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Abstract
The core idea of metric-based few-shot image clas-
sification is to directly measure the relations be-
tween query images and support classes to learn
transferable feature embeddings. Previous work
mainly focuses on image-level feature representa-
tions, which actually cannot effectively estimate
a class’s distribution due to the scarcity of sam-
ples. Some recent work shows that local descrip-
tor based representations can achieve richer repre-
sentations than image-level based representations.
However, such works are still based on a less
effective instance-level metric, especially a sym-
metric metric, to measure the relation between a
query image and a support class. Given the nat-
ural asymmetric relation between a query image
and a support class, we argue that an asymmet-
ric measure is more suitable for metric-based few-
shot learning. To that end, we propose a novel
Asymmetric Distribution Measure (ADM) network
for few-shot learning by calculating a joint lo-
cal and global asymmetric measure between two
multivariate local distributions of a query and a
class. Moreover, a task-aware Contrastive Mea-
sure Strategy (CMS) is proposed to further enhance
the measure function. On popular miniImageNet
and tieredImageNet, ADM can achieve the state-
of-the-art results, validating our innovative design
of asymmetric distribution measures for few-shot
learning. The source code can be downloaded from
https://github.com/WenbinLee/ADM.git.

1 Introduction
Few-shot learning (FSL) for image classification has gained
considerable attention in recent years [Vinyals et al., 2016;
Finn et al., 2017; Sung et al., 2018; Lee et al., 2019], which
attempts to learn a classifier with good generalization capac-
ity for new unseen classes with only a few samples. Because
of the scarcity of data, it is almost impossible to directly train
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a conventional supervised model (e.g., a convolutional neu-
ral network) from scratch by only using the few available
samples. Therefore, transfer learning shall be a natural way
to learn transferable knowledge to boost the target few-shot
classification. Along this way, a variety of methods have been
proposed, which can be roughly divided into three categories:
data-augmentation based methods [Antoniou et al., 2017;
Schwartz et al., 2018; Xian et al., 2019], meta-learning based
methods [Ravi and Larochelle, 2017; Jamal and Qi, 2019;
Lee et al., 2019] and metric-based methods [Vinyals et al.,
2016; Sung et al., 2018; Li et al., 2019b]. Metric-based FSL
methods have achieved significant successes and attracted in-
creasing attention due to their simplicity and effectiveness. In
this work, we focus on this kind of methods.

The basic idea of metric-based FSL methods is to learn
a transferable deep embedding network by directly measur-
ing the relations between query images and support classes.
Thus, two key issues are involved in such a kind of methods,
i.e., feature representations and relation measure. For feature
representations, traditional methods such as ProtoNet [Snell
et al., 2017] and RelationNet [Sung et al., 2018] gener-
ally adopt image-level global feature representations for both
query images and support classes. However, due to the
scarcity of samples in each class, the distribution of these
image-level global features cannot be reliably estimated. Re-
cently, CovaMNet [Li et al., 2019b] and DN4 [Li et al.,
2019a] introduce deep local descriptors into FSL and attempt
to utilize the distribution of local descriptors to represent each
support class, which have been verified to be more effective
than using the image-level global features.

On the relation measure, the existing methods including the
above methods usually adopt an instance-level metric, where
the query image is taken as one single instance (i.e., an image-
level feature representation) or a set of instances (i.e., a set of
local feature descriptors). For example, in ProtoNet, the Eu-
clidean distance is chosen to calculate the distance between a
query instance and the prototype (i.e., mean vector) of each
support class. Also, CovaMNet proposes a covariance metric
function to measure a local similarity between each local de-
scriptor of a query image and a support class. Afterwards, it
aggregates all the local similarities to obtain a global similar-
ity as the relation between this query image and this class.
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However, these existing methods have only considered the
distributions of the support classes while neglecting the nat-
ural distribution of the local descriptors from a query im-
age. Moreover, the instance-level metric they employ can
only capture a kind of local relations (i.e., local similari-
ties) between the query images and support classes. We ar-
gue that the distribution associated with a query image is
equally important and a distribution-level measure shall be
designed to capture the global-level relations between a query
and a class. More importantly, we observe that the exist-
ing methods usually adopt a symmetric metric function (i.e.,
M(a, b) = M(b, a)) to calculate a symmetric relation be-
tween a query and a class. For instance, both the Euclidean
distance used in ProtoNet and the cosine similarity adopted in
CovaMNet and DN4 are symmetric functions. However, we
highlight that there is naturally an asymmetric relation be-
tween a query image and a certain class. In particular, when
each image is represented by a set of deep local descriptors,
the distribution of the descriptors in one query image is only
comparable to part of the distribution of the descriptors ex-
tracted from a support class. Therefore, we argue that an
asymmetric measure is more suitable for the metric-based
FSL to capture the asymmetric relations.

To this end, we develop a novel Asymmetric Distribution
Measure (ADM) network for metric-based FSL. First, we
represent each image as a set of deep local descriptors (in-
stead of a single image-level global feature) and consider
characterizing both a query image and a support class from
the perspective of local descriptor based distributions (e.g., a
Gaussian distribution with mean vector and covariance ma-
trix). Second, we employ an asymmetric Kullback–Leibler
(KL) divergence measure to align the distribution of a query
with the distribution of a support class to capture the global
distribution-level asymmetric relations. Third, to further im-
prove the metric by taking the context of the task into consid-
eration, we propose a task-aware Contrastive Measure Strat-
egy (CMS), which can be used as a plug-in to any measure
functions. Finally, inspired by the successful image-to-class
measure (an asymmetric measure as a whole) introduced in
DN4 [Li et al., 2019a] which mainly captures the asymmetric
relations via individual local descriptor based cosine similar-
ity measures, we combine the whole distribution based KL
divergence measure with the image-to-class measure together
to simultaneously capture the global and local relations.

The main contributions of this work are as follows:
• We propose a pure distribution based method for metric-

based FSL and show that an asymmetric measure is
more suitable for this kind of FSL methods.
• We simultaneously combine the global relations (i.e., the

KL divergence measure) and the local relations (i.e., the
image-to-class measure) together to measure the com-
plete asymmetric distribution relations between a query
and a class.
• We propose an adaptive fusion strategy to adaptively in-

tegrate the global and local relations.
• We design a task-aware contrastive measure strategy

(CMS) as a plug-in to further enhance the adopted mea-
sure functions.

2 Related Work

We first briefly review metric-based FSL methods in the liter-
ature, and then introduce related work that inspires our work.

The first metric-based FSL method was proposed in [Koch
et al., 2015], which adopts a Siamese neural network to
learn transferable and discriminative feature representations.
In [Vinyals et al., 2016], a Matching Net which directly
compares a query image with a support class was presented,
where a subsequently widely used episodic training mecha-
nism was also proposed. After that, [Snell et al., 2017] pro-
posed a ProtoNet, which represents a support class by a pro-
totype, i.e., the mean vector of all sample in this class. Then a
specific metric, i.e., Euclidean distance, was used to perform
the final classification. Recently, based on ProtoNet, an infi-
nite mixture prototypes (IMP) network was proposed [Allen
et al., 2019], where each support class was represented by a
set of adaptive prototypes. In addition, to avoid choosing a
specific metric function, RelationNet [Sung et al., 2018] pro-
posed to learn a metric through a deep convolutional neural
network to measure the similarity between queries and sup-
port classes.

The above methods are all based on image-level feature
representations. Due to the scarcity of samples in each class
in FSL, the distribution of each class cannot be reliably esti-
mated in a space of image-level features. Some recent work,
such as CovaMNet [Li et al., 2019b] and DN4 [Li et al.,
2019a] shows that the rich local features (i.e., deep local de-
scriptors) can achieve better representations than the image-
level features, because the local features can be regarded as
a natural data augmentation operation. CovaMNet employs
the second-order covariance matrix of the extracted deep lo-
cal descriptors to represent each support class and designs a
covariance-based metric to measure the similarities between
a query image and a support class. Different from CovaMNet,
DN4 argues that the pooling of local features into a compact
image-level representation will lose considerable discrimina-
tive information. Therefore, DN4 proposes to directly use the
raw local descriptor sets to represent both query images and
support classes, and then employs a cosine-based image-to-
class measure to perform the relation measure.

Inspired by CovaMNet and DN4, our ADM also takes the
raw and rich deep local descriptors to represent an image.
Compared with CovaMNet, the key difference is that Cov-
aMNet only considers the distribution associated with a sup-
port class but neglect the distribution associated with a query
image, while we consider both. Another important difference
is that both CovaMNet and DN4 employ a cosine similarity
function (i.e., a symmetric instance-level metric) to calculate
a series of local relations between a query image and a certain
class. In contrast, our ADM can capture the complementary
global relations by using an extra distribution-level measure.
In addition, we observe that the relation between a query im-
age and a certain class is actually asymmetric, i.e., a query
image is only commensurate with a sample in an image class
when it is viewed as a set. Therefore, we argue that an asym-
metric measure shall be considered for metric-based FSL to
reflect this property.
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Figure 1: Architecture of the proposed Asymmetric Distribution Measure (ADM) network for a 5-way 1-shot task, which consists of three
modules, i.e., a feature embedding module, a joint asymmetric measure module and a classifier module.

3 Preliminary
Problem formulation. Under the few-shot setting, there
are usually three sets of data, i.e., a support set S , a query
set Q and an auxiliary set A. In particular, S and Q share
the same label space, which are corresponding to the training
and test sets respectively in the general classification task. If
S contains C classes with K (e.g., 1 or 5) samples per class,
we call this classification task C-way K-shot. However, S
only has a few samples in each class, making it almost im-
possible to train a deep neural network effectively. Therefore,
the auxiliary set A is generally introduced to learn transfer-
able knowledge to tackle this problem. Also, A enjoys more
classes and more samples per class than S , but has a disjoint
label space from S .

Episodic training. To learn a classifier that can generalize
well, an episodic training mechanism [Vinyals et al., 2016]
is normally adopted in the training stage of the metric-based
FSL methods. Specifically, in each episode, a new task sim-
ulating the target few-shot task is randomly constructed from
A. Each simulated task consists of two subsets, AS and AQ,
which are akin to S and Q, respectively. At each iteration,
one episode (task) is adopted to train the current model. Ba-
sically, tens of thousands of episodes (tasks) will be randomly
sampled to train this model. Once the training process is com-
pleted, we can predict the labels ofQ using the trained model
based on S .

4 Methodology
As illustrated in Figure 1, our ADM model mainly consists of
three components: a feature embedding module, a joint asym-
metric measure module, and a classifier module. The first
module learns feature embeddings and produces rich deep lo-
cal descriptors for an input image. Afterwards, the distribu-
tions of each query image and each support class can be repre-
sented at the level of deep local descriptors. The second mod-
ule defines a joint asymmetric distribution measure between a
query’s distribution and a support class’s distribution by con-

sidering both the asymmetric local and global relations. As
for the last module, we adaptively fuse the local and global
relations together by a jointly learned weight vector, and then
adopt a non-parametric nearest neighbor classifier as the fi-
nal classifier. These three modules are jointly trained from
scratch in an end-to-end manner.

4.1 Feature Embedding with Local Descriptors
As have been shown by some recent work [Li et al., 2019b; Li
et al., 2019a], local descriptor based feature representations
are much richer than image-level features and can alleviate
the scarcity issue of samples in FSL. Following the above
work, we employ the rich and informative local descriptors
to represent each image as well.

To this end, we design a feature embedding module fϕ(·),
which can extract deep local descriptors for input images.
Specifically, given an image X , fϕ(X) will be a c × h × w
three-dimensional (3D) tensor, which can be seen as a set of
c-dimensional local descriptors

fϕ(X) = [x1, . . . ,xn] ∈ Rc×n , (1)

where xi is the i-th local descriptor and n = h× w is the to-
tal number of local descriptors for image X . These local de-
scriptors can be seen as the local representations of the spatial
local patches in this image. Basically, for each query image,
we use the extracted n local descriptors to estimate its distri-
bution in the space of Rc. As for each support class, all the
local descriptors of all the images in this class will be used
together to estimate its distribution in the space of Rc. Since
the local descriptors can capture the local subtle information,
they can benefit more for the final image recognition.

4.2 Our Asymmetric Distribution Measure (ADM)
Kullback–Leibler divergence based distribution measure.
Assuming that the distribution of local descriptors extracted
from an image or a support class is a multivariate Gaus-
sian, a query image’s distribution can be denoted by Q =
N (µQ,ΣQ), and a certain support class’s distribution can be
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expressed by S = N (µS ,ΣS), whereµ ∈ Rc and Σ ∈ Rc×c

indicate the mean vector and covariance matrix of a specific
distribution, respectively. Thus, Kullback-Leibler (KL) di-
vergence [Duchi, 2007] between Q and S can be defined as:

DKL(Q‖S) =
1

2

(
trace(Σ−1

S ΣQ) + ln
( detΣS

detΣQ

)
+ (µS − µQ)

>Σ−1
S (µS − µQ)− c

)
,

(2)

where trace(·) is the trace operation of matrix, ln(·) denotes
logarithm with the base of e, and det indicates the determi-
nant of a square matrix. As seen, Eq.(2) takes both the mean
and covariance into account to calculate the distance between
two distributions.

Typically, since the KL divergence measure is asymmetric,
DKL(Q‖S) mainly matches the distribution of Q to the one
of S, which is essentially different from DKL(S‖Q). One
important advantage of using Eq.(2) is that it can naturally
capture an asymmetric relation between a query image and
a support class, forcing the query images to be close to the
corresponding true class when used in our network training.

To further show the advantage of using an asymmet-
ric measure, we purposely introduce a symmetric distribu-
tion metric function, e.g., 2-Wasserstein distance [Olkin and
Pukelsheim, 1982], whose formulation is defined as follows,

Dwass(Q,S)2 = ‖µQ − µS‖22 +

trace
(
ΣQ + ΣS − 2

(
Σ

1
2
QΣSΣ

1
2
Q

) 1
2

)
,

(3)

However, due to the square rooting of matrices, the calcu-
lation of the above distance function is time consuming and
the optimization of this function is difficult. Therefore, in the
literature [Berthelot et al., 2017; He et al., 2018], an approx-
imation function is normally employed

Dwass(Q,S)2 = ‖µQ − µS‖22 + ‖ΣQ −ΣS‖2F , (4)

where the first term calculates the squared Euclidean distance
between two mean vectors and the second term is a squared
Frobenius norm of the difference between two covariance ma-
trices. The comparison and analysis between 2-Wasserstein
distance and KL divergence will be detailed in Section 5.5.
Image-to-Class based distribution measure. The above
KL divergence measure can capture the global distribution-
level relation between a query image and a support class.
Nevertheless, the local relations are not taken into consider-
ation yet. According to a deep analysis of DN4 [Li et al.,
2019a], we observe that there may be two implicit reasons
for the success of DN4. One reason is that the local descriptor
based measure (i.e., local relations) it used enjoys a stronger
generalization ability than the image-level feature based mea-
sure. The other key reason is that the image-to-class measure
used in DN4 is asymmetric on the whole, which aligns well
with our argument of the necessity of the asymmetric mea-
sure. Therefore, such an asymmetric image-to-class measure
is also introduced into our model to capture the local-level
relations between a query and a support class. However, the
difference in our work lies that the indispensable global re-
lation is also measured by an asymmetric distribution-level
measure (i.e., KL divergence).

To be specific, given a query image Q and a support class
S, which will be represented as fϕ(Q) = [x1, . . . ,xn] ∈
Rc×n and fϕ(S) = [fϕ(X1), . . . , fϕ(XK)] ∈ Rc×nK , re-
spectively, where K is the number of shots in S. Thus, the
image-to-class (I2C) similarity measure can be formulated as

DI2C(Q,S) =

n∑
i=1

Topk
( fϕ(Q)> · fϕ(S)
‖fϕ(Q)‖F · ‖fϕ(S)‖F

)
, (5)

where Topk(·) means selecting the k largest elements in
each row of the correlation matrix between Q and S, i.e.,

fϕ(Q)>·fϕ(S)
‖fϕ(Q)‖F ·‖fϕ(S)‖F . Typically, k is set as 1 in our work.

Classification with an adaptive fusion strategy. Since
two types of relations have been calculated, i.e., global-level
relations calculated by the KL divergence measure and local-
level relations produced by the I2C measure, a fusion strat-
egy shall be designed to integrate these two parts. To tackle
this issue, we adopt a learnable 2-dimensional weight vector
w = [w1, w2] to implement this fusion. It is worth noting that
because the KL divergence indicates dissimilarity rather than
similarity, we use the negative of this divergence to obtain a
similarity. Specifically, the final fusion similarity between a
query Q and a class S can be defined as follows

D(Q,S) = −w1 ·DKL(Q‖S) + w2 ·DI2C(Q,S) . (6)

As seen in Figure 1, for a 5-way 1-shot task and a spe-
cific query Q, the output of the I2C branch or KL branch is a
5-dimensional similarity vector. Next, we concatenate these
two vectors together to get a 10-dimensional vector. After
that, we apply a 1D convolution layer with the kernel size of
1× 1 along with a dilation value of 5. In this way, we can ob-
tain a weighted 5-dimensional similarity vector by learning
a 2-dimensional weights w. Additionally, a Batch Normal-
ization layer is also added before the 1D convolution layer
to balance the scale of the two parts of similarities. Finally,
a non-parametric nearest neighbor classifier is performed to
obtain the final classification results. Also, a cross-entropy
loss is used to learn the entire network.

4.3 Our Contrastive Measure Strategy (CMS)
To make the distribution measure more discriminative, we
further propose an alternative task-aware Contrastive Mea-
sure Strategy (CMS) by introducing additional contrastive in-
formation. Specifically, for a support set S = {S1, · · · , SC},
where C is the number of classes in S , we construct a
distribution-level triplet 〈Q,Si, S

′
i〉. In this triplet, Q denotes

a query’s distribution, Si is the distribution of one class we
want to match Q with, and S′i indicates the entire distribution
of the remaining classes Sj |Cj=1(j 6= i). In this way, we can
define the contrastive KL divergence measure as follows

Dcon
KL (Q‖Si) = DKL(Q‖Si)−DKL(Q‖S′i) . (7)

The advantage of using the above contrastive measure
function over merely using DKL(Q‖Si) in Eq.(2) is that the
context of the entire support classes is taken into considera-
tion. In this way, we can take a whole view of the entire task
when measuring the relation between Q and each individual
class Si, making the measure function more discriminative.
This will be experimentally demonstrated shortly.
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Method Type Measure miniImageNet 5-way Acc (%) tieredImageNet 5-way Acc (%)
1-shot 5-shot 1-shot 5-shot

ProtoNet‡ [NeurIPS 2017] Symmetric Instance-level 48.45±0.96 66.53±0.51 48.58±0.87 69.57±0.75

RelationNet [CVPR 2018] Symmetric Instance-level 50.44±0.82 65.32±0.70 54.48±0.93 71.31±0.78

Wass (Ours) Symmetric Distribution-level 50.27±0.62 67.50±0.52 52.76±0.71 73.58±0.57

Wass-CMS (Ours) Symmetric Distribution-level 50.80±0.64 68.36±0.50 53.48±0.68 73.95±0.56

KL (Ours) Asymmetric Distribution-level 52.94±0.63 69.38±0.51 55.59±0.70 74.21±0.56

KL-CMS (Ours) Asymmetric Distribution-level 53.10±0.62 69.73±0.50 56.54±0.70 74.83±0.56

Table 1: Ablation study on both miniImageNet and tieredImageNet. The second column refers to whether the measure function adopted is
symmetric or not. The third column indicates which kind of measure function is employed, i.e., instance-level or distribution-level. For each
setting, the best and second best methods are highlighted.

5 Experimental Result
5.1 Datasets
All experiments are conducted on both miniImageNet
[Vinyals et al., 2016] and tieredImageNet [Ren et al., 2018].

miniImageNet is widely used in FSL, which is a small sub-
set of ImageNet [Deng et al., 2009]. It contains 100 classes
with 600 images in each class. We use the same splits as
in [Ravi and Larochelle, 2017], which takes 64, 16 and 20
classes for training, validation and test, respectively.

tieredImageNet is also a mini-version of ImageNet. Dif-
ferent from miniImageNet, tieredImageNet has a larger num-
ber of classes (608 classes) and more images for each class
(1281 images per class). On this dataset, we strictly follow
the splits used in [Ren et al., 2018], which takes 351, 97 and
160 classes for training, validation and test, respectively.

For both miniImageNet and tieredImageNet, the resolution
of all the images is resized to 84× 84.

5.2 Network Architecture
It can be easily verified that adopting a deeper network for
embedding or using pre-trained weights will provide higher
accuracy. Following the previous works [Snell et al., 2017;
Sung et al., 2018; Li et al., 2019b; Li et al., 2019a], we
adopt the same embedding network with four convolutional
blocks, i.e., Conv-64F, to make a fair comparison with other
methods. Specifically, each of the first two blocks contains
a convolutional layer (with 64 filters of size 3 × 3), a batch-
normalization layer, a Leaky ReLU layer and a max pooling
layer. The last two blocks adopt the same architecture but
without pooling layers. The reason for only using two pool-
ing layers is that we need richer local descriptors to represent
the distributions of both queries and classes. For example, in
a 5-way 1-shot setting, when the size of the input image is
84× 84, we can only obtain 25 local descriptors for each im-
age (class) by adopting four pooling layers. It is clearly insuf-
ficient to represent a distribution with a feature dimensional-
ity of 64. In contrast, using the adopted network architecture
with two pooling layers, we obtain 441 local descriptors for
each image (class).

5.3 Implementation Details
Both 5-way 1-shot and 5-way 5-shot classification tasks are
conducted to evaluate our methods. We use 15 query images
per class in each single task (75 query images in total) in both

training and test stages. In particular, we employ the episodic
training mechanism [Vinyals et al., 2016] to train our models
from scratch without pre-training. In the training stage, we
use the Adam algorithm [Kingma and Ba, 2014] to train all
the models for 40 epoches. In each epoch, we randomly con-
struct 10000 episodes (tasks). Also, the initial learning rate
is set as 1 × 10−3 and multiplied by 0.5 every 10 epoches.
During test, 1000 tasks are randomly constructed to calculate
the final results, and this process is repeated five times. The
top-1 mean accuracy is taken as the evaluation criterion. At
the same time, the 95% confidence intervals are also reported.

5.4 Comparison Methods
Since our methods belong to the metric-based FSL meth-
ods, we will mainly compare our methods with metric-based
methods, such as Matching Net [Vinyals et al., 2016], Pro-
toNet [Snell et al., 2017], RelationNet [Sung et al., 2018],
IMP [Allen et al., 2019], CovaMNet [Li et al., 2019b]
and DN4 [Li et al., 2019a]. Moreover, representative
meta-learning based FSL methods are also listed for refer-
ence, including Meta LSTM [Ravi and Larochelle, 2017],
MAML [Finn et al., 2017], SNAIL [Mishra et al., 2017],
MTL [Sun et al., 2019], TAML-Entropy [Jamal and Qi,
2019], and MetaOptNet-RR [Lee et al., 2019]. Note that
meta-learning based methods are essentially different from
metric-based methods at two aspects. The first aspect is that
an additional parameterized meta-learner is usually learned in
meta-learning based methods while the metric-based meth-
ods do not have. The second aspect is that during test, meta-
learning based methods will fine-tune the model (or classifier)
to obtain the final classification results while metric-based
methods do not need fine-tuning.

Most results of these compared methods are quoted from
their original work or the relevant reference. Some methods
are not in the same setting with our method, such as ProtoNet,
so we use the results of their modified versions to ensure fair
comparison. For some recent meta-learning based methods,
such as SNAIL, MTL and TAML-Entropy, we only report
their results with a similar embedding network, e.g., Conv-
32F, which has the same architecture with Conv-64F but has
32 filters in each convolutional block.

5.5 Ablation Study
In this section, we first verify the validity of our argument on
asymmetric measure for metric-based FSL. Next, based on
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Method Venue Embed. Type Para. miniImageNet 5-way Acc (%) tieredImageNet 5-way Acc (%)
1-shot 5-shot 1-shot 5-shot

Meta LSTM ICLR’17 Conv-32F Meta - 43.44±0.77 60.60±0.71 - -
MAML ICML’17 Conv-32F Meta - 48.70±1.84 63.11±0.92 51.67±1.81 70.30±1.75

SNAIL ICLR’18 Conv-32F Meta - 45.10 55.20 - -
MTL CVPR’19 Conv-32F Meta - 45.60±1.80 61.20±0.90 - -
TAML-Entropy CVPR’19 Conv-32F Meta - 49.33±1.80 66.05±0.85 - -
MetaOptNet-RR CVPR’19 Conv-64F Meta - 53.23±0.59 69.51±0.48 54.63±0.67 72.11±0.59

Matching Nets NeurIPS’16 Conv-64F Metric 113 kB 43.56±0.84 55.31±0.73 - -
ProtoNet‡ NeurIPS’17 Conv-64F Metric 113 kB 48.45±0.96 66.53±0.51 48.58±0.87 69.57±0.75

RelationNet CVPR’18 Conv-64F Metric 228 kB 50.44±0.82 65.32±0.70 54.48±0.93 71.31±0.78

IMP ICML’19 Conv-64F Metric 113 kB 49.6±0.8 68.1±0.8 - -
CovaMNet AAAI’19 Conv-64F Metric 113 kB 51.19±0.76 67.65±0.63 54.98±0.90 71.51±0.75

DN4 CVPR’19 Conv-64F Metric 113 kB 51.24±0.74 71.02±0.64 53.37±0.86 74.45±0.70

KL Ours Conv-64F Metric 113 kB 52.94±0.63 69.38±0.51 55.59±0.70 74.21±0.56

KL-CMS Ours Conv-64F Metric 113 kB 53.10±0.62 69.73±0.50 56.54±0.70 74.83±0.56

ADM Ours Conv-64F Metric 113 kB 54.26±0.63 72.54±0.50 56.01±0.69 75.18±0.56

Table 2: The mean accuracies of the 5-way 1-shot and 5-shot tasks on both miniImageNet and tieredImageNet, with 95% confidence intervals.
The third column refers to which kind of embedding network is employed. The fifth column shows the total number of parameters used by
each method. ‡ results are obtained by reimplementing in the same setting. For each setting, the best and second best methods are highlighted.

two distribution-level measure functions, we evaluate the ef-
fectiveness of the proposed CMS strategy. Specifically, both
the 2-Wasserstein distance (Wass for short) and KL diver-
gence (KL for short) are performed on miniImageNet and
tieredImageNet. Also, the contrastive versions using our pro-
posed CMS are named as Wass-CMS and KL-CMS, respec-
tively. Moreover, two instance-level symmetric metric based
methods, ProtoNet and RelationNet, are taken as baselines.

As seen in Table 1, compared to symmetric metric based
methods, such as ProtoNet, RelationNet and Wass, the pro-
posed asymmetric measure can obtain superior results. For
example, on the miniImageNet, KL gains 4.49%, 2.50% and
2.67% over these methods on the 1-shot task, respectively.
This verifies that an asymmetric measure is more suitable for
metric-based FSL.

We can also see that the proposed CMS strategy can in-
deed improve the performance of distribution-based measure
functions, especially on the 1-shot setting. For instance,
on the tieredImageNet, Wass-CMS achieves 0.72% improve-
ment over Wass, and KL-CMS obtains 0.95% improvement
over KL on the 1-shot task. This shows that the task-aware
CMS strategy does enhance the distribution-based measure
functions, thanks to taking a whole view of the entire task.

5.6 Comparison with the State of the Art
Experimental results on the comparison with the state-of-the-
art methods are reported in Table 2, where two types of FSL
methods (i.e., both meta-learning based and metric-based)
are compared. Since our methods are metric-based meth-
ods, we will mainly compare our methods with other metric-
based ones. Moreover, the total number of parameters of each
method is also shown in the fifth column.

From Table 2, it can be seen that the proposed ADM
(I2C+KL+Fusion) outperforms all the other metric-based and
meta-learning based methods on both 1-shot and 5-shot set-
tings. For example, on the miniImageNet, our ADM obtains
10.7%, 5.81%, 3.82%, 4.66%, 3.07% and 3.02% improve-

ments over Matching Nets, ProtoNet, RelationNet, IMP, Co-
vaMNet and DN4 on the 1-shot task, respectively. Moreover,
on the tieredImageNet, our ADM achieves 5.61%, 3.87%,
3.67%, 0.73% improvements over ProtoNet, RelationNet,
CovaMNet and DN4 on the 5-shot task, respectively. This
verifies the effectiveness and superiority of our proposed
ADM, owing to the integration of both local and global asym-
metric relations.

The proposed KL and KL-CMS are also very competitive
with the state-of-the-art methods. Specifically, on the 1-shot
setting, KL and KL-CMS can obtain significantly improve-
ments over the existing metric-based methods. For instance,
on the miniImageNet, KL/KL-CMS gains 9.38%/9.54%,
4.49%/4.65%, 2.5%/2.66%, 3.34%/3.5%, 1.75%/1.91%
and 1.7%/1.86% improvements over Matching Nets, Pro-
toNet, RelationNet, IMP, CovaMNet and DN4, respectively.
It verifies that such kind of distribution-based asymmetric
measure is more suitable for metric-based FSL.

6 Conclusion
In this study, we provide a new perspective for metric-based
FSL by considering the asymmetric nature of the similarity
measure and design a novel Asymmetric Distribution Mea-
sure (ADM) network to address this task. Furthermore, to
make full use of the context of the entire task, we propose
a Contrastive Measure Strategy (CMS) to learn a more dis-
criminative distribution metric space. Extensive experiments
on two benchmark datasets verify the effectiveness and ad-
vantages of both local asymmetric relations and global asym-
metric relations in metric-based FSL.
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