

Distribution Consistency based Covariance Networks for Few-shot Learning

Wenbin Li^{1*}, Jinglin Xu^{2*}, Jing Huo¹, Lei Wang³, Yang Gao¹, Jiebo Luo⁴

¹National Key Laboratory for Novel Software Technology, Nanjing University, China ²Northwestern Polytechnical University, China ³University of Wollongong, Australia ⁴University of Rochester, USA

Wenbin Li

January 31, 2019

Outline

Introduction

• Few-shot learning

Covariance Metric Network

- Motivation
- Model architecture
- Local covariance representation
- Covariance metric function

Experiments

- Generic few-shot classification
- Fine-grained few-shot classification

Conclusion

Introduction

One or Few-Shot Learning

One-shot learning is an object categorization problem in computer vision. Whereas most machine learning based object categorization algorithms require training on hundreds or thousands of images and very large datasets, one-shot learning aims to learn information about object categories from one, or only a few, training images.

(https://www.wikipedia.org/)

Introduction

Few-Shot Learning

• Naive method

Directly learn a classifier only from the few training samples.

Generation based methods

Generate new samples, like data augmentation (e.g., GANs).

• Transfer-learning based methods

Learn transferable knowledge from an auxiliary dataset.

Introduction

Few-Shot Learning

Three kinds of datasets:

- A support set (few-shot training set)
- A query set (testing set)
- An **auxiliary** set (additional set)

It has it own label space that is disjoint with support/query set.

If the support set contains *K* labelled samples for each of *C* categories, the target few-shot task is called a *C*-way *K*-shot task.

Outline

Introduction

• Few-shot learning

Covariance Metric Network

- Motivation
- Model architecture
- Local covariance representation
- Covariance metric function

Experiments

- Generic few-shot classification
- Fine-grained few-shot classification

Conclusion

Problem Statements

Three key aspects in few-shot Learning:

• Transferable Knowledge

How to learn and store the transferable knowledge by fully utilizing the auxiliary dataset?

Concept Representation

How to represent a concept precisely in the few-shot setting?

• Relation Measure

How to reasonably measure the relationship between a concept and a query sample?

Motivation

Conventional Methods:

- Use **global feature** to represent an image.
- Only focus on the **first-order statistic** to represent a concept.
- Use a **fixed metric** function (e.g., Euclidean distance).

The Proposed Method:

- Use richer local descriptors to represent an image.
- Also employ the **second-order statistic** to represent a concept.
- Use a learnable deep metric based on distribution consistency.

Model Architecture (CovaMNet)

Solutions

- Transferable Knowledge
 - Employ the episodic training mechanism.
- Concept Representation
 - Propose a novel local covariance representation.
- Relation Measure
 - Define a new covariance metric function.

Episodic Training Mechanism

Philosophy:

Testing conditions must match the training conditions.

Episodic training:

Exploiting the auxiliary set to mimic the few-shot learning setting via episode-based training.

One episode: a support set + a query set.

Local Covariance Representation

Given an image set of the *c*-th category $D_c = \{X_1, ..., X_K\}, X_i|_{i=1}^K \in \mathbb{R}^{d*M}$ (*d* is the local descriptor dimensionality), which contains *K* images with *M* local deep local descriptors per image, the local covariance metric can be defined as follows,

$$\boldsymbol{\Sigma}_{c}^{local} = \frac{1}{MK-1} \sum_{i=1}^{K} (\boldsymbol{X}_{i} - \boldsymbol{\tau}) (\boldsymbol{X}_{i} - \boldsymbol{\tau})^{\top}$$

For example:

For a 5-way 5-shot task, there are M = 400 deep local descriptors for each image X_i . It means that we have MK = 400 * 5 samples for one category in total. Then we use all these 2000 samples to calculate a covariance matrix as the representation.

Local Covariance Representation

Advantages:

- Using local descriptors
 - Data augmentation (VS. Few-shot)
 - Capture the local details (VS. Global feature)
- Using covariance matrix
 - Capture the second-order information (VS. First-order)
 - Describe the underlying concept distribution (*VS.* Non-distribution)

Covariance Metric Function

Measure the *distribution consistency* between a sample and a category:

$$d(\boldsymbol{x},\boldsymbol{\Sigma}) = \boldsymbol{x}^\top \boldsymbol{\Sigma} \boldsymbol{x}$$

Describes the underlying distribution of one concept

Covariance Metric Function

Compared with other metric functions:

Mahalanobis distance:
$$d(x, y) = \sqrt{(x - y)^T \Sigma^{-1} (x - y)}$$
Bilinear similarity: $d(x, y) = x^T \Sigma y$ Covariance metric: $d(x, \Sigma) = x^\top \Sigma x$

Theoretical Analysis

Theorem 1. Suppose that $\Sigma \in \mathbb{R}^{d \times d}$ is the covariance matrix of one specific category from the support set S, satisfying $\Sigma = V\Lambda V^{\top}$, where the diagonal matrix $\Lambda \in \mathbb{R}^{d \times d}$ consists of d eigenvalues in descending order and the corresponding eigenvectors are denoted as the orthogonal matrix $V = [v_1, \dots, v_d] \in \mathbb{R}^{d \times d}$. For any nonzero sample $x \in \mathbb{R}^d$, $x^{\top} \Sigma x$ will achieve a maximum based on the first k eigenvalues if x is in the direction of the first k eigenvectors of Σ .

Covariance Metric Function

$$d(\boldsymbol{x}, \boldsymbol{\Sigma}) = \boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x}$$

Advantages:

- Measure distribution consistency (*VS.* distance between samples)
- Avoid calculating the inverse matrix (VS. Mahalanobis distance)

Outline

Introduction

• Few-shot learning

Covariance Metric Network

- Motivation
- Model architecture
- Local covariance representation
- Covariance metric function

Experiments

- Generic few-shot classification
- Fine-grained few-shot classification

Conclusion

Experiments

Experimental Setups

Datasets:

- minilmageNet
- StanfordDog
- StanfordCar
- Cub-200

Baselines:

- Meta-learner (ICLR'17)
- MAML (*ICML'17*)
- **SNAIL** (*ICLR'18*)
- Matching Net (NIPS'16)
- **GNN** (*ICLR'18*)
- **Prototypical Net** (*NIPS'17*)
- Relation Net (CVPR'18)

Embedding module:

• Four convolutional blocks

Convolutional block 3*3 conv, 64 filters batch norm Leaky ReLU

Tasks (5-way 1-shot & 5-way 5-shot):

- Generic few-shot classification
- Fine-grained few-shot classification

Experiments

Generic Few-shot Classification

Model	Embed.	Туре	Fine Tune	5-Way Accuracy (%)	
				1-shot	5-shot
Baseline <i>k</i> -NN	64F	Metric	Ν	27.23 ± 1.41	49.29 ± 1.56
Meta-Learner [*] (Ravi and Larochelle 2017) MAML [*] (Finn, Abbeel, and Levine 2017) SNAIL [*] (Mishra et al. 2018)	32F 32F 32F	Meta Meta Meta	N Y N	43.44±0.77 48.70±1.84 45.10±0.00	$\begin{array}{c} 60.60{\pm}0.71\\ 63.11{\pm}0.92\\ 55.20{\pm}0.00\end{array}$
Matching Nets FCE* (Vinyals et al. 2016) GNN (Garcia and Bruna 2018) Prototypical Nets* (Snell, Swersky, and Zemel 2017) Relation Net* (Yang et al. 2018)	64F 64F 64F 64F	Metric & Meta Metric Metric Metric	N N N N	43.56 ± 0.84 49.02 ± 0.98 $^{\ddagger}49.42 \pm 0.78$ 50.44 ± 0.82	55.31 ± 0.73 63.50 ± 0.84 $^{\ddagger}68.20 \pm 0.66$ 65.32 ± 0.70
Our CovaMNet	64F	Metric	Ν	$51.19 {\pm} 0.76$	$67.65{\scriptstyle \pm 0.63}$

Experiments

Fine-grained Few-shot Classification

Model	Embed.	5-Way Accuracy (%)						
		Stanford Dogs		Stanford Cars		CUB Birds		
		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
Baseline <i>k</i> -NN	64F	26.14 ± 0.91	43.14 ± 1.02	23.50 ± 0.88	34.45 ± 0.98	25.81 ± 0.90	$45.34{\pm}1.03$	
Matching Nets FCE	64F	35.80 ± 0.99	47.50 ± 1.03	34.80 ± 0.98	44.70 ± 1.03	45.30 ± 1.03	59.50 ± 1.01	
Prototypical Nets	64F	37.59 ± 1.00	48.19 ± 1.03	40.90 ± 1.01	52.93 ± 1.03	37.36 ± 1.00	45.28 ± 1.03	
GNN	64F	46.98 ± 0.98	62.27 ± 0.95	55.85 ± 0.97	71.25 ± 0.89	51.83 ± 0.98	63.69 ± 0.94	
Our CovaMNet	64F	$49.10{\pm}0.76$	$63.04 {\pm} 0.65$	$56.65{\scriptstyle \pm 0.86}$	$71.33{\pm}0.62$	$52.42{\pm}0.76$	$63.76{\pm}0.64$	

Outline

Introduction

• Few-shot learning

Covariance Metric Network

- Motivation
- Model architecture
- Local covariance representation
- Covariance metric function

Experiments

- Generic few-shot classification
- Fine-grained few-shot classification

Conclusion

Conclusion

Problems:

- How to learn transferable knowledge form the auxiliary data?
- How to represent a concept precisely in the few-shot setting?
- How to measure the relationship between a concept and a query sample?

Model: An end-to-end Covariance Metric Network (**CovaMNet**)

- Employ the episodic training mechanism.
- Design a novel local covariance representation.
- Construct a new covariance metric function.

Conclusion

https://github.com/WenbinLee/CovaMNet

Acknowledgement

Jiebo Luo

Lei Wang

Yang Gao

Jing Huo

Jinglin Xu

VIStA Group

VILA Group

R&L Group

R&L Group

NWPU

Thank you Q & A