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Abstract— The idea of combining the active query strategy and
the passive-aggressive (PA) update strategy in online learning
can be credited to the PA active (PAA) algorithm, which has
proven to be effective in learning linear classifiers from datasets
with a fixed feature space. We propose a novel family of online
active learning algorithms, named PAA learning for trapezoidal
data streams (PAATS) and multiclass PAATS (MPAATS) (and their
variants), for binary and multiclass online classification tasks on
trapezoidal data streams where the feature space may expand
over time. Under the context of an ever-changing feature space,
we provide the theoretical analysis of the mistake bounds for
both PAATS and MPAATS. Our experiments on a wide variety
of benchmark datasets have confirm that the combination of
the instance-regulated active query strategy and the PA update
strategy is much more effective in learning from trapezoidal data
streams. We have also compared PAATS with online learning
with streaming features (OLSF)—the state-of-the-art approach in
learning linear classifiers from trapezoidal data streams. PAATS

could achieve much better classification accuracy, especially for
large-scale real-world data streams.

Index Terms— Multiclass classification, online active learning,
online learning, passive-aggressive (PA) learning, trapezoidal data
streams.

I. INTRODUCTION

ONLINE learning is an incremental learning approach
where a predictive model is updated sequentially. It has

been extensively studied [1]–[7], and applied when training
data become available only gradually over time or it is
computationally infeasible to train over the entire dataset.

Traditional online learning always assumes that the ground
truth (e.g., the class labels in classification tasks) can be
available to the learner at the end of each iteration. However,
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in many real-life applications, it would be too costly, if not
possible, to manually label a large amount of training
instances. In response to such a challenge, researchers have
started to investigate online active learning [8]–[10], searching
for effective query strategies that only need to reveal the labels
of a small subset of instances.

On the other hand, most online learning methods, including
online active learning algorithms in the literature, assume that
the feature space they learn from remains constant. In par-
ticular, passive-aggressive active (PAA) [8] is an online active
learning approach, which has proven to be effective in learning
linear classifiers from datasets with a fixed feature space. Only
a few recent studies have paid attention to learning from data
streams with a dynamic feature space, such as trapezoidal data
streams [11], [12] with an increasing feature space, evolving
streams [13] with some features vanished and some other
features being augmented, feature evolvable streams [14]–[18]
with old features vanished and new features occurred, and
capricious data streams [19], [20] with an arbitrarily varying
feature space.

In this study, we focus on trapezoidal data streams where
the feature space expands over time. Building upon the success
of PAA [8] on data streams with a fixed feature space, we
propose a novel family of online active learning algorithms,
i.e., PAA learning for trapezoidal data streams (PAATS)
for online binary classification tasks, and multiclass PAATS

(MPAATS) for online multiclass classification tasks. The main
contributions of this article are summarized as follows.

1) The PAA algorithm [8] introduces the idea of combining
the active query strategy and the PA update strategy
in online learning. We successfully extend this idea to
handle both binary and multiclass classification tasks
on trapezoidal data streams where the feature space
may expand over time. Such an extension is nontrivial,
because in the theoretical analysis of the mistake bounds
of PAATS, MPAATS and their variants, we have to care-
fully deal with the complexity due to the introduction
of the ever-changing feature space.

2) The online learning with streaming features (OLSF) algo-
rithm [11], [12] represents the state-of-the-art in learning
linear classifiers from trapezoidal data streams. OLSF

uses the query-all strategy and the PA update strategy.
We have experimentally shown that PAATS outperforms
OLSF consistently, confirming that the combination of
the active query strategy and the PA update strategy is
much more effective in learning from trapezoidal data
streams.
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The remainder of this article is organized as follows.
Section II introduces the related work in online learning
for trapezoidal data streams and online active learning.
In Section III, we present the PAATS algorithm and its
variants for online binary classification tasks on trapezoidal
data streams, and analyze the mistake bounds of the proposed
algorithms. In Section IV, we extend the PAATS algorithms to
a family of MPAATS algorithms for online multiclass classi-
fication tasks, as well as their mistake bounds. In Section V,
we discuss experiment design and result analysis for both
binary and multiclass online classification tasks. Section VI
concludes this article.

II. RELATED WORK

Our work is closely related to online learning for trapezoidal
data streams and online active learning.

A. Online Learning for Trapezoidal Data Streams

The term “trapezoidal data stream” is first used in [12] to
refer to doubly streaming data where both the data volume
and feature dimension increase over time. In other words,
the number of instances and the number of features in a
trapezoidal data stream can grow simultaneously and steadily.
For example, in text mining [21], [22], especially the infinite
vocabulary topic model under online settings [23], both the
number of documents and text vocabulary increase over time.

Integrating the online learning technique [24], [25] and
streaming feature selection [26], [27], the OLSF algorithm
[11], [12] uses the PA principle [2] to learn from trapezoidal
data streams. At each round, OLSF receives an instance and
makes a prediction by applying the classifier learned so far.
After the prediction is made, the true label is disclosed and
OLSF computes an instantaneous loss which reflects the degree
of its wrong prediction. The classifier is unchanged if the
instantaneous loss is zero, otherwise OLSF updates the weights
of the learner by minimizing the loss and making them close
to the previous classifier weights at the same time. In doing so,
if the current instance carries new features, OLSF also learns
additional weights for the new features. OLSF has two variants,
OLSF-I and OLSF-II, which use the soft-margin technique
where a slack variable is introduced into the optimization
problem to reduce the overfitting issue in OLSF. OLSF also
uses a sparsity step to control the model’s complexity.

Since the OLSF algorithms are limited to learn linear
decision boundaries, adaptive single hidden layer feedforward
neural network with shortcut connections (SLFN-S) [28] is
proposed which provides growing and pruning capabilities
to learn from trapezoidal data streams. Additionally, the
OLSF algorithms may suffer from poor convergence and be
unable to rescale different features under streaming conditions.
To tackle this issue, scale invariant learning with trapezoidal
data streams (SILT) and its variant (SILT-I) [29] are proposed
that can maintain feature scale-invariants even with an arbi-
trary scaling of features. To address the challenges that arise
from trapezoidal data streams, the method of restructuring of
Hoeffding trees is employed and the dynamic fast decision tree
(DFDT) [30] is presented. The main drawback of the OLSF

algorithm (and its extensions) is that it needs to query the true
label of every instance. And they only address online binary
classification tasks.

B. Online Active Learning

Active learning is an iterative supervised learning approach
where the learner may selectively learn from informative
instances in situations where unlabeled data are abundant but
manual labeling is expensive. A wide variety of query strate-
gies have been examined to reduce the number of instances
that is necessary to train a well-performed classification model.

Online active learning processes a stream of data in a
sequential order. At each round, a learner is presented with a
new instance, makes a prediction based on its current model,
and then decides whether to query the true label. Once the
label is revealed, the learner can use the feedback to update its
prediction model for improved performance. Generally, online
active learning algorithms fall under two categories [31],
i.e., first-order algorithms and second-order algorithms.

The first-order online active learning algorithms exploit
the first-order information for model update. The perceptron-
based active (PEA) learning [9] and the PAA learning [8] are
two well-known first-order online active learning methods.
According to the principle of the Perceptron algorithm, the
PEA learner does not update its model when it can correctly
classify an instance. In so doing, the learner obviously will
not benefit from the effort of label querying. The PAA
learning approach uses the PA [2] update strategy, which
allows the learner to fully exploit the potential of every
queried instance for updating its classification model. It is also
extended to handle online multiclass classification tasks. There
are some other first-order online active learning algorithms,
such as active online multitask relative similarity learning
(MTRSL-Active) [32] for online multiclass classification tasks,
double ramp loss active learning (DRAL), and double sigmoid
loss active learning (DSAL) [10] for online binary classifica-
tion tasks.

First-order online active learning algorithms tend to obtain
suboptimal solutions [31]. The second-order online learning
algorithms attempt to explore and exploit the underlying struc-
tural information [5], assuming that the weight vector (i.e., the
linear classifier) follows a Gaussian distribution with a mean
vector and a covariance matrix, both of which are updated
at each round of online learning. One example is the selec-
tive sampling second-order perceptron algorithm (SEL-2nd)
[33], [34]. It suffers from a serious limitation that the effort of
querying the label of a correctly classified instance is wasted
due to the use of the perceptron-based update strategy. Another
approach is second-order online active learning (SOAL) [31],
which is proposed to exploit both the first-order and second-
order information.

All the existing online active learning methods assume a
fixed feature space, hence they are not directly applicable
to problems with a dynamically changing feature space. The
objective of this study is to extend the PAA approach to
advance the state-of-the-art in online learning from trapezoidal
data streams.
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III. PASSIVE-AGGRESSIVE ACTIVE LEARNING FOR

TRAPEZOIDAL DATA STREAMS

In this section, we consider the problem setting of the online
binary classification task on trapezoidal data streams.

A. Problem Setting and Background

We start with a typical online binary classification task on
trapezoidal data streams where data dynamically change in
both volume and feature dimension. Following OLSF, the state-
of-the-art online learning for trapezoidal data streams [11], we
use {(xt , yt)|t = 1, 2, . . . , T } to denote a sequence of input
instances. Each instance xt ∈ R

dt received at the tth round is
a vector of dt dimensions where dt−1 ≤ dt and yt ∈ {−1,+1}
are its true class label. The goal is to learn a linear classifier
wt ∈ R

dt−1 , which has the same dimension as the instance xt−1,
and has either the same or smaller dimension as the current
instance xt , for all t = 2, 3, . . . , T . In the first round, w1 is
initialized as a zero vector with the same dimension as x1.

Since the feature dimension may be increasing as the
learning proceeds, we decompose wt+1 ∈ R

dt as wt+1 =
[we

t+1; wn
t+1], where the following holds.

1) we
t+1 = �wt wt+1 ∈ R

dt−1 represents a projection of the
feature space from dimension dt to dimension dt−1, and
it is a vector consisting of elements of wt+1 which are
in the same feature space of wt .

2) wn
t+1 = �wt+1/wtwt+1 ∈ R

dt −dt−1 is a vector consist-
ing of elements of wt+1 which are not in the feature
space of wt .

By the same notations, we can decompose xt ∈ R
dt as xt =

[xe
t ; xn

t ], where xe
t = �wt xt and xn

t = �xt /wt xt .
At each round, the learner uses the current linear classifier

to predict the label of the current instance by ŷt = sign(wt ·xe
t ).

At the end of each round, a learner may employ a certain
strategy to decide whether to reveal the true label of the current
instance. Once the true label is revealed, the learner may
suffer an instantaneous loss which reflects the degree of its
wrong prediction, and the linear classifier can be improved
for the upcoming round [2]. The loss function used in the PA
algorithms [25] is called the hinge loss, i.e., �(wt , (xt , yt)) =
max(0, 1 − yt(wt · �wt xt )).

The OLSF algorithms [11], which extend the PA algorithms
to learn from trapezoidal data streams, update the model wt+1

by solving three variants of the following optimization task:
wt+1 = �

we
t+1; wn

t+1

�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
w=[we ;wn]

�t =0

1

2
�we − wt�2 + 1

2
�wn�2,

(OLSF)

arg min
w=[we ;wn]
�t ≤ξ ;ξ≥0

1

2
�we − wt�2 + 1

2
�wn�2 + Cξ,

(OLSF − I)

arg min
w=[we ;wn]

�t ≤ξ

1

2
�we − wt�2 + 1

2
�wn�2 + Cξ2,

(OLSF − II)

(1)

where C > 0 is a penalty parameter, and �t = �(w, (xt , yt)) =
max(0, 1 − yt(we · xe

t ) − yt(wn · xn
t )) is the loss at round t .

The above optimization task has closed-form solutions,
i.e., wt+1 = [wt + τt yt xe

t , τt yt xn
t ], where τt is, respectively,

computed according to the following equations:

τt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�t

�xt�2
, (OLSF)

min

�
C,

�t

�xt�2

	
, (OLSF − I)

�t

�xt�2 + 1
2C

, (OLSF − II).

(2)

B. Passive-Aggressive Active Learning Algorithms for
Trapezoidal Data Streams

Recent advance in online active learning centers around
innovative strategies for when to query the true labels and how
to update the model in the process. Three query strategies have
been investigated in the literature: 1) the learner tries to query
the true label of every instance; 2) the learner uses an instance-
irrelevant random query strategy (i.e., all Bernoulli trials with
the same success probability p) to decide whether to reveal
the label of an incoming instance; and 3) the learner uses an
instance-regulated random query strategy (i.e., a sequence of
Bernoulli trials with instance-dependent success probabilities)
to decide whether to reveal labels. On the other hand, there
are two well-known update strategies: perceptron-based and
PA-based.

In particular, the online PAA learning approach [8] uses
an instance-regulated strategy to make query decisions and
adopts the PA principle [2] to exploit every queried instance
for updating the binary classification model. Inspired by this
work, we here attempt to extend the PAA approach to improve
the performance of learning from trapezoidal data streams.
We use PAATS below to distinguish it from the original PAA
approach.

Algorithm 1 summarizes the details of our proposed PAATS

algorithm and its variants PAATS-I and PAATS-II.
In Lines (1)–(5), given an incoming instance xt at the

t th round, the prediction margin value | ft | is computed first,
where ft = wt · �wt xt . The margin value can be interpreted
as the degree of confidence in this prediction, which repre-
sents how far the current instance is away from the current
classifier’s hyperplane wt . Similar to the PAA approach [8],
we employ the instance-regulated random query strategy to
decide whether the label of an instance xt should be queried
or not

Pr(Zt = 1) = δ

δ + 1 + | ft | (3)

where Zt ∈ {0, 1} is a Bernoulli random variable with respect
to the instance xt , and δ > 0 is a smoothing parameter. Note
here that the Bernoulli probability varies from instance to
instance as | ft | changes, and it is inversely proportional to
the prediction confidence | ft |. The smaller the value of | ft |
is, the more uncertain the prediction of the classifier on the
instance xt , so the instance should have a higher chance of
being queried to obtain its true label.

In Lines (6)–(19), the learner updates the classifier condi-
tionally. If the outcome Zt = 0, the label of the instance xt will
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Algorithm 1 PAATS Algorithm and Its Variants PAATS-I and
PAATS-II
Input: penalty parameter C > 0 and smoothing parameter
δ > 0.
Initialize: w1 = [0, . . . , 0]T ∈ R

d1 .
1: for t = 1, 2, · · · do
2: receive instance: xt ∈ R

dt ;
3: compute: ft = wT

t �wtxt ;
4: predict: ŷt = sign( ft );
5: sample Zt ∈ {0, 1} with Pr(Zt = 1) = δ

δ+1+| ft | ;
6: if Zt = 1 then
7: query label: yt ∈ {−1,+1};
8: suffer loss: �t = max(0, 1 − yt wT

t �wtxt);
9: if �t > 0 then

10: set: τt =

⎧⎪⎨
⎪⎩

�t
�xt �2 (PAATS)
min(C, �t

�xt �2 ) (PAATS-I)
�t

�xt �2+ 1
2C

(PAATS-II)
11: compute: we

t+1 = wt + τt yt�wtxt ;
12: compute: wn

t+1 = τt yt�wt+1/wtxt ;
13: update: wt+1 = [we

t+1; wn
t+1];

14: else
15: wt+1 = wt ;
16: end if
17: else
18: wt+1 = wt ;
19: end if
20: end for

not be queried and the learner will not be updated; otherwise,
the true label yt of the instance xt is queried and disclosed
to the PAATS learner. Then the PAATS algorithm will use the
true label yt to compute the instantaneous loss, and update the
linear classification model wt+1 according to (1).

It is worth noting that PAATS differs from the OLSF

algorithm in two aspects. First, OLSF queries the label of
each incoming instance whereas PAATS queries based on the
outcome of a Bernoulli probability that is determined by
the incoming instance. Second, the OLSF algorithm has one
additional step to address “feature sparsity,” where a projection
and a truncation are introduced to prune redundant features.
We purposely skip the sparsity step in PAATS so that we
can clearly see how the query ratio (the fraction of instances
queried) may affect the learner’s performance when all features
are considered.

We next theoretically analyze the mistake bounds of the pro-
posed PAATS algorithms. It is worth noting that the theoretical
analysis process of PAATS is very similar to PAA [8], but this
is nontrivial because as we extend PAA to handle trapezoidal
data streams, we have to carefully consider the ever-changing
feature space.

C. Analysis of Mistake Bounds for PAATS Algorithms

We first introduce a lemma, which allows us to derive
the mistake bounds for the three variants of PAATS algo-
rithm. For convenience, we introduce the following notation:
M = {t : t ∈ [T ], ŷt �= yt}, and L = {t : t ∈ [T ],

ŷt = yt , �t (wt ) > 0}, where [T ] denotes {1, 2, . . . , T } and
�t(wt) = �(wt; (�wt xt , yt )).

Lemma 1: Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a
sequence of instances, where xt ∈ R

dt , dt ≤ dt+1 and yt ∈
{+1,−1} for all t ∈ [T ]. Let the learning rate
τt ∈ {(�t/�xt�2), min(C, (�t/�xt�2)), (�t/�xt�2 + (1/2C))} as
given in Algorithm 1. Then, the following bound holds for
any u ∈ R

dT and any α > 0:

T

t=1

2Ztτt [Lt (α − | ft |) + Mt (α + | ft |)]

≤ α2�u�2 +
T


t=1

τ 2
t �xt�2 +

T

t=1

2ατt�t(u)

where �t(u) = �(�xt u; (xt , yt)), Mt = I(t∈M), Lt = I(t∈L), I

is an indicator function, that is,

Mt =
�

1, t ∈ M
0, t /∈ M Lt =

�
1, t ∈ L
0, t /∈ L.

The detailed proof of Lemma 1 can be found in “Appendix
A” of the Supplemental Material. Based on Lemma 1, we first
prove the expected mistake bound for the PAATS algorithm
in the linearly separable case. We assume that there exists a
classifier u ∈ R

dT such that yt�xt u
T xt ≥ 1 for all t ∈ [T ].

Theorem 1: Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a
sequence of instances, where xt ∈ R

dt , dt ≤ dt+1,
yt ∈ {+1,−1}, and �xt� ≤ R for all t . Assume that
there exists a classifier u ∈ R

dT such that �t(u) = 0 for all t .
Assume a Bernoulli distribution (δ/δ + 1 + | ft |) is used for
each query decision where δ > 0, then the expected number
of mistakes made by the PAATS algorithm on this sequence
is bounded by

E

�
T


t=1

Mt


≤ E

�
T


t=1

Mt �t(wt )


≤ R2

�
δ

4
+ 1

δ
+ 1

	
�u�2.

Proof: According to Lemma 1 and the fact �t(u) = 0 for
all t ∈ [T ], we have

T

t=1

2Ztτt [Lt (α − | ft |) + Mt (α + | ft |)]

≤ α2�u�2 +
T


t=1

τ 2
t �xt�2. (4)

Note that Mt = 1 and Lt = 1 cannot hold at the same
time, and we must have �t(wt) = 0 (thus τt = 0) when
both Mt = 0 and Lt = 0 hold. Based on the learning rate
τt = (�t (wt)/�xt�2) as given in the PAATS algorithm, we can
reformulate the inequality (4) and further simplify as follows:
α2�u�2

≥
T


t=1

2Ztτt [Lt (α − | ft |) + Mt (α + | ft |)] −
T


t=1

τ 2
t �xt�2

=
T


t=1

2Ztτt

�
Lt

�
α − | ft | − τt

2
�xt�2

�

+ Mt

�
α + | ft | − τt

2
�xt�2

��
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=
T


t=1

2Ztτt

�
Lt

�
α − | ft | − �t(wt)

2

	

+ Mt

�
α + | ft | − �t(wt)

2

	�

=
T


t=1

2Ztτt

�
Lt

�
α − | ft | − 1 − yt wT

t �wt xt

2

	

+ Mt

�
α + | ft | − 1 − yt wT

t �wt xt

2

	�

=
T


t=1

2Ztτt

�
Lt

�
α − | ft | − 1 − | ft |

2

	

+ Mt

�
α + | ft | − 1 + | ft |

2

	�

=
T


t=1

2Ztτt

�
Lt

�
α − 1 + | ft |

2

	
+ Mt

�
α − 1 − | ft |

2

	�
.

(5)

Suppose α = (δ/2) + 1, δ > 0. The first item on the
right-hand side of (5) is positive, because when Lt = 1, | ft | ∈
[0, 1), thus α − (1 + | ft |/2) = (δ + 1 − | ft |/2) > 0. Plugging
α = (δ/2) + 1 into (5) results in�

δ

2
+ 1

	2

�u�2 ≥
T


t=1

Ztτt Mt (δ + 1 + | ft |). (6)

Because τt = (�t(wt )/�xt�2) ≥ (�t(wt)/R2), we can obtain�
δ

2
+ 1

	2

�u�2 ≥ 1

R2

T

t=1

Zt Mt �t(wt )(δ + 1 + | ft |). (7)

Given that the Bernoulli distribution has a probability of
(δ/δ + 1 + | ft |), that is, EZt = (δ/δ + 1 + | ft |), by taking
expectation with the above inequality, we have

1

R2
E

�
δ

T

t=1

Mt �t(wt )



= 1

R2
E

�
T


t=1

Mt �t (wt )(δ + 1 + | ft |)EZt



= E

�
1

R2

T

t=1

Zt Mt �t (wt )(δ + 1 + | ft |)


≤
�

δ

2
+ 1

	2

�u�2. (8)

After simplification, we can obtain

E

�
T


t=1

Mt �t(wt)


≤ R2

�
δ

4
+ 1

δ
+ 1

	
�u�2. (9)

Note that the above mistake bound indicates that the
expected number of mistakes is proportional to the upper
bound of the instance norm R and inversely proportional to
the margin (1/�u�2), which is consistent with the result for
PAA [8] where the sequence of instances are in the same
feature space.

We next present the expected mistake bounds for the
PAATS-I and PAATS-II algorithms, which are more suitable
for datasets that are not linearly separable.

Theorem 2: Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a
sequence of instances, where xt ∈ R

dt , dt ≤ dt+1,
yt ∈ {+1,−1} and �xt� ≤ R for all t . Assume a Bernoulli
distribution (δ/δ + 1 + | ft |) is used for each query decision
where δ > 0, then for any classifier u ∈ R

dT , the expected
number of mistakes made by the PAATS-I algorithm on this
sequence is bounded by

E

�
T


t=1

Mt


≤ β

��
δ

2
+ 1

	2

�u�2 + (δ + 2)C
T


t=1

�t (u)

�

where β = (1/δ) max((1/C), R2) and C is the penalty
parameter for PAATS-I.

Proof: According to Lemma 1 and by following a similar
derivation process as (5), we have:

α2�u�2 +
T


t=1

2ατt�t (u)

≥
T


t=1

2Ztτt

�
Lt

�
α − 1 + | ft |

2

	
+ Mt

�
α − 1 − | ft |

2

	�
.

(10)

Similarly, suppose α = (δ/2) + 1, δ > 0, the first item on
the right-hand side of (10) is positive, because when Lt =
1, | ft | ∈ [0, 1), thus α − (1 + | ft |/2) > 0. Then, (10) can be
reformulated as�

δ

2
+ 1

	2

�u�2 +
T


t=1

(δ + 2)τt�t(u)

≥
T


t=1

Ztτt Mt (δ + 1 + | ft |). (11)

When Mt = 1, that is, yt wT
t �wt xt ≤ 0, we have �t (wt) ≥ 1.

Using the assumption �xt� ≤ R and the learning rate τt =
min(C, (�t (wt)/�xt�2)), we have τt ≥ min(C, (1/R2)). Thus,
we can derive the following from (11):�

δ

2
+ 1

	2

�u�2 + (δ + 2)C
T


t=1

�t(u)

≥
�

δ

2
+ 1

	2

�u�2 +
T


t=1

(δ + 2)τt�t(u)

≥
T


t=1

Ztτt Mt (δ + 1 + | ft |)

≥ min

�
C,

1

R2

	 T

t=1

Zt Mt (δ + 1 + | ft |). (12)

Given that the Bernoulli distribution has a probability of
(δ/δ + 1 + | ft |), we have

min

�
C,

1

R2

	
E

�
T


t=1

Zt Mt (δ + 1 + | ft |)


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanjing University. Downloaded on July 07,2022 at 11:59:49 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

= min

�
C,

1

R2

	
E

�
T


t=1

Mt (δ + 1 + | ft |)EZt



= δ min

�
C,

1

R2

	
E

�
T


t=1

Mt


. (13)

The theorem is proven by substituting (13) into (12)

E

�
T


t=1

Mt


≤ β

��
δ

2
+ 1

	2

�u�2 + (δ + 2)C
T


t=1

�t(u)

�

(14)

where β = (1/δ) max((1/C), R2).
Theorem 3: Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a

sequence of instances, where xt ∈ R
dt , dt ≤ dt+1,

yt ∈ {+1,−1}, and �xt� ≤ R for all t . Assume a Bernoulli
distribution (δ/δ + 1 + | ft |) is used for each query decision
where δ > 0, then for any classifier u ∈ R

dT , the expected
number of mistakes made by the PAATS-II algorithm on this
sequence is bounded by

E

�
T


t=1

Mt


≤ β

��
δ

2
+ 1

	2

�u�2 + 2C

�
δ

2
+ 1

	2 T

t=1

�t(u)2

�

where β = (1/δ)(R2+(1/2C)) and C is the penalty parameter
for PAATS-II.

Proof: Suppose

A = α2�u�2 +
T


t=1

τ 2
t �xt�2 +

T

t=1

2ατt �t(u)

B =
T


t=1

α

�
τt√
2Cα

− √
2Cα�t(u)

�2

C = α2�u�2 +
T


t=1

τ 2
t

�
�xt�2 + 1

2C

	
+

T

t=1

2Cα2�t(u)2

then it is easy to prove that A ≤ A + B = C.
From Lemma 1, we have

T

t=1

2Ztτt [Lt (α − | ft |) + Mt (α + | ft |)] ≤ A ≤ C. (15)

Following a similar derivation process as (5), and given
that the learning rate τt is set to (�t (wt)/�xt�2 + (1/2C)) in
PAATS-II, (15) can be reformulated as follows:

α2�u�2 +
T


t=1

2Cα2�t (u)2

≥
T


t=1

�
2Ztτt [Lt(α − | ft |)

+ Mt (α + | ft |)] − τ 2
t

�
�xt�2 + 1

2C

	�

=
T


t=1

�
2Ztτt

�
Lt

�
α − | ft | − τt

2

�
�xt�2 + 1

2C

		

+ Mt

�
α + | ft | − τt

2

�
�xt�2 + 1

2C

		��

=
T


t=1

2Ztτt

�
Lt

�
α − | ft | − �t(wt )

2

	

+ Mt

�
α + | ft | − �t (wt)

2

	�

=
T


t=1

2Ztτt

�
Lt

�
α − 1 + | ft |

2

	
+ Mt

�
α − 1 − | ft |

2

	�
.

(16)

Similar to Theorems 1 and 2, suppose α = (δ/2)+1, δ > 0,
when Lt = 1, | ft | ∈ [0, 1), we have (α − (1 + | ft |/2)) =
(δ + 1 − | ft |/2) > 0. Plugging α = (δ/2) + 1 into the above
inequality results in�

δ

2
+ 1

	2

�u�2 + 2C

�
δ

2
+ 1

	2 T

t=1

�t(u)2

≥
T


t=1

Ztτt Mt (δ + 1 + | ft |). (17)

The theorem is proven by applying the fact τt ≥ (1/R2 +
(1/2C)) and taking expectation on the above inequality.

IV. EXTENSION TO MULTICLASS CLASSIFICATION

FOR TRAPEZOIDAL DATA STREAMS

In this section, we extend the PAATS algorithms to learn
from streams of trapezoidal data with multiple class labels.

A. Problem Formulation

Let {(xt , yt )|t = 1, 2, . . . , T } be a sequence of input
instances. Each instance xt ∈ R

dt received at the tth round is
a vector of dt dimensions where dt ≥ dt−1, and it is associated
with a unique class label yt ∈ Y = {1, 2, . . . , k}.

We adopt the multiprototype model in [2]. The classifier
W consists of k weight vectors, where each weight vector
Wr (r ∈ Y ) corresponds to one class label. Since we are
dealing with trapezoidal data streams, at the t th round (with
xt ∈ R

dt being the incoming instance), we denote the classifier
as Wt ∈ R

dt−1×k , with Wt = [W̃t; Ŵt ], where W̃t =
�Wt−1Wt ∈ R

dt−2×k and Ŵt = �Wt /Wt−1Wt ∈ R
(dt−1−dt−2)×k ,

respectively, corresponding to the projection of Wt onto the
feature space of Wt−1 and onto the space with the newly
introduced features by xt−1. Similarly, let xe

t = �Wt xt and
xn

t = �xt /Wt xt .
Then, a sequence of k prediction scores for all the class

labels can be generated: Wt · xt = [W1
t · xe

t , . . . , Wr
t ·

xe
t , . . . , Wk

t · xe
t ]. By comparing the above scores, the learner

can choose the class label with the largest score as the
prediction:

ŷt = arg max
r∈Y

Wr
t · �Wt xt . (18)

The margin is defined to be the gap between the prediction
score of class yt and the irrelevant class with the highest
prediction score:

γt = Wyt
t · �Wt xt − max

r �=yt

Wr
t · �Wt xt . (19)
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Similar to the binary case, the hinge loss is computed by

�(Wt , (xt , yt)) = max(0, 1 − γt). (20)

B. Multiclass Passive-Aggressive Active Learning

In the multiclass setting, we need a different stochastic rule
for deciding whether to query the label of a certain instance.
The probability of querying a label should still be inversely
proportional to the margin of the classifier on the current
instance xt . However, the margin in (19) cannot be directly
used because the true label yt is not disclosed yet.

We adopt the same approach in [8] using a different
confidence score, which is defined as the prediction score
difference between the predicted label and the label with the
second largest prediction score:

ft = W ŷt
t · �Wt xt − max

r �=ŷt

Wr
t · �Wt xt . (21)

It is worth noting that ft ≥ 0 holds for all the instances.
When a prediction is correct, i.e., ŷt = yt , the confidence value
ft is equal to the margin γt ; when a prediction is incorrect,
i.e., ŷt �= yt , then it is easy to check ft ≤ |γt |. Based on
this confidence score, the probability of querying a label in
multiclass cases is set as Pr(Zt ) = (δ/δ + 1 + ft ), where
δ > 0 is a smoothing parameter.

In case that the label of the current instance is revealed,
we next need to decide how to update the classifier. At the
tth round, given Wt ∈ R

dt−1×k and xt , the new classifier
Wt+1 = [W̃t+1; Ŵt+1] ∈ R

dt ×k can be obtained by solving
the following optimization problem:

Wt+1 = arg min
W=[W̃;Ŵ]

�t (W)=0

1

2
�W̃ − Wt�2 + 1

2
�Ŵ�2 (22)

where �t(W) = �(W, (xt , yt)) = max(0, 1 − (W̃yt · xe
t + Ŵyt ·

xn
t − maxr �=yt (W̃

r · xe
t + Ŵr · xn

t )) is the loss at round t .
Similar to the binary case, we can consider two variants

of (22) for datasets that are not linearly separable:

Wt+1 = arg min
W=[W̃;Ŵ]
�t (W)≤ξ ;ξ≥0

1

2
�W̃ − Wt�2 + 1

2
�Ŵ�2 + Cξ (23)

and

Wt+1 = arg min
W=[W̃;Ŵ]

�t (W)≤ξ

1

2
�W̃ − Wt�2 + 1

2
�Ŵ�2 + Cξ2. (24)

The three optimization problems have closed-form
solutions:

W̃yt
t+1 = Wyt

t + τt xe
t

W̃st
t+1 = Wst

t − τt xe
t

Ŵyt
t+1 = τt xn

t

Ŵst
t+1 = −τt xn

t (25)

where st = arg maxr �=yt ,r∈Y Wr
t · �Wt xt , and the stepsize τt is,

respectively, computed as follows:

τt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�t(Wt )

2�xt�2
, (MPAATS)

min

�
C,

�t(Wt )

2�xt�2

	
, (MPAATS − I)

�t (Wt)

2�xt�2 + 1
2C

, (MPAATS − II).

(26)

The details of our proposed MPAATS algorithm (and its
variants MPAATS-I and MPAATS-II) is given in Algorithm 2.

Algorithm 2 MPAATS algorithm and its variants MPAATS-I
and MPAATS-II
Input: set of all labels Y = {1, 2, . . . , k}, penalty parameter
C > 0 and smoothing parameter δ > 0.
Initialize: W1 = zeros(d1, k), where x1 ∈ R

d1 .
1: for t = 1, 2, · · · do
2: receive instance: xt ∈ R

dt ;
3: predict: ŷt = arg maxr∈Y Wr

t · �Wt xt ;
4: compute: ft = W ŷt

t · �Wt xt − maxr �=ŷt Wr
t · �Wt xt ;

5: sample Zt ∈ {0, 1} with Pr(Zt = 1) = δ
δ+1+ ft

;
6: if Zt = 1 then
7: query label: yt ∈ Y ;
8: compute: γt = Wyt

t · �Wt xt − maxr �=yt Wr
t · �Wt xt ;

9: suffer loss: �t(Wt ) = max(0, 1 − γt);
10: if �t > 0 then
11: set: τt according to Eq. (26);
12: compute: W̃t+1 and Ŵt+1 according to Eq. (25);
13: update: Wt+1 = [W̃t+1; Ŵt+1];
14: end if
15: else
16: Wt+1 = Wt ;
17: end if
18: end for

C. Analysis of Mistake Bounds for MPAATS

In this section, we aim to theoretically analyze the mistake
bounds of the proposed MPAATS algorithms. To facilitate
the understanding of Theorems 4 and 5, we first introduce
Lemma 2.

Lemma 2: Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a
sequence of instances, where xt ∈ R

dt , dt ≤ dt+1 and
yt ∈ {1, 2, . . . , k} for all t ∈ [T ]. The confidence ft and the
learning rate τt are as given in (21) and (26). The following
bound holds for any U = [U1, U2, . . . , Uk] ∈ R

dT ×k :

T

t=1

2Ztτt [Lt (α − ft ) + Mt (α + ft )]

≤ α2
k


r=1

�Ur�2 +
T


t=1

2τ 2
t �xt�2 +

T

t=1

2ατt�t(U)

where Mt = I(t∈M), Lt = I(t∈L), I is an indicator function,
α > 0, and �t (U) = �(�xt U; (xt, yt)).
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Theorem 4: Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a
sequence of instances, where xt ∈ R

dt , dt ≤ dt+1,
yt ∈ {1, 2, . . . , k}, and �xt� ≤ R for all t . Assume a
Bernoulli distribution (δ/δ + 1 + ft ) is used for each query
decision where δ > 0. Assume that there exists a classifier
U ∈ R

dT ×k such that �t (U) = 0 for all t . The expected
number of mistakes made by MPAATS on this sequence is
bounded by

E

�
T


t=1

Mt


≤ E

�
T


t=1

Mt�t (Wt)



≤ 2R2

�
δ

4
+ 1

δ
+ 1

	 k

r=1

�Ur�2.

The proof of Lemma 2 and Theorem 4 can be found
in “Appendixes B and C” of the Supplemental Material.
Similarly, we can prove Theorem 5 below. Because it is easy,
we skip it for conciseness.

Theorem 5: Let (x1, y1), (x2, y2), . . . , (xT , yT ) be a
sequence of instances, where xt ∈ R

dt , dt ≤ dt+1,
yt ∈ {1, 2, . . . , k}, and �xt� ≤ R for all t . Assume a Bernoulli
distribution (δ/δ + 1 + ft ) is used for each query decision
where δ > 0. For any W = [W1, W2, . . . , Wk] ∈ R

dT ×k ,
the expected number of mistakes made by the MPAATS-I is
bounded by

E

�
T


t=1

Mt


≤β

��
δ

2
+1

	2 k

r=1

�Wr�2+(δ + 2)C
T


t=1

�t(W)

�

and the expected number of mistakes made by the MPAATS-II
is bounded by

E

�
T


t=1

Mt


≤ λ

��
δ

2
+ 1

	2 k

r=1

�Wr�2

+ 2C

�
δ

2
+ 1

	2 T

t=1

�t(W)2

�

where β = (1/δ) max((1/C), 2R2), λ = (1/δ)(2R2 + (1/2C))
and C is the penalty parameter.

V. EXPERIMENTAL RESULTS

We evaluate our proposed algorithms, focusing on
the PAATS algorithms for binary classification tasks in
Section V-A and the MPAATS algorithms for multiclass clas-
sification tasks in Section V-B. All the algorithms are imple-
mented in MATLAB R2019a, and all the experiments are
conducted on a 64-bit PC with Intel Core i7-9700 CPU
@3.00 GHz and 16-GB memory.

A. Evaluation of PAATS Algorithms

To fully evaluate our proposed algorithms, we consider
various combinations of query strategies and update strategies
as shown in Fig. 1. All the online learning algorithms are
implemented to handle trapezoidal data streams. In particular,
the followings are given.

1) RPE-TS: It uses the perceptron-based update strat-
egy (wt+1 = [wt + yt xe

t , yt xn
t ] [11]) and the

Fig. 1. Design rationale: query strategies and update strategies.

TABLE I

DATASETS DESCRIPTION USED IN THE EXPERIMENTS

instance-irrelevant random query strategy [i.e., the same
Bernoulli(p) for all instances].

2) PEA-TS: It uses the perceptron-based update strategy
and the instance-regulated query strategy [see (3)].

3) RPATS: It uses the PA update strategy [see (1)] and the
instance-irrelevant random query strategy. Because the
update strategy can vary, RPATS has two other variants
RPATS-I and RPATS-II.

4) PAATS: It uses the PA update strategy and the
instance-regulated query strategy. PAATS also has two
other variants PAATS-I and PAATS-II.

5) OLSF: It is the state-of-the-art online learning approach
that uses the PA update strategy and the query-all
strategy. It also has two other variants OLSF-I and
OLSF-II.

We first compare PAATS with RPE-TS, PEA-TS, and
RPATS, and then in Section V-A6 compare PAATS with OLSF

using real-world data streams.
1) Experiment Settings: To examine the performance of the

proposed algorithms, we conduct experiments on eight binary
class datasets from machine learning repositories as listed in
Table I. These datasets can be freely downloaded from UCI
machine learning repository1 and LIBSVM website.2

To simulate trapezoidal data streams, we follow the same
method as used in [11] and [12], where each dataset is split
into ten chunks, with each carrying only 10% of instances and
a different number of features. More specifically, the first data
chunk contains the first 10% of instances with the first 10%

1http://archive.ics.uci.edu/ml/index.php
2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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of features; the second data chunk contains the second 10%
of instances with an additional 10% of features (i.e., 20% of
features), and so on. All the algorithms try to learn a linear
classifier from the incoming trapezoidal data streams.

Performance is measured in terms of classification accu-
racy. All the experiments are repeated 20 times with random
permutations on each dataset. If not noted otherwise, all the
results reported here are averages over the 20 repeats. Also,
the smoothing parameter δ is adjusted in the range 2[−10:10] to
set different query ratios for a learner.

2) Evaluation Under Fixed Query Ratios: We first compare
our proposed PAATS algorithms and the other algorithms when
they perform with the same query ratio. By adjusting the
parameter δ (and p for the instance-irrelevant query strategy),
we control the percentage of queried instances to be near 10%
and 20%. For PAATS-I, PAATS-II, RPATS-I, and RPATS-II,
because the value of the penalty parameter C under which
one algorithm produces its best average performance can be
different from another algorithm, C is searched in the range
10[−4:4] through cross validation for all the datasets. Given in
Table II are the best average performances for each method.

First, as shown in Table II, the algorithms employing the
instance-regulated query strategy (PEA-TS and PAATS) in
most cases outperform their counterparts that employ the
instance-irrelevant strategy (RPE-TS and RPATS). Why is the
instance-regulated query strategy more effective? Although all
the algorithms query almost the same number of instances,
the collection of instances to be queried is certainly different
when a different query strategy is adopted. The key here
is to query those instances that are the most significant in
refining the model being constructed. The instance-regulated
query strategy obviously helps in this regard. Indeed, when
the degree of confidence ft of an instance xt is close to 0, it
is more beneficial to reveal its true label because the existing
model fails to classify xt with certainty. According to (3),
the probability to query an instance becomes higher when ft

moves closer to 0, so the learner has a bias toward querying
uncertain instances. In contrast, the instance-irrelevant query
strategy treats all instances equally.

Second, let’s focus on PEA-TS and PAATS, the algorithms
employing the instance-regulated query strategy. The PAATS

algorithms based on the PA update strategy have achieved
significantly higher accuracy than the PEA-TS algorithm. This
indicates that the PA update strategy is more effective than
the perceptron-based strategy. Indeed, the perceptron-based
update strategy never attempts to learn from instances that are
correctly classified, whereas the PA strategy manages to fully
exploit the potential of every queried instance for updating
the classification model, including those that are correctly
classified with low confidence. Because of this, analytically,
the running time cost of the PAATS algorithms should be
higher than PEA-TS. This can be confirmed by the running
time results given in Table II.

Third, the two soft-margin algorithms, PAATS-I and
PAATS-II, usually have similar accuracy performance, and they
perform slightly better than PAATS. This might be caused by
over fitting on noisy training data, since the PAATS algorithm
is more sensitive to noise.

3) Evaluation Under Varying Query Ratios: To understand
further how the algorithms may be affected as the query ratio
changes, we set the parameter C to 1, and vary the query
ratio from 0.0 to 1.0 (by adjusting the parameter δ or p).
The average classification accuracy and running time cost are
plotted in Figs. 2 and 3, respectively.

As shown in Fig. 2, we observe that the accuracy usually
increases with the increase of the query ratio in the beginning,
and quickly reaches saturation after the query ratio exceeds
a certain value. This is promising because it suggests that a
well-performed linear classifier can be trained by revealing
the labels of only a small fraction of the instances, regardless
of the query strategy adopted. Most of the algorithms in
comparison can reach their respective peak performance when
the query ratio is close to 20%. It is interesting to note that
on the covtype and HIGGS datasets, the accuracy decreases
after reaching its peak performance, which is contrary to
our thought that the more instances queried, the better the
predictive performance. This might be caused by overfitting
because these two datasets, as compared to others, have much
more instances with a relatively smaller feature space.

Second, even when we are not comparing the peak per-
formance as in Table II, the instance-regulated query strategy
is still consistently more effective than the instance-irrelevant
query strategy: we have PAATS > RPATS, PAATS-I >
RPATS-I, PAATS-II > RPATS-II, and PEA-TS > RPETS hold
for each dataset. This is more salient for bigger datasets
like covtype and HIGGS. This again confirms that the
instance-regulated strategy allows the learner to selectively
query the most informative instances for model revision.

Third, the PAATS algorithms outperform PEA-TS and the
RPATS algorithms outperform RPE-TS, which confirms that
the PA update strategy is more effective than the perceptron-
based strategy. This is consistent with the findings in [8], only
that here the learners need to handle trapezoidal data streams.

As expected, Fig. 3 shows that the running time cost
increases, almost linearly, as the query ratio increases. Also,
the algorithms using the perceptron strategy has lower running
time cost than those algorithms using the PA updating strategy.

4) Sensitivity to the Penalty Parameter: In this experiment,
with the query ratio being set approximately to 10%, we
evaluate the sensitivity of algorithms to the penalty parameter
C , which is varied from 10−4 to 104.

Fig. 4 shows the performance of all the compared algorithms
under different settings of C . First, we observe that the
algorithms that use the soft-margin PA update rules can be
greatly affected by the parameter C . The C setting that makes
one algorithm achieve its peak performance can be different
from that of another algorithm. The larger C is, the closer are
the performance of the soft-margin algorithms PAATS-I and
PAATS-II to PAATS. This is because the step size τt in PAATS-
I and PAATS-II becomes less affected by C as it increases.
It is also worth noting that under the same setting of C , the
algorithms using the instance-regulated query strategy always
outperform those that use the instance-irrelevant strategy.

5) Comparison With State-of-the-Art OLSF: In this section,
we compare our proposed PAATS, PAATS-I, PAATS-II algo-
rithms with OLSF and its two variants OLSF-I and OLSF-II [11],
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TABLE II

EVALUATION OF THE PROPOSED PAATS ALGORITHMS AGAINST OTHER BASELINE ALGORITHMS

the state-of-the-art online learning approach for trapezoidal
data streams.

OLSF differs from PAATS in two aspects. First, OLSF queries
every instance whereas PAATS queries only the most informa-
tive instances using an instance-regulated query probability.
Second, OLSF has a sparsity step to control the propor-
tion of features used, whereas PAATS takes all the features

into consideration. The original codes of OLSF (OLSF-I and
OLSF-II) can be obtained at https://github.com/BlindReview/
onlineLearning.

For OLSF (and its variants, OLSF-I and OLSF-II), the algo-
rithmic parameters are set to either their default values or the
values that have produced the best performance as reported
in [11]. In particular, we set λ = 30, and set the parameter
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Fig. 2. Classification accuracy against the query ratio. The plotted curves are averaged over 20 random permutations when C = 1. (a) svmguide3. (b) HAPT.
(c) gisette. (d) mushrooms. (e) magic04. (f) a8a. (g) covtype. (h) HIGGS.

Fig. 3. Running time cost (seconds) with respect to the query ratio. The plotted curves are averaged over 20 random permutations when C = 1. (a) svmguide3.
(b) HAPT. (c) gisette. (d) mushrooms. (e) magic04. (f) a8a. (g) covtype. (h) HIGGS.

B to vary in the range [0.16, 0.32, 0.64, 1], i.e., we use 16%,
32%, 64%, and 100% of the features for learning the models,
respectively. For our proposed algorithms, we set the query
ratio to be near 20% by adjusting δ. For each of the algorithms,
the penalty parameter C is searched in the range 10[−4:4] to
locate the value under which the best performance is produced.
Table III lists the classification accuracy on different datasets.

From the result, we can observe that on all the datasets
except for svmguide3 and magic04, our proposed algorithms
PAATS, PAATS-I, and PAATS-II outperform the corresponding
OLSF, OLSF-I, and OLSF-II algorithms in different settings for
B (feature sparsity). On the datasets svmguide3 and magic04,
when OLSF-I and OLSF-II use all the features, their classifica-
tion accuracy are only within 0.4% higher than our algorithms.
It is worth reiterating that our algorithms only query 20% of

instance labels, while the OLSF algorithms use the label of
every instance.

To get more insights, we plot the classification accuracy
under different settings for C in Fig. 5. We can clearly see
that except for a few C settings for the datasets svmguide3
and magic04, PAATS perform significantly better than OLSF.
This is even more true when it comes to real-world datasets
as shown next.

6) Applications to Real-World Datasets: We compare
PAATS-I with OLSF-I and OLSFI-all, for which we use the
result reported in [11], where OLSF-I uses only 0.1% of
features (i.e., B = 0.001), and OLSFI-all uses all the features
on a dataset.

We use the same two binary classification datasets as used
in [11]. Some characteristics of the datasets are given in
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Fig. 4. Evaluation of classification accuracy against parameter C on all the datasets. The plotted curves are averaged over 20 random permutations. Query
ratio is set to 10%. (a) svmguide3. (b) HAPT. (c) gisette. (d) mushrooms. (e) magic04. (f) a8a. (g) covtype. (h) HIGGS.

TABLE III

COMPARISON WITH RESPECT TO CLASSIFICATION ACCURACY. (QUERY RATIO IS SET TO 20% FOR PAATS)

Fig. 5. Classification accuracy versus parameter C . The plotted curves are averaged over 20 random permutations. B = 1 for OLSF. (a) svmguide3. (b) HAPT.
(c) gisette. (d) mushrooms. (e) magic04. (f) a8a. (g) covtype. (h) HIGGS.

Table IV, where “data density” is the number of nonzero
features versus the total number of features. The task of the

rcv1 dataset is to classify JMLR articles into different groups,
while the task of the URL dataset [35] is to use URL lexical
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TABLE IV

DATASETS DESCRIPTION USED IN THE EXPERIMENTS

TABLE V

COMPARISON OF CLASSIFICATION ACCURACY

TABLE VI

MULTICLASS CLASSIFICATION DATASETS DESCRIPTION

USED IN THE EXPERIMENTS

and host-based features to detect malicious URLs from web
pages.

For a fair comparison, in the PAATS-I algorithm we set
C = 0.1, the same as used for OLSF-I and OLSFI-all. Due
to the big volumes of the two datasets, for PAATS-I, we set
the query ratio to be near 4% by adjusting δ. Note that the
OLSF-I and OLSFI-all algorithms always query the label of
every coming instance.

Table V shows the accuracy, where the results for OLSF-I
and OLSFI-all are derived from Table VI in [11], the result of
PAATS-I on the rcv1 dataset is the averages of 20 runs, and
the result of PAATS-I on the URL dataset is the averages of
five runs (due to days long running time).

Clearly, as far as the classification accuracy is concerned,
our proposed algorithm PAATS-I significantly outperforms the
OLSF-I and OLSFI-all algorithms, by over 20%. Obviously, the
number of effective features is inherently small for real-world
datasets like rcv1 and URL. Hence the strategy of querying
only informative instances is a lot more beneficial than merely
reducing the feature space.

B. Evaluation of the MPAATS Algorithms

We now empirically evaluate the performance of the pro-
posed MPAATS algorithm and its two variants MPAATS-I and
MPAATS-II on online multiclass classification tasks.

Similar to the evaluation of PAATS, we compare
MPAATS (and its variants) with the same group of algo-
rithms with appropriate adaptation to multiclass tasks as
follows.

Fig. 6. Evaluation of classification accuracy versus query ratio. The
plotted curves are averaged over 20 random permutations. C = 1. (a) dna.
(b) satimage. (c) usps. (d) acoustic. (e) covtype. (f) poker.

1) MRPE-TS: An extension of RPE-TS, the Multiclass
Random PErceptron algorithm for Trapezoidal data
Streams, with the perceptron updating strategy for learn-
ing, i.e., Wt+1 = [W̃t+1, Ŵt+1], where W̃yt

t+1 = Wyt
t +

xe
t , W̃st

t+1 = Wst
t − xe

t , Ŵyt
t+1 = xn

t , Ŵst
t+1 = −xn

t .
2) MPEA-TS: An extension of PEA-TS, the multiclass PEA

learning algorithm, with the instance-regulated query
strategy.

3) MRPATS: The multiclass random PA learning algorithms
for Trapezoidal data Streams use the instance-irrelevant
query strategy, including MRPATS, MRPATS-I, and
MRPATS-II, which are the extensions of the RPATS

algorithms.
4) MPAATS: Our proposed MPAATS in Algorithm 2, includ-

ing MPAATS, MPAATS-I, and MPAATS-II.
Table VI shows the characteristics of six multiclass datasets,

which can be freely downloaded from the LIBSVM website.
For the simulation of trapezoidal data streams and settings for
other parameters, we follow those in the binary classification
experiments in Section V-A1.

Fig. 6 summarizes the average performance of the eight
algorithms when C = 1 as the query ratio varies. Fig. 7
shows the performance under different settings for C . We can
observe similar phenomena as that in the binary classification
setting. This demonstrates that our proposed algorithms are
also effective in dealing with multiclass online active learning
for trapezoidal data streams.
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Fig. 7. Evaluation of classification accuracy versus parameter C . The plotted
curves are averaged over 20 random permutations. Query ratio is set to 10%.
(a) dna. (b) satimage. (c) usps. (d) acoustic. (e) covtype. (f) poker.

VI. CONCLUSION AND FUTURE WORK

The idea of combining the active query strategy and the PA
update strategy in online learning is originally proposed in the
PAA approach [8], which has proven to be effective in learning
linear classifiers from datasets with a fixed feature space.
Building upon PAA, we propose a novel family of online
active learning algorithms, named PAATS and MPAATS (and
their variants), for binary and multiclass online classification
tasks on trapezoidal data streams where the feature space may
expand over time. Such an extension is nontrivial, because in
the theoretical analysis of the mistake bounds of PAATS and
MPAATS, we have to carefully deal with the complexity due
to the introduction of the ever-changing feature space.

We have conducted experiments extensively to compare our
proposed PAATS algorithms with other approaches that employ
different combinations of query strategies and update strate-
gies. The experiment results confirm that the combination of
the instance-regulated active query strategy and the PA update
strategy is much more effective in learning from trapezoidal
data streams. We have also compared PAATS with OLSF—
the state-of-the-art approach in learning linear classifiers from
trapezoidal data streams. PAATS could achieve much better
classification accuracy, especially for large-scale real-world
data streams.

In this article, PAATS algorithms are limited to learn linear
decision boundaries which may perform poorly on nonlinear
separable data. Thus, stacked bidirectional long short-term
memory (LSTM) [36] can be employed to cope with nonlinear

problems. Besides, trapezoidal data stream is only one type of
data streams with a dynamic feature space. Some real-world
problems may involve datasets where the instances have
completely different sets of features, or the feature space may
shrink over time. how to study SOAL techniques with an
irregularly-changing feature space is also worth studying.
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