revisiting fine-tuning strategy for few-shot learning, Association for the 

Advancement of Artificial Intelligence (AAAI), 2021 . 

[71] Z. Zhang, C. Lan, W. Zeng, Z. Chen, S.-F. Chang, Uncertainty-aware few-shot 
image classification (2020). 

72] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny 
images, 2009 . 

73] W. Li, C. Dong, P. Tian, T. Qin, X. Yang, Z. Wang, J. Huo, Y. Shi, L. Wang, Y. Gao,
et al., Libfewshot: a comprehensive library for few-shot learning, 2021 . 

[74] J. Kim, H. Kim, G. Kim, Model-agnostic boundary-adversarial sampling for test–

time generalization in few-shot learning, in: European Conference on Com- 
puter Vision (ECCV), 2020 . 

75] F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H.S. Torr, T.M. Hospedales, Learning to 
compare: Relation network for few-shot learning, in: IEEE Conference on Com- 

puter Vision and Pattern Recognition (CVPR), 2018 . 
[76] J. Hong, P. Fang, W. Li, T. Zhang, C. Simon, M. Harandi, L. Petersson, Reinforced

attention for few-shot learning and beyond, in: IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), 2021 . 
77] A. Ravichandran, R. Bhotika, S. Soatto, Few-shot learning with embedded class 

models and shot-free meta training, in: IEEE International Conference on Com- 
puter Vision (ICCV), 2019 . 

Boyao Shi received the B.Sc. degree from Nanjing Uni- 
versity of Finance & Economics in 2020. She is currently 

working towards the M.Sc. degree with the Department 
of Computer Science and Technology, Nanjing University, 

Nanjing, China. She is a member of R&L Group, which is 
led by Professor Yang Gao. Her research interests include 

machine learning and computer vision, with a focus on 
few shot learning. 

http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0018
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0019
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0020
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0021
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0022
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0023
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0025
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0026
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0027
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0028
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0029
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0030
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0031
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0032
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0033
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0034
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0035
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0036
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0037
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0038
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0039
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0040
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0041
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0042
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0043
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0044
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0045
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0046
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0047
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0048
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0049
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0050
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0051
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0052
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0053
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0054
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0055
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0056
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0057
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0058
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0059
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0060
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0061
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0062
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0063
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0064
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0065
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0066
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0067
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0068
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0069
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0070
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0071
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0072
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0073
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0074
http://refhub.elsevier.com/S0031-3203(23)00400-4/sbref0075


B. Shi, W. Li, J. Huo et al. Pattern Recognition 142 (2023) 109702 

m

Wenbin Li received his Ph.D. degree from the Depart- 

ment of Computer Science and Technology at Nanjing 
University in 2019. He is currently an assistant researcher 

in the Department of Computer Science and Technology 
at Nanjing University, China. His research interests in- 

clude machine learning and computer vision, particularly 

in metric learning, fewshot learning and their applications 
to image classification and image generation. 

Jing Huo received the Ph.D. degree from the Department 
of Computer Science and Technology, Nanjing University, 

Nanjing, China, in 2017. She is currently an Associate Re- 
searcher with the Department of Computer Science and 

Technology, Nanjing University. Her current research in- 

terests include machine learning and computer vision, 
with a focus on subspace learning, adversarial learning 

and their applications to heterogeneous face recognition 
and cross-modal face generation. 

Pengfei Zhu received the B.S. and M.S. degrees from the 

Harbin Institute of Technology, Harbin, China, in 2009 and 
2011, respectively, and the Ph.D. degree from The Hong 

Kong Polytechnic University, Hong Kong, in 2015. He is 

currently an Associate Professor with the College of Intel- 
ligence and Computing, Tianjin University, Tianjin, China. 

His research interests are focused on machine learning 
and computer vision. 
11 
Lei Wang received his Ph.D. degree from Nanyang Tech- 

nological University, Singapore. He is now Professor at 
School of Computing and Information Technology of Uni- 

versity of Wollongong, Australia. His research interests 
include machine learning, pattern recognition, and com- 

puter vision. Lei Wang has published more than 190 peer- 

reviewed papers, including those in highly regarded jour- 
nals and conferences such as IEEE TPAMI, IJCV, CVPR, ICCV 

and ECCV, etc. He was awarded Early Career Researcher 
Award by Australian Academy of Science and Australian 

Research Council. He served as General Co-Chair of DICTA 
2014 and Area Chair of ICIP2019, and will serve as Pro- 

gram Co-Chair of ACCV2022 in Macau. Lei Wang is senior 

ember of IEEE. 

Yang Gao received the Ph.D. degree from the Department 
of Computer Science and Technology, Nanjing University, 

China, in 20 0 0. He is currently a Professor and also the 
Deputy Director of the Department of Computer Science 

and Technology, Nanjing University, where he is also di- 
recting the Reasoning and Learning Research Group. He 

has published more than 100 papers in top-tier confer- 
ences and journals. His current research interests include 

artificial intelligence and machine learning. He also serves 

as the program chair and area chair for many interna- 
tional conferences. 


	Global- and local-aware feature augmentation with semantic orthogonality for few-shot image classification
	1 Introduction
	2 Related works
	2.1 Metric-based FSL methods
	2.2 Optimization-based FSL methods
	2.3 Fine-tuning-based FSL methods

	3 Preliminaries
	3.1 Problem formulation
	3.2 Pre-training and fine-tuning
	3.3 A Strong Baseline with self supervision

	4 Method
	4.1 Global-aware feature interpolation with semantic orthogonality
	4.2 Local-aware background smoothing ()

	5 Experiments
	5.1 Datasets
	5.2 Implementation
	5.3 Comparison with the state of the arts
	5.4 Ablation study
	5.5 Visualization of the channels de-correlation
	5.6 Large-way 1-shot classification

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


