
Constructing Strictly Positive Families

Peter Morris Thorsten Altenkirch Neil Ghani

School of Computer Science and Information Technology
University of Nottingham, England,

Email:{pwm,txa,nxg}@cs.nott.ac.uk

Abstract

In order to represent, compute and reason with ad-
vanced data types one must go beyond the traditional
treatment of data types as being inductive types and,
instead, consider them as inductive families. Strictly
positive types (SPTs) form a grammar for defining in-
ductive types and, consequently, a fundamental ques-
tion in the the theory of inductive families is what
constitutes a corresponding grammar for inductive
families.

This paper answers this question in the form of
strictly positive families or SPFs. We show that these
SPFs can be used to represent and compute with a va-
riety of advanced data types, that generic programs
can naturally be written over the universe of SPFs
and that SPFs have a normal form in terms of indexed
containers which are based upon the shapes and po-
sitions metaphor. Finally, we validate our computa-
tional perspective by implementing SPFs in the pro-
gramming language Epigram and, further, comment
on how SPFs provide a meta-language for Epigram’s
data types.

Keywords: Advanced Data Types, Dependently
Typed Programming, Generic Programming, Epi-
gram

1 Introduction

The search for an expressive calculus of data types in
which canonical algorithms can be easily written and
proven correct has proved to be an enduring challenge
to the theoretical computer science community. Ide-
ally, we want a calculus of data types which allows
programs to be written in a natural style and which
also has a clear semantic foundation so as to justify
principles for reasoning about such programs. Ap-
proaches such as polynomial types, strictly positive
types and inductive types have all met with much suc-
cess but they tend not to cover advanced data struc-
tures, e.g. types with variable binding such as un-
typed λ-terms, types with constraints such as square
matrices and dependent types such as the type of fi-
nite sets.

Our first key observation is that in order to rep-
resent, compute and reason with such advanced data
types one must go beyond the traditional treatment of
data types as being inductive types and, instead, con-
sider them as inductive families. To understand this,

Copyright copyright 2007, Australian Computer Society, Inc.
This paper appeared at Computing: The Australasian Theory
Symposium (CATS2007), Ballarat, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 65. Joachim Gudmundsson and Barry Jay, Eds. Re-
production for academic, not-for profit purposes permitted
provided this text is included.
This work is kindly supported by EPSRC Grant:
EP/C511964/1

consider as an example the natural numbers which is
an inductive type Nat : ?. Going further, one may
next consider the list type constructor List : ? → ?.
Notice that, crucially, List A is an inductive type and
does not depend upon, i.e. can be defined indepen-
dently of, List B for any A 6= B . Thus, List is a family
of inductive types indexed by the type of small types.

In contrast to the family of inductive types List,
consider Fin : Nat → ? which is defined inductively
by the constructors

fz : Fin (s n) fs : Fin n → Fin (s n)

Concretely, Fin n represents the finite type with n
elements, fz and fs are the zero and successor of these
types where fz exists in every non-empty Fin type and
fs embeds elements of Finn into Fin (sn). In effect the
type Fin (s (s (s z))) contains elements that look much
like 0,1 and 2: fz, fs fz and fs (fs fz), later in the paper
we will use the type Finn to index into collections
of n items. The key point is that, unlike the case
with lists, the type Finn cannot be defined in isolation
and with recourse only to the elements of Finn that
have already been built. Rather, we need elements
of the type Finn to build elements of Fin (sn) etc.
In effect, the Nat-indexed family Fin : Nat → ? has
to be inductively built up simultaneously for every n
and is thus an inductive family of types rather than
a family of inductive types.

Our interests are in total programming and con-
crete data types so we avoid negative occurrences in
definitions and the pathological issues raised by non-
strict positivity by concentrating on the strictly posi-
tive. Strictly positive types form a grammar for defin-
ing inductive types and, consequently, a fundamental
question in the theory of inductive families is what is
a corresponding grammar for inductive families. This
paper answers this question in the form of strictly pos-
itive families or SPFs. In detail, the contributions of
this paper are:

• We show that these SPFs are expressive in that
they can be used to represent and compute with
a variety of advanced data types. To do this we
define a number of SPFs, and programs which
manipulate them, in the programming language
Epigram.

• We define a data type whose elements are names,
or codes, of strictly positive families and a de-
coding function which assigns to each code, the
actual elements of the type it represents. This
construction is an example of a universe (Martin-
Löf 1984, Nordström, Petersson & Smith 1990)
and allows us to write generic programs for SPFs
by simply writing programs which manipulate
this universe.

• We also consider a smaller universe of regular
families, which is the dependent counterpart of

the universe of regular tree types. This smaller
universe which excludes infinitely branching trees
is interesting because it allows more programs
including a generic program to decide equality.

• Containers (Abbott, Altenkirch & Ghani 2005)
are an alternative presentation of data types
which focuses less on the inductive structure of
data types and more on the fact that they store
data at positions within the data type. In loc.cit.
we show that all strictly positive types can be in-
terpreted as containers which gives an alternative
access to generic programming: a generic pro-
gram is simply one which works on all contain-
ers — see for example our treatment of deriva-
tives of data types (Abbott, Altenkirch, Ghani &
McBride 2005).
In as yet unpublished work (Altenkirch, Ghani,
Hancock, McBride & Morris 2006) we have gen-
eralized containers to indexed containers which
capture inductive families. In the present paper
we relate the two approaches showing that any
SPF gives rise to a semantically equivalent in-
dexed container.

• We give a full implementation of all our construc-
tions in Epigram which is a dependently typed
programming language (McBride & McKinna
2004, McBride 2004, Altenkirch, McBride &
McKinna 2005). Not only does Epigram pro-
vide a language to implement SPFs, but SPFs
are also sufficiently expressive to provide a meta-
language for Epigram’s data types.

Therefore this paper will appeal to those interested
in the theory of data types, generic programming and
type theory. In particular, we are interested in the
relationship between indexed containers with shapely
types.

Related Work: Previously we defined the uni-
verse of regular tree types and developed generic pro-
grams and proofs for this universe (Morris, Altenkirch
& McBride 2006). The goal of this paper is thus to
extend this universe-based approach to generic pro-
gramming to cover the more advanced SPFs.

In related work, Dybjer and Setzer (Dybjer &
Setzer 2001) present an alternative approach to defin-
ing a universe of indexed families by giving an ax-
iomatization of indexed inductive recursive defini-
tions. This has been the base for generic program-
ming within the AGDA system (Benke, Dybjer &
Jansson 2003).

Containers are a natural generalisation of the
shapely types of (Jay 1995) while indexed contain-
ers have been studied under the name of dependent
polynomials in (Gambino & Hyland 2004).

Structure of the Paper: The rest of the paper
is structured as follows: Since our use of dependent
types, universes and containers are a novel approach
to the theory of data types, we begin in section 2 by
reviewing the construction in Epigram of the universe
of SPTs and the use of this universe in providing a
framework for generic programming. In section 3 we
discuss the elements of the grammar of SPFs, while
in section 4 we give a variety of examples of SPFs and
discuss the composition of SPFs. In section 5, we give
a number of generic programs for SPFs while section
6 shows that every SPF is an indexed container. In
section 7, we conclude with some final remarks. Fi-
nally, if possible, we ask readers to print this paper in
colour as we have used the Epigram colouring scheme
to improve legibility of code. For example, construc-
tors always occur in red, type constructors in blue,
defined constants in green etc.

2 SPTs, Epigram and Universes

We begin the paper by recalling strictly positive
types, their implementation in Epigram and the rep-
resentation of the type of strictly positive types as a
universe in Epigram. The rest of the paper will apply
this treatment to the more advanced strictly positive
families.

2.1 Strictly Positive Types

We introduce strictly positive types (SPTs) by way
of a generative grammar as follows:

τ = X | 0 | 1 | τ + τ | τ × τ | K → τ | µX.τ

where X ranges over type variables, 0 and 1 repre-
sent the empty and unit types, the operators + and ×
stand for disjoint union and cartesian product. If K is
a constant type (an SPT with no free type variables)
then K → − is exponentiation by that constant. Fi-
nally the least fixed point operator (µ) creates recur-
sive types by binding a type variable. Examples of
SPTs include the natural numbers, lists, rose trees
and ordinal notations:

Nat = µX.1 + X

List A = µX.1 + (A×X)
RT A = µY.A× List Y

= µY.A× (µX.1 + (Y ×X))
Ord = µX.1 + (X + (Nat → X))

The first three examples, which don’t use exponenti-
ation are regular tree types which are a proper subset
of strictly positive types.

SPTs have traditionally been used as part of the
semantics of programming languages and, for such ap-
plications, the informal grammar given above is ad-
equate. However, in order to reason about and to
program with SPTs, we need a formal definition of
SPTs. For this reason we define a type SPT n whose
elements consist of the names or codes of SPTs and
a decoding function which computes the elements of
an SPT. This construction forms a universe for SPTs
so that generic programming with SPTs can then be
achieved by writing programs which manipulate this
universe. This construction of a universe of SPTs
requires a dependently typed programming language
and we now give a summary of one such language,
namely Epigram.

2.2 Epigram

Epigram is a dependently typed functional language
with an interactive environment for developing pro-
grams with the aid of the type checker. Epigram’s
syntax is based on Type Theory, using λx : A ⇒ t
for λ abstraction, ∀x : A ⇒ t for Π-types and
∃x : A ⇒ t for Σ-types. All type annotations can
be omitted when inferable by the context. ? stands
for the type of types which is implicitly stratified, i.e.
we have ?i : ?i+1 but omit the indices.

All Epigram programs are total to ensure that type
checking is decidable. We ensure this by only allowing
structural recursion. Programs are presented as deci-
sion trees, representing the structure of the analysis
of the problem being solved. Each node consists of a
left-hand side of a pattern match defining the prob-
lem to be solved plus one of three possible right-hand
sides:

⇒ t the function returns t , an expression of the
appropriate type, constructed over the pattern
variables on the left;

data n : Nat
SPT n : ?

where

vz : SPT (s n)
T : SPT n

vsT : SPT (s n) ‘0’ : SPT n
S ,T : SPT n

S ‘+’T : SPT n

‘1’ : SPT n
S ,T : SPT n

S ‘×’T : SPT n
K : ? T : SPT n
K ‘→’T : SPT n

F : SPT (s n)
‘µ’ F : SPT n

data n : Nat
Tel n : ?

where
ε : Tel z

~T : Tel n T : SPT n
~T ::T : Tel (s n)

data
~T : Tel n T : SPT n

El ~T T : ?
where

e : El ~T T
top e : El (~T ::T) vz

e : El ~T T
pop e : El (~T ::S) (vsT) void : El ~T ‘1’

f : K → El ~T T
fun f : El ~T (K ‘→’T)

s : El ~T S
inl s : El ~T (S ‘+’T)

t : El ~T T
inr t : El ~T (S ‘+’T)

s : El ~T S t : El ~T T
pair s t : El ~T (S ‘×’T)

e : El (~T ::‘µ’ F) F
in e : El ~T (‘µ’ F)

Figure 1: The SPT Universe

⇐ e the function’s analysis is refined by e, an
eliminator expression, or ‘gadget’, characteriz-
ing some scheme of case analysis or recursion,
giving rise to a number of sub nodes with more
informative left-hand sides;

|| w the sub nodes’ left-hand sides are to be ex-
tended with the value of w , some intermediate
computation, in an extra column: this may then
be analysed in addition to the function’s original
arguments.

In this paper we need only two ‘by’ gadgets, rec
which constructs the structural recursive calls avail-
able to the programmer, and case which applies the
appropriate derived case analysis principle and intro-
duces a set of more informative patterns in the sub-
nodes. We will use the convention that we suppress
the use of case when its presence is inferable from
the presence of constructors in the patterns. We will
always be explicit about which input we are being
structurally recursive on.

Epigram’s data types are presented by declaring
their formation rules and constructors in natural de-
duction style as are the types of functions. In these
rules, arguments whose types are inferable can be
omitted for brevity. Here are the natural numbers
and addition in Epigram:

data
Nat : ?

where
z : Nat

n : Nat
s n : Nat

let m,n : Nat
plus m n : Nat

plus m n ⇐ rec m
plus z n ⇒ n
plus (s m) n ⇒ s (plus m n)

We can then define types which are dependent on
the natural numbers such as the finite types and vec-
tors (lists of a given length) and a safe projection us-
ing the finite types to ensure there are only as many

indexes as elements in the array - the nil case doesn’t
appear since Fin z is uninhabited. In this example, the
correctness by construction ideal is achieved by means
of type checking, but this could only be done because
of the extra sophistication of dependent types.

data n : Nat
Fin n : ?

where

fz : Fin (s n)
i : Fin n

fs i : Fin (s n)

data A : ? n : Nat
Vec n A : ?

where

ε : Vec z A
a : A as : Vec n A
a::as : Vec (s n) A

let as : Vec n A i : Fin n
as!!i : A

as!!i ⇐ rec i
(a::as)!!fz ⇒ a
(a::as)!!(fs i) ⇒ as!!i

Any universe to capture the strictly positive fam-
ilies would need to include these examples, but not
only Nat indexed families must be encodable.

2.3 A Universe for Strictly Positive Types

The traditional, informal, definition of SPTs given
above is problematic when we come to compute as it
is not a data type in a language. This is a funda-
mental problem if we want generic programming to
be programs which manipulate the type of SPTs.

Codes for SPTs: To rectify this problem, we
represent the syntax of SPTs with n free type vari-
ables by the Epigram type SPT n, see figure 1. We
use de Bruijn notation to represent type variables -
with vz and vs as the zero and successor for variables.
The empty type 0 and unit type 1 are represented by

‘0’1 and ‘1’ while sums and products of SPTs are rep-
resented using the SPT constructors ‘+’ and ‘×’ .
Finally, note that the fix-point constructor ‘µ’ re-
duces the number of free type variables by 1 because
the last variable has been bound. In summary, SPT n
represents names or codes for SPTs.

Here are the codes for the four examples above.

let ‘Nat’ : SPT z

‘Nat’ ⇒ ‘µ’ (‘1’ ‘+’ vz)

let ‘List’ : SPT (s z)
‘List’ ⇒ ‘µ’ (‘1’ ‘+’ ((vs vz) ‘×’ vz))

let ‘RT’ : SPT (s z)
‘RT’ ⇒

‘µ’
(

(vs vz)
‘×’ (‘µ’ ((‘1’ ‘+’ ((vs vz) ‘×’ vz))))

)
let ‘Ord’ : SPT z

‘Ord’ ⇒ ‘µ’ (‘1’ ‘+’ (vz ‘+’ (Nat ‘→’ vz)))

Interpretation of SPTs: Recall that so far we con-
structed, for each SPT containing (at most) n type
variables, a name or code which is an expression of
type SPT n. Thus we have a data type that represents
the syntax of SPTs. Of course, there is no guarantee
that ‘0’ behaves like the empty type or that S ‘+’T
behaves like the sum of S and T .

In order to ensure that the codes for SPTs be-
have as intended, we give an interpretation El which
intuitively assigns, to each code T : SPT n and ap-
propriate n-tuple of inputs, the type of elements of
the actual SPT. In order that this construction can
be formalised within the universe of SPTs, we require
each input to be an SPT. Further, the interpretation
of fixed points shows that the n + 1’th SPT must be
able to depend on the previous n-SPTs. Such an in-
put is called a telescope and we therefore introduce
the type of telescopes of length n which we denote
Tel n.

Then, given a type T : SPT n and a matching
telescope ~T : Tel n we define the type of elements
El ~T T . The idea is that, for example, El ~T ‘1’ will
really have one element showing that ‘1’ really is the
unit type, and that El ~T (S ‘+’T) really is the sum
of El ~T S and El ~T T . The universe of SPTs thus
consists of the codes given by SPT and the intended
meanings of these codes given by El. See Figure 1 for
the full definition of this universe.

2.4 Generic Map

As our first example of a generic program, we shall
present a generic map operation for all SPTs by us-
ing the universe of SPTs. We shall define this by
first considering morphisms between telescopes. Had
a telescope of length n been an n-tuple of types, a
morphism between two telescopes of length n would
have been an n-tuple of functions between the asso-
ciated types. However, since an SPT in a telescope
can depend upon the previous SPTs in a telescope,
this information must also be taken into account as
is shown in the mF constructor for morphisms.

In the mu case we would like to have:

gMap φ (in x) ⇒ gMap (mF φ (gMap φ)) x
1The quotes here have no semantic significance, but rather re-

mind the reader that this is a code.

However, the nested recursive call is not guaranteed
to be structurally recursive since it could be eventu-
ally applied to anything - hence this definition would
be rejected by Epigram. To solve this problem, we in-
troduce a third constructor for morphisms mUφ which
stands for extending φ by gMap φ as follows.

data
~S , ~T : Tel n

Morph ~S ~T : ?
where

mI : Morph ~S ~S

φ : Morph ~S ~T f : El ~S S → El ~T T
mF φ f : Morph (~S ::S) (~T ::T)

φ : Morph ~S ~T
mU φ : Morph (~S ::T) (~T ::T)

We now have the following, obviously structural
definition for gMap:

let φ : Morph ~S ~T x : El ~S T
gMap φ x : El ~T T

gMap φ x ⇐ rec x
gMap (mF φ f) (top x) ⇒ top (f x)
gMap (mU φ) (top x) ⇒ top (gMap φ x)
gMap mI (top x) ⇒ top x
gMap (mF φ f) (pop x) ⇒ pop (gMap φ x)
gMap mI (pop x) ⇒ pop x
gMap (mU φ) (pop x) ⇒ pop (gMap φ x)
gMap φ void ⇒ void
gMap φ (inl x) ⇒ inl (gMap φ x)
gMap φ (inr x) ⇒ inr (gMap φ x)
gMap φ (pair x y)

⇒ pair (gMap φ x) (gMap φ y)
gMap φ (fun f)

⇒ fun (λk ⇒ gMap φ (f k))
gMap φ (in x)

⇒ in (gMap (mU φ) x)

In our work on the regular tree types (Morris
et al. 2006), ie those SPTs which are finitely branch-
ing, we present a number of other algorithms in this
style including a decidable equality. Types in the SPT
universe do not have such an equality since they per-
mit infinite branching - for example there is no such
decidable equality function for the ordinals ‘Ord’. It
is clear that the larger the universe of types the fewer
generic operations we may define. In a system of
generic programming it is conceivable that we would
need a number of successively larger universes to cope
with this trade off.

We now turn to the central question of this paper.
That is, can we find a grammar of SPFs for inductive
families similar to the grammar of SPTs for inductive
types? Further, can we construct a universe for SPFs
which allows us to program generically with SPFs?

3 Strictly Positive Families

Recall that our central motivation for studying induc-
tive families is that inductive types cannot capture
advanced data types such as Fin and Vec above. An-
other nice example of an inductive family is the type
of untyped λ-terms in n free variables, which can be
defined as follows using de Bruijn indices to refer to
variable:

The SPF Type codes:

data
~I : Vec ? n O : ?

SPF ~I O : ?
where

vz : SPF (~I ::O) O
T : SPF ~I O

vsT : SPF (~I ::I) O

f : ∀t : Fin n ⇒ SPF ~I O
‘Tag’ f : SPF ~I (O ×Fin n) ‘0’, ‘1’ : SPF ~I O

T : SPF (~I ::O) O
‘µ’ T : SPF ~I O

f : O → O ′ T : SPF ~I O
‘Σ’f T : SPF ~I O ′

f : O ′ → O T : SPF ~I O
‘∆’f T : SPF ~I O ′

f : O → O ′ T : SPF ~I O
‘Π’f T : SPF ~I O ′

The Interpretation of SPF:

data T : SPF ~I O ~T : Tel ~I o : O
JT K~T o : ?

where v : JT K~T o
top v : JvzK(~T ::T) o

v : JT K~T o
pop v : JvsT K(~T ::S) o

v : JT K(~T ::(‘µ’ T)) o
in v : J‘µ’ T K~T o void : J‘1’K~T o

v : Jf tK~T o
tag t v : J‘Tag’f K~T (o; t)

v : JT K~T o
σ v : J‘Σ’f T K~T (f o)

v : JT K~T (f o)
δ v : J‘∆’f T K~T o

~v : ∀o : O ⇒ (f o = o′) → JT K~T o
π ~v : J‘Π’f T K~T o′

Figure 2: The SPF Universe

data n : Nat
Lam n : ?

where

i : Fin n
var i : Lam n

f , a : Lam n
app f a : Lam n

b : Lam (s n)
abs b : Lam n

How To Construct Families: Recall that SPTs
were essentially constructed as fixed points of polyno-
mials but, rather surprisingly, SPFs are actually not
constructed from polynomials. This is because the
fundamental structure of families lies in the indexes
which were not present in the SPT case. We call a
indexed family of types F : O → ? an O-indexed
family — in our examples so far we have looked only
at Nat-indexed families although, in general, O can
be any type. If t : F o, we say that t is indexed by
o.

To gain some intuition about how families can
be constructed, let us now define a universe for O-
indexed families - that is a type FamO consisting of
codes for O-indexed families and an interpretation
J − K : Fam O → O → ? which associates to each
code, the actual family. The simplest such families
are constant and ignore the indexing information -
we have two such families, ‘0’ and ‘1’ which have zero
and one elements (respectively) at all indices.

‘0’, ‘1’ : Fam O void : J‘1’Ko

Clearly another possibility is to to substitute for
the given index, that is given a O → ? and a function
in O ′ → O we can create a new family in O ′ → ? by
composition. Thus we add a constructor for Fam and
give its interpretation.

f : O ′ → O T : Fam O
‘∆’f T : Fam O ′

v : JT K(f o′)
δ v : J‘∆’f T Ko′

This operation on families corresponds categori-
cally to re-indexing of functors we use that same term
to describe it here for families. It is interesting now
to consider what we can do to construct families if we
have a function on output types that goes the other
way. Given a Fam O and a function O → O ′ we must
construct values at a given index o′ : O ′. To do this
we consider only the values o : O for which f o = o′

but do we consider just one possible value, or all pos-
sibilities? The first option gives us dependent sum,
the second dependent product:

f : O → O ′ T : Fam O
‘Σ’f T , ‘Π’f T : Fam O ′

v : ∃o : O ⇒ (f o = o′)× JT Ko
σv : J‘Σ’f T Ko′

~v : ∀o : O ⇒ (f o = o′) → JT Ko
π~v : J‘Π’f T Ko′

In the above we are using Epigram’s built in equal-
ity type, which for the purposes of this paper can be
viewed as being defined, thus:

data a : A b : B
a = b : ?

where
refl : a = a

Categorically, ‘Σ’ and ‘Π’ are respectively the left
and right adjoints of ‘∆’. That these operations have
universal properties suggests we are basing our con-
structors on solid mathematical foundations as we
said was important in the introduction.

Although we called these two constructors depen-
dent sum and dependent product, all the constructors
for families introduced so far are linear. For example
‘Σ’ f maps a single family T to the single family
‘Σ’ f T . Therefore, to define constructors which take
as input more than one family, we require a non-linear
constructor of families. There are a number of possi-
bilities but we choose the intuitively simple option of
constructing finite sums of families as follows:

f : Fin n → Fam O
‘Tag’ f : Fam (O ×Fin n)

v : Jf tKo
tag t v : J‘Tag’f K(o; t)

In the above, (o; t) represents the pair consisting of
o and t . Finally we add the fixed point constructor
and variables standing for families. As with SPTs, a
family may contain several variables (accessed by de
Bruijn indices) but, now, each of these variables rep-
resents families which could be indexed over different
types.

To conclude, a natural set of constructors for form-
ing strictly positive families is given by variable fami-
lies, unit and empty families, ‘Σ’, ‘Π’, ‘∆’-families and
fixed points of families. We could at this point give
an grammar for SPFs based upon these constructors
and similar to that for SPTs. However, we prefer to
go straight to the construction of a universe for SPFs.

A Universe of SPFs: We now define a universe
of SPFs guided by the discussion above. The type of
SPFs will be similar to that for SPTs, except each
input and output will require an index. Thus we get
our type to represent the syntax of SPFs:

data
~I : Vec ? n O : ?

SPF ~I O : ?

Our intuition is that each element of SPF ~I O will be
an SPF which takes as input families whose indexes
are represented by ~I and will return a family indexed
by O . The definition of SPF is given in figure 2

As with SPTs, we now define an interpretation
for SPFs. As before the crucial ingredient in for this
interpretation is the type of telescopes Tel which must
now include indexing information.

data
~I : Vec ? n

Tel ~I : ?
where

ε : Tel ε
~T : Tel ~I T : SPF ~I I

(~T ::T) : Tel (~I ::I)

Once we have defined telescopes we can define the
type of elements inductively by giving the value con-
structors associated to each family constructor. As it
has to be expected, there are none for the empty type
‘0’. This construction can also be found in Figure 2
and follows exactly the intuition developed in the first
half of section 3.

If we allow arbitrary functions for ‘Π’ we ob-
tain strictly positive families which are potentially
infinitely branching and, similarly to the case with
SPTs, this limits the range of definable generic oper-
ations. For example there is no generic equality on
SPFs. An alternative, in line with our previous work
on regular tree types, is to define the type of regular
families RF ~I O which is obtained by replacing ‘Π’ by

n : Nat T : RF ~I (O ×Fin n)
‘Π<ω’n T : RF ~I O

whose elements can be constructed by

~v : ∀i : Fin n ⇒ JT K~T (o; i)
π<ω~v : J‘Π<ω’n T K~T o

There is an obvious embedding of the finite ‘Π<ω’
in to the possibly infinite ‘Π’ given by:

‘Π<ω’n T : RF ~I O 7→
‘Π’(λ(o; i) : O × Fin n ⇒ o) T : SPF ~I O

π<ω~v 7→ π(λ(o; i); refl ⇒ ~v i)

where refl is the only constructor for the equality
type as we defined earlier.

4 Examples of SPFs

To give examples of data types in this universe, it
is very useful to first define some auxiliary combina-
tors for Cartesian product and disjoint union. We do
this for RF universe since the constructions preserve
finiteness. Firstly for sums we have

let A,B : RF ~I O
A ‘+’B : RF ~I O

A ‘+’B ⇒ ‘Σ’fst
(

‘Tag’
(

λ
fz ⇒ A

fs fz ⇒ B

))
let a : JAK~T o

‘inl’ a : JA ‘+’BK~T o

‘inl’ a ⇒ σ (tag fz a)

let b : JBK~T o
‘inr’ b : JA ‘+’BK~T o

‘inr’ b ⇒ σ (tag (fs fz) b)

where (
λ

fz ⇒ A
fs fz ⇒ B

)
denotes the function whose domain is Fin (s (s z)) and
which returns A on fz and B on fs fz. For the products
we have

let A,B : RF ~I O
A ‘×’B : RF ~I O

A ‘×’B ⇒

‘Π<ω’(s (s z))
(

‘Tag’
(

λ
fz ⇒ A

fs fz ⇒ B

))
let a : JAK~T o b : JBK~T o

‘pair’ a b : JA ‘×’BK~T o

‘pair’ a b ⇒ π<ω

(
λ

fz ⇒ tag fz a
fs fz ⇒ tag (fs fs) b

)
We can now encode some of our examples from above,
we encode Fin : Nat → ? as an element of RF [] Nat
and Vec A n : ? as an instance of RF [One] Nat
denoting that it is a Nat indexed family with one type
of ‘input’ which is indexed by One2:

let ‘Fin’ : RF [] Nat

‘Fin’ ⇒ ‘µ’ ((‘Σ’s ‘1’) ‘+’ (‘Σ’s vz))

let ‘Vec’ : RF [One] Nat

‘Vec’ ⇒

‘µ’

 (‘Σ’ (const z) ‘1’)

‘+’
(

(‘∆’(const ()) (vs vz))
‘×’ (‘Σ’s vz)

)
2Since we have to treat types uniformly the type A becomes a

family whose index carries no information.

We use the definitions above to present the type in
a ‘sums of products’ style, with added indexing in-
formation. In the ‘ε’ case for vectors ‘Σ’(const z)
forces the empty vector to always have index zero;
in the (‘::’) case, ‘Σ’s forces the vector a‘::’as to have
index/length s n if as has index/length n. We can en-
code values of the finite sets and vectors using generic
constructors such as these:

let ‘fz’ : J‘Fin’K[] (s n)

‘fz’ ⇒ in (‘inl’(σ void))

let i : J‘Fin’K[] n
‘fs’ i : J‘Fin’K[] (s n)

‘fs’ i ⇒ in (‘inr’(σ (top i)))

let A : SPF [] One
‘ε’ : J‘Vec’K[A] z

‘ε’ ⇒ in (‘inl’ (σ void))

let a : JAK[] () as : J‘Vec’K[A] n
(a‘::’as) : J‘Vec’K[A] (s n)

(a‘::’as) ⇒
in (‘inr’ (‘pair’ (δ a) (σ (pop (top as)))))

As another example, we can encode lambda terms
Lam n : ?, whose Epigram definition was given
above, as the following SPF and generic constructors.

let ‘Lam’ : RF [] Nat

‘Lam’ ⇒ ‘µ’
(

((vs ‘Fin’) ‘+’ (vz ‘×’ vz))
‘+’ (‘∆’s vz)

)
let i : J‘Fin’K[] n

‘var’ i : J‘Lam’[] nK

‘var’ i ⇒ in (‘inl’ (‘inl’ (pop (top i))))

let f : J‘Lam’K[] n a : J‘Lam’K[] n
‘app’ f a : J‘Lam’[] nK

‘app’ f a ⇒
in (‘inl’ (‘inr’ (‘pair’ (top f) (top a))))

let f : J‘Lam’K[] (s n)
‘abs’ f : J‘Lam’[] nK

‘abs’ f ⇒ in (‘inr’ (δ (top f)))

The above definitions satisfy syntactic conditions for
strict positivity, as implemented in systems such as
COQ or Epigram. A more delicate case are types
where the strictly positive occurrence appears inside
another inductively define type, such as n-branching
trees:

data A : ? n : Nat
NBrTree A n : ?

where

a : A
leaf a : NBrTree A n

~t : Vec (NBrTree A n) n
node ~t : NBrTree A n

The translation of this definition is not com-
pletely straightforward as the type Vec appears in-
side NBrTree. At the categorical level, this operation
is modeled by the composition of functors and so we
define a composition operator on SPFs. If we regard
SPFs as syntax trees with constructors at the nodes
and variables at the leaves, then this composition op-
erator will replace the variables of the outer SPF with

expressions whose type is that of the the inner SPF.
The definition of composition is given as follows, with
F standing for either SPF or for RF

let

~IA : Vec ? n
C : F ~IA O
~D : ∀i : Fin n ⇒ F ~IB (~IA!!i ×O)

C◦~D : F ~IB O

C◦~D ⇐ rec C
vz◦~D ⇒ ‘∆’(λx ⇒ (x ; x)) (~D fz)

(vsT)◦~D ⇒ vs (T◦~D · fs)
‘0’◦~D ⇒ ‘0’
‘1’◦~D ⇒ ‘1’

(‘Tag’f)◦~D ⇒
‘Tag’(λi ⇒ (f i)◦(map (‘∆’fst) ~D))

(‘Σ’f T)◦~D ⇒ ‘Σ’f (T◦(map (‘∆’(id; f)) ~D))
(‘∆’f T)◦~D ⇒ ‘∆’f (T◦(map (‘Σ’(id; f)) ~D))

(‘Π<ω’n T)◦~D ⇒
‘Π<ω’n (T◦(map (‘∆’(id; fst)) ~D))

(‘Π’f T)◦~D ⇒ ‘Π’f (T◦(map (‘∆’(id; f)) ~D))
(‘µ’ F)◦~D ⇒ ‘µ’ (F◦~DExt)
where ~DExt fz ⇒ ‘Σ’(λx ⇒ (x ; x)) vz

~DExt (fs i) ⇒ ~D i

There is not enough space to fully explain the above
definitions. However, note that i) in the first case we
choose the last family in ~D and then re-index; ii) in
the second case we throw away the last family of ~D ,
compose and then weaken; iii) the unit and empty
families compose as expected; iv) since ‘∆’, ‘Σ’, ‘Π’
and ‘Tag’ change only the output indexes, but not
the families, it is natural that composition distributes
over them; and v) the composition of a fixed point is
well known to be a fixed point.

We can now define ‘NBrTree’ by right composing
it with ‘Vec’:

let ‘NBrTree’ : RF [One] Nat

‘NBrTree’ ⇒

‘µ’
(

(‘∆’(const ()) (vs vz))
‘+’ (‘Vec’◦(λfz ⇒ ‘∆’snd vz))

)
5 Generic Programs

We can now use the universe of SPFs to write generic
programs over SPFs.

5.1 Equality of RFs

Given any regular family we can define a generic
equality which is structural on the elements of its tele-
scope semantics:

let T : RF ~I O a : JT K ~T oa b : JT K ~T ob
gEq a b : Bool

gEq a b ⇐ rec a
gEq (top a) (top b) ⇒ gEq a b
gEq (pop a) (pop b) ⇒ gEq a b
gEq (tag ta a) (tag tb b) ta==tb

yes refl ⇒ gEq a b
no ⇒ false

gEq void void ⇒ true
gEq (σ a) (σ b) ⇒ gEq a b
gEq (δ a) (δ b) ⇒ gEq a b
gEq (π<ω~a) (π<ω~b) ⇒

∧n (λi ⇒ gEq (~a i) (~b i))
gEq (in a) (in b) ⇒ gEq a b

where ∧ is defined thus3:

let f : Fin n → Bool
∧n f : Bool

∧n f ⇐ rec n
∧z f ⇒ true
∧(s n) f ⇒ (f fz)&&(∧n (λi ⇒ f (fs i)))

Notice that we can decide the equality of values in
a purely syntactic manner, in fact this test equates
values at different output indexes as long as the syn-
tax is the same (so for instance fz : Fin n = fz :
Fin (s n)). In practice it might be better to restrict
ourselves only to comparing things for equality at the
same index.

As in our work on the regular tree types, it is pos-
sible to show that this equality is decidable, that is
we can return evidence for the equality or inequality.
This is something that is especially useful in depen-
dently typed programming.

5.2 Modalities, map and find

In our final example we give definitions for the modal-
ities � and ♦. Informally the modality � is, for a
given family F : ? → ? and predicate P : A → ?
a new type �F P : F A → ? that says that the
predicate P ‘holds’ (is inhabited) for each a : A in
an F A.

data P : A → ? as : List A
�List P as : ?

where

ε : �List P A ε
p : P a ps : �List P as

p::ps : �List P (a::as)

The dual of �, the modality ♦ gives a type which
describes the predicate P holding somewhere in the
structure, so again for lists:

data P : A → ? as : List A
♦List P as : ?

where

p : P a
now p : ♦List P A (a::as)

p : ♦List P as
later p : ♦List P (a::as)

It seems that the idea of both � and ♦ fit nicely
with our abstraction of data types as SPFs and, in-
deed, we can give generically the types �F P and
♦F P for any SPFs in the appropriate form. More-
over, we can define a notion of generic dependent map
using the generic � and find that map has a dual for
♦, which we call find.

Firstly we define �, which we will give this type:

let

F : RF (~I ::One) O P : JAK~T () → RF ~I One

v : JF K(~T ::A) o
�F P v : RF ~I One

We require that the target carries no information on
its output index (it is indexed by One) and that it is
the last input to the data structure, the function is
then defined by recursion over the code:

3Note that the size n in the π<ω case comes from the code
T , which can be given as an implicit argument to this function,
thought there is not the room to expand this it is simple to do in
practice.

�T P a ⇐ rec a
�vz P (top a) ⇒ P a
�(vsT) P (pop v) ⇒ ‘1’
�(‘Tag’T) P (tag t v) ⇒ �(T t) P v
�‘1’ P void ⇒ ‘1’
�(‘Σ’f T) P (σ v) ⇒ �T P v
�(‘∆’f T) P (δ v) ⇒ �T P v
�(‘Π<ω’ n T) P (π<ω ~v)

⇒ ‘Π<ω’n (Tag (λi ⇒ �T P (~v i)))
�(‘µ’ F) P (in v) ⇒ ‘µ’ (�1F P v)

You’ll notice the ‘µ’ moves the target under an-
other (::) constructor so we cannot appeal to a simple
recursive call. In fact we’d have to define a more gen-
eral �i where i is the index of the target type in the
context. We then have that:

�zvz P (top a) ⇒ P a
�z(vsT) P (pop v) ⇒ ‘1’
�(s n)vz P (top v) ⇒ vz
�(s n)(vsT) P (pop v) ⇒ vs (�nT P v)

...
...

�n(‘µ’ F) P (in v) ⇒ ‘µ’ (�(s n)F P v)

and � = �z.
The definition of ♦ follows much the same pattern,

but we replace the following rules:

...
...

♦z(vsT) P (pop v) ⇒ ‘0’
...

...
♦n ‘1’ P void ⇒ ‘0’

...
...

♦n(‘Π<ω’ n T) P (π<ω ~v)
⇒ ‘Σ’fst (Tag (∀i ⇒ ♦nT P (~v i)))

That is we no longer succeed by not finding a vari-
able of the right type and when confronted by a set
of possibilities, we need only pick one.

What about ‘map’ and ‘find’? Informally, given
f : (∀a : A ⇒ B a) we can produce a value of
�F B for any F A; we use the f as evidence that B
is inhabited for any A. In the dual find case we are
given an element of ♦F B for some A from which we
can produce a witness that B a is inhabited for some
value a : A.

let f : (∀a : JAK~T () ⇒ JB aK~T ())
map f : (∀v : JF K(~T ::A) o ⇒ �F B v)

let d : (∃v : JF K(~T ::A) o ⇒ ♦F B v)
find d : (∃a : JAK~T () ⇒ JB aK~T ())

These definitions follow exactly the same recursive
pattern as the definitions of � and ♦ themselves.

6 SPFs are Indexed Containers

We have seen how inductive families can be used to
represent a wide range of advanced data types and
how SPFs provide a grammar for defining such in-
ductive families. By defining a universe of SPFs we
further showed how generic programming over SPFs
can be reduced to programming over the universe of
SPFs. In this section, we relate SPFs to another

device for defining and programming with inductive
families, namely indexed containers.

Containers were introduced to capture the idea
that concrete data types consist of memory locations
where data can be stored and can thus be seen as a
refinement of shapely types (Jay 1995). For example,
any element of the type List A of lists of A can be
uniquely written as a natural number n given by the
length of the list, together with a function Fin n → A
which labels each position within the list with an el-
ement from A:

ListA = ∃n : Nat ⇒Fin n → A

Abstracting from the example of lists, we may define a
container in one variable to consist of a type of shapes
S to represent the constructors of the data type and,
for each constructor s : S , a type of positions where
data for that constructor can be stored. Thus a con-
tainer in one type variable is just an S -indexed family
P : S → ?. A container in n-type variables is much
the same as we have a type of constructors S and
then for each constructor, and each input type, a set
of positions where data of that input type is stored.
Thus we define

data n : Nat
Cont n : ?

where
S : ? s : S i : Fin n

P s i : ?
S�P : Cont n

The extension of a container in n type variables is a
functor JS�PK : (Fin n → ?) → ? and is defined by

JS�PK~X = ∃s : S ⇒ ∀i : Fin n ⇒ P s i → ~X i

That is, given n-types ~X , we construct an element
of JS�PK~X by choosing a constructor s from S and,
for each input i , assign to each position in P s i
an element of X i . In previous work, we used con-
tainers as a foundational theory of data types us-
ing the metaphor that data types consist of shapes
and positions where data can be stored. Amongst
other results, we gave a simple representation the-
orem for polymorphic functions between containers,
showed that all strictly positive types are containers
and used containers as a basis for generic program-
ming. While SPTs provide a natural way of defining
generic programs where the structure of the type is
important, others are more naturally defined with di-
rect access to the data being stored. Equality is an ex-
cellent example of the former, where structure is im-
portant, for an example where structure only gets in
the way, consider the definition of generic map above
and compare it to the equivalent definition using con-
tainers:

let

C : Cont n
φ : ∀i : Fin n ⇒ ~X i → ~Y i
x : JC K~X

cMap φ x : JC K~Y

cMap φ (s; f) ⇒ (s; (λi p ⇒φ i (f i p)))

A natural question in the light of the generalisation
from strictly positive types to strictly positive fami-
lies is to ask how one would add indexing structure to
containers. Further, one would expect such a notion
of indexing to be expressive enough to model all SPFs
and to allow generic programming based upon an (in-
dexed version) of the shapes and positions metaphor.

This section answers these questions. Firstly, just
as both Cont and SPT are Nat-indexed families, so IC
and SPF are similarly indexed. That is, an indexed

container should expect a finite number of families as
input and construct another indexed family as out-
put. And, as with SPFs, these indexes could be arbi-
trary and so we define

data
~I : Vec ? n O : ?

IC ~I O : ?

The inhabitants of IC ~I O are the actual indexed
containers which, recall, will produce an O-indexed
family. Thus the constructors S must no longer be a
type but an O-indexed family S : O → ? where S o
is the type of constructors that will return something
indexed by o. To incorporate indexing information
into the positions, we have to assign to every con-
structor (which remember is an output index o : O
and constructor for that index s : So) and every input
i : Fin n, an ~I !!i -indexed family of positions. Thus
we may complete the definition of IC ~I O as follows:

where
S : O → ? o : O s : S o i : Fin n

P o s i : ~I !!i → ?

S�P : IC ~I O

The extension of an indexed container (S�P) :
IC ~I O is a functor which should take as inputs an
~I -tuple of indexed families and return an O-indexed
family and thus will have type

(∀i : Fin n ⇒ (~I !!i) → ?) → (O → ?)

This is extension is defined by

JS�PK~X o
⇒ ∃s : S o ⇒ ∀i : Fin n ⇒ P o s i (~I !!i) → ~X i

since, to produce an element of the O-indexed family
with index o, we need to select a constructor which
can do so, i.e. an expression of type S o. Then, for
each input i , we must map each position in the ~I !! i -
indexed family P o s i to an input from the actual
family ~X i .

Some examples may help. For example, let us con-
sider the indexed container of type IC ~I O which, on
any input, returns the O-indexed family O → ? which
maps o to the empty type. This indexed container
clearly corresponds to the SPF ‘0’ : SPF ~I O . To
define this indexed container, the shapes must be a
function which, for each o : O , returns the construc-
tors for elements of the output. But since there is to
be no output, this function should return the empty
type of constructors. Thus the shapes are (using a
wildcard pattern) λ ⇒ Zero. We must give a type
of positions for every constructor but, since there are
no constructors, this amounts to defining a function
whose domain is the empty type. We write ! to de-
note any function whose domain is the empty type.
Thus, the empty container is

(λ ⇒ Zero)�(λ ⇒ !)

Now let us consider the indexed container which,
given appropriate inputs, returns the family with one
element above every output index. This indexed con-
tainer corresponds to the SPF ‘1’ : SPF ~I O . Since
we are to make an element for each output index
o : O , we should have a constructor to do so. Thus
we define the shapes to be the function which always
returns the unit type. For the positions, note that we

do not store data anywhere - if we did the extension
of the container would depend upon the input and
hence couldn’t be correct. Thus this container is

(λ ⇒ One)�(λ ⇒ Zero)

We have seen how the SPFs ‘0’ and ‘1’ can be rep-
resented as indexed containers. In fact all SPFs can
be represented as indexed containers as we shall now
show. This means that indexed containers bear the
same relationship to SPFs as as containers do to
SPTs. Further, it means that indexed containers can
act as a normal form for SPFs and that one can write
generic programs for SPFs by regarding them as in-
dexed containers and manipulating their shapes and
positions.

To show this result, we define a function

let T : SPF ~I O
ICont T : IC ~I O

which maps an SPF to an indexed container. This is
done by recursion on the structure of the SPF with
the cases of the empty and unit SPF already having
been done above

ICont T ⇐ rec T
ICont ‘0’ ⇒ (λ ⇒ Zero)�(λ ⇒ !)
ICont ‘1’ ⇒ (λ ⇒ One)�(λ ⇒ Zero)

Next, we consider the SPF vz which, as an indexed
container, takes a tuple of indexed families as input
and returns the last one. So, given an output index
o : O , there should be one position where we can
store any data form the last input family at the index
o. Thus we define

ICont vz
⇒ (λ ⇒ One)

�

(
λ

o fz o′ ⇒ (o = o′)
o (fs i) in ⇒ Zero

)
Here the expression in brackets is the function P

which takes as its first two inputs an output index o
and the only shape which can make some output for
that index. The next input denotes which family data
can be stored from. If this is the last family, then we
want to store one position for data with index O and
no positions otherwise - this is achieved by the test
o = o′ whose value is One if o and o′ are equal and
Zero otherwise. On the other hand, if the family is
not the last family, then we don’t want to store any
data from that family and so return the empty type
of positions.

The situation with the SPF vs T is dual. When
viewed as a container, ICont (vs T) should take as
input a tuple of families, throw the last one away
and then behave as ICont T on the remaining input
families. Thus

ICont (vs T)

⇒ S�

(
λ

o s fz ⇒ Zero
o s (fs i) o′ ⇒ P o s i o′

)
where (S�P) = ICont T

As we can see the constructors/shapes of ICont T
and ICont (vs T) are the same reflecting the fact
that there are no new ways of building terms. The
first line of the definition of the positions function
says that we don’t store any data from the last fam-
ily - this reflects what we said before about discarding
this family. On the other families, the number of po-
sitions required by ICont (vs T) is clearly whatever
is required by ICont T .

Next we consider the reindexing of containers
which, recall from the beginning of section 3, changes
the indexing structure by precomposing with a func-
tion. That is, the container ICont (‘∆’f T) will pro-
duce an output with index o′ by using the container
ICont T to produce an output with index f o′. Thus
the shapes for ICont (‘∆’f T) are λo′ ⇒ S (f o′)
where S are the shapes of ICont T . Since we are
not changing the data stored, just the index of the
constructors, the positions required by a constructor
in ICont (‘∆’f T) will just be the positions required
by the constructor in ICont T . Thus

ICont (‘∆’f T)
⇒ (λo′ ⇒ S (f o′))

�(λo′ s i in ⇒ P (f o′) s i in)
where (S�P) = ICont T

Next we consider the container ICont (‘Σ’f T).
Again, recall the construction of ‘Σ’-families at
the beginning of section 3 which shows that
ICont (‘Σ’f T) will produce an output indexed by
o′ : O ′ by producing output of ICont T indexed by
a single o such that f o = o′. Thus the shapes which
can produce something indexed by o′ are triples con-
sisting of a single o such that f o = o′, a proof that
f o = o′ and a shape of ICont T which can pro-
duce something indexed by o. This is captured in the
following definition:

ICont (‘Σ’f T)
⇒ (λo′ ⇒ ∃o : O ⇒ (f o = o′) → S o)

�(λo′ (o; e; s) i in ⇒ P o s i in)
where (S�P) = ICont T

As with ‘∆’-containers, we are not changing the
data stored by a shape, simply changing the index of
the output. Thus the positions stored in the shape
(o; e; s) of the indexed container ICont (‘Σ’f T)
will be the same as the positions of the shape s in
the indexed container T . This is also captured in the
formula above.

The construction of ‘Π’-families at the beginning
of section 3 is the same as that of ‘Σ’-families except
that it will produce an output indexed by o′ : O ′

by producing an output indexed by by every o such
that f o = o′. Thus the shapes of ICont (‘Π’f T)
container will be the same as for the ICont (‘Σ’f T)
container except that the ∃-quantifier will be replaced
by the ∀-quantifier. This is seen below:

ICont (‘Π’f T)
⇒ (λo′ ⇒ ∀o : O ⇒ (f o = o′) → S o)

�

(
λo′ f i in ⇒
∃o : O ; p : (f o = o′) ⇒

P o (f o p) i in)

)
where (S�P) = ICont T

This formula also shows that, if f is a shape which
produces an output indexed by o′, then a position for
this shape will be a position for the shape given by f
for any o such that f o = o′.

Our penultimate case is that of SPFs ‘Tag’ f where
f : Fin n ⇒ SPF ~I O . In this case, ICont (‘Tag’ f)
should intuitively be the n-fold sum of the containers
associated to the SPFs given by f . Thus the shapes
for ICont (‘Tag’ f) should be the fum of the shapes
of the containers ICont (f i) and the positions for
one of these shapes in ICont (‘Tag’ f) will be the
positions for that shape in ICont (f i). Thus:

ICont (‘Tag’ f)
⇒ (∃i : Fin n ⇒ S i)

�(λout (i ; s) j in ⇒ P i out s j in)
where (λi ⇒ (S i�P i)) =

λi ⇒ ICont (f i)

Finally, we come to the most complex part of the
translation, namely that for the fixed point SPFs.
This is as follows:

ICont (‘µ’ F)
⇒ WS�Paths

where
(S�P) = ICont F
WS = λout : O ⇒

W S (λs out ⇒ P out s fz out)

data

out : O s : WS out
i : Fin n in : ~I !!i
Paths out w i in : ?

where

p : P out s (fs i) in
here p : Paths out (sup s f) i in

q : P out s fz out
r : Paths out (f q) i in

there q r : Paths out (sup s f) i in

The type W A B is the type of trees whose nodes
are labelled by a : A and have a subtree for every
b : B a and can be define inductively, thus:

data A : ? B : A → ?
W A B : ?

where

a : A f : B a → W A B
sup a f : W A B

In the ‘µ’ construction above the W-types are used to
represent trees branching over the recursive positions
for a given shape.

The shapes of the fixed point case are given a trees
that branch over the fz positions in the IC formed
from F . We then define inductively the paths through
these trees to fs positions, if we choose a recursive
position we descend further into the tree.

We conclude by pointing out that the translation
of SPFs to indexed containers preserves the semantics
of both SPFs (via telescopes) and indexed containers
(using slice categories). While there is not space to
establish this here, the translation was given in such
a way as to make this obviously the case.

7 Future Work and Conclusions

We have tied the knot by presenting a universe con-
struction which is powerful enough to encode all in-
ductive types needed in Epigram, including the con-
struction itself. While encoding types by hand is a
rather cumbersome process, we can translate the high
level Epigram syntax mechanically into the SPFs. We
plan to integrate the universe directly into Epigram
giving the programmer direct access to the internal
representations of types for generic programming as
part of the system. This approach also has the benefit
that it allows a more flexible and extensible positivity
test as we have demonstrated in the example of n-
branching trees. Exploiting Observational Type The-
ory (Altenkirch & McBride 2006) we are also planning
to include coinductive definitions in the universe.

It turns out that the Epigram ‘gadgets’ that build
the structural recursion, and case analysis principals
(⇐ rec and ⇐ case) for Epigram data types are
generic programs in this universe. Expressing them in
the language may well help us on the road to building
Epigram in Epigram.

The move from strictly positive to regular fami-
lies is but one example for a hierarchy of universes
important for generic programming. The trade-off is

clear — the further up we move the more general-
ity we gain, the further down we go the more generic
functions are definable. It is the subject of future
work to see how we can give the programmer the op-
portunity to move along this axis freely, seeking the
optimal compromise for a certain collection of generic
functions.

References

Abbott, M., Altenkirch, T. & Ghani, N. (2005), ‘Con-
tainers - constructing strictly positive types’,
Theoretical Computer Science 342, 3–27. Ap-
plied Semantics: Selected Topics.

Abbott, M., Altenkirch, T., Ghani, N. & McBride, C.
(2005), ‘∂ for data’, Fundamentae Informatica
65(1,2), 1 – 28. Special Issue on Typed Lambda
Calculi and Applications 2003.

Altenkirch, T., Ghani, N., Hancock, P., McBride,
C. & Morris, P. (2006), ‘Indexed containers’,
Manuscript, available online.

Altenkirch, T. & McBride, C. (2006), ‘Towards ob-
servational type theory’, Manuscript, available
online.

Altenkirch, T., McBride, C. & McKinna, J. (2005),
‘Why dependent types matter’, Manuscript,
available online.

Benke, M., Dybjer, P. & Jansson, P. (2003), ‘Uni-
verses for generic programs and proofs in depen-
dent type theory’, Nordic Journal of Computing
10, 265–269.

Dybjer, P. & Setzer, A. (2001), Indexed induction-
recursion., in R. Kahle, P. Schroeder-Heister &
R. F. Stärk, eds, ‘Proof Theory in Computer Sci-
ence’, Vol. 2183 of Lecture Notes in Computer
Science, Springer, pp. 93–113.

Gambino, N. & Hyland, M. (2004), Wellfounded trees
and dependent polynomial functors, in S. Be-
rardi, M. Coppo & F. Damiani, eds, ‘Types for
Proofs and Programs (TYPES 2003)’, LNCS.

Jay, C. B. (1995), ‘A semantics for shape’, Science of
Computer Programming 25, 251–283.

Martin-Löf, P. (1984), Intuitionistic Type Theory,
Bibliopolis·Napoli.

McBride, C. (2004), ‘Epigram’. http://www.e-pig.
org/.

McBride, C. & McKinna, J. (2004), ‘The view from
the left’, Journal of Functional Programming
14(1).

Morris, P., Altenkirch, T. & McBride, C. (2006), Ex-
ploring the regular tree types, in C. P.-M. Jean-
Christophe Filliatre & B. Werner, eds, ‘Types
for Proofs and Programs (TYPES 2004)’, Lec-
ture Notes in Computer Science.

Nordström, B., Petersson, K. & Smith, J. (1990), Pro-
gramming in Martin-Löf’s Type Theory: an in-
troduction, Oxford University Press.

