
1

LibFewShot: A Comprehensive Library for
Few-shot Learning

Wenbin Li, Ziyi Wang, Xuesong Yang, Chuanqi Dong, Pinzhuo Tian, Tiexin Qin, Jing Huo, Yinghuan Shi,
Lei Wang, Senior Member, IEEE, Yang Gao, and Jiebo Luo, Fellow, IEEE

Abstract—Few-shot learning, especially few-shot image classification, has received increasing attention and witnessed significant
advances in recent years. Some recent studies implicitly show that many generic techniques or “tricks”, such as data augmentation,
pre-training, knowledge distillation, and self-supervision, may greatly boost the performance of a few-shot learning method. Moreover,
different works may employ different software platforms, backbone architectures and input image sizes, making fair comparisons
difficult and practitioners struggle with reproducibility. To address these situations, we propose a comprehensive library for few-shot
learning (LibFewShot) by re-implementing eighteen state-of-the-art few-shot learning methods in a unified framework with the same
single codebase in PyTorch. Furthermore, based on LibFewShot, we provide comprehensive evaluations on multiple benchmarks with
various backbone architectures to evaluate common pitfalls and effects of different training tricks. In addition, with respect to the recent
doubts on the necessity of meta- or episodic-training mechanism, our evaluation results confirm that such a mechanism is still
necessary especially when combined with pre-training. We hope our work can not only lower the barriers for beginners to enter the
area of few-shot learning but also elucidate the effects of nontrivial tricks to facilitate intrinsic research on few-shot learning. The source
code is available from https://github.com/RL-VIG/LibFewShot.

Index Terms—Unified framework, Few-shot learning, Image classification, Fair comparison.

F

1 INTRODUCTION

F Ew-shot learning (FSL), especially few-shot image clas-
sification, has received considerable attention in recent

years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. It tries to learn
an effective classification model from a few labeled training
examples. A wide variety of advanced FSL methods has
been proposed and significantly improved the classification
performance on multiple benchmark datasets [11], [12], [13],
[14], [15], [16], [17], [18].

Because of the extreme scarcity of training examples per
class, it is almost impossible to only use the few available
examples to learn an effective classifier to solve the few-shot
classification problem. Therefore, the current FSL methods
generally follow a paradigm of transfer learning, i.e., using a
large labeled but class-disjoint auxiliary set to learn transfer-
able knowledge (or representations) to boost the target few-
shot task. More importantly, different from standard transfer
learning [19], the existing FSL methods normally adopt a
meta-training [20] or episodic-training mechanism [2] to
train a few-shot model by constructing massive few-shot
tasks (episodes) from the auxiliary set to simulate the target
few-shot task. Like the target few-shot task, each simulated

• Wenbin Li, Ziyi Wang, Xuesong Yang, Chuanqi Dong, Jing Huo,
Yinghuan Shi and Yang Gao are with the State Key Laboratory for
Novel Software Technology, Nanjing University, China, 210023 (e-mail:
{liwenbin, huojing, syh, gaoy}@nju.edu.cn; {wangziyi, yangxuesong,
dongchuanqi}@smail.nju.edu.cn).

• Pinzhuo Tian is with the School of Computer Engineering and Science,
Shanghai University, China (e-mail: pinzhuo@shu.edu.cn).

• Tiexin Qin is with the Department of Electrical Engineering, City Uni-
versity of Hong Kong, China (e-mail: tiexinqin@gmail.com).

• Lei Wang is with the School of Computing and Information Technology,
University of Wollongong, Australia (e-mail: leiw@uow.edu.au).

• Jiebo Luo is with the Department of Computer Science, University of
Rochester, America (e-mail: jluo@cs.rochester.edu).

task also consists of a labeled support (training) set and an
unlabeled query (test) set.

In general, these typical FSL methods can be roughly
divided into two types, i.e., meta-learning based [20], [21]
and metric-learning based [22], [23]. The former normally
adopts a meta-learning or learning-to-learn paradigm [24],
[25] to learn some kind of cross-task knowledge through an
alternate optimization between the meta-learner and base-
learner. In this way, it is able to make the model quickly
generalize to new unseen tasks with a few training examples
(i.e., test time fine-tuning). In contrast, the latter employs a
learning-to-compare paradigm [2] to learn representations
that can be transferred between tasks without test time
fine-tuning (test-tuning for short). This is implemented by
directly comparing the relations between query images and
support images in each training task through an episodic
training mechanism [2]. Both types of methods have greatly
advanced the development of few-shot learning.

However, the question “Is meta- or episodic-training
paradigm really crucial and optimal for the FSL problem?”
has been raised recently by the community. Some recent
works [26], [27], [28], [29], [30] have attempted to answer
this question. For example, [27] finds that a simple baseline
method, i.e., pre-training + test-tuning (called non-episodic
based methods), can obtain competitive results when com-
pared with the meta- or episodic-training paradigm based
methods. Similarly, [30] proposes an improved baseline
method by using logistic regression as the linear classifier
in the test-tuning phase, which surprisingly achieves the
state of the art. Therefore, can we conclude that the meta- or
episodic-training paradigm is indeed NOT necessary for FSL?

In addition, we observe that the implementation and
evaluation details of different FSL methods vary signifi-

ar
X

iv
:2

10
9.

04
89

8v
3

 [
cs

.C
V

]
 1

5
Se

p
20

22

https://github.com/RL-VIG/LibFewShot

2

cantly. This could make fair comparison difficult, or even
worse, make some conclusions questionable. Specifically,
certain key discrepancies of existing FSL methods can be
summarized as follows: (1) different software platforms
(e.g., TensorFlow vs. PyTorch); (2) different backbones (e.g.,
Wider ResNet12 vs. ResNet12); (3) classifiers with differ-
ent parameters (e.g., heavy-parametric classifier vs. non-
parametric classifier); (4) different input image sizes (e.g.,
224 × 224 vs. 84 × 84); (5) different test time evaluations
(e.g., center crop evaluation vs. raw evaluation). Clearly,
such wide discrepancies are not amenable to a fair com-
parison and therefore cannot truthfully reflect the actual
progress of FSL. Moreover, some FSL methods may employ
additional fancy deep learning tricks, such as stronger data
augmentation, knowledge distillation, self-supervision, la-
bel smoothing, and DropBlock, in the training process. The
effects of different deep learning tricks are worth studying
in FSL. Also, the additional used tricks are another key type
of discrepancy.

Our work. Therefore, to facilitate fair comparison and
conveniently investigate the common issues in FSL, we
develop a comprehensive library for few-shot learning (LibFew-
Shot) by making most of the implementation details of
different FSL methods consistent. To be specific, eighteen
representative state-of-the-art FSL methods, including seven
meta-learning based, six metric-learning based and five non-
episodic based methods, are systematically re-implemented
in a unified framework with the same single codebase in
PyTorch. In LibFewShot, we try our best to ensure that
all the methods use the same settings and the same bag
of tricks, except for some specific tricks or specific neural
architectures that are the main contributions of certain meth-
ods. In this way, we could take a true picture of the actual
state-of-the-art results on FSL. More importantly, we are
able to construct a large-scale study to analyze the impact
of different tricks, such as pre-training, global classification,
knowledge distillation and label smoothing, in a fair way.

Our contributions. The main contributions of this work
are as follows:

• We develop a unified framework LibFewShot with
eighteen re-implemented FSL methods for the first
time in the literature. It can be used as a toolbox and
a platform to help practitioners efficiently use and
reproduce FSL methods.

• We provide comprehensive evaluations of the eigh-
teen methods on multiple benchmark datasets with
various embedding backbones, by controlling the
implementation details. This can reveal the actual
progress of FSL and can be conveniently referenced
to perform comparative experiments.

• We conduct a large-scale study on multiple repre-
sentative FSL methods in a fair way, revealing that
(1) pre-training indeed can learn a good initial rep-
resentation but is not necessarily an optimal repre-
sentation; (2) meta- or episodic-training can further
improve this initial representation; (3) `2 normaliza-
tion of image feature vectors can significantly boost
the final classification more than test-tuning in the
test phase, especially in data-limited scenarios.

• We conduct comprehensive ablation studies for mul-

tiple deep learning tricks on the FSL problem,
showing that many tricks could achieve significant
algorithm-agnostic performance improvements and
are universally applicable to different FSL methods.

• We have released LibFewShot as an open-source
project on GitHub, and will continue to add new
methods into this project. We welcome other re-
searchers to contribute to this library to facilitate the
community to conduct research on this important
topic together.

2 OVERVIEW OF FEW-SHOT LEARNING METHODS

In this section, we will first introduce the problem formula-
tion of FSL, and then review three kinds of FSL methods, i.e.,
non-episodic based methods, meta-learning based methods
and metric-learning based methods, where multiple repre-
sentative methods are further reviewed in detail.

2.1 Problem Formulation
In few-shot setting, there are usually three sets of data,
including a target labeled support set S , a target unlabeled
query setQ and a class-disjoint auxiliary setA. In particular,
S and Q share the same label space, which corresponds to
the training and test sets in generic classification, respec-
tively. The concept of “few-shot” in fact comes from S , where
there are C classes but each class only has K (e.g., 1 or 5)
labeled samples. We call this kind of classification task a
C-way K-shot task. Clearly, such a few labeled samples in
each class make it almost impossible to train an effective
classification model, no matter using deep neural networks
or traditional machine learning algorithms. Therefore, one
solution of FSL becomes how to use A to boost the learning
on the target task (i.e., S and Q). The good point is that A
generally enjoys more classes and samples per class than S ,
while the challenge is that A has a disjoint label space from
S and even may have a large domain shift from S .

Therefore, the current FSL methods mainly focus on
how to effectively learn transferable knowledge from A for
fast adaptation (e.g., meta-learning based and non-episodic
based methods) or for good generalization (e.g., metric-
learning based methods) on S with a few labeled support
examples. Note that, in experiment at study, given a dataset
D, it will be divided into Dtrain, Dval and Dtest for training,
validation and test, respectively. Typically, Dtrain will be
taken as the auxiliary set A, and multiple evaluation few-
shot tasks T = 〈S,Q〉will be formed by randomly sampling
from Dval and Dtest, respectively.

Notation. Following the literature, the auxiliary set, i.e.,
the set of base classes, is denoted as A = {Xi, yi}Ni=1, with
the image Xi ∈ RH×W×3 and the one-hot labeling vector
yi ∈ Y = {0, 1}Cbase . For a C-way K-shot task with C novel
classes, the support set and query set are represented as
S = {S1, · · · , SC} = {Xi, yi}CKi=1 and Q = {Qi, yi}CMi=1 ,
respectively, where Sc = {Xi, yc}Ki=1 contains K images
and is the c-th class in S . Let fθ(·) and gω(·) denote the
convolutional neural network based embedding backbone
and classifier, respectively. Also, gω(·) can be integrated
with fθ(·) into a same network and trained in an end-
to-end manner. For generic classification and the base

3

Auxiliary Set 𝐴 (Base classes)

𝑓!($)

Embedding

𝑔"($)

Classifier

ℒ(𝑌$, Y)
𝐴

Loss

Train Stage: Pre-training with base classes

Support Set 𝑆 (Novel classes)

𝑓!($) 𝑔"($) ℒ(𝑦*, 𝑦)
𝑆

Test Stage: Test-tuning with novel classes

Query Set 𝑄

Test

Fine-tune

(a) Non-episodic based methods

Auxiliary Set 𝐴
Embedding Classifier

ℒ(𝑌$!,𝑌!)

Loss

Train Stage: Meta training on base classes

Support Set 𝑆

Test Stage: Fast adaptation on novel classes

Query Image 𝑞

𝑓!(#) 𝑔"(#)
Support Set 𝐴!

Query Set 𝐴"

Meta-learner

𝑴𝝋(#)

ℒ(𝑌$",𝑌")

Base-learner

𝑓!(#) 𝑔"(#)

𝑀"(#)

ℒ(𝑌$!,𝑌!)

Test

Fine-tune

(b) Meta-learning based methods

Auxiliary Set 𝐴
Embedding Classifier

ℒ(𝑌! , 𝑌")

Loss

Train Stage: Episodic training on base classes

Support Set 𝑆 𝑓#())

Test Stage: 1-NN classification on novel classes

Query image 𝑞

𝑓#()) 𝑔$())Support Set 𝐴!

Query Set 𝐴"

𝑆#

𝑆$

𝑆%

𝑞

𝑑(𝑞, 𝑆#)

𝑑(𝑞, 𝑆$)

𝑑(𝑞, 𝑆%)

0.1

0.7

0.2

(c) Metric-learning based methods

Fig. 1. Illustrations of Non-episodic based, Meta-learning based and Metric-learning based methods, respectively. The first one uses a generic
classification task as the proxy task, while the latter two use a meta- or episodic-training paradigm in the training stage. At the test stage, the first
two will test-tune a new task-relevant classifier, while the last one simply uses a 1-NN classifier without any test-tuning.

learner in meta-learning, the cost function is represented as
L
(
gω(fθ(X)), y

)
. As for the metric-learning based FSL, the

cost function is represented as L
(
gω(fθ(X)|S), y

)
.

Episodic-training and Meta-training. To learn an ef-
fective FSL model, meta-training [20] or episodic-training
mechanism [2] is normally adopted at the training stage.
Both meta- and episodic-training rely on a lot of simulation
few-shot tasks, which are randomly constructed from the
auxiliary set A. Each simulated task T consists of two sub-
sets, AS and AQ, which are akin to S and Q, respectively.
Note that because the labels in each simulated task are
randomly assigned according to the original real labels in
the auxiliary set, we call such a kind of label as local-label.
In contrast, if the real labels of the auxiliary set are directly
used, we mean that global-label is used.

At each iteration, one simulated task (episode), i.e., T =
〈AS ,AQ〉, is adopted to train the current model. Conceptu-
ally, tens of thousands of tasks, i.e., {T i = 〈AiS ,AiQ〉}Mi=1 ∈
ρ(T), will be randomly sampled from a task distribution
ρ(T) to train this model. The core principle is that the
training condition (i.e., the training task) must match the
test condition (i.e., the target task) [2]. From the perspective
of meta-learning, as more tasks are observed, the model can
use the accumulated meta-knowledge to adapt its own bias
according to the characteristics of each task [25], [31].

2.2 Non-episodic based Methods
As illustrated in Figure 1(a), the non-episodic based meth-
ods [9], [27], [28], [30], [32], [33] generally follow the standard
transfer learning procedure [19], consisting of two phases,
i.e., pre-training with base classes and test-tuning with novel
classes.

Pre-training with base classes. In this phase, the whole
auxiliary set A is used to train a Cbase-class classifier by
using the standard cross-entropy loss as below,

Γ = argmin
θ,ω

N∑
i=1

LCE
(
gω(fθ(Xi)), y

)
, (1)

where LCE is the cross-entropy loss function.
Test-tuning with novel classes. Test-tuning is performed

in the test phase. Specifically, for each specific novel task
T = 〈S,Q〉, a new C-class classifier will be re-learned

based on S every time. Basically, the pre-trained embedding
parameter θ is fixed to avoid over-fitting, because there
is limited labeled data in S . Once the novel classifier is
learned, the labels of Q can be predicted.

Representative methods include Baseline [27], Base-
line++ [27], RFS-simple [27], SKD-GEN0 [32], S2M2 [33] and
Neg-Cosine [34], etc. The main difference between the first
three methods is that they use different classifiers at the
test-tuning stage: (1) Baseline [27] adopts a linear layer,
i.e., a fully-connected (FC) layer, as the new classifier; (2)
Baseline++ [27] replaces the standard inner product (in the
FC layer) with a cosine distance between the input feature
and weight vector; (3) RFS-simple [27] employs logistic
regression instead of the FC layer as the new classifier by
first using `2 normalization for the feature vector.

SKD-GEN0 [32] also uses logistic regression as the clas-
sifier as RFS-simple [27], where the only difference is that
additional rotation-based self-supervision [35] is further in-
troduced into the pre-training stage. In addition, both [27]
and [32] develop an extended version, respectively, by using
knowledge distillation [36]. As for S2M2, more auxiliary
tasks, such as Manifold Mixup [37], rotation [35] and Ex-
emplar [38], are introduced into the pre-training stage to
learn more powerful representations. Neg-Cosine [34] intro-
duces a negative margin loss, i.e., a negative-margin cosine
softmax loss, at the pre-training stage, and shows that this
will benefit the novel classes in the test-tuning phase.

Discussions. The above non-episodic based methods
have achieved surprisingly good results with a much sim-
pler methodology, shaking the foundation of the current
pure meta- or episodic-training based methods. The ques-
tion of “Should we discard meta- or episodic-training in FSL?”
will be interesting to investigate. On the other hand, in-
tuitively, the cross-entropy loss used in the pre-training
stage may make the learned representations overfit the seen
base classes, thus lacking generalization ability for unseen
classes. Moreover, the non-episodic methods strictly follow
the paradigm of standard transfer learning and heavily
focus on improving the pre-training stage by utilizing the
latest and popular deep learning tricks, which may some-
what overlook the intrinsic problems of FSL.

4

2.3 Meta-learning based Methods

As illustrated in Figure 1(b), meta-learning based methods [3],
[12], [26], [39], [40], [41], [42] normally perform a meta-
training paradigm on a family of few-shot tasks constructed
from the base classes at the training stage, aiming to make
the learned model able to quickly adapt to unseen novel
tasks at the test stage. In particular, the meta-training proce-
dure consists of a two-step optimization between the base-
learner and meta-learner. Specifically, given a sampled task
T = 〈AS ,AQ〉, Step-1 (i.e., base-learning or inner loop) is
to use AS (i.e., training examples in each task) to learn the
base-learner. Next, in Step-2 (i.e., meta-tuning or outer loop),
AQ (i.e., test samples in each task) is employed to optimize
the meta-learner. In this way, the meta-learner is expected
to learn a kind of across-task meta-knowledge, which can
be used for the fast adaptation on novel tasks.

Model-Agnostic Meta-Learning (MAML) is one repre-
sentative method [3], whose core idea is to train a model’s
initial parameters by involving the second-order gradients,
making this model able to rapidly adapt to a new task
just with one or a few gradient steps. Specifically, in the
base-learning phase (inner loop), given T = 〈AS ,AQ〉, the
current model FΘ = fθ ◦ gω and Θ = Θ0, we can obtain the
m-th inner loop gradient update as,

Θm = Θm−1 − α∇Θm−1LAS (FΘm−1) , (2)

where Θ = {θ, ω}, α is a step size hyper-parameter, and m
is the total number of inner iterations. Next, in the meta-
tuning phase (outer loop), the parameter of the model is
truly updated over the previous parameter Θ rather than
Θm by using the query set AQ, i.e.,

Θ = Θ − β∇ΘLAQ(FΘm
) , (3)

where β is a meta step size hyper-parameter.
Ridge Regression Differentiable Discriminator (R2D2)

is designed from another perspective [26], by adopting a
standard machine learning algorithm such as ridge regres-
sion as the base-learner classifier gω(·) in the inner loop.
Note that the base-learner classifier in MAML is a standard
FC layer. The advantage of R2D2 is that ridge regression
enjoys a closed-form solution, which can make the base-
learning phase more efficient. Specifically, the ridge regres-
sion with parameter matrix W ∈ Rd×c is formulated as,

Γ = argmin
W

‖XW − Y ‖2 + λ‖W ‖2

= (X>X + λI)−1X>Y ,
(4)

where X ∈ Rn×d and Y ∈ Rn×c denote n input samples
with d-dimensional features and the corresponding labels
(i.e., c classes), respectively, I is the identity matrix, and λ is
a regularization hyper-parameter.

Specifically, suppose there are n support images in AS ,
and fθ(·) can be used to obtain the feature embeddings,
i.e., X = fθ(AS) ∈ Rn×d. In the base-learning phase,
the optimal parameter matrix W ∗ can be easily obtained
according to Eq.(4). Next, in the meta-tuning phase, the
predictions of XQ = fθ(AQ) ∈ Rn×d can be achieved as,

Ŷ = αXQW
∗ + β , (5)

where α and β are scale and bias, respectively, which can be
learned by optimizing the meta-loss L(Ŷ ,YQ).

Other Representative Methods include Latent Em-
bedding Optimization (LEO) [40], Almost No Inner Loop
(ANIL) [41], Body Only update in Inner Loop (BOIL) [43],
MetaOptNet [12] and Versa [39]. Specifically, LEO, ANIL
and BOIL all follow the same optimization procedure as
MAML. The core idea of LEO is to optimize the meta-
learning process within a low-dimensional latent space,
and to learn a generative distribution of model parameters,
instead of directly learning the explicit high-dimensional
model parameters in MAML. ANIL tries to remove the inner
loop updates for the embedding backbone (i.e., fθ), but only
applies the inner loop adaptation to the classifier (i.e., gω),
which means that only ω is updated in Eq.(2). In contrast
with ANIL, BOIL updates only the embedding backbone
fθ but freezes the update of the classifier gω in the inner
loop. Similar to R2D2, MetaOptNet also attempts to use
a convex base learner, i.e, linear support vector machine
(SVM), in the inner loop for FSL. Different from the above
four methods, Versa is designed from a new perspective of
Bayesian learning by introducing a versatile amortization
network.

Discussions. We can see that there are mainly two de-
velopment directions in the meta-learning based methods:
(1) an implicit two-loop optimization direction following
the procedure of MAML, such as LEO, ANIL and BOIL;
(2) an explicit two-loop optimization direction following the
procedure of R2D2, e.g. MetaOpeNet. The former follows
a trend of designing a more efficient optimization-based
meta-learning method, aiming to address the complicated
optimization problem of meta-training. The latter aims to
design a more effective base learner by introducing the
traditional and classic machine learning algorithms into the
paradigm of meta learning. On the other hand, note that
the early meta-learning based methods mainly employ the
pure meta-training paradigm to learn a model from scratch.
Some methods, such as MTL [13] and LEO [40], have already
introduced pre-training into the training process, because
the pre-training technique can be easily leveraged as pre-
processing. Therefore, the effect of pre-training is worth
further investigating in meta-learning based FSL methods.

2.4 Metric-learning based Methods
As illustrated in Figure 1(c), different from the two-loop
structure of meta-learning based methods, metric-learning
based methods [4], [15], [22], [23], [44], [45], [46], [47] di-
rectly compare the similarities (or distances) between the
query images and support classes (i.e., learning-to-compare)
through one single feed-forward pass through the episodic-
training mechanism [2]. In other words, for each input
query image, the entire support set AS is jointly encoded
into the latent embedding space simultaneously, and their
relationships (i.e., outputs) are used to classify. In this way,
i.e., by conditioning on the support set, it is able to enable the
model adapt to the characteristics of each task, and make the
learned representations transferable between different tasks.

Prototypical Networks (ProtoNet) is a typical metric-
learning based method [23], which takes the mean vector
of each support class as its corresponding prototype repre-
sentation, and then compares the relationships between the

5

query image and prototypes. Specifically, given a few-shot
task T = 〈AS ,AQ〉, AS = {S1, S2, · · · , SC}, the prototype
ci ∈ Rd of each class Si can be formulated as,

ci =
1

|Si|

K∑
j=1

fθ(Xj) , (6)

where Xj ∈ Si, |Si| = K denotes there are K images (i.e., K-
shot) in the i-th support class. Here, fθ(Xj) ∈ Rd means
fθ(·) extracts d-dimensional global feature representation
for each input image. Given a distance function D(·, ·), such
as Euclidean distance, the predicted posterior probability
distributions of a query image Q is,

ρ(y = i|Q) =
exp

(
−D(fθ(Q), ci)

)∑C
j=1 exp

(
−D(fθ(Q), cj)

) . (7)

Specifically, at the training stage, the standard cross-entropy
loss can be employed to train the entire model. Also, during
test, the nearest-neighbor classifier (1-NN) can be conve-
niently used for prediction.

Deep Nearest Neighbor Neural Network (DN4) is
another representative method [15], which argues that per-
forming pooling on local features into a compact global-
level representation will lose considerable discriminative
information. Instead, DN4 advocates to directly use the raw
local features and employs a local descriptor based image-
to-class (I2C) measure to learn transferable local features.
Specifically, given an input image X , without the last pool-
ing or FC layer of the embedding network, fθ(X) ∈ Rd×h×w
will be a three-dimensional tensor, and can be reshaped as a
set of d-dimensional local descriptors

fθ(X) = [x1, . . . ,xn] ∈ Rd×n , (8)

where xi is the i-th local descriptor and n = h × w is
the total number of local descriptors for image X . Note
that, in ProtoNet, both query image and the images in
the support classes are represented with a global feature
vector, respectively. Especially, the class prototype is also
an average-pooling of multiple global feature vectors (e.g.,
the K-shot setting). In contrast, in DN4, both query image
and each support class are represented with a set of local
descriptors without any pooling.

Suppose a query image Q and a support class S are
represented as fθ(Q) = [x1, . . . ,xn] ∈ Rd×n and fθ(S) =
[fθ(X1), . . . , fθ(XK)] ∈ Rd×nK , respectively. The image-to-
class measure will be calculated as

DI2C(Q,S) =

n∑
i=1

Topk
(fθ(Q)> · fθ(S)
‖fθ(Q)‖F · ‖fθ(S)‖F

)
, (9)

where ‖·‖F denotes the Frobenius norm, and Topk(·) means
selecting the k largest elements in each row of the correlation
matrix between Q and S.

Other Representative Methods include Relation Network
(RelationNet) [4], Covariance Metric Network (CovaMNet) [14],
Cross Attention Network (CAN) [48], Deep Earth Mover’s Dis-
tance (DeepEMD) [45], Few-shot Embedding Adaptation with
Transformer (FEAT) [16], and Relational Embedding Network
(RENet) [49], etc. The core of RelationNet is to learn a
non-linear metric through a deep convolutional neural net-
work, instead of choosing a specific metric function, e.g.,
Euclidean distance. Instead of using traditional first-order

class representations, e.g., mean vector, CovaMNet proposes
a second-order local covariance representation to represent
each class along with a new covariance metric. From the
perspective of attention, CAN proposes to calculate the
cross attention between each pair of class feature and query
feature so as to learn more discriminative features. Similar
to DN4, DeepEMD also uses the set of local descriptors
as the representation for an image and employs the Earth
Mover’s Distance to calculate a structural distance between
dense local representations of two images. FEAT proposes
to take a set-to-set transformation via a transformer layer to
make the global instance embedding of support set become
task-specific for better adaptation. Similar to CAN, RENet
proposes a self-correlational representation module and a
cross-correlational attention module to learn relational pat-
terns within and between images, respectively.

Discussions. From the recent advances, we can see that
the main trends in metric-learning based methods are in
two folds: (1) how to effectively represent each image and
each support class; and (2) how to design a more powerful
metric function. Specifically, the research trends show that
using local descriptor representations may be a good choice
and designing a task-adaptive metric function is important.
In addition, we notice that because there are generally
no data-dependent parameters in the classifier (i.e., 1-NN
classifier), the metric-learning based methods do not have
the test-tuning procedure at the test stage. Therefore, is
the paradigm employed by metric-learning based methods
reasonable? In other words, is test-tuning really essential for
the FSL problem?

3 EVALUATION SETTINGS AND LIBFEWSHOT

Datasets. Our main experiments are conducted on two
benchmark datasets, i.e., miniImageNet [2] and tieredIma-
geNet [50]. Moreover, we also evaluate the cross-domain
generalization ability of each FSL method, three fine-grained
benchmark datasets, i.e., Stanford Dogs [51], Stanford Cars [52]
and CUB Birds-200-2011 [53]. Following the literature, each
data set is split into training (auxiliary), validation and test
sets, respectively. The details can be seen in Table 1. Note
that all the images in the above datasets are resized to a
resolution of 84×84.

Backbone Architectures. Following the literature [12],
[23], [27], we adopt three different embedding backbones
from shallow to deep, i.e., Conv64F, ResNet12 and ResNet18.
Specifically, Conv64F contains four convolutional blocks,
each of which consists of a convolutional (Conv) layer, a
batch-normalization (BN) layer, a ReLU/LeakyReLU layer
and a max-pooling (MP) layer, where the numbers of filters
of these blocks are {64, 64, 64, 64}. ResNet12 consists of
four residual blocks, each of which further contains three
convolutional blocks (each is built as Conv-BN-ReLU-MP)
along with a skip connection layer, where the numbers
of filters of these blocks are {64, 160, 320, 640}. ResNet18
is the standard architecture used in [54]. One important
difference between ResNet12 and ResNet18 is that ResNet12
uses Dropblock [55] in each residual block, while ResNet18
does not. Note that, in Table 2, the numbers of filters of
ResNet12† are {64, 96, 128, 256}; Conv64F† has five Conv
blocks; and Conv64F‡ uses additional low-level features.

6

TABLE 1
Data splits used in each dataset. Call/Ntrain is the total number of classes/images. Ctrain/Ntrain, Cval/Nval and Ctest/Ntest indicate the number of

classes/images in training (auxiliary), validation and test sets, respectively.

Dataset miniImageNet tieredImageNet Stanford Dogs Stanford Cars CUB Birds-200-2011

Call 100 608 120 196 200
Ctrain 64 351 70 130 130
Cval 16 97 20 17 20
Ctest 20 160 30 49 50

Nall 60000 779165 20580 16185 11788
Ntrain 38400 448695 12165 10766 7648
Nval 9600 124261 3312 1394 1182
Ntest 12000 206209 5103 4025 2958

TABLE 2
Reproduction results on mini ImageNet using the original paper settings. Results are reported with the mean accuracy over 3000 5-way 1-shot
and 5-way 5-shot test tasks, respectively. Global-label indicates that the global labels of the auxiliary set are used for pre-training or additional

global classification during training. Local-label means that only specific local labels are used in the episodic- or meta-training phase. Test-Tune
means test-tuning of using the support set during test. Test-DA denote data augmentation during test. KD means knowledge distillation and SS

means self-supervision. † and ‡ indicate that the standard backbones are different or slightly modified. X with blue color indicates a given trick is
not used in the original setting but used in our reproduction experiment. - means the result is not reported in the original paper.

Method Embed. Image Size Training Tricks 5-way 1-shot 5-way 5-shot

84 224 Lr/Optimizer/Decay Global-label Local-label Test-Tune Test-DA KD SS Reported Ours Reported Ours

Baseline Conv64F X 0.001/Adam/No X X 42.11 42.34 62.53 62.18

ResNet18 X 0.001/Adam/No X X 51.75 51.18 74.27 74.05

Baseline++ Conv64F X 0.001/Adam/No X X 48.24 46.21 66.43 65.18

ResNet18 X 0.001/Adam/No X X 51.87 53.60 75.68 73.63

RFS-simple ResNet12 X 0.05/SGD/Step X X X 62.02 62.80 79.64 79.57

RFS-distill ResNet12 X 0.05/SGD/Step X X X X 64.82 63.44 82.14 80.17

SKD-GEN0 ResNet12 X 0.05/SGD/Step X X X X 65.93 66.45 83.15 83.43

SKD-GEN1 ResNet12 X 0.05/SGD/Step X X X X X 67.04 67.09 83.54 83.67

Neg-Cosine ResNet12 X 0.003/Adam/Cosine X X 63.85 63.28 81.57 81.24

MAML Conv32F X 0.001/Adam/Step X X 48.70 47.41 63.11 65.24

Versa Conv64F† X 1e−4/Adam/Step X X 53.40 51.92 67.37 66.26

R2D2 Conv64F X 0.001/Adam/Step X X 49.50 47.57 65.40 66.68

Conv64F‡ X 0.001/Adam/Step X X 51.80 55.53 68.40 70.79

ANIL Conv32F X 0.001/Adam/Step X X 46.70 48.44 61.50 64.35

LEO WRN-28-10 X 4e−4/Adam/No X X X 61.76 55.89 77.59 70.55

BOIL Conv64F X 0.001/Adam/Step X X 49.61 48.00 66.45 64.39

ResNet12 X 0.001/Adam/Step X X − 58.87 71.30 72.88

MTL ResNet12 X
0.1/SGD/Step

X X X 60.20 60.20 74.30 75.86
0.001/Adam/Step

ProtoNet† Conv64F X 0.001/Adam/Step X 46.14 46.30 65.77 66.24

RelationNet Conv64F X 0.001/Adam/Step X 50.44 51.75 65.32 66.77

CovaMNet Conv64F X 0.001/Adam/Step X 51.19 53.36 67.65 68.17

DN4 Conv64F X 0.001/Adam/Step X 51.24 51.95 71.02 71.42

ResNet12† X 0.001/Adam/Step X 54.37 57.76 74.44 77.57

CAN ResNet12 X 0.1/SGD/Step X X 63.85 66.62 79.44 78.96

RENet ResNet12 X 0.1/SGD/MultiStep X X 67.60 66.83 82.58 82.13

7

TABLE 3
The overview picture of the state of the art on mini ImageNet and tiered ImageNet by controlling the most common implementation details

except some special tricks, with our LibFewShot. The fifth column shows the total number of trainable parameters used by each method.
Global-label indicates that the global labels of the auxiliary set are used for pre-training or global classification during training. Local-label means
that only the specific local labels are used in the episodic- or meta-training phase. Test-tune means test-tuning of using the support set at the test

stage. Note that SKD-GEN0 uses an additional self-supervision trick that is the core of this method.

Method Venue Embed. Type Para. Tricks miniImageNet tieredImageNet

Global-label Local-label Test-tune 1-shot 5-shot 1-shot 5-shot

Baseline [27] ICLR’19 Conv64F Non-episodic 0.22M X X 44.90 63.96 48.20 68.96

Baseline++ [27] ICML’19 Conv64F Non-episodic 0.22M X X 48.54 65.47 49.73 70.14

RFS-simple [30] ECCV’20 Conv64F Non-episodic 0.22M X X 47.97 65.88 52.21 71.82

Neg-Cosine [34] ECCV’20 Conv64F Non-episodic 0.22M X X 47.34 65.97 51.21 71.57

SKD-GEN0 [32] BMVC’21 Conv64F Non-episodic 0.22M X X 48.14 66.36 51.78 70.65

MAML [3] ICML’17 Conv64F Meta 0.12M X X 49.55 64.92 50.98 67.12

Versa [39] NeurIPS’18 Conv64F Meta 1.18M X X 52.75 67.40 52.28 69.41

R2D2 [26] ICLR’19 Conv64F Meta 0.11M X X 51.19 67.29 52.18 69.19

LEO [40] ICLR’19 Conv64F Meta 1.20M X X X 53.31 67.47 58.15 74.21

MTL [13] CVPR’19 Conv64F Meta 1.80M X X X 46.70 64.79 49.11 69.13

ANIL [41] ICLR’20 Conv64F Meta 0.12M X X 48.01 63.88 49.05 66.32

BOIL [43] ICLR’21 Conv64F Meta 0.12M X X 47.92 64.39 50.04 65.51

ProtoNet [23] NeurIPS’17 Conv64F Metric 0.11M X 47.05 68.56 46.11 70.07

RelationNet [4] CVPR’18 Conv64F Metric 0.23M X 51.52 66.76 54.37 71.93

CovaMNet [14] AAAI’19 Conv64F Metric 0.11M X 51.59 67.65 51.92 69.76

DN4 [15] CVPR’19 Conv64F Metric 0.11M X 54.47 72.15 56.07 75.75

CAN [48] NeurIPS’19 Conv64F Metric 0.13M X X 55.88 70.98 55.96 70.52

RENet [49] ICCV’21 Conv64F Metric 0.20M X X 57.62 74.14 61.62 76.74

Baseline [27] ICLR’19 ResNet12 Non-episodic 12.47M X X 56.39 76.18 65.54 83.46

Baseline++ [27] ICML’19 ResNet12 Non-episodic 12.47M X X 58.79 75.31 66.32 83.05

RFS-simple [30] ECCV’20 ResNet12 Non-episodic 12.47M X X 61.65 78.88 70.55 84.74

Neg-Cosine [34] ECCV’20 ResNet12 Non-episodic 12.47M X X 60.60 78.80 70.15 84.94

SKD-GEN0 [32] BMVC’21 ResNet12 Non-episodic 12.47M X X 66.40 83.06 71.90 86.20

Versa [39] NeurIPS’18 ResNet12 Meta 13.25M X X 55.71 70.05 57.14 75.48

R2D2 [26] ICLR’19 ResNet12 Meta 12.42M X X 59.52 74.61 65.07 83.04

LEO [40] ICLR’19 ResNet12 Meta 12.60M X X X 56.62 69.99 64.75 81.42

MTL [13] CVPR’19 ResNet12 Meta 13.13M X X X 62.67 79.16 68.68 84.58

ANIL [41] ICLR’20 ResNet12 Meta 12.43M X X 52.77 68.11 55.65 73.52

BOIL [43] ICLR’21 ResNet12 Meta 12.43M X X 58.87 72.88 64.66 80.38

ProtoNet [23] NeurIPS’17 ResNet12 Metric 12.42M X 57.10 74.20 62.93 83.30

RelationNet [4] CVPR’18 ResNet12 Metric 23.53M X 55.22 69.25 56.86 74.66

CovaMNet [14] AAAI’19 ResNet12 Metric 12.42M X 54.69 70.72 56.03 75.21

DN4 [15] CVPR’19 ResNet12 Metric 12.42M X 59.14 75.26 64.41 82.59

CAN [48] NeurIPS’19 ResNet12 Metric 12.65M X X 62.68 78.36 70.46 84.50

RENet [49] ICCV’21 ResNet12 Metric 12.67M X X 64.81 79.90 70.14 82.70

Baseline [27] ICLR’19 ResNet18 Non-episodic 11.20M X X 54.11 74.44 64.65 82.73

Baseline++ [27] ICML’19 ResNet18 Non-episodic 11.20M X X 52.70 75.36 65.85 83.33

RFS-simple [30] ECCV’20 ResNet18 Non-episodic 11.20M X X 61.65 76.60 69.14 83.21

Neg-Cosine [34] ECCV’20 ResNet18 Non-episodic 11.20M X X 60.99 76.40 68.36 83.77

SKD-GEN0 [32] BMVC’21 ResNet18 Non-episodic 11.20M X X 66.18 82.21 70.00 84.70

Versa [39] NeurIPS’18 ResNet18 Meta 11.96M X X 55.08 69.16 57.30 75.67

R2D2 [26] ICLR’19 ResNet18 Meta 11.17M X X 58.36 75.69 64.73 83.40

LEO [40] ICLR’19 ResNet18 Meta 11.31M X X X 57.51 69.33 64.02 78.89

MTL [13] CVPR’19 ResNet18 Meta 11.88M X X X 60.29 76.25 65.12 79.99

ANIL [41] ICLR’20 ResNet18 Meta 11.17M X X 52.96 65.88 55.81 73.53

BOIL [43] ICLR’21 ResNet18 Meta 11.17M X X 57.85 71.88 62.26 77.94

ProtoNet [23] NeurIPS’17 ResNet18 Metric 11.17M X 58.48 75.16 63.50 82.51

RelationNet [4] CVPR’18 ResNet18 Metric 18.29M X 53.98 71.27 60.80 77.94

DN4 [15] CVPR’19 ResNet18 Metric 11.17M X 57.30 74.23 64.83 82.77

CAN [48] NeurIPS’19 ResNet18 Metric 11.35M X X 62.33 77.12 71.70 84.61

RENet [49] ICCV’21 ResNet18 Metric 11.52M X X 66.21 81.20 71.53 84.55

8

Evaluation Protocols. Following the prior works [2], [4],
[23], in this paper, we control the evaluation setting for all
methods, evaluate them on 600 sampled tasks and repeat
this process five times, i.e., a total of 3000 tasks. The top-1
mean accuracy will be reported. In addition, early works [2],
[4], [23] generally use raw evaluation, i.e., directly resizing
the test image into 84 × 84 for evaluation, while the recent
work [9], [16], [27] has tried single center crop evaluation
like the generic image classification [54]. To make the com-
parison more fair and can adapt to future development,
we follow the latest setting to use the single center crop
evaluation.

Bag of Tricks. Many works in other fields show that
trick matters, especially in deep learning [56], [57], so as to
FSL. For example, some recent FSL works have introduced
such “tricks”, such as knowledge distillation [30], [32], self-
supervision [58], [59] and Mixup [33], into the FSL problem.
Specifically, we empirically summarize some key training
tricks in FSL as below: (1) using data augmentation at the
training stage (Train-DA); (2) augmenting the support set
multiple times at the test stage (Test-DA); (3) pre-training on
the auxiliary set (Pre-train); (4) global classification of using
the global labels of the auxiliary set (Global-label); (5) Larger
Episode size, i.e., increasing the number of tasks at each
iteration; (6) higher way-number or higher shot-number
during the episodic training; (7) using knowledge distilla-
tion or self-distillation (KD); (8) using self-supervision (SS);
(9) using Dropblock; (10) using label smoothing; and (11)
using more learnable parameters.

LibFewShot. In the literature, many implementation de-
tails or “tricks” are only briefly mentioned or even over-
looked in many FSL works. However, these non-trivial
tricks may lead to significant algorithm-agnostic performance
boost, which will make the comparison somewhat unfair
and make some conclusions untenable. In this sense, it will
not only make beginners struggle with the reproduction
of other comparison methods, but also hinder them from
developing their own methods. On the other hand, there
are many interesting issues worth studying under a unified
framework, including (1) the doubts on the necessity of
meta- or episodic-training mechanism posted by the recent
non-episodic based methods, (2) the effects of different deep
learning tricks on the FSL problem, (3) the actual progress
of FSL in the case of restricting deep learning tricks, (4) the
effect of transformers on FSL.

Therefore, to address the above issues, we develop a
comprehensive library for few-shot learning (LibFewShot) by re-
implementing the state-of-the-art methods into the same
framework and applying the same training tricks to the
maximum extent. So far, eighteen representative methods
have been investigated, including five non-episodic based
methods, seven meta-learning based methods and six metric-
learning based methods, where the details can be seen in
Table 2. The details of the architecture of LibFewShot are
illustrated in the supplementary material.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Reproduction Results
To validate the correctness of our re-implementation, we
adopt the original settings of these methods and re-

implement them with LibFewShot. Our re-implemented re-
sults and their originally reported results on miniImageNet
are shown in Table 2. Importantly, the original implemen-
tation details and tricks are also listed in detail, which
can intuitively show the differences between different FSL
methods on the implementation.

From Table 2, we can observe that: (1) different FSL
methods employ different backbones, especially the early
meta- and metric-learning based methods only use a shal-
low backbone of Conv64F, making the comparison between
different methods of using different backbones somewhat
unfair; (2) non-episodic based methods, especially RFS [30]
and SKD [32], indeed obtain the state-of-the-art results, but
they employ a much deeper backbone and much more tricks
than other methods; (3) both knowledge distillation (KD)
and self-supervision (SS) can significantly boost the per-
formance; (4) when using additional pre-training or global
classification with global labels, MTL [13], CAN [48] and
RENet [49] can achieve much better results. Notably, RENet
consistently outperforms RFS-simple and RFS-distill no
matter the officially reported results or our re-implemented
results in both the 1-shot and 5-shot settings, which shows
great potential of the paradigm of pre-training + meta-training.

4.2 Overview of the State of the Art

As seen in Table 2, the implementation details of different
methods vary a lot, which cannot trustingly reflect the actual
progress of FSL. To this end, we keep most of the common
training tricks consistent for all the methods except some
special tricks (e.g., self-supervision (SS) for SKD-GEN0 [32])
to make a relatively fair comparison. To be specific, we use
the exactly same embedding backbone, fixed input image
size, i.e., 84 × 84, the standard data augmentations (which
consists of Resize, RandomCrop, RandomHorizonFlip and
ColorJitter) during training, and center crop evaluation for
all the methods. As for the optimizer and learning rate
scheduler, only minor modifications are made according to
their settings in the original papers. All methods are trained
with 100 epochs, except for Versa with 200 epochs. Also,
2000 episodes are used for miniImageNet per epoch, while
5000 episodes for tieredImageNet. The results are reported
in Table 3.

First, when using Conv64F as the embedding backbone,
we can see that metric-learning based methods generally
achieve relatively better results than meta-learning based
and non-episodic based methods. This may be because
when the embedding backbone is shallow, i.e., the feature
representation is weak, the design or selection of metric
function will be important. As also can be seen, the best
methods of the metric-learning based and meta-learning
based methods are RENet and LEO, respectively. One com-
mon characteristic of these two methods is that they employ
both global- and local-label during training, which shows
both global and local labels will benefit few-shot learning.
In Section 4.4, we will further demonstrate this point. Sim-
ilarly, MTL and CAN also employ such a kind of training
strategy, both of which can obtain competitive results too. It
is worth mentioning that some methods use more trainable
parameters, such as Versa, LEO and MTL, which will also
somewhat affect the final results.

9

TABLE 4
The necessity of test-tuning in the test phase, where RFS-simple is taken as an example method by using different test settings. Test-tune

means test-tuning of using the support set at the test stage. `2 means using `2 normalization. (C, K) means C-way K-shot tasks.

Method Classifier Test-tune `2 (5,1) (5,5) (10,1) (10,5) (15,1) (15,5) (20,1) (20,5)

RFS-simple LR ! % 58.69 77.72 43.87 64.86 36.25 57.08 31.24 51.70

LR ! ! 61.61 78.80 45.85 65.18 37.72 57.01 32.47 51.25

RFS-NN 1-NN % % 56.74 78.27 41.64 65.73 33.87 58.06 29.19 52.70

1-NN % ! 60.64 78.85 44.89 66.20 36.86 58.46 31.70 53.15

Second, when using ResNet12 or ResNet18, a much
deeper network, as the embedding backbone, we observe
that the non-episodic based methods especially RFS-simple,
Neg-Cosine and SKD-GEN0, perform significantly better
than local-label based meta- and metric-learning methods,
such as Versa, R2D2, ANIL, BOIL, ProtoNet, RelationNet,
CovaMNet and DN4. However, when both global and local
labels are used, we can see that MTL, CAN and RENet will
be on par and even superior to RFS-simple and Neg-Cosine.
Note that SKD-GEN0 utilizes an additional self-supervision
trick, which essentially is not so fair for other methods. It
is also worth noting that when using ResNet12 as the back-
bone most of these methods will perform much better than
using ResNet18. This is because ResNet12 is much wider
than ResNet18, i.e., ResNet12 enjoys more parameters than
ResNet18. In addition, Dropblock is also used in ResNet12,
while ResNet18 does not.

4.3 The Necessity of Episodic- and Meta-training
One concern of our work is to investigate the necessity of
episodic- and meta-training and try to answer the questions
raised in Section 2. To this end, we employ RFS-simple [30]
without Test-DA as the benchmark, and use its pre-trained
ResNet12 on miniImageNet as the embedding backbone.

Is test-tuning really important at the test stage in
FSL? From Table 3, we can see that RFS-simple consistently
outperforms Baseline and Baseline++ when using ResNet12
or ResNet18 as the embedding backbone. However, the
only difference between them is that RFS adopts logistic
regression (LR) with `2 normalization as the classifier in the
test phase. That is to say, for each novel test task, a new
LR classifier will be specially learned during test (i.e., test-
tuning). Instead of using LR, we directly employ `2 nor-
malization based 1-NN for the final test classification, i.e., a
non-parametric classifier without requiring test-tuning, and
name this new variant as RFS-NN.

As seen in Table 4, without using `2 normalization, the
performance of RFS-simple will significantly degrade, espe-
cially in the 1-shot setting. In addition, using neither test-
tuning nor `2 normalization, RFS-NN still performs better
than RFS-simple on the 5-shot tasks. More importantly,
when only using `2 normalization, RFS-NN could achieve
very competitive results as RFS-simple on the 1-shot tasks
and clearly outperforms RFS-simple on the 5-shot tasks
especially in the higher way settings. This reveals that LR
or test-tuning is not so important in the limited-data regime, but
a good embedding and the `2 normalization are! One reason is
that `2 normalization can align the distributions between
the source and target domains (base and novel classes) to

some extent to guarantee good transferability (evidence can
be seen in [60]).

In summary, we argue that test-tuning is not so necessary
at the test stage in FSL because of the limited-data regime.
In another word, a few labeled examples normally cannot
learn an effective classifier in the test phase. This also
demonstrates that the paradigm of metric-learning based
methods is reasonable.

Is episodic- or meta-training necessary at the training
stage in FSL? To answer this question, we employ three
methods, i.e., ProtoNet, DN4 and R2D2, to episodic/meta
training (fine-tuning) the same pre-trained feature embed-
ding used in RFS-simple. That is to say, this is a kind of
paradigm of using pre-training with global labels and meta
fine-tuning with local labels. Note that for ProtoNet, we use
a cosine distance instead of the original Euclidean distance,
because the above analysis shows that `2 normalization is
important. Specifically, for each method, we perform C-way
1-shot episodic/meta training and the corresponding C′-
way 1-shot testing.

The results are shown in Figure 2, whose details can
be found in Section 4.4. As seen, for ProtoNet, DN4 and
R2D2, all the episodic- or meta- fine-tuning (i.e., Two Stages)
can further improve the performance over RFS-simple. Note
that the data augmentation used in the fine-tuning phase
(which only contains Resize and RandomResizedCrop) shall
be somewhat different from the data augmentation used
in the pre-training phase, which is one indetectable trick
for this success overlooked in the literature. We also notice
that if using somewhat different or more complicated metric
functions in the meta fine-tuning phase will also signifi-
cantly benefits the final performance. Overall, this simple
experiment demonstrates that pre-training may obtain a
good initial embedding, but it is not the optimal one. There-
fore, we argue that the episodic- or meta-training is worthy of
further investigation at the training stage in FSL.

4.4 Ablation Study on Non-trivial Tricks
In this section, we select multiple representative methods
from the three kinds of FSL methods and conduct abla-
tion studies on multiple non-trivial tricks. To be specific,
miniImageNet and ResNet12 are taken as the default bench-
mark dataset and embedding backbone, respectively. Also,
both 5-way 1-shot and 5-shot tasks are considered. Typically,
non-trivial tricks, including global-label, local-label, strong data
augmentation, knowledge distillation, label smoothing and self
supervision, are taken into consideration. In addition, RFS-
simple, R2D2, ProtoNet, DN4, CAN-Local and RENet-Local
will be selected as the representative FSL methods. Note that

10

RFS-simple ProtoNet DN4 R2D2 CAN-Local RENet-Local
50

52

54

56

58

60

62

64

66

68

Ac
cu

ra
cy 60.64

57.10
57.86 58.22

63.56

59.14
60.03

60.79

63.02

59.52 59.97
61.05

62.04

59.81

62.68 62.49

59.93

58.33

61.61

64.81

60.07

(a) 5-way 1-shot

vanilla
+ Global Classifer
+ Auxiliary Dataloader
+ Two Stages

RFS-simple ProtoNet DN4 R2D2 CAN-Local RENet-Local
60

65

70

75

80

85

90

Ac
cu

ra
cy

78.86

74.20
75.56 75.52

79.56

75.26 75.11

77.16
79.06

74.61 74.72

76.83
78.57

73.37

78.36 78.19

74.78

71.32

75.76

79.90

75.22

(b) 5-way 5-shot

vanilla
+ Global Classifer
+ Auxiliary Dataloader
+ Two Stages

Fig. 2. Effects of using both global and local labels on mini ImageNet with a ResNet12 backbone under both 5-way 1-shot and 5-shot settings.

CAN-Local and RENet-Local are the variants of CAN and
RENet of only using the local labels, respectively.

4.4.1 Effects of Global and Local Labels
To thoroughly investigate the effects of global and local
labels, we consider three types of how to use both of
them: (1) Pre-training with global labels at the first stage
and episodic fine-tuning with local labels using a specific
method at the second stage, we name this type as Two Stages
for simplicity; (2) Global classifier with global labels + local
classifier with local labels through episodic-training in a
multi-task learning manner, we name this type as Global
Classifier for short; (3) is similar to (2) but uses different
data loaders for these two tasks, which is first adopted in
RENet. We name the type of (3) as Auxiliary Dataloader for
simplicity. Note that both (2) and (3) are one-stage methods,
which use both global and local labels via a single training
process. From the results in Fig. 2, we have the following
observations.

(1) All three types of using both global and local labels
work well, and can effectively improve the performance
over the vanilla version of only using the local or global
labels; For example, under the 5-way 1-shot setting, ProtoNet
+ Two Stages (using both global and local labels) can achieve
an accuracy of 63.56%, obtaining 6.46% improvements over
the vanilla version (using local labels only), which is signif-
icantly better than RFS-simple (60.64%). Similarly, DN4 +
Two Stages (63.02%) and R2D2 + Two Stages (62.04%) gains
4.34% and 2.52% improvements over their vanilla versions,
respectively.

(2) For the episodic-training based methods of only using
local labels, such as ProtoNet, DN4 and R2D2, using extra
global labels by pre-training (i.e., a two-stage way) is the

ProtoNet R2D2 RFS-simple
54

56

58

60

62

64

66

Ac
cu

ra
cy

57.1

58.98
59.34 59.52

59.97

63.27

61.6561.62

63.73

(a) 5-way 1-shot

vanilla
+ mixup
+ cutmix

ProtoNet R2D2 RFS-simple
70

72

74

76

78

80

82

84

Ac
cu

ra
cy

74.2

76.77

77.89

74.61

77.15

80.32

78.88
79.29

81.08

(b) 5-way 5-shot

vanilla
+ mixup
+ cutmix

Fig. 3. Effects of using strong data augmentation, i.e., mixup and
cutmix, for ProtoNet, R2D2 and RFS-simple on mini ImageNet with a
ResNet12 backbone.

most effective way. In contrast, for the methods originally
designed with both global and local labels, such as CAN
and RENet, using the global labels with a multi-task manner
(i.e., a one-stage way) is generally the more effective way.

4.4.2 Effect of Strong Data Augmentation
Data augmentation is one of the most general and effective
tricks in the field of deep learning. Therefore, it will be inter-
esting to investigate the effect of strong data augmentation
techniques for FSL. To be specific, we take mixup [61] with
alpha of 0.2 and cutmix [62] with alpha of 1.0 (alpha is the
hyper-parameter of the beta distribution in these two tricks)

11

ProtoNet DN4 R2D2
56

57

58

59

60

61

62

63

Ac
cu

ra
cy

57.10

59.28

58.68

59.33
59.52

61.58

(a) 5-way 1-shot

vanilla
+ KD

ProtoNet DN4 R2D2
70

71

72

73

74

75

76

77

78

Ac
cu

ra
cy 74.20

76.06

74.69

76.42

74.06

76.00

(b) 5-way 5-shot

vanilla
+ KD

Fig. 4. Effect of knowledge distillation (KD) for ProtoNet, DN4 and
R2D2 on mini ImageNet with a ResNet12 backbone.

as the representative strong data augmentations and take
ProtoNet, R2D2 and RFS-simple as the representative FSL
methods.

From the results in Fig. 3, we can observe that: (1) cutmix
can significantly improve the performance of all the three
FSL methods. For example, in the 1-shot setting, cutmix
obtains 2.24%, 3.75%, and 2.08% improvements over the
vanilla versions of ProtoNet, R2D2 and RFS-simple, respec-
tively. Similarly, in the 5-shot setting, cutmix obtains 3.69%,
5.71%, and 2.2% improvements over the three vanilla ver-
sions, respectively. (2) In most cases, mixup can effectively
improve the performance of all the three FSL methods,
especially for ProtoNet and R2D2. For example, in the 5-shot
setting, mixup gains 2.57%, 2.54%, 0.41% improvements
over the vanilla versions of ProtoNet, R2D2 and RFS-simple,
respectively. (3) When using strong data augmentation, e.g.,
cutmix, R2D2 is surprisingly competitive to RFS-simple.
That is to say, by just using a simple data augmentation
technique, R2D2 + cutmix achieves accuracies of 63.27% and
80.32% in the 1-shot and 5-shot settings, respectively, which
are already very competitive in Table 3.

4.4.3 Effect of Knowledge Distillation

Knowledge distillation (KD) has been introduced for FSL
by some recent FSL methods, such as RFS-distill and SKD-
GEN1. To further verify its effect, we apply KD to three early
FSL methods, i.e., ProtoNet, DN4 and R2D2. Following RFS-
distill and SKD-GEN1, we also adopt the self-distillation to
distill the knowledge from a trained few-shot model to a
new identical model initialized from scratch for once.

As seen in Fig. 4, in both settings of 1-shot and 5-shot,
KD can consistently improve the performance of the vanilla
versions of all the three FSL methods. For example, under
the 5-shot setting, the gained improvements for ProtoNet,
DN4 and R2D2 are 1.86%, 1.73%, 1.94%, respectively. Simi-
larly, under the 1-shot setting, KD boosts the performance of
ProtoNet, DN4 and R2D2 by 2.18%, 0.65%, 2.06% improve-
ments, respectively. This shows that KD is indeed effective
in FSL. On the other hand, we shall notice that KD is a
general trick, which is applicable to other FSL methods.

ProtoNet DN4 R2D2
54

55

56

57

58

59

60

61

62

Ac
cu

ra
cy

57.10

58.04

59.14

59.69

56.78

59.35

(a) 5-way 1-shot

vanilla
+ Rotation

ProtoNet DN4 R2D2
70

71

72

73

74

75

76

77

78

Ac
cu

ra
cy 74.20

77.47

75.26

76.65

74.61

75.78

(b) 5-way 5-shot

vanilla
+ Rotation

Fig. 5. Effect of self supervision (SS) for ProtoNet, DN4 and R2D2 on
mini ImageNet with a ResNet12 backbone.

4.4.4 Effect of Self Supervision

Self-supervision methods have been shown to be effective
in many fields of deep learning with the advantage of
requiring no additional annotation costs. In the field of
FSL, Gudarus et al. [63] has used the additional rotation
prediction self-supervision [64] as an auxiliary parallel task.
Similarly, SKD [32] also adopts the rotation prediction as
an auxiliary task but in the pre-training stage. These works
have demonstrated that self-supervision, especially rotation
prediction self-supervision, is effective for FSL.

To further investigate whether self supervision is a
general trick for other FSL methods, we take the rotation
prediction as an auxiliary task and employ ProtoNet, DN4
and R2D2 as three representative FSL methods. Specifically,
all methods are trained from scratch through the episodic-
training mechanism by using an additional rotation classi-
fier in a multi-task manner. The results are shown in Fig. 5.
We can see that no matter in the 5-way 1-shot setting nor 5-
way 5-shot setting, the rotation prediction self supervision
can consistently boost the performance of all three FSL
methods. For example, in the 1-shot setting, the rotation self-
supervision can boost ProtoNet, DN4 and R2D2 for 0.94%,
0.55%, 2.57% improvements, respectively. Similarly, in the
5-shot setting, the gained performance improvements of
ProtoNet, DN4 and R2D2 are 3.27%, 1.39%, 1.17%, respec-
tively. This reveals that the self-supervision task, especially
the rotation prediction task, is indeed effective for FSL and
can be a general trick for different FSL methods.

4.4.5 Effect of Label Smoothing

Label smoothing (LS) [65] attempts to prevent the model
to be over-confident by softening the ground-truth labels,
which is a common trick in the field of deep learning and
representation learning. Therefore, it is also interesting to
investigate its effect on the problem of FSL. To be specific,
we apply LS to three FSL methods, including ProtoNet,
R2D2 and RFS-simple. In addition, for each method of using
LS, we adopt two different hyper-parameters for LS, i.e., 0.1
and 0.2, to balance the weight between the original ground-
truth and the uniform distribution.

12

TABLE 5
Using Transformer in FSL on both mini ImageNet and tiered ImageNet. All model are trained from scratch without pre-training. The fourth column

shows the total number of trainable parameters used by each model and the fifth column denotes the details of optimization during training.

Method Embedding Image Size Parameters Optimizer / Lr / Decay miniImageNet tieredImageNet

(5,1) (5,5) (5,1) (5,5)

ProtoNet ResNet12 84× 84 12.42M Adam/1e-3/Step 57.10 74.20 62.93 83.30

Swin-T 84× 84 26.59M AdamW/5e-4/Cosine 57.23 74.67 62.33 81.83

DN4 ResNet12 84× 84 12.42M Adam/1e-3/Step 59.14 75.26 64.41 82.59

Swin-T 84× 84 26.59M AdamW/1e-3/Cosine 54.29 67.46 64.94 79.36

R2D2 ResNet12 84× 84 12.42M Adam/1e-3/Step 59.52 74.61 65.07 83.04

Swin-T 84× 84 26.59M AdamW/5e-5/Cosine 50.41 61.68 54.71 67.68

RFS ResNet12 84× 84 12.47M Adam/1e-3/Step 61.65 78.88 70.55 84.74

Swin-T 84× 84 26.64M AdamW/5e-4/Cosine 58.13 76.94 68.12 83.99

ProtoNet R2D2 RFS-simple
54

56

58

60

62

64

Ac
cu

ra
cy

57.1

58.53
58.84

59.52
59.34

59.15

61.65
61.94

62.3

(a) 5-way 1-shot

vanilla
LS 1e-1
LS 2e-1

ProtoNet R2D2 RFS-simple
70

72

74

76

78

80

82

84

Ac
cu

ra
cy

74.2

74.87
75.25

74.61

76.6576.51

78.88
79.44

80.19

(b) 5-way 5-shot

vanilla
LS 1e-1
LS 2e-1

Fig. 6. Effect of using label smoothing (LS) for ProtoNet, R2D2 and
RFS-simple on mini ImageNet with ResNet12.

The results are reported in Fig. 6. From the results, not
surprisingly, we can see that in most cases, LS can further
improve the performance of the vanilla versions of the three
FSL methods, especially in the 5-shot setting. For example,
in the 5-shot setting, LS (0.2) boosts the performance of
ProtoNet, R2D2 and RFS-simple by 1.05%, 1.90%, 1.31%
improvements, respectively. This reveals that label smooth-
ing can also be a general trick for boosting the performance
of FSL methods.

5 USING TRANSFORMER IN FSL

In recent years, many new vision transformer based models
have been proposed, such as ViT [66], DeiT [67], DETR [68],
SETR [69], and Swin-Transformer [70], and shown promis-
ing results on a variety of vision tasks, compared with CNN
architecture-based models. Therefore, it will be interesting
to explore the effect of transformer in few-shot learning.

In particular, we implement four representative FSL
methods, including ProtoNet, DN4, R2D2 and RFS, by
using the tiny version of Swin Transformer (Swin-T for

short) [70], a powerful transformer network, as the em-
bedding backbone. Also, the versions using ResNet12 as
the embedding backbone for these methods are taken as
comparisons. Note that the common Swin-T is designed
for the generic image classification with the image size of
224×224, while FSL normally uses an image size of 84×84.
Therefore, for a fair comparison, we use an image size of
84 × 84 for Swin-T and change the down-sampling factors
for each stage (linear embedding + transformer block) from
(4, 2, 2, 2) to (3, 2, 2, 1) but keep all the other architecture
hyper-parameters by default. In terms of data augmenta-
tion, RandomCrop, RandomHorizontalFlip, and ColorJitter,
which are commonly used in few-shot learning, could not
achieve good results when using Swin-T as the backbone.
Therefore, we add RandAugment, mixup and cutmix into
the data augmentation transformations for better results. In
addition, we find that transformer is sensitive to the learning
rate, so we follow the literature of generic classification, use
AdamW as the optimizer, and carefully adjust each model’s
learning rate.

The results are reported in Table 5. From the results, we
observe that: (1) In most cases, Swin-T shows worse results
than ResNet12 on both miniImageNet and tieredImageNet.
This is because transformers generally rely on a large-scale
dataset for training to achieve excellent performance, be-
cause transformers lack locality and translation invariance
properties that existed in the CNN architecture [71], [72]. (2)
Swin-T can benefit from a large dataset, i.e., tieredImageNet.
As seen, all methods especially DN4 and RFS, obtain
much higher results on tieredImageNet than the results on
miniImageNet under both 1-shot and 5-shot settings. (3)
Interestingly, when using Swin-T, ProtoNet can achieve very
competitive results with the results of using ResNet12. Also,
DN4 with Swin-T achieves a higher result than DN4 with
ResNet12 on tieredImageNet under the 1-shot setting.

In summary, the above analyses reveal that transformers,
as the latest popular and powerful architecture, are also
promising and showing good potential in the field of few-
shot learning. However, the key to achieving this expecta-
tion is how to effectively address the generic limitation, i.e.,
the data-hungry property, of transformers.

13

TABLE 6
Cross-domain transferability. All methods are learned from the source domain (e.g., mini ImageNet), and directly evaluated on the test set of the

target domain (i.e., Stanford Dogs, Stanford Cars and CUB Birds-200-2011) with a ResNet12 backbone.

Method Type Test-tune Global-label KD SS mini→Dogs mini→Birds mini→Cars tiered→Dogs tiered→Birds tiered→Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline [27] Non-episodic X X 51.21 69.54 47.81 68.79 33.07 50.72 76.82 92.18 68.32 87.34 34.88 50.72

Baseline++ [27] Non-episodic X X 51.16 65.62 41.34 57.60 27.52 37.17 79.53 92.13 67.60 84.33 33.30 50.29

RFS-simple [30] Non-episodic X X 56.15 71.90 47.88 65.53 32.18 44.80 81.46 92.85 70.96 85.89 34.17 48.58

RFS-distill [30] Non-episodic X X X 58.46 74.88 50.12 69.19 33.20 47.83 81.44 93.01 71.35 87.42 35.61 53.36

Neg-Cosine [34] Non-episodic X X 56.09 72.31 47.39 66.34 31.30 45.12 81.87 93.25 70.53 86.70 33.31 49.80

SKD-GEN0 [32] Non-episodic X X X 56.29 74.51 51.94 72.71 33.04 48.66 73.55 89.18 70.32 87.06 35.03 50.87

SKD-GEN1 [32] Non-episodic X X X X 57.38 75.20 52.57 73.11 33.39 49.30 74.28 71.24 71.24 86.96 34.81 50.22

Versa [39] Meta X 42.35 57.83 40.98 58.10 25.98 31.63 51.28 76.17 49.71 66.85 25.09 35.38

R2D2 [26] Meta X 52.16 68.72 44.87 62.47 29.37 45.42 65.58 87.62 59.81 82.29 30.99 50.58

LEO [40] Meta X X 47.47 61.62 37.71 51.70 27.66 34.07 70.62 88.79 61.17 72.05 29.34 35.76

ANIL [41] Meta X 31.41 50.31 35.16 49.78 27.56 32.94 43.08 69.22 41.67 63.98 28.78 38.67

BOIL [43] Meta X 44.60 60.75 44.81 59.68 28.77 37.65 63.50 83.54 60.22 78.38 31.44 46.91

MTL [13] Meta X X 54.35 72.11 48.01 66.39 31.97 46.77 72.23 89.41 66.66 85.49 35.20 53.94

ProtoNet [23] Metric 40.62 65.80 44.17 67.73 27.82 41.53 57.21 86.70 56.15 82.47 29.93 48.51

RelationNet [4] Metric 38.77 57.96 40.45 53.49 26.69 31.70 49.40 72.44 50.84 68.26 27.91 37.91

CovaMNet [14] Metric 40.18 53.30 40.24 48.66 28.96 33.37 46.75 65.06 36.04 58.88 29.10 36.43

DN4 [15] Metric 43.72 59.82 42.77 61.73 29.08 43.66 55.36 76.83 55.78 74.84 32.81 47.71

CAN [48] Metric X 56.03 71.34 43.94 62.37 29.09 39.16 76.56 90.57 69.74 85.95 32.99 48.73

RENet [49] Metric X 53.60 71.44 48.69 65.79 31.09 44.45 77.67 90.68 69.50 85.17 32.35 44.00

5.1 Cross-domain Transferability

Cross-domain few-shot tasks have been introduced in many
FSL works in the literature. Therefore, it will also be inter-
esting to further evaluate the cross-domain transfer ability
of different FSL methods in LibFewShot, which are not
specially designed for this purpose. To this end, follow-
ing the literature [27], we conduct an experiment on six
cross-domain scenarios, e.g., miniImageNet→Stanford Dogs
(mini→Dogs for short). In this experiment, all the few-shot
models are trained on the source domain, e.g., miniImageNet
or tieredImageNet, using a ResNet12 backbone with the
same setting in Table 3 and directly tested on the target
domain, e.g., Standford Dogs or CUB Birds.

The results are reported in Table 6. From the results, we
have the following observations: (1) The models trained on
miniImageNet and tieredImageNet can easily generalize to
Stanford Dogs and CUB Birds that enjoy a small domain-
shift. However, their performance significantly drops when
performing on the Stanford Cars with a large domain-
shift. (2) In most cases, especially in the large domain-shift
scenario, i.e., mini→Cars, non-episodic based FSL methods
perform somewhat better than metric-based or meta-based
FSL methods. This means that pre-training is beneficial to
cross-domain scenarios. Pre-training can easily bring prior
strong representations which work well in natural image
cross-domain scenarios. Especially, MTL, CAN and RENet
use a pre-trained model or global labels, and they can also
perform well on the mini→Cars task. (3) We can see that the
classification accuracy on the cross-domain target datasets
is significantly lower than that on the in-domain target

datasets. This reveals that the current state-of-the-art FSL
methods cannot handle the cross-domain scenarios well,
which needs to be further investigated in the future.

6 CONCLUSIONS

In this paper, we present a comprehensive library for few-
shot learning (LibFewShot) by re-implementing the state-
of-the-art FSL methods in a unified framework. Through
LibFewShot, first, we are able to make a relatively fair
comparison between different methods to reflect the actual
progress of FSL. Second, we emphasize and demonstrate the
necessity of episodic- or meta-training. Third, we find that
test-tuning is not very important at the test stage because
of the limited-data setting in FSL, while a good embedding
and `2 normalization are truly important. Finally, we verify
that many deep learning tricks are indeed non-trivial but
are universal for different FSL methods. Also, we show that
transformers are promising for FSL but are still needed to
be further investigated in the future. We hope our work will
facilitate healthy research on few-shot learning.

ACKNOWLEDGMENTS

This work is supported in part by the Science and Tech-
nology Innovation 2030 New Generation Artificial Intelli-
gence Major Project (2021ZD0113303), National Natural Sci-
ence Foundation of China (62106100, 62192783, 61806092),
Jiangsu Natural Science Foundation (BK20221441), Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization, and Jiangsu Provincial Double-Innovation
Doctor Program (JSSCBS20210021).

14

REFERENCES

[1] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 28, no. 4, pp. 594–611, 2006.

[2] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2016, pp. 3630–
3638.

[3] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2017, pp. 1126–1135.

[4] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-shot
learning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 1199–1208.

[5] Q. Sun, Y. Liu, Z. Chen, T.-S. Chua, and B. Schiele, “Meta-transfer
learning through hard tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020.

[6] C. Simon, P. Koniusz, R. Nock, and M. Harandi, “Adaptive sub-
spaces for few-shot learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4135–
4144.

[7] W. Li, L. Wang, J. Huo, Y. Shi, Y. Gao, and J. Luo, “Asymmetric
distribution measure for few-shot learning,” in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2020,
pp. 2957–2963.

[8] H.-J. Ye, D.-C. Zhan, Y. Jiang, and Z.-H. Zhou, “Heterogeneous
few-shot model rectification with semantic mapping,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2020.

[9] S. Yang, L. Liu, and M. Xu, “Free lunch for few-shot learning: Dis-
tribution calibration,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2021.

[10] M. Abbas, Q. Xiao, L. Chen, P.-Y. Chen, and T. Chen, “Sharp-maml:
Sharpness-aware model-agnostic meta learning,” in Proceedings of
the International Conference on Machine Learning (ICML), 2022.

[11] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018, pp. 4367–4375.

[12] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning
with differentiable convex optimization,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 10 657–10 665.

[13] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning
for few-shot learning,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 403–412.

[14] W. Li, J. Xu, J. Huo, L. Wang, Y. Gao, and J. Luo, “Distribution
consistency based covariance metric networks for few-shot learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2019, pp. 8642–8649.

[15] W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo, “Revisiting local
descriptor based image-to-class measure for few-shot learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 7260–7268.

[16] H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha, “Few-shot learning via
embedding adaptation with set-to-set functions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 8808–8817.

[17] J. Xie, F. Long, J. Lv, Q. Wang, and P. Li, “Joint distribution matters:
Deep brownian distance covariance for few-shot classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022, pp. 7972–7981.

[18] A. Afrasiyabi, H. Larochelle, J.-F. Lalonde, and C. Gagné, “Match-
ing feature sets for few-shot image classification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2022, pp. 9014–9024.

[19] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1345–1359,
2009.

[20] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lilli-
crap, “Meta-learning with memory-augmented neural networks,”
in Proceedings of the International Conference on Machine Learning
(ICML), 2016, pp. 1842–1850.

[21] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

[22] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural net-
works for one-shot image recognition,” in Proceedings of the In-
ternational Conference on Machine Learning (ICML) Deep Learning
Workshop, 2015.

[23] J. Snell, K. Swersky, R. Zemel, and R. Zemel, “Prototypical net-
works for few-shot learning,” in Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), 2017, pp. 4077–
4087.

[24] S. Thrun, “Lifelong learning algorithms,” in Learning to Learn,
1998, pp. 181–209.

[25] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Artificial Intelligence Review, pp. 77–95, 2002.

[26] L. Bertinetto, J. F. Henriques, P. H. S. Torr, and A. Vedaldi, “Meta-
learning with differentiable closed-form solvers,” in Proceedings of
the International Conference on Learning Representations (ICLR), 2019.

[27] W. Chen, Y. Liu, Z. Kira, Y. F. Wang, and J. Huang, “A closer look at
few-shot classification,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2019.

[28] G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto, “A
baseline for few-shot image classification,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

[29] Y. Chen, X. Wang, Z. Liu, H. Xu, and T. Darrell, “A new meta-
baseline for few-shot learning,” arXiv preprint arXiv:2003.04390,
2020.

[30] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola,
“Rethinking few-shot image classification: A good embedding is
all you need?” in Proceedings of the European Conference on Computer
Vision (ECCV), 2020, pp. 266–282.

[31] S. Thrun and L. Pratt, “Learning to learn: Introduction and
overview,” in Learning to Learn, 1998, pp. 3–17.

[32] J. Rajasegaran, S. Khan, M. Hayat, F. S. Khan, and M. Shah,
“Self-supervised knowledge distillation for few-shot learning,” in
Proceedings of the British Machine Vision Conference (BMVC), 2021.

[33] P. Mangla, M. Singh, A. Sinha, N. Kumari, V. N. Balasubramanian,
and B. Krishnamurthy, “Charting the right manifold: Manifold
mixup for few-shot learning,” in Proceedings of the IEEE Winter
Conference on Applications of Computer Vision (WACV), 2020, pp.
2207–2216.

[34] B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, and H. Hu,
“Negative margin matters: Understanding margin in few-shot
classification,” in Proceedings of the European Conference on Computer
Vision (ECCV), vol. 12349, 2020, pp. 438–455.

[35] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised represen-
tation learning by predicting image rotations,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[36] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in Proceedings of the Conference on Neural Informa-
tion Processing Systems (NeurIPS) Deep Learning and Representation
Learning Workshop, 2015.

[37] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-
Paz, and Y. Bengio, “Manifold mixup: Better representations by
interpolating hidden states,” in Proceedings of the International
Conference on Machine Learning (ICML), vol. 97, 2019, pp. 6438–
6447.

[38] A. Dosovitskiy, J. T. Springenberg, M. A. Riedmiller, and T. Brox,
“Discriminative unsupervised feature learning with convolutional
neural networks,” in Proceedings of the Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2014, pp. 766–774.

[39] J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. E. Turner,
“Versa: Versatile and efficient few-shot learning,” in Proceedings of
the Conference on Neural Information Processing Systems (NeurIPS),
2018, pp. 1–9.

[40] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osin-
dero, and R. Hadsell, “Meta-learning with latent embedding opti-
mization,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

[41] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals, “Rapid learning or
feature reuse? towards understanding the effectiveness of maml,”
in Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2020.

[42] W. Xu, H. Wang, Z. Tu et al., “Attentional constellation nets for
few-shot learning,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2020.

[43] J. Oh, H. Yoo, C. Kim, and S. Yun, “BOIL: towards representation
change for few-shot learning,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

15

[44] C. Doersch, A. Gupta, and A. Zisserman, “Crosstransformers:
Spatially-aware few-shot transfer,” in Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2020.

[45] C. Zhang, Y. Cai, G. Lin, and C. Shen, “Deepemd: Few-shot
image classification with differentiable earth mover’s distance
and structured classifiers,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 12 203–
12 213.

[46] D. Wertheimer, L. Tang, and B. Hariharan, “Few-shot classification
with feature map reconstruction networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 8012–8021.

[47] D. Kang, H. Kwon, J. Min, and M. Cho, “Relational embedding
for few-shot classification,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2021.

[48] R. Hou, H. Chang, B. Ma, S. Shan, and X. Chen, “Cross attention
network for few-shot classification,” in Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2019.

[49] D. Kang, H. Kwon, J. Min, and M. Cho, “Relational embedding
for few-shot classification,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2021.

[50] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenen-
baum, H. Larochelle, and R. S. Zemel, “Meta-learning for semi-
supervised few-shot classification,” in Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2018.

[51] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li, “Novel
dataset for fine-grained image categorization: Stanford dogs,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshop, 2011, p. 1.

[52] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object represen-
tations for fine-grained categorization,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV) Workshop, 2013,
pp. 554–561.

[53] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds-200-2011 dataset,” 2011.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[55] G. Ghiasi, T. Lin, and Q. V. Le, “Dropblock: A regularization
method for convolutional networks,” in Proceedings of the Confer-
ence on Neural Information Processing Systems (NeurIPS), 2018, pp.
10 750–10 760.

[56] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag
of tricks for image classification with convolutional neural net-
works,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 558–567.

[57] T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu, “Bag of tricks for
adversarial training,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2021.

[58] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord,
“Boosting few-shot visual learning with self-supervision,” in Pro-
ceedings of the IEEE International Conference on Computer Vision
(ICCV), 2019, pp. 8059–8068.

[59] J. Su, S. Maji, and B. Hariharan, “When does self-supervision im-
prove few-shot learning?” in Proceedings of the European Conference
on Computer Vision (ECCV), 2020, pp. 645–666.

[60] R. Xu, G. Li, J. Yang, and L. Lin, “Larger norm more transferable:
An adaptive feature norm approach for unsupervised domain
adaptation,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2019, pp. 1426–1435.

[61] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2018.

[62] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2019, pp. 6022–6031.

[63] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord,
“Boosting few-shot visual learning with self-supervision,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 8058–8067.

[64] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised represen-
tation learning by predicting image rotations,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[65] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 2818–2826.

[66] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

[67] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” in Proceedings of the International Conference
on Machine Learning (ICML), vol. 139, 2021, pp. 10 347–10 357.

[68] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: deformable transformers for end-to-end object detection,”
in Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2021.

[69] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. S. Torr, and L. Zhang, “Rethinking semantic
segmentation from a sequence-to-sequence perspective with trans-
formers,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021, pp. 6881–6890.

[70] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2021, pp. 9992–10 002.

[71] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,
“Cvt: Introducing convolutions to vision transformers,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021, pp. 22–31.

[72] Y.-H. Cao, H. Yu, and J. Wu, “Training vision transformers with
only 2040 images,” arXiv preprint arXiv:2201.10728, 2022.

[73] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“Autoaugment: Learning augmentation policies from data,” arXiv
preprint arXiv:1805.09501, 2019.

[74] T. DeVries and G. W. Taylor, “Improved regularization of
convolutional neural networks with cutout,” arXiv preprint
arXiv:1708.04552, 2017.

[75] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le, “Randaugment: Practi-
cal automated data augmentation with a reduced search space,” in
Proceedings of the Conference on Neural Information Processing Systems
(NeurIPS), 2020.

APPENDIX A
ARCHITECTURE

LibFewShot is built on PyTorch 1.5.0, and its architecture
can be seen in Fig. 7. Because of the great differences
between different FSL methods in terms of the network
architecture, loss function and optimizer, it is difficult to
directly integrate the existing FSL methods into the same
framework. To address this issue, we disassemble each FSL
method into multiple small common modules, aiming to
integrate them into the same framework in a more flexible
way. The details will be described in the following sections.

A.1 Model
The Model module belonging to the Trainer module is a
key part of the whole framework, because all the network
architectures of the FSL methods are implemented within
this module. Specifically, Model consists of Backbone, Classi-
fier, Local Optimizer, Metric Function and Loss Function. Also,
we will briefly describe some of these core parts.

Backbone. The embedding backbone plays an impor-
tant role in the field of deep learning. In order to sup-
port different requirements, LibFewShot provides options
of the commonly used embedding modules, e.g., Conv64F,
ResNet12, ResNet18, Wide ResNet (WRN) and Vision Trans-
former (ViT). Moreover, because some methods may need
to modify the backbones in some cases, such as feature
flattening, global average pooling and using multi-level

16

Config Info

Data Loader

Log System

Model

Optimizer

Trainer

Backbone

Classifier

Local Optimizer

Metric Func

Loss Func

PyYAML PyTorch TensorBoard

Numpy Scikit-learn ……

Train&Test Log Visualization Checkpoints

Model

Fig. 7. Architecture of the proposed LibFewShot built on PyTorch.

features, LibFewShot can conveniently meet such kinds of
requirements by simply modifying the configuration files.

Classifier. Despite the backbone part, the classifier may
be the soul of one FSL method. However, we find that
some FSL methods have inconsistent operations in the train-
ing phase and evaluation phase. To overcome this issue,
we implement two functions in the Classifier module, i.e.,
set forward loss function and set forward function, which can
be flexibly used for the training mode and evaluation mode,
respectively. As mentioned in the main paper, we divide
the FSL methods into three categories, i.e., non-episodic based
methods, meta-learning based methods and metric-learning based
methods. To avoid the duplication of work, we provide a
category-dependent function for each category, and they all
inherit the same abstract function, in which the commonly
used and model-agnostic hyper-parameters can be defined.

In addition, we notice that the official implementations
of some FSL methods can only support single-task episodic
training (i.e., one task in each mini-batch), which may make
the FSL models be sensitive to the hyper-parameters and
initializations. In contrast, some other FSL methods have
already supported multi-task episodic training (i.e., multiple
tasks in each mini-batch). To make a more fair comparison,
we re-implement the architectures of the classifiers of the
methods that can only support single-task episodic training
to support multi-task episodic training. In this sense, users
can realize this operation by simply modifying the parame-
ter of episode size in the configuration file.

A.2 Dataloader

LibFewShot provides a special dataloader, which can fulfill
the requirements in few-shot learning. Specifically, LibFew-
Shot assumes that all datasets have a similar file structure.
It means that each dataset should have an image folder con-
taining all the images and three csv files (train, validation

and test) to indicate the image path and its corresponding
class label. Moreover, LibFewShot will provide the pro-
cessed datasets or the corresponding conversion program,
depending on the open source protocol of these datasets.

In FSL, the input data structure is generally different
from that of the generic computer vision tasks. In another
word, in FSL, the smallest data unit is not an image but a
task, which contains 5 × (5 + 15) = 100 images in a 5-way
5-shot setting when there are 15 query images per class. For
this reason, many open source codes for FSL only sample a
whole task per thread, which severely limits the efficiency
of data loading. Differently, LibFewShot deigns a Categories-
Sampler to sample a task by sampling one image per thread.
In this way, data loading will not be a bottleneck anymore,
even though under the condition of a large number of batch
(task) size, i.e., multi-task episodic training.

Data augmentation is a nontrivial technique to boost
the classification performance in FSL. Most of the existing
FSL methods adopt the same data augmentation for both
support set and query set at the training stage, but do
not apply data augmentation at the test stage. However,
recently, some works [30], [32] have introduced data aug-
mentation into the test stage for the support set, which
shows the effectiveness of such an operation. Therefore,
both kinds of data augmentation strategies are supported
in LibFewShot (i.e., collate function).

Note that, collate function in LibFewShot can apply the
same or different transformations on the support set and
query set separately. In addition, LibFewShot also provides
some latest data augmentation methods, such as AutoAug-
ment [73], Cutout [74] and RandomAugment [75], which
are not officially provided by PyTorch but are still useful,
and allows users to conveniently define their own data
transformation list.

A.3 Trainer and Tester
Trainer is the core of LibFewShot, and Tester is an enhanced
test version of Trainer. In the training phase, Trainer prepares
the training environment by using the configuration infor-
mation. According to the configuration information, Trainer
initializes the network parameters, creates the optimizer and
assigns the GPU and so on. After that, it calls the training,
evaluation, and test functions in a loop until the training is
completed. The training information, e.g. the configuration
information, training log, and checkpoints, is also dumped
into the disk. In the test phase, Tester does similar things, but
only calls the test function to calculate the final evaluation
criteria.

A.4 Configs
LibFewShot obtains the configuration information from the
YAML file, in which the network structure, episode size,
data root, and training epochs are determined. In order to
avoid missing some important parameters, we set a default
configuration file, and the framework will read this file first.
In addition, our framework can also support a user-defined
configuration file, which will replace the same parameters
in the default configuration file. If some parameters are not
defined in the users’ configuration file, the framework will
use the default profile settings for training.

17

TABLE 7
Supported functions of LibFewShot compared with other official FSL codes. Methods using for-loops multi-episodes are marked with †, which can

not use the characteristic of GPU paralleling and will lead to slower computation.

Multi-episodes Multi-GPUs Different-ways & shots Different Data Augmentations

Method Official LibFewShot Official LibFewShot Official LibFewShot Official LibFewShot

Baseline X X
Baseline++ X X

RFS X X X X
SKD X X X X

MAML † † X X
Versa X X X X X
R2D2 X X X X X X
LEO X X X
MTL † X X
ANIL † X X

ProtoNet X X X X X
RelationNet X X X X
CovaMNet † X X X X X X

DN4 † X X X X X
CAN X X X X

A.5 How to Run the LibFewShot?

The whole program can be stated by the run trainer and
run tester scripts. When users have implemented their own
methods and the corresponding configuration files, or just
use our re-implemented methods and configuration files,
they only need to modify the configuration file’s path in the
run trainer and then run it. The run trainer script will parse
the configuration file first and overwrite some options in
the default configuration, and then pass the configurations
to Trainer to start the training stage. When the training stage
is finished, the users can modify the checkpoints’ path in
the run tester and overwrite some options to run a test.
Tester will automatically use the configuration file in the
checkpoints directory to set up a network. Note that, the
parameters at the test stage can also be overwritten by a
manually defined parameter list.

A.6 Other Supported Functions

Based on the above designs, LibFewShot can already sup-
port multiple advanced functions, including multi-episodes,
multi-GPUs, different-ways & shots and different data augmen-
tations for all re-implemented FSL methods. Multi-episodes
and multi-GPUs mean that LibFewShot supports multi-
task episodic training and multi-GPUs training for each
method, respectively. Different-ways & shots indicate that
LibFewShot supports different numbers of ways and shots
in the training and evaluation phases. Different data aug-
mentations mean that LibFewShot can support using more
flexible data augmentation for the support set and query
set. An overview of the comparison between LibFewShot
and other FSL methods is shown in Table 7.

APPENDIX B
MULTI-GPUS

LibFewShot adopts DataParallel provided in PyTorch
to provide the multi-GPUs processing ability. Moreover,
LibFewShot not only supports the backbones to train in

TABLE 8
Average train/interface time for each task and memory for each GPU,

respectively, when using DN4 in LibFewShot.

GPUs 1 2 4 8

Train 16.07ms 12.17ms 8.48ms 6.84ms
Inference 12.04ms 6.57ms 4.27ms 3.04ms
Memorymean 15263MB 15425MB 15430MB 15691MB
Memorymin 15263MB 15207MB 15425MB 15407MB
Memorymax 15263MB 15633MB 15957MB 17355MB

parallel, but also enables the classifiers to be processed in
parallel. Notably, all the re-implemented FSL methods in
LibFewShot can be parallelized.

In order to measure the efficiency of multi-GPUs train-
ing in LibFewShot, we randomly sample images from
miniImageNet and use these images to construct 160, 000
5-Way 1-Shot tasks. Specifically, DN4 is selected to process
these tasks, and we calculate the training/interface time and
memory distributions. For fairness, we use different episode
sizes when using different numbers of GPUs to make sure
16 tasks are in 1 GPU. The time and memory consumed by
different GPUs during training are shown in Table 8.

As seen, when the number of GPUs increases, the av-
erage memory occupied by each task will also increase.
This is because the communication between GPUs will
also increase the time cost during the multi-GPUs training.
However, correspondingly, because more GPUs can be used
to train more tasks at the same time, the training speed will
be significantly improved. When 8 GPUs are used, and each
GPU has 16 few-shot tasks, the training speed can reach
more than 2 times faster than only using 1 GPU.

	1 Introduction
	2 Overview of Few-shot Learning Methods
	2.1 Problem Formulation
	2.2 Non-episodic based Methods
	2.3 Meta-learning based Methods
	2.4 Metric-learning based Methods

	3 Evaluation Settings and LibFewShot
	4 Experimental Results and Discussions
	4.1 Reproduction Results
	4.2 Overview of the State of the Art
	4.3 The Necessity of Episodic- and Meta-training
	4.4 Ablation Study on Non-trivial Tricks
	4.4.1 Effects of Global and Local Labels
	4.4.2 Effect of Strong Data Augmentation
	4.4.3 Effect of Knowledge Distillation
	4.4.4 Effect of Self Supervision
	4.4.5 Effect of Label Smoothing

	5 Using Transformer in FSL
	5.1 Cross-domain Transferability

	6 Conclusions
	References
	Appendix A: Architecture
	A.1 Model
	A.2 Dataloader
	A.3 Trainer and Tester
	A.4 Configs
	A.5 How to Run the LibFewShot?
	A.6 Other Supported Functions

	Appendix B: Multi-GPUs

