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Abstract

LEX is a stream cipher that progressed to Phase 3 of
the eSTREAM stream cipher project. In this paper,
we show that the security of LEX against algebraic
attacks relies on a small equation system not being
solvable faster than exhaustive search. We use the
byte leakage in LEX to construct a system of 21 equa-
tions in 17 variables. This is very close to the require-
ment for an efficient attack, i.e. a system containing
16 variables. The system requires only 36 bytes of
keystream, which is very low.

Keywords: LEX, Advanced Encryption Standard,
Stream Cipher.

1 Introduction

LEX (Biryukov 2007) is a stream cipher submitted by
Biryukov to eSTREAM, the ECRYPT stream cipher
project. The basic idea of LEX is to use a block cipher
as a keystream generator for a binary additive stream
cipher. The keystream is formed by extracting part
of the internal state at certain rounds. The security
of the stream cipher is consequently linked to the way
the block cipher is used in the construction.

In the LEX proposal, an example is given where
the Advanced Encryption Standard (AES) (Daemen
& Rijmen 2002) is chosen as the block cipher. The
AES was selected because it is a standard adopted by
the US National Institute of Standards and Technol-
ogy (NIST) and has been extensively analyzed with-
out any major flaws. As a keystream generator, LEX
is 2.5 times faster than the block cipher AES be-
cause after 10 rounds, LEX encrypts 320 bits of data
whereas the AES encrypts only 128 bits. In the re-
mainder of this paper, the term LEX is used to refer
to this specific instance based on the AES with 128-
bit key.

The AES has a rich algebraic structure and the
possibility of mounting algebraic attacks is still being
explored. In particular, the AES has been described
as a system of continued fractions over GF (28) (Fer-
guson et al. 2001). It has also been studied under
the so-called XSL attack using a system of equations
over GF (2) (Courtois & Pieprzyk 2002). Further-
more, simple multivariate quadratic equations over
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GF (28) can also be derived by embedding the AES
in the larger cipher BES (Murphy & Robshaw 2002).
It is therefore natural to study LEX from the per-
spective of algebraic attacks.

This paper demonstrates that the security of LEX
against algebraic attacks depends on the difficulty of
solving a very small equation system. The equations
are derived by linking the output keystream bytes
with the unknown internal state bytes of a specific
iteration and the round subkeys. As far as we know,
this is the first attempt at creating a solvable equation
system from the LEX technique.

This paper is organized as follows. Section 2 de-
fines some terminologies and notations and Section 3
describes the LEX cipher. The equation systems aris-
ing from LEX are discussed in Section 4. Section 5
presents some discussions and concludes the paper.

2 Terminology and Notation

LEX is a generic method of constructing a stream
cipher from a block cipher. As the modes of operation
of block and stream ciphers are quite different, some
terminologies need to be clarified.

A block cipher accepts a fixed-size input block and
repeatedly applies a key-dependent round function to
the block. The number of repetitions is referred to as
the number of rounds of a block cipher. Each round
function takes a round subkey to process the input
block. The round subkeys are generated by the key
scheduling algorithm. A block cipher is considered
stateless because it does not store any information at
a particular time.

A stream cipher is considered as stateful because it
has an internal state which stores the current value of
the state. The internal state is updated by the state
update function until it reaches the specified number
of iterations. In each iteration, the output function
produces the output keystream based on the current
value of the internal state.

To simplify notation, the number of rounds of the
block cipher is denoted by n and the number of iter-
ations of the stream cipher is denoted by t. In LEX,
the application of one iteration means the application
of one round of the block cipher’s round function.

3 Description of LEX

Our investigation is restricted to LEX based on the
AES with 128-bit key. The number of block cipher
rounds is 10. The size of the internal state is 256
bits, which is composed of the 16-byte block A and
the 16-byte secret key block K. The functions which
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Figure 1: Initialization and keystream generation of
LEX

LEX uses to initialize the internal state and how the
keystream is generated are described in the following
subsections, and illustrated in Figure 1.

3.1 Key Schedule and Initializaton

The 128-bit secret key K is expanded using the key
scheduling algorithm to produce 11 128-bit round
subkeys, denoted K0, . . . ,K10. All 11 round subkeys
are used in the initialization process but only 10 round
subkeys are used by the state update function during
keystream generation. The key scheduling algorithm
will be discussed in greater detail in Section 4.

The internal state is initialized by encrypting an
IV with K using the full 10-round AES. According
to Biryukov (2007), the encrypted IV is concatenated
with K to form the initial 256-bit state of LEX, i.e.
(A,K). However, as explained in the next subsection,
only A is updated in each iteration. Let Ai denote
the value of the block A at iteration i, EK denote
the AES encryption using the key K and ⊕ denote
addition modulo 2 (XOR). The initialization process
is as follows:

A0 = EK(IV ) ⊕ K0

3.2 Keystream Generation

The 16-byte internal state A = (a0, . . . , a15) is de-
picted as a 4 × 4 matrix. The content of this state is
updated using the round function of the AES denoted
by FKi . The t iterations of LEX can be described by
the following algorithm:

Ai = F
Ki mod 10(A

i−1) i = 1, . . . , t

After the state is updated, four bytes of Ai are
leaked directly by the output function f to form the
keystream. The positions of the leaked bytes depend
on whether the round number is odd or even. Figure 2
shows the different leak positions, which are shaded
in gray. The output function f can also be described
by the following equations.

f(Ai) =

{

(ai
0, a

i
2, a

i
8, a

i
10) if i is odd

(ai
4, a

i
6, a

i
12, a

i
14) if i is even

The round function FKi is composed of the fol-
lowing invertible transformations (Daemen & Rijmen
2002): SubBytes (SB), ShiftRows (SR), MixColumns
(MC) and AddRoundKey (AK).

SubBytes (SB). This transformation is composed of
the application of the function S[aj ] to each byte
aj of the state A. Its inverse, denoted SB−1, is
composed of the function S−1[aj ].

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

Odd rounds

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

Even rounds

Figure 2: Different leaks in odd and even rounds

ShiftRows (SR). Each row of the state matrix is ro-
tated by different offsets. The first row is not
rotated. The second, third and fourth rows are
rotated to the left by one, two and three bytes.
The inverse, denoted SR−1, applies the previous
operations in reverse.

MixColumns (MC). Each column in the state matrix
is multiplied with a fixed 4 × 4 matrix. Multi-
plication is performed in the AES GF (28) field.
If (a0, a1, a2, a3) and (b0, b1, b2, b3) are the input
and output column of MC, respectively, the mul-
tiplication is done as follows:
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The inverse operation, denoted MC−1, is given
by the following:
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where the elements in the 4 × 4 matrix are in
hexadecimal.

AddRoundKey (AK). All bytes in the state A are
XORed with the current round subkey bytes.

In LEX, the state update function is the AES
round function, which transforms Ai to Ai+1. The
round function is key-dependent, and makes use of
10 round subkeys K0, . . . ,K9. After 10 iterations,
the state update function reuses the 10 subkeys, pro-
vided the secret key has remained unchanged. Every
10th 4-byte output is therefore produced using the
same subkey. In a more secure variant of LEX, the
secret key K is changed at least every 232 IV setups
and the IV is changed every t = 500 iterations.

4 Forming Equations to Describe LEX

The algebraic approach presented in this paper as-
sumes that an attacker knows some plaintext and ci-
phertext pairs. For a binary additive stream cipher,
this is equivalent to knowing the keystream output.
This knowledge means that portions of the internal
state are also known because the keystream is ex-
tracted directly from the internal state. No output
filtering is used. The keystream bytes are considered
as constants and the unknown portions are considered
as variables to form the equations. The equations ba-
sically link the bytes of the state in a particular it-
eration to the bytes of the state from previous and
subsequent iterations.

The following subsections will explore the equa-
tions arising from LEX. Section 4.1 discusses the
equations from the encryption and decryption of the
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Figure 3: State byte variables and constants involved
in building the system of equations.

AES. Section 4.2 explores the key schedule algorithm
and Section 4.3 explains the final set of equations.
Section 4.4 investigates other methods for obtaining
the equations.

4.1 Encryption and Decryption Equations

Recall that 4 bytes from the 16-byte state Ai at it-
eration i are extracted to form the keystream. For
clarity, let us fix the iteration to be i = 3 and let
c16, . . . , c19 represent these 4 constants. The remain-
ing 12 variables from A3 can be labelled as x0, . . . , x11.
Furthermore, let the 16 constant bytes from 4 back-
ward (decryption) iterations be denoted by c0, . . . , c15

and the 16 constant bytes from forward (encryption)
iterations be denoted by c20, . . . , c35. Each round gen-
erates four equations and hence, there are 32 equa-
tions in 12 state variables. In total, the equations
span 8 rounds of the AES. The number of subkey
variables is ignored for the moment.

Let Kl = (k16l, . . . , k16l+15) denote the subkey
variables. The keystream bytes involved in forming
the equations are depicted in Figure 3. The figure
shows the variables and constants of the internal state
after they are updated using the key-dependent up-
date function FKl . The values for the subkey vari-
ables and the temporary variables pj ,qj ,rj ,sj ,tj ,uj are
given in Appendix A. These temporary variables can
be described in terms of only the xj ’s and the subkey
variables.

As noted earlier, the equations are built by us-
ing 12 state variables in a fixed iteration to describe
constants in previous and subsequent iterations. An
example is shown in Figure 4 where two equations are
constructed where the variables are in an odd itera-
tion. The upper half of the figure depicts the forming
of an equation using a constant in the previous iter-
ation. The lower half of the figure shows the forming
of an equation using a constant in the subsequent
iteration. Only affected variables and constants are
shown.

The figure clearly shows that if a constant from a
subsequent iteration is used, one byte of the round
subkey is involved. If, however, a constant from a
previous iteration is used, four bytes of round subkeys
are involved. This is due to the order of operations in
the forward and backward direction. In the forward
direction, the MC operation is performed before the
state is XORed with the current round subkey. In

the backward direction, the current round subkey is
XORed with the state before the MC−1 operation is
performed. In essence, each byte of the current state
depends on the values of 4 diagonal bytes of the state
in the previous iteration. On the other hand, each
byte of the current state affects the values of 4 bytes
of the same column of the state in the subsequent
iteration.

At the start, the system contains 32 equations in
12 state variables and 8 + 96 + 4 = 108 subkey vari-
ables. The subkey variables consists of 8 bytes from
K0, 6 × 16 = 96 bytes from K1, . . . ,K6 and 4 bytes
from K7. Note that if we do not fix the 12 state vari-
ables, the number of state variables will be 8+60+8 =
76. These variables consists of p0, . . . , p3, p6, . . . , p9

(8 variables), 5 × 12 = 60 from qj , rj , xj , sj , tj where
0 ≤ j < 12, and u0, u4, u8, u11, u6, u10, u2, u5 (8 vari-
ables).

The following shows 8 equations that are gener-
ated from one forward and one backward iteration.
It is assumed that the xj ’s are variables in an odd
iteration1. The equations are:

c20 = Θ(x2, x6, x10, x1) ⊕ k68 (1)

c21 = Θ(x10, x1, x2, x6) ⊕ k70 (2)

c22 = Θ(x8, x0, x4, x7) ⊕ k76 (3)

c23 = Θ(x4, x7, x8, x0) ⊕ k78 (4)

S[c12] = Π(x2, x3, x4, x5) ⊕ Π(k52, k53, k54, k55) (5)

S[c13] = Π(x10, x11, x8, x9) ⊕ Π(k62, k63, k60, k61)
(6)

S[c14] = Π(x8, x9, x10, x11) ⊕ Π(k60, k61, k62, k63)
(7)

S[c15] = Π(x4, x5, x2, x3) ⊕ Π(k54, k55, k52, k53) (8)

where Θ and Π are defined as follows where the coeffi-
cients are in hexadecimal notation, both of which rep-
resent the operation of MixColumns and its inverse,
respectively:

• Θ(z0, z1, z2, z3) = 2S[z0]⊕ 3S[z1]⊕S[z2]⊕S[z3].

• Π(z0, z1, z2, z3) = Ez0 ⊕ Bz1 ⊕ Dz2 ⊕ 9z3.

The above equations can be used to elimi-
nate 8 state variables using substitution. Say
that the following variables are to be eliminated:
x0, x1, x3, x5, x6, x7, x9 and x11. Then, the eight
equations used for substitutions are:

x6 = S−1[θ(S[x2], S[x10], k68, k70, c20, c21)] (9)

x1 = S−1[θ(S[x10], S[x2], k70, k68, c21, c20)] (10)

x0 = S−1[θ(S[x8], S[x4], k76, k78, c22, c23)] (11)

x7 = S−1[θ(S[x4], S[x8], k78, k76, c23, c22)] (12)

x3 = π(x2, x4, k52, k53, k54, S[c12], S[c15]) (13)

x11 = π(x10, x8, k62, k63, k60, S[c13], S[c14]) (14)

x9 = π(x8, x10, k60, k61, k62, S[c14], S[c13]) (15)

x5 = π(x4, x2, k54, k55, k52, S[c15], S[c12]) (16)

where θ and π are defined as follows:

• θ(z0, z1, z2, z3, z4, z5) = 47z0 ⊕ CB(z1 ⊕ z3 ⊕ z5)⊕
46(z2 ⊕ z4).

• π(z0, z1, z2, z3, z4, z5, z6) = 47(z0 ⊕ z2)⊕ CB(z1 ⊕
z4) ⊕ z3 ⊕ 44z5 ⊕ C9z6.

1Similar equations can be generated for an even iteration num-

ber by modifying the appropriate byte positions.
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Figure 4: Example of forming 1 equation using a constant in one round backward and one round forward.
Known keystream bytes (constants) are denoted in gray.

The step-by-step procedure to obtain Equations (9)–
(16) is outlined in Appendix B.

The above relations are then substituted into the
following remaining 32 − 8 = 24 equations:

c24 = Θ(s0, s4, s8, s11) ⊕ k80 (17)

c25 = Θ(s8, s11, s0, s4) ⊕ k82 (18)

c26 = Θ(s6, s10, s2, s5) ⊕ k88 (19)

c27 = Θ(s2, s5, s6, s10) ⊕ k90 (20)

c28 = Θ(t2, t6, t10, t1) ⊕ k100 (21)

c29 = Θ(t10, t1, t2, t6) ⊕ k102 (22)

c30 = Θ(t8, t0, t4, t7) ⊕ k108 (23)

c31 = Θ(t4, t7, t8, t0) ⊕ k110 (24)

c32 = Θ(u0, u4, u8, u11) ⊕ k112 (25)

c33 = Θ(u8, u11, u0, u4) ⊕ k114 (26)

c34 = Θ(u6, u10, u2, u5) ⊕ k120 (27)

c35 = Θ(u2, u5, u6, u10) ⊕ k122 (28)

S[c0] = Π(p0, p1, p2, p3) ⊕ Π(k0, k1, k2, k3) (29)

S[c1] = Π(p8, p9, p6, p7) ⊕ Π(k10, k11, k8, k9) (30)

S[c2] = Π(p6, p7, p8, p9) ⊕ Π(k8, k9, k10, k11) (31)

S[c3] = Π(p2, p3, p0, p1) ⊕ Π(k2, k3, k0, k1) (32)

S[c4] = Π(q2, q3, q4, q5) ⊕ Π(k20, k21, k22, k23) (33)

S[c5] = Π(q10, q11, q8, q9) ⊕ Π(k30, k31, k28, k29)
(34)

S[c6] = Π(q8, q9, q10, q11) ⊕ Π(k28, k29, k30, k31)
(35)

S[c7] = Π(q4, q5, q2, q3) ⊕ Π(k22, k23, k20, k21) (36)

S[c8] = Π(r0, r1, r2, r3) ⊕ Π(k32, k33, k34, k35) (37)

S[c9] = Π(r8, r9, r6, r7) ⊕ Π(k42, k43, k40, k41) (38)

S[c10] = Π(r6, r7, r8, r9) ⊕ Π(k40, k41, k42, k43) (39)

S[c11] = Π(r2, r3, r0, r1) ⊕ Π(k34, k35, k32, k33) (40)

There are only 12 − 8 = 4 state variables left, i.e.
x2,x4,x8 and x10. After substituting the 8 variables,

no more state variables can be eliminated using sub-
stitution due to the linear diffusion layers and the
nesting of S-boxes. This system is constructed using
only 9 × 4 = 36 bytes of the keystream, generated
under the same secret key.

4.2 Key Schedule Equations

Note that the generation of round subkeys is per-
formed independently to the keystream generation.
Every byte of subkey Ki in Round i is affected by
at least one subkey byte Ki−1 in Round i − 1 where
1 ≤ i < 10. Each of the first four subkey bytes is
composed of the XOR of two different subkey bytes
in the previous round. The remaining 12 subkey bytes
are composed of the XOR of one subkey byte in the
current round and one subkey byte from the previ-
ous round. The algorithm to compute the i-th round
subkey of LEX is given by the following equations.

kí = kî ⊕ S[kî+13] ⊕ Ri kí+8 = kî+8 ⊕ kí+4

kí+1 = kî+1 ⊕ S[kî+14] kí+9 = kî+9 ⊕ kí+5

kí+2 = kî+2 ⊕ S[kî+15] kí+10 = kî+10 ⊕ kí+6

kí+3 = kî+3 ⊕ S[kî+12] kí+11 = kî+11 ⊕ kí+7
kí+4 = kî+4 ⊕ kí kí+12 = kî+12 ⊕ kí+8
kí+5 = kî+5 ⊕ kí+1 kí+13 = kî+13 ⊕ kí+9
kí+6 = kî+6 ⊕ kí+2 kí+14 = kî+14 ⊕ kí+10
kí+7 = kî+7 ⊕ kí+3 kí+15 = kî+15 ⊕ kí+11

where Ki = (k16i, . . . , k16i+15), í = 16i, î = 16(i− 1),
1 ≤ i < 10 and Ri is the round constant.

During keystream generation, LEX uses the same
set of 10-round subkeys every 10-iteration block, pro-
vided that the secret key is unchanged. Building
equations that link all the output keystream of r
rounds (r ≥ 2) involves 16(r − 1) subkey variables.
Due to the simple structure of the key schedule, the
equations can be rearranged so that only 16 variables
remain, even though r > 2.

Let K0, . . . ,K7 represent the 8 × 16 = 128 sub-
key variables involved in the equations that link the
output keystream of 9 rounds. The equations can be



constructed in terms of the 16 subkey variables in K3.
Recall that in the AES, Ki is described in terms of
Ki−1 and Ki. We can rearrange this so that for in-
stance, K2 = (k32, . . . , k47) can be written in terms
of K3 = (k48, . . . , k63) only, as follows:

k32 = k48 ⊕ S[k61 ⊕ k57] ⊕ R3 k40 = k56 ⊕ k52

k33 = k49 ⊕ S[k62 ⊕ k58] k41 = k57 ⊕ k53

k34 = k50 ⊕ S[k63 ⊕ k59] k42 = k58 ⊕ k54

k35 = k51 ⊕ S[k60 ⊕ k56] k43 = k59 ⊕ k55

k36 = k52 ⊕ k48 k44 = k60 ⊕ k56

k37 = k53 ⊕ k49 k45 = k61 ⊕ k57

k38 = k54 ⊕ k50 k46 = k62 ⊕ k58

k39 = k55 ⊕ k51 k47 = k63 ⊕ k59

In the general case, additional substitutions are
required. For instance, the following describes K4 =
(k64, . . . , k79) in terms of K3 only:

k64 = k48 ⊕ S[k61] ⊕ R4

k65 = k49 ⊕ S[k62]

k66 = k50 ⊕ S[k63]

k67 = k51 ⊕ S[k60]

k68 = k52 ⊕ k48 ⊕ S[k61] ⊕ R4

k69 = k53 ⊕ k49 ⊕ S[k62]

k70 = k54 ⊕ k50 ⊕ S[k63]

k71 = k55 ⊕ k51 ⊕ S[k60]

k72 = k56 ⊕ k52 ⊕ k48 ⊕ S[k61] ⊕ R4

k73 = k57 ⊕ k53 ⊕ k49 ⊕ S[k62]

k74 = k58 ⊕ k54 ⊕ k50 ⊕ S[k63]

k75 = k59 ⊕ k55 ⊕ k51 ⊕ S[k60]

k76 = k60 ⊕ k56 ⊕ k52 ⊕ k48 ⊕ S[k61] ⊕ R4

k77 = k61 ⊕ k57 ⊕ k53 ⊕ k49 ⊕ S[k62]

k78 = k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕ S[k63]

k79 = k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕ S[k60]

Using the above logic, the variables in
K0,K1,K5,K6,K7 can be described in terms
of K3 in similar way. The full subkey substitution is
given in Appendix A.3. These key schedule equations
are then substituted in the encryption and decryption
equations and thus, only 16 subkey variables remain.

4.3 The Final Equation System

After substituting the subkey variables, Equa-
tions (17) and (19), respectively have the following
form.

Θ(v0, v1, v2, k59 ⊕ v3) ⊕ K∗

0 ⊕ c24 = 0 (41)

Θ(w0, w1, w2, k51 ⊕ w3) ⊕ K∗

1 ⊕ c26 = 0 (42)

where the temporary variables vj ,wj and K∗

j are
defined in Appendix A.4.

A careful examination of the above equations re-
veals that two more round subkey variables can be
eliminated. The first one can be removed as follows.

By looking at Equation (41) we find that it con-
tains only a single k59. Isolating this variable results
in the following equation:

k59 = S−1[Θ(v0, v1, v2, 0) ⊕ K∗

0 ⊕ c24] ⊕ v3

The above equation is then substituted into the
remaining 23 equations. The second subkey variable

can be eliminated by using the fact that Equation (42)
does not contain k59 which consequently means that
Equation (42) is not affected by the previous substi-
tution. It turns out that the subkey variable k51 only
appears once in Equation (42) and can be isolated and
described in terms of the other variables as follows:

k51 = S−1[Θ(w0, w1, w2, 0) ⊕ K∗

1 ⊕ c26] ⊕ w3

The above equation is substituted into the remain-
ing 22 equations, where only 4 state and 16 − 2 = 14
subkey variables remain (18 variables in total).

Further examination reveals that one more subkey
variable can be eliminated. After substituting the
previous subkey variables, Equation (18) becomes the
following:

y0 ⊕ y1 ⊕ y2 ⊕ S[y3 ⊕ CBk56] ⊕ K∗

2 ⊕ c25 = 0

where the temporary variables yj and K∗

2 are defined
in Appendix A.4.

It can be noted that the above equation contains
only a single k56. This subkey variable can be isolated
and described in terms of other variables as follows:

k56 = 4S−1[y0 ⊕ y1 ⊕ y2 ⊕ K∗

2 ⊕ c25] ⊕ 4y3

The right hand side of the above equation con-
tains all the remaining 17 variables. The subkey
variable k56 also occurs in every remaining equation;
moreover, there are 1233 occurences of k56 detected
throughout all equations. After performing the sub-
stitution, there are 22 − 1 = 21 equations in 4 state
and 14 − 1 = 13 subkey variables left in the system
(17 variables in total).

We could not find any more key variables that can
be isolated this way after these substitutions. This is
because the same variable occurs inside and outside
of the S-box in the same equation. For instance, if
we have an equation of the form x ⊕ S[x] ⊕ . . . = 0,
where x is a variable, it is not possible to isolate x.

In forming the equation system, we managed to
reduce the number of variables from 12 + 16 = 28 to
17. This is only one variable away from the limit of
an exhaustive search, i.e., 16. The equation system
is also very straightforward to construct. Recall from
Section 4.1 that the system requires only 36 bytes of
known keystream, generated under the same secret
key. In terms of required number of keystream, this
is very low. The final set of equations are given in
Appendix A.5.

Note that for an efficient attack, the effort required
to break the cipher must be less than performing an
exhaustive search of the key space. One way of solving
the system of equations is to guess the value of all
variables and discard guesses for which the equations
are inconsistent. We have 21 equations, which is 4
more than the number of variables in the system and
thus, with very high probability, there is only one
solution to the system. This solution must correspond
to the correct key. If the number of variables is less
than the number of key bytes (in our case, 16), solving
the system can be faster than exhaustive search.

Another possible way of solving the equations is to
only guess certain variables. The reasoning for this is
that the equations might be significantly simplified if
the partial guess is made. The simplified equations
are expected to be much easier to solve than the orig-
inal equation system. In order for this to work, we
must be able to determine which subset of variables
provide the greatest simplification for the equation
system, and to be able to verify whether the partial
guess is right or wrong, with high probability.

In the system of equations, there are many ex-
pressions that occur frequently. These frequent ex-
pressions are made up of the sum of some key or/and



FK0 FK1 FK2 FK3 FK4 FK5 FK6 FK7 FK8 FK9

FK0 FK1 FK2 FK3 FK4 FK5 FK6 FK7 FK8 FK9

...

FK0 FK1 FK2 FK3 FK4 FK5 FK6 FK7 FK8 FK9

Figure 5: Keystream involved in forming system of
equations.

state variables. The common expressions are denoted
as Wj , Yj and Zj in the final set of equations given
in Appendix A.5. Some of these expressions contain
as few as four variables; however, almost all of them
contain the entire 17 variables. For example, con-
sider the following equation, which is the last of the
21 equations given in Appendix A.5:

Π̂(Z10, Z11, Z8, Z9) ⊕ T60 ⊕ S[c11] = 0

where Zj are expressions, Π̂(z0, z1, z2, z3) =
ES−1[z0] ⊕ BS−1[z1] ⊕ DS−1[z2] ⊕ 9S−1[z3] and T60

is composed of the sum of some state and key vari-
ables. The expressions Z9 and Z11 contain four vari-
ables while Z8 and Z10 contain the entire 17 variables.
Even if the variables in Z9 and Z11 are guessed, there
are still 17 − 4 = 13 variables left in Z8 and Z10. In
this case, the guesses do not simplify the equation. As
a result of this, we were unable to identify any subset
of state or/and key variables that can be guessed to
simplify any equation.

4.4 Alternative Methods for Obtaining Equa-
tions

The fact that the same subkey is used in every 10th
round can be used to obtain additional equations by
repeating the previous system as much as needed,
across 10-round blocks. For each repetition, both the
number of equations and state variables increase. The
number of round subkey variables, however, remains
unchanged.

This is illustrated in Figure 5 where the dotted
lines represent the keystream and state update func-
tions involved in forming the equations. It can be
clearly seen that the previous system of equations
span 8 rounds of the AES, i.e. two rounds short of
the full AES. However, the system needs the output
keystream of 9 rounds of the AES.

Since LEX uses the same set of 10 round subkeys
repeatedly, the number of round subkeys remains un-
changed if the same system of equations is formed
for the next 10-round block. Each repetition of the
system only adds another 21 equations and 4 state
variables to the current system. For instance, repeat-
ing the same system another 2 times gives 3×21 = 63
equations in 13 + 3 × 4 = 25 variables.

Another method of obtaining equations is to use
only the constants that appear in the iterations that
include 2 forward and 2 backward iterations from a
fixed iteration. This system spans 4 rounds of the
AES and uses the output keystream of 5 rounds. Ini-
tially, this system has 4×4 = 16 equations in 12 state
variables and 8 + 2 × 16 + 4 = 44 subkey variables.
If the same fixed state variables are used as before,
the system starts at the output of F 1

K and ends at the
output of F 5

K . Refer again to Figure 5 for illustration.
Assuming the same notations for variables and

constants as before, we can use Equations (9) to (16)

to substitute into the remaining 16−8 = 8 equations.
After substitution, 12− 8 = 4 state variables are left.
As explained in Section 4.2, the subkey variables can
be substituted so that only 16 remain. We can use
the same technique to eliminate 3 more subkey vari-
ables as outlined in Section 4.3. Assuming no more
variables can be eliminated, there are 8− 3 = 5 equa-
tions in 4 + 13 = 17 variables which span 4 rounds
of the AES. As before, the system can be repeated
as much as needed, by going across 10-round blocks.
Each repetition adds 5 equations and 4 variables. The
initial equations are constructed using only 5×4 = 20
bytes of keystream.

Similarly, we can use constants that appear in the
iteration which includes 3 forward and 3 backward
iterations from a fixed iteration. The resulting equa-
tions span 6 rounds of the AES and uses the output
keystream of 7 rounds. After the same elimination as
before is performed, we are left with 6 × 4 − 11 = 13
equations in 4 + 13 = 17 variables. This system can
also be repeated as much as needed, by going across
10-round blocks. Each repetition adds 13 equations
and 4 variables. The amount of known keystream
needed to construct the initial system is 7 × 4 = 28
bytes.

The final form for the sets of equations that span
4 and 6 rounds of the AES are expected to be simpler
compared to the previous system that spans 8 rounds.
If only the base equations are used (without repeat-
ing the system by going across 10-round blocks), the
two systems (which span 4 and 6 rounds of the AES)
are underdefined since the number of variables are
greater than the number of equations. If, however,
the systems are repeated, the additional number of
known keystream is still considerably low.

5 Discussion and Conclusion

There are two versions of LEX. The first version uses
the full AES in both the IV setup and the state update
function. It was therefore vulnerable to a slide attack,
where a particular key can be recovered if used with
about 261 random IVs (Wu & Preneel 2006). In order
to resist this attack, a second version (Biryukov 2007)
of LEX was proposed. This version uses the full AES
in the IV setup but a slightly modified AES in the
state update function. This variant was subjected to
a key recovery attack by Dunkelman & Keller (2008)
which requires 236.3 bytes of keystream and 2112 op-
erations. They also note that their attack can also be
adopted to the first version of LEX. This attack was
one of the reasons LEX was dropped from the final
eSTREAM portfolio (Babbage et al. 2008). The vari-
ant of LEX examined in this paper is based on this
second version.

In this paper, it is shown that the security of LEX
relies on the solution of a small system of equations. It
contains 21 equations in 4 state and 13 subkey vari-
ables. This system spans eight rounds of the AES,
which at the start involves 32 equations in 12 state
and 108 subkey variables. It is a massive reduction in
terms of the number of variables and is very close to
the limit for an efficient attack, i.e. 16 variables.

Although the work presented in this paper does
not provide a key recovery attack, and the work
of Dunkelman & Keller (2008) does, this paper is
still important for two reasons. First, as always
with algebraic attacks, we need very little known
keystream. This makes an attack by solving an equa-
tion system needing 36 bytes of known keystream
more threatening in a real-world situation than at-
tacks needing almost 85 billion (236.3) bytes of known
keystream. Note that the LEX specification states
that the amount of keystream to be produced from



one key and IV pair should not exceed 2000 bytes for
a secure LEX variant. Our work, therefore, can be
applied to this variant while previous attacks cannot.
Second, the constructed equation system is almost
sufficient for an efficient attack. Guessing 16 bytes
is the limit for an efficient attack, we need to guess
17 in order to solve our system. Traditionally, at-
tacks on block ciphers have been classified as to how
many rounds a particular attack is able to break, out
of the full number of rounds. The small difference
between 17 and 16 leads us to think that the attack
presented here has the same strength as an attack on
a block cipher that falls only one or two rounds short
of breaking the full cipher.

We did not use any clever tricks in constructing
our equation system in this paper. It is a tedious
but straightforward job to construct the system and
then start eliminating variables. In particular, we did
not make any use of the algebraic properties of the
S-box. As known from literature (Daemen & Rijmen
2002), the S-box can be replaced with the following
polynomial equation:

S[x] =5x254 ⊕ 9x253 ⊕ F9x251 ⊕ 25x247⊕

F4x239 ⊕ B5x223 ⊕ B9x191 ⊕ 8Fx127 ⊕ 63

The inverse S-box polynomial equation, however, is
denser than the above equation. It contains 247 terms
and is given in Appendix A of the paper by Buch-
mann et al. (2006). The complicated structure of the
inverse equations makes solving the equations very
hard. The degree of the resulting equation system
is also expected to be very high. This leaves room
for further research. It is fully possible that one can
improve on the results we obtained.

Finally, note that LEX is intended as a generic
method of constructing a stream cipher from a block
cipher. In this paper, a specific instance of LEX which
uses the AES has been explored in terms of building
a small system of equations. The AES is known to be
a very strong cipher. Yet we have shown that the re-
sulting equation system is very close to the threshold
for key recovery. If other possibly weak block ciphers
are used in this manner, the security of the stream
cipher is surely questionable. This remains an area
of further investigation, and we think that the result
in this paper shows that one must thoroughly inves-
tigate algebraic attacks when using the LEX design
with a different block cipher than the AES.
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A Equations

The following list the relations of the temporary vari-
ables pi,qi,ri,si,ti,ui in the forward and backward di-
rections. These variables are substituted so that only
the xi variables remain.

A.1 Forward Direction

• s0 = Θ(c16, x3, c19, x11) ⊕ k64

• s1 = Θ(x3, c19, x11, c16) ⊕ k65

• s2 = Θ(c19, x11, c16, x3) ⊕ k66

• s3 = Θ(x11, c16, x3, c19) ⊕ k67

• s4 = Θ(x6, x10, x1, x2) ⊕ k69

• s5 = Θ(x1, x2, x6, x10) ⊕ k71

• s6 = Θ(c18, x9, c17, x5) ⊕ k72

• s7 = Θ(x9, c17, x5, c18) ⊕ k73

• s8 = Θ(c17, x5, c18, x9) ⊕ k74

• s9 = Θ(x5, c18, x9, c17) ⊕ k75

• s10 = Θ(x0, x4, x7, x8) ⊕ k77

• s11 = Θ(x7, x8, x0, x4) ⊕ k79

• t0 = Θ(s4, s8, s11, s0) ⊕ k81

• t1 = Θ(s11, s0, s4, s8) ⊕ k83

• t2 = Θ(c20, s7, c23, s3) ⊕ k84

• t3 = Θ(s7, c23, s3, c20) ⊕ k85

• t4 = Θ(c23, s3, c20, s7) ⊕ k86

• t5 = Θ(s3, c20, s7, c23) ⊕ k87

• t6 = Θ(s10, s2, s5, s6) ⊕ k89



• t7 = Θ(s5, s6, s10, s2) ⊕ k91

• t8 = Θ(c22, s1, c21, s9) ⊕ k92

• t9 = Θ(s1, c21, s9, c22) ⊕ k93

• t10 = Θ(c21, s9, c22, s1) ⊕ k94

• t11 = Θ(s9, c22, s1, c21) ⊕ k95

• u0 = Θ(c24, t3, c27, t11) ⊕ k96

• u1 = Θ(t3, c27, t11, c24) ⊕ k97

• u2 = Θ(c27, t11, c24, t3) ⊕ k98

• u3 = Θ(t11, c24, t3, c27) ⊕ k99

• u4 = Θ(t6, t10, t1, t2) ⊕ k101

• u5 = Θ(t1, t2, t6, t10) ⊕ k103

• u6 = Θ(c26, t9, c25, t5) ⊕ k104

• u7 = Θ(t9, c25, t5, c26) ⊕ k105

• u8 = Θ(c25, t5, c26, t9) ⊕ k106

• u9 = Θ(t5, c26, t9, c25) ⊕ k107

• u10 = Θ(t0, t4, t7, t8) ⊕ k109

• u11 = Θ(t7, t8, t0, t4) ⊕ k111

A.2 Backward Direction

• r0 = S−1[Π(c16, x0, c17, x1) ⊕
Π(k48, k49, k50, k51)]

• r1 = S−1[Π(x9, x10, x11, x8) ⊕
Π(k61, k62, k63, k60)]

• r2 = S−1[Π(c19, x7, c18, x6) ⊕
Π(k58, k59, k56, k57)]

• r3 = S−1[Π(x5, x2, x3, x4) ⊕ Π(k55, k52, k53, k54)]

• r4 = S−1[Π(x0, c17, x1, c16) ⊕
Π(k49, k50, k51, k48)]

• r5 = S−1[Π(x7, c18, x6, c19) ⊕
Π(k59, k56, k57, k58)]

• r6 = S−1[Π(c18, x6, c19, x7) ⊕
Π(k56, k57, k58, k59)]

• r7 = S−1[Π(x3, x4, x5, x2) ⊕ Π(k53, k54, k55, k52)]

• r8 = S−1[Π(c17, x1, c16, x0) ⊕
Π(k50, k51, k48, k49)]

• r9 = S−1[Π(x11, x8, x9, x10) ⊕
Π(k63, k60, k61, k62)]

• r10 = S−1[Π(x6, c19, x7, c18) ⊕
Π(k57, k58, k59, k56)]

• r11 = S−1[Π(x1, c16, x0, c17) ⊕
Π(k51, k48, k49, k50)]

• q0 = S−1[Π(r10, c15, r11, c14) ⊕
Π(k45, k46, k47, k44)]

• q1 = S−1[Π(r5, c12, r4, c13)⊕Π(k39, k36, k37, k38)]

• q2 = S−1[Π(c12, r4, c13, r5)⊕Π(k36, k37, k38, k39)]

• q3 = S−1[Π(r1, r2, r3, r0) ⊕ Π(k33, k34, k35, k32)]

• q4 = S−1[Π(c15, r11, c14, r10) ⊕
Π(k46, k47, k44, k45)]

• q5 = S−1[Π(r9, r6, r7, r8) ⊕ Π(k43, k40, k41, k42)]

• q6 = S−1[Π(r4, c13, r5, c12)⊕Π(k37, k38, k39, k36)]

• q7 = S−1[Π(r11, c14, r10, c15) ⊕
Π(k47, k44, k45, k46)]

• q8 = S−1[Π(c14, r10, c15, r11) ⊕
Π(k44, k45, k46, k47)]

• q9 = S−1[Π(r7, r8, r9, r6) ⊕ Π(k41, k42, k43, k40)]

• q10 = S−1[Π(c13, r5, c12, r4) ⊕
Π(k38, k39, k36, k37)]

• q11 = S−1[Π(r3, r0, r1, r2) ⊕ Π(k35, k32, k33, k34)]

• p0 = S−1[Π(c8, q0, c9, q1) ⊕ Π(k16, k17, k18, k19)]

• p1 = S−1[Π(q9, q10, q11, q8)⊕Π(k29, k30, k31, k28)]

• p2 = S−1[Π(c11, q7, c10, q6)⊕Π(k26, k27, k24, k25)]

• p3 = S−1[Π(q5, q2, q3, q4) ⊕ Π(k23, k20, k21, k22)]

• p4 = S−1[Π(q0, c9, q1, c8) ⊕ Π(k17, k18, k19, k16)]

• p5 = S−1[Π(q7, c10, q6, c11)⊕Π(k27, k24, k25, k26)]

• p6 = S−1[Π(c10, q6, c11, q7)⊕Π(k24, k25, k26, k27)]

• p7 = S−1[Π(q3, q4, q5, q2) ⊕ Π(k21, k22, k23, k20)]

• p8 = S−1[Π(c9, q1, c8, q0) ⊕ Π(k18, k19, k16, k17)]

• p9 = S−1[Π(q11, q8, q9, q10)⊕Π(k31, k28, k29, k30)]

• p10 = S−1[Π(q6, c11, q7, c10) ⊕
Π(k25, k26, k27, k24)]

• p11 = S−1[Π(q1, c8, q0, c9) ⊕ Π(k19, k16, k17, k18)]

A.3 Subkey Variables Substitution

The following substitutions are performed so that
only 16 subkey variables remain.

• k0 = k48 ⊕ S[k61 ⊕ k57] ⊕ S[k61 ⊕ k53] ⊕ S[k61 ⊕
k53 ⊕ k57 ⊕ k49] ⊕ R1 ⊕ R2 ⊕ R3

• k1 = k49 ⊕ S[k62 ⊕ k58] ⊕ S[k62 ⊕ k54] ⊕ S[k62 ⊕
k54 ⊕ k58 ⊕ k50]

• k2 = k50 ⊕ S[k63 ⊕ k59] ⊕ S[k63 ⊕ k55] ⊕ S[k63 ⊕
k55 ⊕ k59 ⊕ k51]

• k3 = k51 ⊕ S[k60 ⊕ k56] ⊕ S[k60 ⊕ k52] ⊕ S[k60 ⊕
k52 ⊕ k56 ⊕ k48]

• k4 = k48 ⊕ k52 ⊕ S[k61 ⊕ k53] ⊕ R2

• k5 = k49 ⊕ k53 ⊕ S[k62 ⊕ k54]

• k6 = k50 ⊕ k54 ⊕ S[k63 ⊕ k55]

• k7 = k51 ⊕ k55 ⊕ S[k60 ⊕ k52]

• k8 = k48 ⊕ k52 ⊕ k56 ⊕ S[k61 ⊕ k57] ⊕ R3

• k9 = k49 ⊕ k53 ⊕ k57 ⊕ S[k62 ⊕ k58]

• k10 = k50 ⊕ k54 ⊕ k58 ⊕ S[k63 ⊕ k59]

• k11 = k51 ⊕ k55 ⊕ k59 ⊕ S[k60 ⊕ k56]

• k12 = k48 ⊕ k52 ⊕ k56 ⊕ k60

• k13 = k49 ⊕ k53 ⊕ k57 ⊕ k61

• k14 = k50 ⊕ k54 ⊕ k58 ⊕ k62

• k15 = k51 ⊕ k55 ⊕ k59 ⊕ k63



• k16 = k48 ⊕S[k61 ⊕ k57]⊕S[k61 ⊕ k53]⊕R2 ⊕R3

• k17 = k49 ⊕ S[k62 ⊕ k58] ⊕ S[k62 ⊕ k54]

• k18 = k50 ⊕ S[k63 ⊕ k59] ⊕ S[k63 ⊕ k55]

• k19 = k51 ⊕ S[k60 ⊕ k56] ⊕ S[k60 ⊕ k52]

• k20 = k52 ⊕ S[k61 ⊕ k57] ⊕ R3

• k21 = k53 ⊕ S[k62 ⊕ k58]

• k22 = k54 ⊕ S[k63 ⊕ k59]

• k23 = k55 ⊕ S[k60 ⊕ k56]

• k24 = k48 ⊕ k56

• k25 = k49 ⊕ k57

• k26 = k50 ⊕ k58

• k27 = k51 ⊕ k59

• k28 = k52 ⊕ k60

• k29 = k53 ⊕ k61

• k30 = k54 ⊕ k62

• k31 = k55 ⊕ k63

• k32 = k48 ⊕ S[k61 ⊕ k57] ⊕ R3

• k33 = k49 ⊕ S[k62 ⊕ k58]

• k34 = k50 ⊕ S[k63 ⊕ k59]

• k35 = k51 ⊕ S[k60 ⊕ k56]

• k36 = k48 ⊕ k52

• k37 = k49 ⊕ k53

• k38 = k50 ⊕ k54

• k39 = k51 ⊕ k55

• k40 = k52 ⊕ k56

• k41 = k53 ⊕ k57

• k42 = k54 ⊕ k58

• k43 = k55 ⊕ k59

• k44 = k56 ⊕ k60

• k45 = k57 ⊕ k61

• k46 = k58 ⊕ k62

• k47 = k59 ⊕ k63

• k64 = k48 ⊕ S[k61] ⊕ R4

• k65 = k49 ⊕ S[k62]

• k66 = k50 ⊕ S[k63]

• k67 = k51 ⊕ S[k60]

• k68 = k48 ⊕ k52 ⊕ S[k61] ⊕ R4

• k69 = k49 ⊕ k53 ⊕ S[k62]

• k70 = k50 ⊕ k54 ⊕ S[k63]

• k71 = k51 ⊕ k55 ⊕ S[k60]

• k72 = k48 ⊕ k52 ⊕ k56 ⊕ S[k61] ⊕ R4

• k73 = k49 ⊕ k53 ⊕ k57 ⊕ S[k62]

• k74 = k50 ⊕ k54 ⊕ k58 ⊕ S[k63]

• k75 = k51 ⊕ k55 ⊕ k59 ⊕ S[k60]

• k76 = k48 ⊕ k52 ⊕ k56 ⊕ k60 ⊕ S[k61] ⊕ R4

• k77 = k49 ⊕ k53 ⊕ k57 ⊕ k61 ⊕ S[k62]

• k78 = k50 ⊕ k54 ⊕ k58 ⊕ k62 ⊕ S[k63]

• k79 = k51 ⊕ k55 ⊕ k59 ⊕ k63 ⊕ S[k60]

• k80 = k48 ⊕ S[k61] ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕ k49 ⊕
S[k62]] ⊕ R4 ⊕ R5

• k81 = k49⊕S[k62]⊕S[k62⊕k58⊕k54⊕k50⊕S[k63]]

• k82 = k50⊕S[k63]⊕S[k63⊕k59⊕k55⊕k51⊕S[k60]]

• k83 = k51 ⊕ S[k60] ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕ k48 ⊕
S[k61] ⊕ R4]

• k84 = k52 ⊕S[k61 ⊕k57 ⊕k53 ⊕k49 ⊕S[k62]]⊕R5

• k85 = k53 ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕ S[k63]]

• k86 = k54 ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕ S[k60]]

• k87 = k55 ⊕S[k60 ⊕k56 ⊕k52 ⊕k48 ⊕S[k61]⊕R4]

• k88 = k48 ⊕ k56 ⊕ S[k61] ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕
k49 ⊕ S[k62]] ⊕ R4 ⊕ R5

• k89 = k49 ⊕ k57 ⊕ S[k62] ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕
k50 ⊕ S[k63]]

• k90 = k50 ⊕ k58 ⊕ S[k63] ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕
k51 ⊕ S[k60]]

• k91 = k51 ⊕ k59 ⊕ S[k60] ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕
k48 ⊕ S[k61] ⊕ R4]

• k92 = k52⊕k60⊕S[k61⊕k57⊕k53⊕k49⊕S[k62]]⊕
R5

• k93 = k53 ⊕k61 ⊕S[k62 ⊕k58 ⊕k54 ⊕k50 ⊕S[k63]]

• k94 = k54 ⊕k62 ⊕S[k63 ⊕k59 ⊕k55 ⊕k51 ⊕S[k60]]

• k95 = k55⊕k63⊕S[k60⊕k56⊕k52⊕k48⊕S[k61]⊕
R4]

• k96 = k48 ⊕ S[k61] ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕ k49 ⊕
S[k62]]⊕ S[k61 ⊕ k53 ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕
S[k63]]] ⊕ R4 ⊕ R5 ⊕ R6

• k97 = k49 ⊕ S[k62] ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕
S[k63]]⊕ S[k62 ⊕ k54 ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕
S[k60]]]

• k98 = k50 ⊕ S[k63] ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕
S[k60]]⊕ S[k63 ⊕ k55 ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕ k48 ⊕
S[k61] ⊕ R4]]

• k99 = k51 ⊕ S[k60] ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕ k48 ⊕
S[k61] ⊕ R4] ⊕ S[k60 ⊕ k52 ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕
k49 ⊕ S[k62]] ⊕ R5]

• k100 = k48 ⊕ k52 ⊕S[k61]⊕S[k61 ⊕ k53 ⊕S[k62 ⊕
k58 ⊕ k54 ⊕ k50 ⊕ S[k63]]] ⊕ R4 ⊕ R6

• k101 = k49 ⊕ k53 ⊕S[k62]⊕S[k62 ⊕ k54 ⊕S[k63 ⊕
k59 ⊕ k55 ⊕ k51 ⊕ S[k60]]]

• k102 = k50 ⊕ k54 ⊕S[k63]⊕S[k63 ⊕ k55 ⊕S[k60 ⊕
k56 ⊕ k52 ⊕ k48 ⊕ S[k61] ⊕ R4]]

• k103 = k51 ⊕ k55 ⊕S[k60]⊕S[k60 ⊕ k52 ⊕S[k61 ⊕
k57 ⊕ k53 ⊕ k49 ⊕ S[k62]] ⊕ R5]

• k104 = k52⊕k56⊕S[k61⊕k57⊕k53⊕k49⊕S[k62]]⊕
S[k61 ⊕ k53 ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕ S[k63]]]⊕
R5 ⊕ R6



• k105 = k53⊕k57⊕S[k62⊕k58⊕k54⊕k50⊕S[k63]]⊕
S[k62 ⊕ k54 ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕ S[k60]]]

• k106 = k54⊕k58⊕S[k63⊕k59⊕k55⊕k51⊕S[k60]]⊕
S[k63⊕k55⊕S[k60⊕k56⊕k52⊕k48⊕S[k61]⊕R4]]

• k107 = k55⊕k59⊕S[k60⊕k56⊕k52⊕k48⊕S[k61]⊕
R4]⊕S[k60⊕k52⊕S[k61⊕k57⊕k53⊕k49⊕S[k62]]⊕
R5]

• k108 = k56 ⊕ k60 ⊕ S[k61 ⊕ k53 ⊕ S[k62 ⊕ k58 ⊕
k54 ⊕ k50 ⊕ S[k63]]] ⊕ R6

• k109 = k57 ⊕ k61 ⊕ S[k62 ⊕ k54 ⊕ S[k63 ⊕ k59 ⊕
k55 ⊕ k51 ⊕ S[k60]]]

• k110 = k58 ⊕ k62 ⊕ S[k63 ⊕ k55 ⊕ S[k60 ⊕ k56 ⊕
k52 ⊕ k48 ⊕ S[k61] ⊕ R4]]

• k111 = k59 ⊕ k63 ⊕ S[k60 ⊕ k52 ⊕ S[k61 ⊕ k57 ⊕
k53 ⊕ k49 ⊕ S[k62]] ⊕ R5]

• k112 = k48 ⊕ S[k61] ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕ k49 ⊕
S[k62]]⊕ S[k61 ⊕ k53 ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕
S[k63]]]⊕S[k61⊕k57⊕S[k62⊕k54⊕S[k63⊕k59⊕
k55 ⊕ k51 ⊕ S[k60]]]] ⊕ R4 ⊕ R5 ⊕ R6 ⊕ R7

• k113 = k49 ⊕ S[k62] ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕
S[k63]]⊕ S[k62 ⊕ k54 ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕
S[k60]]]⊕S[k62⊕k58⊕S[k63⊕k55⊕S[k60⊕k56⊕
k52 ⊕ k48 ⊕ S[k61] ⊕ R4]]]

• k114 = k50 ⊕ S[k63] ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕
S[k60]]⊕ S[k63 ⊕ k55 ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕ k48 ⊕
S[k61]⊕R4]]⊕S[k63⊕k59⊕S[k60⊕k52⊕S[k61⊕
k57 ⊕ k53 ⊕ k49 ⊕ S[k62]] ⊕ R5]]

• k115 = k51 ⊕ S[k60] ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕ k48 ⊕
S[k61] ⊕ R4] ⊕ S[k60 ⊕ k52 ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕
k49 ⊕ S[k62]]⊕R5]⊕ S[k60 ⊕ k56 ⊕ S[k61 ⊕ k53 ⊕
S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕ S[k63]]] ⊕ R6]

• k116 = k52 ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕ k49 ⊕ S[k62]] ⊕
S[k61 ⊕ k57 ⊕ S[k62 ⊕ k54 ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕
k51 ⊕ S[k60]]]] ⊕ R5 ⊕ R7

• k117 = k53 ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕ S[k63]] ⊕
S[k62 ⊕ k58 ⊕ S[k63 ⊕ k55 ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕
k48 ⊕ S[k61] ⊕ R4]]]

• k118 = k54 ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕ k51 ⊕ S[k60]] ⊕
S[k63 ⊕ k59 ⊕ S[k60 ⊕ k52 ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕
k49 ⊕ S[k62]] ⊕ R5]]

• k119 = k55 ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕ k48 ⊕ S[k61] ⊕
R4] ⊕ S[k60 ⊕ k56 ⊕ S[k61 ⊕ k53 ⊕ S[k62 ⊕ k58 ⊕
k54 ⊕ k50 ⊕ S[k63]]] ⊕ R6]

• k120 = k56 ⊕ S[k61 ⊕ k53 ⊕ S[k62 ⊕ k58 ⊕ k54 ⊕
k50⊕S[k63]]]⊕S[k61⊕k57⊕S[k62⊕k54⊕S[k63⊕
k59 ⊕ k55 ⊕ k51 ⊕ S[k60]]]] ⊕ R6 ⊕ R7

• k121 = k57 ⊕ S[k62 ⊕ k54 ⊕ S[k63 ⊕ k59 ⊕ k55 ⊕
k51⊕S[k60]]]⊕S[k62⊕k58⊕S[k63⊕k55⊕S[k60⊕
k56 ⊕ k52 ⊕ k48 ⊕ S[k61] ⊕ R4]]]

• k122 = k58 ⊕ S[k63 ⊕ k55 ⊕ S[k60 ⊕ k56 ⊕ k52 ⊕
k48 ⊕ S[k61]⊕R4]]⊕ S[k63 ⊕ k59 ⊕ S[k60 ⊕ k52 ⊕
S[k61 ⊕ k57 ⊕ k53 ⊕ k49 ⊕ S[k62]] ⊕ R5]]

• k123 = k59 ⊕ S[k60 ⊕ k52 ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕
k49 ⊕ S[k62]]⊕R5]⊕ S[k60 ⊕ k56 ⊕ S[k61 ⊕ k53 ⊕
S[k62 ⊕ k58 ⊕ k54 ⊕ k50 ⊕ S[k63]]] ⊕ R6]

• k124 = k60 ⊕ S[k61 ⊕ k57 ⊕ S[k62 ⊕ k54 ⊕ S[k63 ⊕
k59 ⊕ k55 ⊕ k51 ⊕ S[k60]]]] ⊕ R7

• k125 = k61 ⊕ S[k62 ⊕ k58 ⊕ S[k63 ⊕ k55 ⊕ S[k60 ⊕
k56 ⊕ k52 ⊕ k48 ⊕ S[k61] ⊕ R4]]]

• k126 = k62 ⊕ S[k63 ⊕ k59 ⊕ S[k60 ⊕ k52 ⊕ S[k61 ⊕
k57 ⊕ k53 ⊕ k49 ⊕ S[k62]] ⊕ R5]]

• k127 = k63 ⊕ S[k60 ⊕ k56 ⊕ S[k61 ⊕ k53 ⊕ S[k62 ⊕
k58 ⊕ k54 ⊕ k50 ⊕ S[k63]]] ⊕ R6]

A.4 Temporary Variables

Temporary variables from Section 4.3 are defined
here. Note that multiplication is performed in the
AES GF (28) field and the coefficients are in hexadec-
imal format.

• v0 = Θ(c16, 47x2 ⊕ CBx4 ⊕ 47k52 ⊕ k53 ⊕ CBk54 ⊕
44S[c12] ⊕ C9S[c15], c19, CBx8 ⊕ 47x10 ⊕ CBk60 ⊕
47k62⊕k63⊕C9S[c14]⊕44S[c13])⊕k48⊕S[k61]⊕
R4

• v1 = 44S[x2]⊕ C9S[x10]⊕ 47k48 ⊕ k49 ⊕ CBk50 ⊕
47k52⊕k53⊕CBk54⊕47S[k61]⊕S[k62]⊕CBS[k63]⊕
47R4 ⊕ 47c20 ⊕ CBc21

• v2 = Θ(c17, CBx2 ⊕ 47x4 ⊕ CBk52 ⊕ 47k54 ⊕ k55 ⊕
C9S[c12] ⊕ 44S[c15], c18, 47x8 ⊕ CBx10 ⊕ 47k60 ⊕
k61 ⊕ CBk62 ⊕ 44S[c14] ⊕ C9S[c13]) ⊕ k50 ⊕ k54 ⊕
k58 ⊕ S[k63]

• v3 = C9S[x8] ⊕ 44S[x4] ⊕ CBk48 ⊕ 47k50 ⊕ k51 ⊕
CBk52 ⊕ 47k54 ⊕ k55 ⊕ CBk56 ⊕ 47k58 ⊕ CBk60 ⊕
S[k60]⊕CBS[k61]⊕47k62⊕k63⊕47S[k63]⊕CBR4⊕
CBc22 ⊕ 47c23

• w0 = Θ(c18, 47x8⊕CBx10⊕47k60⊕k61⊕CBk62⊕
44S[c14]⊕C9S[c13], S[c17], CBx2⊕47x4⊕CBk52⊕
47k54 ⊕ k55 ⊕ C9S[c12] ⊕ 44S[c15]) ⊕ k48 ⊕ k52 ⊕
k56 ⊕ S[k61] ⊕ R4

• w1 = 44S[x8] ⊕ C9S[x4] ⊕ 47k48 ⊕ k49 ⊕ CBk50 ⊕
47k52⊕k53⊕CBk54⊕47k56⊕k57⊕CBk58⊕47k60⊕
k61⊕47S[k61]⊕CBk62⊕S[k62]⊕CBS[k63]⊕47R4⊕
47c22 ⊕ CBc23

• w2 = Θ(c19, CBx8⊕47x10⊕CBk60⊕47k62⊕k63⊕
C9S[c14] ⊕ 44S[c13], c16, 47x2 ⊕ CBx4 ⊕ 47k52 ⊕
k53 ⊕ CBk54 ⊕ 44S[c12]⊕ C9S[c15])⊕ k50 ⊕ S[k63]

• w3 = C9S[x2]⊕44S[x10]⊕CBk48⊕47k50⊕CBk52⊕
47k54⊕k55⊕S[k60]⊕CBS[k61]⊕47S[k63]⊕CBR4⊕
CBc20 ⊕ 47c21

• y0 = 7S[2S[c16]⊕3S[47x2⊕CBx4⊕47k52⊕k53⊕
CBk54 ⊕ 44S[c12] ⊕ C9S[c15]] ⊕ S[c19]⊕ S[CBx8 ⊕
47x10⊕CBk60⊕47k62⊕k63⊕C9S[c14]⊕44S[c13]]⊕
k48 ⊕ S[k61] ⊕ R4]

• y1 = 4S[44S[x2]⊕C9S[x10]⊕47k48⊕k49⊕CBk50⊕
47k52⊕k53⊕CBk54⊕47S[k61]⊕S[k62]⊕CBS[k63]⊕
47R4 ⊕ 47c20 ⊕ CBc21]

• y2 = S[S[c18] ⊕ S[47x8 ⊕ CBx10 ⊕ 47k60 ⊕ k61 ⊕
CBk62⊕44S[c14]⊕C9S[c13]]⊕2S[c17]⊕3S[CBx2⊕
47x4⊕CBk52⊕47k54⊕k55⊕C9S[c12]⊕44S[c15]]⊕
k50 ⊕ k54 ⊕ k58 ⊕ S[k63]]

• y3 = 44S[x4] ⊕ C9S[x8] ⊕ CBk48 ⊕ 47k50 ⊕
CBk52 ⊕ 47k54 ⊕ 47k58 ⊕ CBk60 ⊕ CBS[k61]⊕ k63 ⊕
47S[k63]⊕ CBR4 ⊕ 47k62 ⊕ k63 ⊕ CBc22 ⊕ 47c23 ⊕
S−1[2S[2S[c16]⊕3S[47x2 ⊕CBx4 ⊕47k52 ⊕k53 ⊕
CBk54 ⊕ 44S[c12] ⊕ C9S[c15]] ⊕ S[c19]⊕ S[CBx8 ⊕
47x10⊕CBk60⊕47k62⊕k63⊕C9S[c14]⊕44S[c13]]⊕
k48 ⊕ S[k61] ⊕ R4] ⊕ 3S[44S[x2] ⊕ C9S[x10] ⊕
47k48 ⊕ k49 ⊕ CBk50 ⊕ 47k52 ⊕ k53 ⊕ CBk54 ⊕
47S[k61] ⊕ S[k62] ⊕ CBS[k63] ⊕ 47R4 ⊕ 47c20 ⊕
CBc21]⊕S[S[c18]⊕S[47x8⊕CBx10⊕47k60⊕k61⊕



CBk62⊕44S[c14]⊕C9S[c13]]⊕2S[c17]⊕3S[CBx2⊕
47x4⊕CBk52⊕47k54⊕k55⊕C9S[c12]⊕44S[c15]]⊕
k50 ⊕ k54 ⊕ k58 ⊕ S[k63]]⊕ k48 ⊕ S[k61]⊕ S[k61 ⊕
k57 ⊕ k53 ⊕ k49 ⊕ S[k62]] ⊕ R4 ⊕ R5 ⊕ c24]

The temporary key variables are:

• K∗

0 = k48 ⊕ S[k61] ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕ k49 ⊕
S[k62]] ⊕ R4 ⊕ R5

• K∗

1 = k48 ⊕ k56 ⊕ S[k61] ⊕ S[k61 ⊕ k57 ⊕ k53 ⊕
k49 ⊕ S[k62]] ⊕ R4 ⊕ R5

• K∗

2 = 3k48 ⊕ k50 ⊕ 3S[k61] ⊕ S[k63] ⊕ 3S[k61 ⊕
k57 ⊕ k53 ⊕ k49 ⊕ S[k62]] ⊕ 3R4 ⊕ 3R5 ⊕ 3c24

A.5 Final Equation System

The final system of 21 equations in 17 variables are
given here. The expressions Wj , Yj , Zj and Tj con-
tain subkey and/or key variables which are defined
later. Note that Θ is defined in Section 4.1 and
Π̂(z0, z1, z2, z3) = ES−1[z0] ⊕ BS−1[z1] ⊕ DS−1[z2] ⊕
9S−1[z3]. Note that multiplication is performed in
the AES GF (28) field and the coefficients are in hex-
adecimal format.

1. Based on Equation (25):

Θ(Θ( c24,Θ(Y0, c23, Y1, c20) ⊕ T0,

c27,Θ(Y3, c22, Y2, c21) ⊕ T1) ⊕ T2,

Θ( Θ(W2,W0,W1, 0) ⊕ T4,

Θ(c21, Y3, c22, Y2) ⊕ T5,

7S[W4] ⊕ 7S[W5] ⊕ 3S[W6] ⊕ T6 ⊕ T61,

Θ(c20, Y0, c23, Y1) ⊕ T3) ⊕ T7,

Θ( c25,Θ(Y1, c20, Y0, c23) ⊕ T9,

c26,Θ(Y2, c21, Y3, c22) ⊕ T8) ⊕ T10

Θ( 7S[W0] ⊕ 7S[W1] ⊕ 3S[W2] ⊕ T14 ⊕ T62,

Θ(c22, Y2, c21, Y3) ⊕ T11,

3S[W4] ⊕ S[W5] ⊕ 2S[W6] ⊕ T12,

Θ(c23, Y1, c20, Y0) ⊕ T13) ⊕ T15)

⊕T16 ⊕ c32 = 0

2. Based on Equation (26):

Θ(Θ( c25,Θ(Y1, c20, Y0, c23) ⊕ T9,

c26,Θ(Y2, c21, Y3, c22) ⊕ T8) ⊕ T10,

Θ( 7S[W0] ⊕ 7S[W1] ⊕ 3S[W2] ⊕ T14 ⊕ T62,

Θ(c22, Y2, c21, Y3) ⊕ T11,

Θ(W6,W4,W5, 0) ⊕ T12,

Θ(c23, Y1, c20, Y0) ⊕ T13) ⊕ T15,

Θ( c24,Θ(Y0, c23, Y1, c20) ⊕ T0,

c27,Θ(Y3, c22, Y2, c21) ⊕ T1) ⊕ T2

Θ( Θ(W2,W0,W1, 0) ⊕ T4,

Θ(c21, Y3, c22, Y2) ⊕ T5,

7S[W4] ⊕ 7S[W5] ⊕ 3S[W6] ⊕ T6 ⊕ T61,

Θ(c20, Y0, c23, Y1) ⊕ T3) ⊕ T7)

⊕T17 ⊕ c33 = 0

3. Based on Equation (27):

Θ(Θ( c26,Θ(Y2, c21, Y3, c22) ⊕ T8,

c25,Θ(Y1, c20, Y0, c23) ⊕ T9) ⊕ T18,

Θ( Θ(W6,W4,W5, 0) ⊕ T12,

Θ(c23, Y1, c20, Y0) ⊕ T13,

Θ(c22, Y2, c21, Y3) ⊕ T14 ⊕ T62,

7S[W0] ⊕ 7S[W1] ⊕ 3S[W2] ⊕ T11) ⊕ T19,

Θ( c27,Θ(Y3, c22, Y2, c21) ⊕ T1,

c24,Θ(Y0, c23, Y1, c20) ⊕ T0) ⊕ T20

Θ( 7S[W4] ⊕ 7S[W5] ⊕ 3S[W6] ⊕ T6 ⊕ T61,

Θ(c20, Y0, c23, Y1) ⊕ T3,

Θ(W2,W0,W1, 0) ⊕ T4,

Θ(c21, Y3, c22, Y2) ⊕ T5) ⊕ T21)

⊕T22 ⊕ c34 = 0

4. Based on Equation (28):

Θ(Θ( c27,Θ(Y3, c22, Y2, c21) ⊕ T1,

c24,Θ(Y0, c23, Y1, c20) ⊕ T0) ⊕ T20,

Θ( 7S[W4] ⊕ 7S[W5] ⊕ 3S[W6] ⊕ T6 ⊕ T61,

Θ(c20, Y0, c23, Y1) ⊕ T3,

Θ(W2,W0,W1, 0) ⊕ T4,

Θ(c21, Y3, c22, Y2) ⊕ T5,

Θ( c26,Θ(Y2, c21, Y3, c22) ⊕ T8,

c25,Θ(Y1, c20, Y0, c23) ⊕ T9) ⊕ T18

Θ( Θ(W6,W4,W5, 0) ⊕ T12,

Θ(c23, Y1, c20, Y0) ⊕ T13,

7S[W0] ⊕ 7S[W1] ⊕ 3S[W2] ⊕ T14 ⊕ T62,

Θ(c22, Y2, c21, Y3) ⊕ T11) ⊕ T19)

⊕T23 ⊕ c35 = 0

5. Based on Equation (29):

Π̂(Π̂( S[c8], Π̂(Y6, S[c15], Y7, S[c14]) ⊕ T24,

S[c9], Π̂(Y5, S[c12], Y4, S[c13]) ⊕ T25) ⊕ T26,

Π̂( Π̂(Z13, Z14, Z15, Z12) ⊕ T28,

Π̂(S[c13], Y5, S[c12], Y4) ⊕ T29,

Π̂(Z11, Z8, Z9, Z10) ⊕ T30,

Π̂(S[c14], Y6, S[c15], Y7) ⊕ T27) ⊕ T31,

Π̂( S[c11], Π̂(Y7, S[c14], Y6, S[c15]) ⊕ T33,

S[c10], Π̂(Y4, S[c13], Y5, S[c12]) ⊕ T32) ⊕ T34

Π̂( Π̂(Z15, Z12, Z13, Z14) ⊕ T38,

Π̂(S[c12], Y4, S[c13], Y5) ⊕ T35,

Π̂(Z9, Z10, Z11, Z8) ⊕ T36,

Π̂(S[c15], Y7, S[c14], Y6) ⊕ T37) ⊕ T39)

⊕T40 ⊕ S[c0] = 0



6. Based on Equation (30):

Π̂(Π̂( S[c9], Π̂(Y5, S[c12], Y4, S[c13]) ⊕ T25,

S[c8], Π̂(Y6, S[c15], Y7, S[c14]) ⊕ T24) ⊕ T43,

Π̂( Π̂(Z11, Z8, Z9, Z10) ⊕ T30,

Π̂(S[c14], Y6, S[c15], Y7) ⊕ T27,

Π̂(Z13, Z14, Z15, Z12) ⊕ T28,

Π̂(S[c13], Y5, S[c12], Y4) ⊕ T29) ⊕ T44,

Π̂( S[c10], Π̂(Y4, S[c13], Y5, S[c12]) ⊕ T32,

S[c11], Π̂(Y7, S[c14], Y6, S[c15]) ⊕ T33) ⊕ T41

Π̂( Π̂(Z9, Z10, Z11, Z8) ⊕ T36,

Π̂(S[c15], Y7, S[c14], Y6) ⊕ T37,

Π̂(Z15, Z12, Z13, Z14) ⊕ T38,

Π̂(S[c12], Y4, S[c13], Y5) ⊕ T35) ⊕ T42)

⊕T45 ⊕ S[c1] = 0

7. Based on Equation (31):

Π̂(Π̂( S[c10], Π̂(Y4, S[c13], Y5, S[c12]) ⊕ T32,

S[c11], Π̂(Y7, S[c14], Y6, S[c15]) ⊕ T33) ⊕ T41,

Π̂( Π̂(Z9, Z10, Z11, Z8) ⊕ T36,

Π̂(S[c15], Y7, S[c14], Y6) ⊕ T37,

Π̂(Z15, Z12, Z13, Z14) ⊕ T38,

Π̂(S[c12], Y4, S[c13], Y5) ⊕ T35,

Π̂( S[c9], Π̂(Y5, S[c12], Y4, S[c13]) ⊕ T25,

S[c8], Π̂(Y6, S[c15], Y7, S[c14]) ⊕ T24) ⊕ T43

Π̂( Π̂(Z11, Z8, Z9, Z10) ⊕ T30,

Π̂(S[c14], Y6, S[c15], Y7) ⊕ T27,

Π̂(Z13, Z14, Z15, Z12) ⊕ T28,

Π̂(S[c13], Y5, S[c12], Y4) ⊕ T29) ⊕ T44)

⊕T46 ⊕ S[c2] = 0

8. Based on Equation (32):

Π̂(Π̂( S[c11], Π̂(Y7, S[c14], Y6, S[c15]) ⊕ T33,

S[c10], Π̂(Y4, S[c13], Y5, S[c12]) ⊕ T32) ⊕ T34,

Π̂( Π̂(Z15, Z12, Z13, Z14) ⊕ T38,

Π̂(S[c12], Y4, S[c13], Y5) ⊕ T35,

Π̂(Z9, Z10, Z11, Z8) ⊕ T36,

Π̂(S[c15], Y7, S[c14], Y6) ⊕ T37) ⊕ T39,

Π̂( S[c8], Π̂(Y6, S[c15], Y7, S[c14]) ⊕ T24,

S[c9], Π̂(Y5, S[c12], Y4, S[c13]) ⊕ T25) ⊕ T26

Π̂( Π̂(Z13, Z14, Z15, Z12) ⊕ T28,

Π̂(S[c13], Y5, S[c12], Y4) ⊕ T29,

Π̂(Z11, Z8, Z9, Z10) ⊕ T30,

Π̂(S[c14], Y6, S[c15], Y7) ⊕ T27) ⊕ T31)

⊕T47 ⊕ S[c3] = 0

9. Based on Equation (21):

Θ(Θ(c20, Y0, c23, Y1) ⊕ T3,Θ(W2,W0,W1, 0) ⊕ T4,

Θ(c21, Y3, c22, Y2) ⊕ T5,

7S[W4] ⊕ 7S[W5] ⊕ 3S[W6] ⊕ T6 ⊕ T61)

⊕ T48 ⊕ c28 = 0

10. Based on Equation (22):

Θ(Θ(c21, Y3, c22, Y2) ⊕ T5,

7S[W4] ⊕ 7S[W5] ⊕ 3S[W6] ⊕ T6 ⊕ T61,

Θ(c20, Y0, c23, Y1) ⊕ T3,Θ(W2,W0,W1, 0) ⊕ T4)

⊕ T49 ⊕ c29 = 0

11. Based on Equation (23):

Θ(Θ(c22, Y2, c21, Y3) ⊕ T11,Θ(W6,W4,W5, 0) ⊕ T12,

Θ(c23, Y1, c20, Y0) ⊕ T13,

7S[W0] ⊕ 7S[W1] ⊕ 3S[W2] ⊕ T14 ⊕ T62)

⊕ T50 ⊕ c30 = 0

12. Based on Equation (24):

Θ(Θ(c23, Y1, c20, Y0) ⊕ T13,

7S[W0] ⊕ 7S[W1] ⊕ 3S[W2] ⊕ T14 ⊕ T62,

Θ(c22, Y2, c21, Y3) ⊕ T11,Θ(W6,W4,W5, 0) ⊕ T12)

⊕ T51 ⊕ c31 = 0

13. Based on Equation (5):

Π̂(Π̂(S[c12], Y4, S[c13], Y5) ⊕ T35,

Π̂(Z9, Z10, Z11, Z8) ⊕ T36,

Π̂(S[c15], Y7, S[c14], Y6) ⊕ T37,

Π̂(Z15, Z12, Z13, Z14) ⊕ T38) ⊕ T52 ⊕ S[c12] = 0

14. Based on Equation (6):

Π̂(Π̂(S[c13], Y5, S[c12], Y4) ⊕ T29,

Π̂(Z11, Z8, Z9, Z10) ⊕ T30,

Π̂(S[c14], Y6, S[c15], Y7) ⊕ T27,

Π̂(Z13, Z14, Z15, Z12) ⊕ T28) ⊕ T53 ⊕ S[c13] = 0

15. Based on Equation (7):

Π̂(Π̂(S[c14], Y6, S[c15], Y7) ⊕ T27,

Π̂(Z13, Z14, Z15, Z12) ⊕ T28,

Π̂(S[c13], Y5, S[c12], Y4) ⊕ T29,

Π̂(Z11, Z8, Z9, Z10) ⊕ T30) ⊕ T54 ⊕ S[c14] = 0

16. Based on Equation (8):

Π̂(Π̂(S[c15], Y7, S[c14], Y6) ⊕ T37,

Π̂(Z15, Z12, Z13, Z14) ⊕ T38,

Π̂(S[c12], Y4, S[c13], Y5) ⊕ T35,

Π̂(Z9, Z10, Z11, Z8) ⊕ T36) ⊕ T55 ⊕ S[c15] = 0

17. Based on Equation (20):

7S[W0] ⊕ 4S[W1] ⊕ S[W2] ⊕ T56 ⊕ c27 = 0
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Figure 6: Key variables in Figure 3.

18. Based on Equation (37):

Π̂(Z8, Z9, Z10, Z11) ⊕ T57 ⊕ S[c8] = 0

19. Based on Equation (38):

Π̂(Z14, Z15, Z12, Z13) ⊕ T58 ⊕ S[c9] = 0

20. Based on Equation (39):

Π̂(Z12, Z13, Z14, Z15) ⊕ T59 ⊕ S[c10] = 0

21. Based on Equation (40):

Π̂(Z10, Z11, Z8, Z9) ⊕ T60 ⊕ S[c11] = 0

The Wj , Yj , Zj and Tj expressions in the above
equations are composed of the sum of the remaining
state, key variables and constants.

B Step-by-Step Procedure to Produce Equa-
tions for Substitution

The following details the step-by-step procedure to
produce Equations (9) to (16). These equations are
used in the initial substitution process to eliminate 8
state variables.

1. Describe x6 in Eq. (1) in terms of x1, x2, x10.

2. Describe x1 in Eq. (2) in terms of x2, x6, x10.

3. Substitute x6 in Step 2 with x6 in Step 1. Now
x1 is described only in terms of x2, x10 (Refer to
Eq. (9)).

4. Substitute x1 in Step 1 with x1 in the previous
step. Now x6 is described only in terms of x2, x10

(Refer to Eq. (10)).

5. Describe x0 in Eq. (3) in terms of x4, x7, x8.

6. Describe x7 in Eq. (4) in terms of x0, x4, x8.

7. Substitute x0 in Step 6 with x0 in Step 5. Now
x7 is described only in terms of x4, x8 (Refer to
Eq. (12)).

8. Substitute x7 in Step 5 with x7 the previous step.
Now x0 is described only in terms of x4, x8 (Refer
to Eq. (11)).

9. Describe x3 in Eq. (5) in terms of x2, x4, x5.

10. Describe x11 in Eq. (6) in terms of x8, x9, x10.

11. Describe x9 in Eq. (7) in terms of x8, x10, x11.

12. Describe x5 in Eq. (8) in terms of x2, x3, x4.

13. Substitute x5 in Step 9 with x5 in Step 12. Now
x3 is described only in terms of x2, x4 (Refer to
Eq. (13).

14. Substitute x9 in Step 10 with x9 in Step 11. Now
x11 is described only in terms of x8, x10 (Refer to
Eq. (14).

15. Substitute x11 in Step 11 with x11 in Step 14.
Now x9 is described only in terms of x8, x10 (Re-
fer to Eq. (15).

16. Substitute x3 in Step 12 with x3 in Step 13. Now
x5 is described only in terms of x2, x4 (Refer to
Eq. (16).




