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Abstract

Deep neural network compression is important and increas-
ingly developed especially in resource-constrained environ-
ments, such as autonomous drones and wearable devices.
Basically, we can easily and largely reduce the number of
weights of a trained deep model by adopting a widely used
model compression technique, e.g., pruning. In this way,
two kinds of data are usually preserved for this compressed
model, i.e., non-zero weights and meta-data, where meta-
data is employed to help encode and decode these non-zero
weights. Although we can obtain an ideally small number
of non-zero weights through pruning, existing sparse matrix
coding methods still need a much larger amount of meta-data
(may several times larger than non-zero weights), which will
be a severe bottleneck of the deploying of very deep mod-
els. To tackle this issue, we propose a layerwise sparse cod-
ing (LSC) method to maximize the compression ratio by ex-
tremely reducing the amount of meta-data. We first divide
a sparse matrix into multiple small blocks and remove zero
blocks, and then propose a novel signed relative index (SRI)
algorithm to encode the remaining non-zero blocks (with
much less meta-data). In addition, the proposed LSC per-
forms parallel matrix multiplication without full decoding,
while traditional methods cannot. Through extensive exper-
iments, we demonstrate that LSC achieves substantial gains
in pruned DNN compression (e.g., 51.03x compression ra-
tio on ADMM-Lenet) and inference computation (i.e., time
reduction and extremely less memory bandwidth), over state-
of-the-art baselines.

1 Introduction
Deep neural networks (DNNs), especially the very deep net-
works, have evolved to be the state-of-the-art techniques
in many fields, particularly in computer vision, natural
language processing, and audio processing (Krizhevsky,
Sutskever, and Hinton 2012; Sutskever, Vinyals, and Le
2014; Abdel-Hamid et al. 2014). However, the huge growth
numbers of hidden layers and neurons, which consume con-
siderable hardware storage and memory bandwidth, posing
significant challenges to many resource-constrained scenar-
ios in real-world applications. In particular, the arrival of the
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post-Moore era slows down the hardware replacement cy-
cle (Hu 2018). Specifically, there are two main bottlenecks
of the current DNNs:
• Conflict with energy-constrained application platforms,

such as autonomous drones, mobile phones, mobile
robots and augmented reality (AR) in the daily life
(Krajnı́k et al. 2011; Floreano and Wood 2015; Kami-
laris and Prenafeta-Boldú 2018). These application plat-
forms are very sensitive to the energy consumption and
computational workload of the DNN models. Therefore,
DNN models with low energy consumption but good per-
formance are urgently needed.

• Conflict with new accelerators, such as FPGA, custom
ASIC and AI dedicated chips (Chen et al. 2014; Zhang et
al. 2015; Han et al. 2016). They are powerful computing
accelerators for DNNs, but are also sensitive to hardware
storage, memory bandwidth, and parallelism. Obviously,
DNNs are expected to be able to reduce the usage of hard-
ware storage and memory while enjoying the ability of
parallelism.
To tackle the above bottlenecks, a lot of compression

methods have been proposed, such as pruning (Han et
al. 2015; Anwar, Hwang, and Sung 2017) and quantiza-
tion (Han, Mao, and Dally 2016; Park, Ahn, and Yoo
2017). Adopting these efficient compression methods, we
can easily reduce the number of weights of a trained DNN
model. For instance, using the classic magnitude-based
pruning (Han et al. 2015), we can make the weight matrices
of the target network very sparse. To store and migrate these
sparse weights, we usually decompose them into two types
of data, i.e., non-zero weights and meta-data. Particularly,
these non-zero weights are the effective path of the original
network that have high impact to the final prediction, while
the meta-data (expressing index information) is adopted to
encode and decode these non-zero weights. It seems that we
can achieve a high compression ratio by reducing the num-
ber of the non-zero weights as much as possible, when guar-
anteeing an acceptable final performance. Unfortunately, we
will still suffer from a high amount of meta-data, which may
be several times larger than the non-zero weights. In fact, the
large amount of meta-data is a roadblock for pruned DNNs
to compress, store and migrate.
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Figure 1: One example of the COO algorithm, illustrating the redundancy in the process of sparse weights storage.

An intuitive example is shown in Figure 1. Given a small
network, i.e., ADMM-Lenet (Zhang et al. 2018), with a size
of 1682KB, which prunes Lenet into a very sparse network
with a compression ratio of 98.6%. By using the Coordinate
Format (COO) algorithm (Bell and Garland 2009), there are
only 23.5KB non-zero weights in this compressed network,
but we still need extra 47.4KB meta-data to recover this net-
work. It means that, we need 70.9KB storage space to store
these non-zero weights, which is three times larger than what
we essentially want to store. Thus, the large size of meta-
data will harm the actual compression ratio of the model,
which is not deeply studied by traditional sparse coding
methods in the literature. In addition, traditional sparse cod-
ing methods (Bell and Garland 2009; Zhu and Gupta 2018;
Han, Mao, and Dally 2016) also ignore one important re-
quirement of DNNs, i.e., efficient inference. This will be an-
other bottleneck of deploying the compressed deep models.

In this paper, we propose a layerwise sparse coding (LSC)
method, which tries to extremely maximize the compres-
sion ratio of the pruned DNN models by specially design
the encoding mechanism of the meta-data. Also, we take the
requirement of efficient inference into consideration, mak-
ing it possible to inference without full decoding. Specifi-
cally, LSC is a two-layer method. In the first layer (block
layer), for the efficient inference purpose, we divide each
sparse weight matrix into multiple small blocks, and then
mark and remove zero blocks. Since zero blocks have no ef-
fect on the final prediction, we only need to pay attention to
the small number of non-zero blocks, which can naturally
accelerate the coding and inference processes. In the sec-
ond layer (coding layer), we propose a novel signed relative
index (SRI) algorithm to tackle these non-zero blocks with
minimal amount of meta-data.

In summary, our main contributions are as follows:

• We find that the true bottleneck of the compression ratio
is caused by the meta-data. Furthermore, we propose an
LSC method to tackle this problem.

• To accelerate the inference process, we divide these sparse
weight matrices into multiple small blocks to make better
use of their sparsity. Moreover, the dividing mechanism
makes the compressed model be able to infer efficiently
without full decoding.

• We propose a novel SRI algorithm, which can encode the
non-zero weights with minimal space (i.e., minimal size
of meta-data). In addition, we theoretically prove that our
SRI is superior to other coding methods.

• Extensive experiments demonstrate that the proposed

LSC achives substantial gains in pruned DNN compres-
sion (e.g. 51.03x compression ratio on ADMM-Lenet)
and inference computation (i.e. less time and extremely
less memory bandwidth), over state-of-the-art baselines.

2 Related Work

The general processes of learning a compressed DNN
model are as follows. We first initialize and train an over-
parameterized DNN model (Luo et al. 2018; Liu et al. 2019).
Next, we eliminate weights that contribute less to the predic-
tion by pruning and retrain this model. And then repeating
the processes of pruning and retraining for several times. Fi-
nally, we obtain a model which maintains the similar per-
formance as original but has much less valid weights. Since
the weights of the model become sparse after pruning, stud-
ies of how to store and migrate these sparse weights are the
spotlight in recent years. Typically, these studies can be clas-
sified into two categories depending on the goal:

• Compression ratio. Most compression methods adopt
some classic sparse coding algorithms just based on the
programming frameworks they used. For example, MAT-
LAB, TensorFlow and Pytorch integrate the COO algo-
rithm as their default sparse coding method, while Scipy
employs Compressed Sparse Row/Column (CSR/CSC)
to encode the sparse matrices (Bell and Garland 2008;
2009). Recently, some new algorithms are also proposed,
such as Bitmask (Zhu and Gupta 2018) and Relative in-
dex (Han, Mao, and Dally 2016). The above algorithms
are capable of encoding sparse models, but they are all
procedure methods that are difficult to be implemented in
parallel.

• Parallel computing. To take full advantage of the re-
sources of the deep learning accelerators, a series of novel
sparse coding algorithms are presented in recent years, in-
cluding Block Compression Sparse Column (BCSC) (Xie
et al. 2018), Viterbi-Compressible Matrix and Nested
Bitmask Format (VCM-Format) (Lee et al. 2018), and
Nested Bitmask (NB) (Zhang et al. 2019). These algo-
rithms are suitable for parallelized environments, but the
compressed models still consumes considerable storage
and memory bandwidth.

A large gap between the above two categories of meth-
ods is that, it is difficult to achieve high compression ra-
tio and efficient computing simultaneously. Different from
these sparse coding methods, our proposed LSC method can
not only make the model inferring in parallel, but also en-
joy extremely less meta-data, making a higher compression
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Figure 2: Structure of the proposed layerwise sparse coding (LSC) method.

ratio for pruned deep models.

3 Structure of Layerwise Sparse Coding

In this paper, we adopt the following compression proce-
dures to compress a trained DNN. First, given a trained net-
work with a massive number of weights, one pruning tech-
nique (Han et al. 2015; Anwar, Hwang, and Sung 2017)
is applied to this network, making it as sparse as possible.
Second, we employ our proposed layerwise sparse coding
(LSC) method to further compress and encode these sparse
weights to achieve an extreme compression ratio.

As is shown in Figure 2, the proposed LSC mainly con-
sists of two layers, i.e., a block layer and a coding layer.
In the block layer, for each sparse weight matrix, we pro-
pose a block bitmask mechanism to divide it into multiple
small blocks. Next, all the non-zero blocks in this matrix
are picked and flattened into one single vector. And then,
the flattened vector is fed into the succeeding coding layer.
Finally, a novel Signed Relative Index (SRI) algorithm is de-
signed to effectively encode this flattened vector with ex-
tremely limited meta-data.

Block Layer: Block Bitmask Construction

The main purpose of the presented block bitmask mecha-
nism is to reduce the computing workload at a large granu-
larity (i.e., block) by utilizing the sparsity of matrices. To be
specific, we attempt to divide a compression task into sev-
eral sub-problems by cutting a sparse matrix into multiple
blocks. For each block, if there is any non-zero weight in
this block, we mark it as true using a 1-bit signal, otherwise
it is indexed by false. After that, we can obtain a mask con-
sisting of many 1-bit signals, which can simply mark all of
the blocks. The advantage is that we do not need to consider
the zero blocks (marked by false) any more, and only need
to focus on the non-zero blocks (marked by true). Generally,
because of the high sparsity of these sparse matrices, there
is a large number of zero blocks that do not need to be spe-
cially considered. Therefore, this kind of block mechanism
can naturally accelerate the subsequent coding process and
simultaneously save the storage space.

In particular, we flatten all of these non-zero blocks into

one single vector and input the flattened vector into the
coding layer. The superiority of the flattening operation is
that we do not need separately encode each non-zero block
which will introduce additional meta-data.

Coding Layer: Intensity Compression of Signed
Relative Index

In the coding layer, we perform an intensity compression
on these flattened non-zero blocks (i.e., flattened vectors) to
really compress and encode all the non-zero weights. Typ-
ically, Relative Index (RI) (Han, Mao, and Dally 2016) al-
gorithm can be adopted to achieve this purpose. RI usually
decomposes a sparse matrix into two types of vectors: A
diff vector and a value vector. Specifically, the diff vector
records the relative position between each non-zero weight
and the nearest non-zero weight in front of it, and the value
vector collects and stores all these non-zero weights accord-
ingly (see Figure 3).

One limitation of the RI algorithm is that, when the
pruned DNNs are highly sparse, there may be too many ad-
ditional zero fillers in the value vector. It will lead to a large
waste of space. This is because, since units in the diff vector
take 3 bits each, to avoid overflow, RI adds a zero filler in
the value vector whenever a diff unit reaches its maximum
(i.e., 7) that can be expressed. Take a 90% pruned deep net-
work as an example, we find that 44% of the RI results are
zero fillers, and each filler takes 35 bits (3 bits diff unit and
32 bits value unit). In fact, due to the high sparsity of deep
models, the diff units overflow frequently and need many
zero fillers, which extremely increases the size of meta-data.

To tackle the above limitation, we propose SRI, an in-
tensity compression algorithm with high compression ratio,
as a core algorithm of the coding layer. SRI decomposes a
sparse matrix into three vectors: value, diff and sign. Specifi-
cally, the value vector records the non-zero values of a sparse
matrix, the diff vector records the relative position between
each non-zero value and the previous one. Like the RI al-
gorithm, when the relative position exceeds the maximum
value that diff unit can represent, a filler is added in case of
overflow happens. However, the difference is that SRI does
not need to add a filling zero into the value vector. Instead,
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Figure 3: Comparison between RI and SRI.

we add a sign unit when the corresponding diff unit equals
to its maximize value, to determine whether there is a filler.
Therefore, SRI does not force a one-to-one correspondence
between the diff vector and value vector. When one diff unit
reaches the maximum value that can not be expressed, SRI
takes only 4 bits (3 bits diff unit and 1 bit sign unit) to record
this filler.

Efficient Inference without Full Decoding

Many previous works usually only focus on the sparse cod-
ing procedure, but ignore the decoding procedure in the in-
ferring stage. In this sense, the high compression ratios of
these works lack practical significance, because they still
need a full decoding during the inferring. On one hand, full
decoding still needs a large space which is in conflict with
the purpose of model compression. On the other hand, full
decoding is not very efficient. Therefore, the sparse coding
algorithms should support matrix multiplication in the state
of incomplete decoding. To this end, we propose a more ef-
ficient procedure for LSC codes for inference. Specifically,
we utilize intermediate decoding results to early start-up the
matrix multiplication procedure, which takes less memory
and also accelerate the calculation.

In general, the inference procedure of the DNN models
consists of a set of matrix calculations (Warden 2015). To
maintain the computability of the LSC codes, the computa-
tional properties of the matrix must be preserved. The pro-
posed efficient inference procedure for LSC divides one ma-
trix into multiple sub-matrices and splits the full matrix mul-
tiplication into the calculations of the multiple sub-matrices.
Fortunately, because of the dividing mechanism for matrix
multiplication, we do not need to fully decode the entire
LSC codes before the matrix calculation. It means that the
intermediate decoding results can be directly used for the
calculation during the inference, which can save consider-
able running memory. Similarly, because the weight matri-
ces are usually very sparse, we can skip the calculations of
zero blocks. The bitmask vector we obtained in the block
layer can help us to distinguish zero blocks and eliminate a
large number of sub-matrix calculations. We divide the im-
plementation of LSC code matrix multiplication into the fol-
lowing four steps:

• Computing tree construction. The computing tree is
used to determine the calculation flow of the matrix mul-
tiplication when inferring. We first split the multiplica-
tion of two matrices (e.g., W × X) into the calculations
of multiple sub-matrices. Taking Figure 4 as an example,

according to the principle of block matrix multiplication,
we split W into multiple sub-matrices, and then convert
W ×X into the calculations among several sub-matrices.
As seen, the calculation process of each row can be further
converted into a computing tree.

• Prune computing tree. The highly sparse nature of the
pruned DNNs makes a large number of zero blocks, which
means that we can skip the multiplications of these zero
blocks. As is shown in Figure 5, we can perform pruning
on the computing tree based on the signals of these zero
blocks according to the block bitmask.

• SRI decoding & sub-matrices multiplication. At the in-
ference stage, if we perform the LSC decoding first and
then do the sub-matrix multiplication, it will waste a large
amount of memory space. In fact, since SRI only en-
codes the non-zero blocks, we can design a more efficient
multi-procedure mechanism to implement the inference.
Specifically, there are two procedures, i.e., a SRI decod-
ing procedure and a sub-matrix multiplication procedure,
in this mechanism. The SRI decoding procedure recovers
the SRI codes into non-zero blocks, and the sub-matrix
multiplication procedure adopts these non-zero blocks to
perform the sub-matrix multiplication for the inference
calculation. Since we only need to handle these non-zero
blocks, we can perform matrix multiplication more effi-
ciently. Furthermore, these two procedures are relatively
independent, the decoded non-zero blocks will be de-
stroyed once the sub-matrix multiplication is finished. In
this way, we can significantly save the memory bandwidth
compared with the full decoding manner. Notably, if these
two procedures run at the same speed, the memory band-
width can be further saved.

• Intermediate results integration. The final step is to in-
tegrate all the intermediate calculation results of the sub-
matrix multiplications to obtain the final result. Because
the results integration is independent, it can be imple-
mented in parallel.
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Figure 4: Computing tree construction.

4 Analyses of Layerwise Sparse Coding

In this section, we first give a few mathematical analyses
of the proposed LSC, including its time complexity and the
impact of different block sizes on the results. Finally, we
take the Bitmask (Zhu and Gupta 2018) as an example to
claim the advantages of the proposed SRI algorithm over
other algorithms. We define some notations first. Suppose
the spatial size of a full matrix is n = nr × nc, where nr
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denotes the width and nc is the height. Similarly, let k =
kr × kc indicates the block size in the block layer.

Time Complexity

Let T (n) be the total running time of LSC on any matrix
with a size of n. Considering that the block layer and the
coding layer in LSC are relatively independent, we have

T (n) = Tbl + Tcl (1)

where Tbl and Tcl indicate the running time of LSC on the
block layer and coding layer, respectively.

In the block layer, the main operation of LSC is to divide
an input matrix into n

k blocks, which only takes linear time
cn with respect to the size n (i.e., Tbl = cn, where c is a
constant calculation time). In addition, a block bitmask is
adopted to mark each block, where the non-zero blocks are
flattened into a single vector. In the coding layer, the pro-
posed SRI algorithm is performed to encode this flattened
vector (i.e., these non-zero blocks), which will take a time
complexity of Tcl. Basically, the SRI coding only needs to
traverse the matrix once to fill in its three kinds of vectors
(i.e., diff, value and sign). Therefore, if the time complexity
of the SRI algorithm for each block is TSRI(k) = ck, we
can obtain the time complexity of the coding layer as

Tcl ≤ n

k
TSRI(k) = ck

n

k
= cn . (2)

Thus, we can get the total time complexity of our LSC
method

T (n) ≤ 2cn . (3)

Since c is a constant time, the time complexity of LSC is a
linear complexity function of the scale variable n.

Block Related Settings

In the block layer, LSC divides the sparse weight matrix into
several sub-matrices (i.e., blocks) with the same size, where
the block size k is a hyper-parameter and may be important
for the final compression ratio. To make LSC more scalable,
it is necessary to analyze the impact of the block size under

different sparsity. In particular, let S be the size of a pruned
sparse weight matrix

S = Mbl +Mcl + Snon−0 , (4)

where Mbl and Mcl indicate the meta-data size in the block
layer and coding layer, respectively, and Snon−0 denotes the
size of non-zero weights.

Given a random matrix with the sparse rate of p, in the
block layer, we divide this matrix into n

k blocks. For each
block, the probability to be one zero block is pk. The num-
ber of zero blocks can be calculated as npk

k . After removing

all zero blocks, the number of non-zero blocks is n(1−pk)
k .

Next, these non-zero blocks are flattened into a single vec-
tor, which contains n(1− pk) weights. Specifically, the new
sparse rate pbl of this flatten vector becomes to

pbl =
p− pk

1− pk
. (5)

In the block layer, since each block takes 1 bit signal to
record, we will take Mbl =

n
k bits (i.e., the meta-data size in

the block layer) in total to record this matrix. In the coding
layer, the proposed SRI algorithm further encodes the flatten
vector into three vectors (i.e., SRI codes): A value vector
(32 bits per unit), a diff vector (3 bits per unit), and a sign
vector (1 bit per unit). Since the sign vector takes up very
little space, we just ignore it for simplicity. Then, we can
calculate the average size of these SRI codes as below

Snon−0 = Svalue = 32n(1− p)

Mcl ≥ Sdiff = 3n(1− p)
(6)

According to the above analyses, we can get the relation-
ship between S and the block size k with respect to the
sparse rate p as below

S ≥ n

k
+ 35n(1− p) , (7)

which means that we can easily obtain the compression ratio
based on this function.

Table 1 shows the experiment results on different block
sizes under various sparse rates. Empirically, the sparse

4904



Rate 2*2 3*3 4*4 5*5 6*6 7*7 8*8 9*9

99% 53.24x 66.05x 69.22x 66.60x 63.24x 58.48x 55.53x 51.45x

98% 33.65x 37.52x 37.64x 35.91x 34.04x 32.20x 31.14x 29.84x

97% 24.59x 26.26x 25.98x 24.94x 23.83x 22.98x 22.48x 22.01x

96% 19.38x 20.23x 19.94x 19.24x 18.55x 18.10x 17.88x 17.68x

95% 15.99x 16.47x 16.20x 15.73x 15.28x 15.05x 14.95x 14.86x

90% 8.53x 8.58x 8.49x 8.39x 8.33x 8.32x 8.33x 8.33x

Block

bitmask

&

SRI

(LSC)

99% 52.49x 61.83x 60.36x 55.08x 49.07x 43.46x 39.47x 36.15x

98% 33.17x 34.98x 32.93x 30.06x 27.08x 24.74x 23.42x 22.00x

97% 24.28x 24.52x 22.93x 21.09x 19.36x 18.17x 17.52x 16.95x

96% 19.18x 18.96x 17.77x 16.54x 15.42x 14.76x 14.43x 14.17x

95% 15.87x 15.50x 14.58x 13.74x 12.99x 12.59x 12.44x 12.30x

90% 8.58x 8.25x 7.95x 7.75x 7.61x 7.59x 7.59x 7.59x

Block-

bitmask

&

bitmask

(NB)

Table 1: Compression ratios of LSC and NB with different block sizes and sparse rates.

rate of a pruned DNN model is generally around 0.95
(95%) (Han et al. 2015; Han, Mao, and Dally 2016; Dai,
Yin, and Jha 2019; Molchanov, Ashukha, and Vetrov 2017;
Luo et al. 2018; Guo, Yao, and Chen 2016), and thus we
recommend setting the default block size to 3× 3.

Core Algorithm for the Coding Layer

In this section, we take Bitmask (Zhu and Gupta 2018) as
a comparison algorithm to claim the advantages of our pro-
posed SRI as the core algorithm of the coding layer. Accord-
ing to Eq. (5), we know that the block layer will reduce the
sparse rate of the matrix for removing the zero blocks. Also,
the number of sub-matrices is reduced to n(1−pk)

k . There-
fore, the following analyses and derivations will be under
this premise.

If the core algorithm of the coding layer is Bitmask, we
can calculate the meta-data size of Bitmask for encoding the
sub-matrices as n(1−pk) bits, which is equal to the number
of weights. In contrast, for SRI, the meta-data size consists
of Mbl and Mcl, where Mbl =

n
k and Mcl ≥ 3n(1− p). As-

suming that Bitmask is better than SRI, the following condi-
tion must be satisfied

2− 3p+ pk > 0 . (8)

Since the block size is set to 3 × 3 as recommended in
the previous section, i.e., k = 9, the above inequation can
only be satisfied when p < 0.67 (67%). Note that here we
don’t take the size of sign vector into account. However, in
general, the sparse rate of a pruned DNN model is larger
than 0.95 (95%), which means that SRI is superior to Bit-
mask in most cases. In addition, our experiments (see Ta-
ble 1) demonstrate that SRI is better than Bitmask even if
the sign vector is taken into concern.

5 Experimental Results

Ablation Study

We perform an ablation study to analyze the influence of
different block sizes on the final compression ratios. Specif-
ically, we generate random matrices with different sparse
rates and vary the block size from 2 × 2 to 9 × 9. Next,

we perform the proposed LSC method on these matrices to
calculate the final compression ratios. The results are shown
in Table 1. As seen, its better to increase the block size
as the sparse rate increases, which is consistent with intu-
ition. However, when the block size is too large, we cannot
get much better compression ratios. For example, when the
sparse rate is larger than 97%, the best block size is 4 × 4,
otherwise the best block size is 3× 3. Therefore, in the real
applications, we recommend 3 × 3 to be the default setting
of the block size.

In addition, Table 1 also shows the compression ratios of
SRI and Bitmask as the core algorithm of the coding layer,
respectively. Under the same sparsity, the compression ra-
tios of the Bitmask algorithm are always worse than the pro-
posed SRI regardless of the block size, which well verifies
the effectiveness of the proposed SRI algorithm.

Advantage Interval of Related Algorithms

In fact, different sparse coding methods are suitable for dif-
ferent situations. To find the advantage intervals of different
algorithms, we generate multiple sparse matrices by vary-
ing the sparse rate from 50% to 99% and perform different
methods on these matrices. Figure 6 shows the experimental
results of different methods. When the sparse rate is higher
than 85%, our LSC can obtain the highest compression ra-
tios compared with other sparse coding methods. Moreover,
when the sparse rate is lower than 85%, our LSC is still com-
petitive with these methods. Because the sparse rates of the
pruned DNN models are generally larger than 95%, in this
sense, LSC is consistently superior to other methods.

Compression Results on ADMM-Lenet

In addition, we take a real pruned DNN network, i.e.,
ADMM-Lenet (Zhang et al. 2018), as an example to demon-
strate the effectiveness of LSC. ADMM-Lenet is a 4-layers
model, where only few weights are in the convolutional lay-
ers, and the most weights are aggregated in the fully con-
nected (fc) layer, especially the fc1 layer. Although the spar-
sity of each layer is different, the average sparsity reaches
to 98.6%. According to Table 2, LSC performs the best on
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Rate RI COO Bitmask CSR BCSC R-BCSC SRI NB LSC

99% 7.15x 33.32x 24.23x 45.50x 3.43x 15.38x 38.70x 61.87x 66.10x
98% 6.96x 16.66x 19.50x 23.82x 3.31x 13.27x 27.72x 35.01x 37.54x
97% 6.74x 11.11x 16.32x 16.13x 3.20x 11.67x 21.57x 24.57x 26.27x
96% 6.51x 8.33x 14.03x 12.20x 3.10x 10.42x 17.63x 18.98x 20.23x
95% 6.28x 6.67x 12.30x 9.81x 3.00x 9.41x 14.90x 15.51x 16.46x
90% 5.18x 3.33x 7.62x 4.95x 2.60x 6.34x 8.36x 8.25x 8.57x
85% 4.28x 2.22x 5.52x 3.31x 2.29x 4.78x 5.79x 5.70x 5.82x
80% 3.60x 1.67x 4.32x 2.49x 2.05x 3.83x 4.42x 4.38x 4.41x

75% 3.09x 1.33x 3.56x 1.99x 1.85x 3.20x 3.57x 3.57x 3.56x

70% 2.69x 1.11x 3.02x 1.66x 1.69x 2.75x 3.00x 3.02x 2.98x

65% 2.37x 0.95x 2.62x 1.42x 1.56x 2.41x 2.58x 2.62x 2.56x

60% 2.12x 0.83x 2.32x 1.25x 1.44x 2.14x 2.26x 2.31x 2.25x

55% 1.92x 0.74x 2.08x 1.11x 1.34x 1.93x 2.02x 2.07x 2.01x

50% 1.75x 0.67x 1.88x 1.00x 1.25x 1.75x 1.82x 1.87x 1.81x
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Figure 6: Compression ratios of different methods with various sparse rates.

Layer (sparse rate) RI COO Bitmask CSR BCSC R-BCSC NB SRI only LSC
conv1 (0.8) 3.7x 1.66x 4.17x 2.20x 2.00x 3.65x 3.97x 4.27x 4.03x
conv2 (0.93) 5.39x 4.17x 8.97x 6.01x 2.75x 7.28x 10.43x 10.10x 10.73x
fc1 (0.991) 7.06x 37.03x 24.84x 51.04x 3.44x 15.63x 67.75x 40.08x 71.85x
fc2 (0.92) 4.98x 4.75x 9.78x 6.45x 2.82x 7.80x 12.50 10.92x 12.05x
Average (0.986) 6.69x 23.71x 22.05x 33.11x 3.38x 14.44x 48.77x 33.04x 51.03x

Table 2: Compression ratios of different algorithms on the ADMM-Lenet model.

layers with higher sparse rates, e.g, conv2 and fc1. When
performing on the entire model, we can see that our LSC ob-
tains the highest compression ratio (i.e., 51.03x) compared
with all the other state-of-the-art baselines.

Time and Memory Bandwidth in the Inference

In addition to the compression ratio, for model compression,
the inference time and memory bandwidth at the test stage
are also very important. In this section, we conduct exper-
iments on a CPU with two threads (Intel Core i7-5500U
@2.40GHz) to verify the efficiency of the proposed LSC.
Specifically, we calculate the time and memory bandwidth
of our LSC used at the inference stage on a sparse matrix
with a sparse rate of 98%. Moreover, Bitmask and SRI only
are taken as the baselines. As for SRI only, a variation of
our LSC, it directly encodes the original input matrix with
the proposed SRI without the block layer. The results are
shown in Table 3. As seen, our LSC is the most efficient
method compared with these two baselines. This is because
LSC benefits from both the block layer and the new designed
efficient inference mechanism.

Methods Time (ms) Memory (mb)
Bitmask 64.34 2.40
SRI only 81.65 2.37

LSC (ours) 19.34 0.10

Table 3: Time and memory usage of different methods at the
inference stage.

6 Conclusion

Deep neural networks have been widely and successfully ap-
plied to a lot of fields. However, the huge requirements of
energy consumption and memory bandwidth limit the de-
velopment of these deep models especially in the resource-
constrained environments. General works are to employ
model compression techniques to compress a deep model
as compact (sparse) as possible. Nevertheless, for the com-
pressed models, we find that the existing sparse coding
methods still consume a much larger amount of meta-data
to encode these non-zero wights for these compressed mod-
els, resulting in the model compression efficiency not truly
realized.

To tackle the above issue, we propose a layerwise sparse
coding (LSC) method to maximize the compression ratio by
extremely reducing the amount of meta-data. Specifically,
we separate the compression procedure into two layers, i.e.,
a block layer and a coding layer. In the block layer, we
divide a sparse matrix into multiple small blocks and re-
move the zero blocks. Next, in the coding layer, we pro-
pose a novel SRI algorithm to further encode these non-zero
blocks. Furthermore, we design an efficient decoding mech-
anism for LSC to accelerate the coded matrix multiplication
in inference stage. Extensive experiments demonstrate the
effectiveness of the proposed LSC over other state-of-the-
art sparse coding methods.
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