Relational. OWL - A Data and Schema Representation Format
Based on OWL

Cristian Pérez de Laborda

Stefan Conrad

Institute of Computer Science
Heinrich-Heine-Universitat Diisseldorf
D-40225 Diisseldorf, Germany,

Email: {perezdel, conrad}@cs.uni-duesseldorf.de

Abstract

One of the research fields which has recently gained
much scientific interest within the database commu-
nity are Peer-to-Peer databases, where peers have the
autonomy to decide whether to join or to leave an
information sharing environment at any time. Such
volatile data nodes may appear shortly, collect or de-
liver some data, and disappear again. It even can not
be assured that a peer joins the network ever again.

In this paper we introduce a representation format
fort both, schema and data information based on the
Web Ontology Language OWL. According to the ad-
vantages of the Semantic Web we are thus able to
represent and to transfer every schema and data com-
ponent of a database to any partner, without having
to define a data and schema exchange format explic-
itly.

Keywords: Data Representation, Schema Repre-
sentation, Semantic Web, Web Ontology Language
(OWL), Resource Description Framework (RDF'), Re-
lational Databases, Ontologies

1 Introduction

In this paper we introduce a Web Ontology Language
(OWL)-based (Miller & Hendler 2004) representation
format for relational data and schema components,
which is particularly appropriate for exchanging items
among remote database systems. OWL, originally
created for the Semantic Web enables us to represent
not only the data itself, but also its interpretation,
i.e. knowledge about its format, its origin, its usage,
or its original embedment in specific frameworks.

Hence, remote databases are instantly able to un-
derstand each other without having to arrange an ex-
plicit exchange format - the usage of OWL on both
sides is sufficient. This would be impossible using
present XML formats. The broad application field
of this proposal includes all types of (multi)database
systems (Litwin & Abdellatif 1986), e.g. Peer-to-
Peer or Peer-to-Multi-Peer databases, where compo-
nent databases share schema and data information
(Halevy, Ives, Mork & Tatarinov 2003).

Contrary to present approaches where RDF is
stored in relational databases, and relational data
into RDF (Melnik 2001), this paper aims at bring-
ing together the representation of both, database
data and schema components with a common medi-
ated language based on OWL, the powerful Semantic

Copyright (©2005, Australian Computer Society, Inc. This pa-
per appeared at the Second Asia-Pacific Conference on Concep-
tual Modelling (APCCM2005), University of Newcastle, New-
castle, Australia. Conferences in Research and Practice in In-
formation Technology, Vol. 43. Sven Hartmann and Markus
Stumptner, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

Web language recently recommended by the World
Wide Web Consortium (McGuinness & van Harmelen
2004). In other words, we have created a represen-
tation format for data and schema items originally
stored in databases, which is based on OWL’s knowl-
edge representation techniques (Broekstra, Klein,
Decker, Fensel, van Harmelen & Horrocks 2001). In
this paper we restrict to data originated from rela-
tional data sources, although we are basically able to
represent items from any type of database. An appli-
cation to these is subject to future work.

Adopting the opportunities given by OWL and our
novel Relational. OWL ontology, we are now able to
uniformly describe and share the schema of virtually
any (relational) database, no matter from which ven-
dor it was. Thereupon the schema representation it-
self can be used as an OWL ontology, to base the rep-
resentation of the actual data on. As a result we ob-
tain a model with three layers (Figure 1). On the top-
most level, the most abstract one, is Relational. OWL.
The layer underneath stands for an ontology, which
was created using Relational. OWL in order to repre-
sent the schema, of a specific relational database. The
concrete data representation, based on the second on-
tology is placed on the lowest layer. Since we want
to represent all three layers using OWL, we need the
entire language (i.e. OWL Full) and not one of its
sublanguages OWL Lite or OWL DL.

Relational. OWL

Schema Representation

Data Representation

Figure 1: Three layers of abstraction using Rela-
tional. OWL

The remainder of this paper is organized as fol-
lows: After motivating our approach in section 2,
we introduce Relational. OWL, our OWL ontology for
representing the schema and data of a relational data-
base in section 3. In section 4 we show how to rep-
resent the data of a database using its own specific
OWL ontology. Section 5 catches up some related
work, whereas section 6 concludes.

2 Motivation

In this section we present one of the main possible
application fields of Relational. OWL, where a rela-
tional data and schema representation based on the
techniques provided by OWL can improve the data
sharing process substantially.

One of the research fields which has recently
gained much scientific interest within the database
community are Peer-to-Peer (P2P) databases and
its derivatives like (Halevy et al. 2003), (Pérez de
Laborda, Popfinger & Conrad 2004), or (Nejdl,
Wolf, Qu, Decker, Sintek, Naeve, Nilsson, Palmér &
Risch 2002). Having different aims to achieve, these
projects are all based on the same principle: data
stored on one single peer has to be made accessible
to other remote peers and vice versa. Afterwards this
data can be requested, queried, replicated, or inte-
grated depending on the purpose of the remote sys-
tem.

Sharing relational data in such environments is a
challenging task, since:

Volatile Peers: Peers of a P2P network are usually
autonomous. This autonomy includes the right
to decide whether to join or to leave an infor-
mation sharing environment at any time. Such
volatile peers may appear shortly, collect or de-
liver some data, and disappear again. It even can
not be assured that a peer joins the network ever
again. Due to the short availability of potentially
any peer, the negotiation of an exchange pro-
tocol for data and schema items becomes quite
challenging. An exchange format, which can be
understood instantly by all exchange partners
would be more useful.

Data Distribution: Due to the characteristics of
P2P environments, data which is significant for a
peer may be spread over numerous data sources.
Thus, this peer is required to collect that infor-
mation from several remote data sources. In or-
der to be able to receive and understand such
data, the exchange partners need to arrange a
data and a schema representation format. At
worst, a peer would have to interpret a differ-
ent format for every single data flow causing an
unmanageable situation.

Relational Data: In classical filesharing networks,
where textual or binary data (e.g. music) is of-
fered, a file contains all the information required
for understanding this data. Whereas sharing re-
lational data means to offer data enriched with
vital schema information including important in-
structions on how to interpret and use that data
correctly (e.g. table and column names, consis-
tency constraints, etc.). This meta data has to be
transferred separately as long as data and meta
data shall not be mashed.

Data Evolution: Data distributed over classical
filesharing networks does usually not change, i.e.
a file containing a music song will be identical,
no matter how much time has passed. Whereas
relational data evolves constantly resulting in
changes concerning both, data and schema com-
ponents. This fact has to be taken into account
within the relational data sharing process.

As a result, sharing relational data within a Peer-
to-Peer environment means to distribute not only
data items themselves, but also their schemata among
multiple previously unknown peers. We thus need
an exchange format, which on the one hand can be
understood by a broad community of peers without

being explicitly arranged beforehand and which on
the other hand has to be suitable for representing
relational schemata and their corresponding data in-
stances.

In this paper we present the Relational. OWL on-
tology, a promising representation method for rela-
tional schema and its corresponding data items, based
on widely accepted knowledge representation tech-
niques. It is a favorable fundament for a broad appli-
cation field ranging from data exchanges over backup
mechanisms to relational database management sys-
tems, which store their data internally using this tech-
nique.

Relational. OWL is not a classical exchange format,
but a representation technique, which is equally suit-
able for data backups or migration scenarios. Any-
way, Relational. OWL itself may easily be extended to
fit all requirements of a data exchange format includ-
ing modification, addition, or deletion directives.

In fact, including this information into our data
and schema representation would mean to loose the
independence from the application fields, i.e. such
an exchange format could not be used for a backup
any more. We thus have decided not to include ex-
change or replication specific instructions into Rela-
tional. OWL, but to keep it an application indepen-
dent representation technique.

3 Relational. OWL

In this section we describe the advantages of us-
ing OWL as representation language for databases
within an information sharing environment and an-
alyze, which parts of relational metadata have to
be included into our Relationa. OWL ontology. A
short representation of an actual database schema
concludes this section.

3.1 Reasons for OWL

The representation of relational data and schema
with the Web Ontology Language OWL entails sev-
eral advantages over classical (semi)structured ex-
change formats like XML (Bray, Paoli & Sperberg-
McQueen 1997). In this section we discuss these ad-
vantages and explain, why the usage of OWL should
be considered, although a minor increase of data over-
head has to be taken into account.

Knowledge Representation: The knowledge rep-
resentation approach of OWL enables us to write
formal conceptualizations of domain models, the
so-called ontologies (Antoniou & van Harmelen
2003). Having created such an ontology we are
able to encode knowledge about things and their
interrelationships within our specific domain into
a machine-understandable format, which can af-
terwards be decoded and interpreted by any re-
mote peer who has access to that ontology.

Applied to the domain of relational databases,
we can describe data and schema items and
its corresponding interconnections in a machine-
processable and understandable way, as soon as
we have defined an ontology for the representa-
tion of relational data(bases).

Reliable Data and Schema Exchange: The only
way to guarantee the faultless interpretation of
data and schema items on a remote node, is
knowledge representation. The knowledge rep-
resentation process prevents different sites (e.g.
data exchange partners) to interpret the same
data differently. Thus, it can be guaranteed that

an item exchanged among remote peers will al-
ways maintain precisely its intended meaning.

The risk of a possible misunderstanding can usu-
ally be minimized through a face to face com-
munication or previous agreement between the
exchange partners. Nevertheless, this can not
be accomplished within a volatile environment,
where peers may appear and disappear at any
time (e.g. P2P databases). In this case it is vital
to have a representation format which is unam-
biguous for all exchange partners involved.

No Explicit Exchange Format: It is very sophis-
ticated to arrange a common representation for-
mat for a data exchange, especially if the part-
ners involved barely know each other and the
schema constantly changes. In the latter situ-
ation, a communication channel set up by two
nodes may probably be used only once, thus the
arrangement of a proprietary format would be a
tremendous overhead.

Although it is possible to arrange such for-
mats (in)formally, this leads to unmanageable
amounts of representation formats, particularly
if a node is involved in several data exchanges.
As we have discussed above, the usage of a
(semi)structured format in its classical way could
cause misunderstandings among the sites in-
volved. Thus, using knowledge representa-
tion techniques enables remote peers to under-
stand the information provided without having
to arrange a specific exchange or representa-
tion format, since it is provided with OWL (e.g.
the OWL XML representation (Hori, Euzenat &
Patel-Schneider 2002)). The only requirements
for establishing such a substantial communica-
tion are components capable to handle OWL and
a common ontology like Relational. OWL, which
is presented in this paper.

Convertible Representation: One of the main ad-
vantages of using common knowledge represen-
tation techniques is the simple interconnectiv-
ity of existing ontologies. Two communities us-
ing different ontologies for the representation of
relational databases could easily collaborate, as
soon as a semantic mapping between these on-
tologies is created (Doan, Madhavan, Domingos
& Halevy 2002).

Having such a mediator ontology, both communi-
ties are instantly able to understand each others’
representation format, without having to change
a single thing on their data and schema import or
export processes. The interpretation of mediator
ontologies is an integral part of the knowledge
representation techniques used in OWL.

Data as an Instance of its Schema: Given the
fact that OWL enables the creation of classes
and its instances with one and the same syntax,
we are able to describe relational schema and
data items with OWL. Furthermore we link
schema and data representation in a singular
way resulting in a homogenous data and schema
format, where data items are defined as instances
of their own schemata. This representation cor-
responds exactly to the internal representation
used by current relational database systems.

Uniform Representation: Since we have to de-
scribe data and on a higher abstraction level its
schema, we require two different representation
formats, especially if we want to have the data
represented as an instance of its schema. OWL

supports both, ontological modeling and reason-
ing using the same syntax. We thus can provide
an uniform framework for the precise represen-
tation of relational schema and its data items.
Contrary to this, other languages like RDF or
XML need to fall back to their corresponding
modeling languages called RDF Schema, XML
Schema, or Document Type Definition (DTD).

Reasonable Data Overhead: Due to the charac-
teristics mentioned above, especially concerning
the powerful ontological meaning and reason-
ing implemented in OWL, we have designed a
promising technique for the representation of re-
lational data and schemata, which is more pow-
erful than the established representation or ex-
change formats like genuine XML or RDF. In
order to achieve this extended functionality we
have to take an increased amount of data into
account.

First implementations have shown that data
overhead is increased by about 20% compared
to the Rec2XML scalar function in IBM’s UDB,
which generates XML data from a relational
query (Figure 2) . This fact seems to be a major
drawback, but is negligible, since data resulting
from Relational. OWL can be compressed with
a higher rate using common compression algo-
rithms (e.g. ZIP). Further evaluations have re-
vealed that the size of both files differ only in
about one percent after compression, since the
representation with Relational. OWL contains re-
curring parts and thus can be compressed using
a higher compression rate.

< L2
<country>
<column name="COUNTRYID">32</column>
<column name="NAME">Deutschland</column>
</country>
<country>
<column name="COUNTRYID">152</column>
<column name="NAME">Espafia</column>
</country>
</ ...>

Figure 2: XML data generated with Rec2XML

Concluding, we have decided to use OWL for the
representation of relational data and schema items,
since it provides a feasible balance between a pow-
erful knowledge representation technique and a rea-
sonable amount of data overhead. Applying knowl-
edge representation techniques to the field of data
and schema extraction results in various advantages,
which could have a big impact especially within the
P2P databases, where volatile peers may appear for
a short time offering or demanding for data. As long
as all partners understand the Web Ontology Lan-
guage OWL, we do not need to negotiate a data or
schema exchange format any more, since all partners
involved are capable to talk the same language Rela-
tional. OWL.

3.2 Relevant Metadata

A database management system maintains a huge
amount of metadata information to manage the whole
system in a proper way. In current relational data-
base systems, this information is stored in predefined

system-tables, also called Data Dictionary or Repos-
itory.

We have decided to include only the upmost rel-
evant metadata into our Relational. OWL ontology,
since a large amount of the data stored in the reposi-
tory is very system-specific and thus not suitable for
a semantic representation. The metadata we have se-
lected is the indispensable one for a proper interpre-
tation of the actual data (not metadata, cp. section
4) representation. In fact, the set of schema items de-
scribed may easily be extended, if it is required later
on. Hence we have included the following metadata
items into the Relational. OWL ontology:

Tables and Columns As implied by its name, the
most important schema component of a rela-
tional database is the relation, also called table.
Additionally each table consists of columns (at-
tributes), where the actual data is being stored.
Both schema components are the upmost essen-
tial information for representing the schema of a
relational database and thus have to be included
into the Relational. OWL representation.

Primary and Foreign Keys One or more columns
may compose the primary key of a table. This in-
formation can be very useful for a target system,
in particular if data updates have to be synchro-
nized. Otherwise problems could arise assigning
the new values to the old ones. Analogous, For-
eign Keys have to be represented, otherwise the
data on the target system could become incon-
sistent.

Data Types Data types restrict the possible values
in a column (e.g. only integer or only varchar
values). This special form of consistency con-
straints can be indispensable if a bidirectional
data synchronization is being performed and very
useful for performing a small consistency check of
the data received by the target system.

OWL provides built-in datatypes and the possi-
bility to fall back to the XML Schema datatypes
(Biron & Malhotra 2001). Since there is no stan-
dard way to use the latter within OWL (Patel-
Schneider & Horrocks 2004), we have decided to
restrict this first version of Relational. OWL to
those datatypes clearly defined within the OWL
abstract syntax. Nevertheless, we need a tech-
nique to represent possible restrictions concern-
ing the maximal length of values stored in each
column (e.g. varchar (100)).

Concluding, it is necessary to include a represen-
tation for

e tables,

e columns,

e datatypes possibly with length restrictions,
e primary keys,

e foreign keys, and

e the relations among each other

into the Relational. OWL ontology.

3.3 The Relational. OWL Ontology

As concluded in paragraph 3.2, we require an OWL
ontology which describes the schema of a relational
database in an abstract way. This OWL representa-
tion can easily be interpreted by any remote database
or application, which is capable to process OWL and

has access to the Relational. OWL ontology. As a fur-
ther step we use this schema representation itself as
a novel ontology for creating a representation format,
which is suitable for the corresponding data items.

To describe the schema of a relational database
with the techniques provided by the Web Ontology
Language OWL, we have to define reference OWL
classes centrally, to which any document describing
such a database can refer to. The abstract represen-
tation of classes like Table or Column become hereby
a central part of the knowledge representation process
realized within OWL. Additionally we have to spec-
ify possible relationships among these classes result-
ing in an ontology, a relational database can easily be
described with. We call this central representation of
abstract schema components and relationships Rela-
tional. OWL.

Similar representations based on RDF or
OWL, which may evolve elsewhere, may be
linked to ReltionalOWL with corresponding

owl:equivalentClass or owl:equivalentProperty
relationships. As a result, database representations
using one of the ontologies mapped, can be under-
stood by any application, which usually uses one of
these ontologies.

In other words, each component (database) in-
volved in a representation based on one of these on-
tologies is able to process documents based on any of
the interconnected representation formats. We do not
even have to adapt the reasoning processes, since it is
enough to create a semantic mapping between two or
more ontologies to make them exchangeable, as long
as they correlate semantically.

In the following we describe the components of
the Relational. OWL ontology, our proposal for se-
mantic reasoning in data and schema exchanges.
We can create system specific schema representa-
tions based on this ontology, which themselves can
be used as ontologies for the representation of data
items. In the remainder of this paper we abbre-
viate our main namespace http://www.dbs.cs.uni-
duesseldorf.de/RDF /relational.owl# with the prefix
dbs. Rdf, rdfs, and owl correspond to the commonly
used prefixes for RDF, RDF Schema, and OWL.

A summary of all the classes represented in the
Relational. OWL ontology is provided in Table 1. Ta-
ble 2 contains a list of the relationships, which inter-
connect these classes. The exact class and property
definitions can be accessed online at the URI specified
above.

As mentioned above, we did not include a repre-
sentation of all possible meta information into our
ontology. Hence, items like indexes, triggers, or ta-
blespaces are not considered, but may easily be in-
cluded in a future version of Relational. OWL. In fact,
the part of the relational schema we have chosen to
describe is sufficient to represent the whole actual
data stored in that database. Additional extensions
in the Relational. OWL ontology would only increase
the schema data overhead.

3.4 Example

This section provides an example on how to repre-
sent the schema of existing databases using Rela-
tional. OWL as their original ontology. The snippet
in Figure 3 is derived from the schema representa-
tion of a collegial database, which contains personal
information and further collegiate data of students.
The first element corresponds to a table, which
contains the residence of a student. In this case,
the ADDRESS ID is equivalent to the name of the
table in the original database. Instead of exclu-
sively using the table name as an identifier, a com-
plete URI pointing at this specific table can be spec-

rdf:ID

rdfs:subClassOf

rdfs:comment

dbs:Database rdf:Bag
dbs:Table rdf:Seq
dbs:Column rdfs:Resource
dbs:PrimaryKey rdf:Bag

The class of databases.

The class of database tables.
The class of database columns.
The Primary Key of a Table.

Table 1: Classes defined in the Relational. OWL ontology

rdf:ID rdfs:domain rdfs:range rdfs:comment
dbs:has owl: Thing owl: Thing A Thing can have other Things inside.
dbs:hasTable dbs:Database dbs:Table A Database has a set of Tables.
dbs:hasColumn dbs:Table dbs:Column A Table has a set of Columns.
dbs:isldentifiedBy dbs:Table dbs:PrimaryKey A Table is identified by a Primary Key.
dbs:references dbs:Column dbs:Column Foreign Key rel.ship between Columns.
dbs:length dbs:Column xsd:nonNegativelnteger ~Maximal length of an entry in that Column.
dbs:scale dbs:Column xsd:nonNegativelnteger ~The scale an entry of the Column may have.
Table 2: Properties defined in the Relational. OWL ontology
ified using identifiers like in (Pérez de Laborda &
Conrad 2003). The five columns of this table are de-
fined with owl:DatatypeProperty classes, where all
the properties required are specified. Both objects
are linked using a dbs:hasColumn property.

The primary key property of the table is rep-
resented with the dbs:isIdentifiedBy property,
whereas the dbs:PrimaryKey Object corresponds the
actual primary key. Since the primary key itself

<> may consist of more than one column, the corre-

<owl:Class rdf:ID="ADDRESS">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
<dbs:hasColumn rdf:resource="#ADDRESS.STREET"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ZIP"/>
<dbs:hasColumn rdf:resource="#ADDRESS.CITY"/>
<dbs:hasColumn rdf:resource="#ADDRESS.COUNTRYID"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>

<owl:DatatypeProperty rdf:ID="ADDRESS.ZIP">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#ADDRESS"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>8</dbs:length>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="ADDRESS.COUNTRYID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#ADDRESS"/>
<dbs:references rdf:resource="#COUNTRY.COUNTRYID"/>
<rdfs:range rdf:resource="&xsd;integer"/>
</owl:DatatypeProperty>

</ ...>

Figure 3: Schema represented with OWL and Rela-
tional. OWL

sponding list can be specified with dbs:hasColumn
entries. The second element describes the ZIP
column in the address table, e.g. a column may
contain string values with a maximum length of
eight characters. The foreign key (dbs:references)
from the ADDRESS.COUNTRYID column to the ID
in the country table can be found in the second
owl:DatatypeProperty element.

The complete example showing all features of the
knowledge representation using Relational. OWL as
an ontology can be found at http://www.dbs.cs.uni-
duesseldorf.de/RDF /schema.owl.

4 Data Representation

After the description of how to represent the schema
of a database using OWL and our Relational. OWL
ontology, we now focus on how to use the schema rep-
resentation just created as a novel ontology. With this
tailored ontology-based representation of the data-
base schema, we are able to represent the data, which
is stored in that specific database. As a result, data
stored in a relational database can be represented as
instances of its own OWL schema.

4.1 A novel Ontology

According to the possibilities given by OWL and due
to the schema representation presented above, we are
able to use individuals (i.e. instances) of our Rela-
tional. OWL ontology as classes. Thus the schema
representation just created belongs to OWL Full,
and not to OWL Lite, nor to OWL DL (Dean &
Schreiber 2004). Of course, the fact that we can
not restrict the complexity to one of the subclasses

does not automatically result in a complex represen-
tation of data and schema items. First implementa-
tions make us confident of most OWL reasoning tools
being able to handle data and schema representations
created using Relational. OWL.

In order to realize this kind of data representa-
tion process, we have to ensure that all components
involved (e.g. exchange partners)

e are able to process and understand OWL,

e have access to Relational. OWL or a semantically
equivalent ontology, and

e have access to the OWL schema representation
of the corresponding database.

Using the schema constructed above as a novel
ontology means to represent the data stored in that
specific database using a tailored data representation
technique. As a result, the data can be handled us-
ing common OWL techniques for data backups, data
exchanges, or any kind of data processing tasks.

In fact, this interdigitation of schema and data
corresponds exactly to the data management in rela-
tional database systems, where data items are stored
as instances of their schema. As a result, the ontol-
ogy, the data is described with, changes as soon as the
schema of the originating database is altered. Using
conventional techniques in data exchange processes
would mean to manually adjust the corresponding ex-
change format. Using knowledge representation tech-
niques, this is done automatically.

4.2 Example

Besides the example presented in section 3.4, where
we explained how to represent the schema of a data-
base containing information concerning students, we
are now able to describe the actual data stored in that
specific database (Figure 4). The namespace dbinst
points to the location where the OWL representation
of the schema is stored. Hence, it is required either
to hold a copy of the relevant schema file, or to have
access to such a representation (local copy vs. local
accessible copy).

The example contains four elements, where the
first two represent entries in the address table and
the latter two correspond to an entry in the coun-
try table respectively. The address dataset contains
all the information described in the previous exam-
ple, i.e. an ID, a Street, a ZIP code, a city, and a
country ID. Since we are using OWL in its XML rep-
resentation, we benefit from its sophisticated features
concerning internationalization: Declaring the proper
encoding ensures special characters (e.g. &, g, or 01) to
be interpreted correctly.

Having stored all required information concern-
ing the structure of the database in the schema file
shown in section 3.4, we do not need to indicate that
the ADDRESSID corresponds to the primary key of the
table any more (dbinst:ADDRESS). The same occurs
with the primary key of the COUNTRY table. This in-
formation is available in the schema representation,
which is accessible. It would be redundant to include
it into the data representation.

The complete example containing a com-
plete version of both, the schema and data files
can be downloaded at http://www.dbs.cs.uni-
duesseldorf.de/RDF/, just as our first prototype
which allows exporting data and schema items stored
in a relational database using OWL as representation
language. The prototype was developed in Java using
a JDBC-Bridge and tested with an IBM DB2 UDB
v. 8.1 database. A new version based completely
on Jena (Jena - A Semantic Web Framework for
Java 2004) is going to be accessible soon.

5 Related Work

Relational. OWL was designed within the DiGAME
project (Pérez de Laborda et al. 2004), where we
have created an architecture to support flexible intra-
and inter-enterprise collaboration. This architecture
enables the propagation of data and schema up-
dates done actively over import/export-components
between dynamically connectable data nodes.

Furthermore we have developed the Link Pat-
tern Catalog (Popfinger, Pérez de Laborda & Conrad
2004) as a modeling guideline for recurring problems
appearing during the design or description of infor-
mation grids and P2P networks. Tightly coupled
with Relational. OWL is also (Pérez de Laborda &
Conrad 2003), where we introduced an identifier for
items stored in relational databases, which is based on
an early forerunner of the ontology we have presented
in this paper.

Since the raise of XML in the late 1990s and early
2000s a large number of different exchange formats
for relational database systems have been developed
based on XML (e.g. Torque as part of the Apache DB
Project (The Apache DB Project 2004)). Actually,
each vendor of (object)relational database systems
tried to establish its own XML representation, like
ORACLE’s XMLElement function or IBM’s Rec2XML
scalar function we already mentioned above. Since
these different dialects can easily be converted us-
ing XSLT, this babylonic chaos of different represen-
tation languages is broadly accepted. Nevertheless,
the transformation rules between the different dialects
have to be created manually.

After Berners-Lee et al. had expressed their vi-
sion of the next generation Web, a Semantic Web in
(Berners-Lee, Hendler & Lassila 2001), the commu-
nity started to seriously adopt the idea of semantic
reasoning within the World Wide Web. This includes
also some ideas on how to extract data from (rela-
tional) database systems, whereof (Berners-Lee 1998)
can be seen as an early forerunner. Nevertheless, this
mapping of relational data to RDF is rather rudimen-
tal, lacking, e.g. of a concrete schema representation.

Bizer introduced in (Bizer 2003) a mapping lan-
guage between relational data and RDF, particularly
between specific relational query results and RDF.
Contrary to our approach, D2R MAP converts the
stored data into "real” RDF objects, i.e. an address
would be represented as a RDF address object. This
approach takes into account, that the original data-
base cannot be reconstructed using this kind of data
representation anymore, since it does not contain in-
formation concerning the original schema of the data-
base. As a result, the data represented with the D2R
MAP language looses its relationship to the original
database. Tracing the data to its original storage po-
sition is thus hardly possible.

Semantic integration of corporate information re-
sources is the main topic in (Barrett, Jones, Yuan,
Sawaya, Uschold, Adams & Folger 2002), where Bar-
rett et al. use RDF as a standardized communication
language between all components. The main differ-
ence to our approach is also their mapping of data re-
sulting from queries to existing ontologies, which de-
scribe real-world relationships among objects. Hence,
their aim is not to represent the relationships as they
are in the database, but as they are in real-world.
The original database can not be rebuilt using this
data, since this approach does not include a relational
schema representation and the resulting data is not
connected to the original data source any more.

<..o. />
<dbinst : ADDRESS>

<dbinst: ADDRESS.ADDRESSID>3248</dbinst : ADDRESS . ADDRESSID>

<dbinst:ADDRESS.STREET>Universitatsstr.

1</dbinst : ADDRESS.STREET>

<dbinst:ADDRESS.ZIP>40225</dbinst : ADDRESS.ZIP>
<dbinst:ADDRESS.CITY>Diisseldorf</dbinst : ADDRESS.CITY>
<dbinst: ADDRESS.COUNTRYID>32</dbinst : ADDRESS.COUNTRYID>

</dbinst: ADDRESS>
<dbinst : ADDRESS>

<dbinst : ADDRESS.ADDRESSID>6824</dbinst : ADDRESS . ADDRESSID>

<dbinst :ADDRESS.STREET>Paseo Manuel de Lardizabal, 1</dbinst:ADDRESS.STREET>
<dbinst:ADDRESS.ZIP>20018</dbinst : ADDRESS.ZIP>

<dbinst :ADDRESS.CITY>Donostia-San Sebastian</dbinst:ADDRESS.CITY>
<dbinst:ADDRESS.COUNTRYID>152</dbinst : ADDRESS.COUNTRYID>

</dbinst: ADDRESS>
<. .. />
<dbinst:COUNTRY>

<dbinst:COUNTRY.COUNTRYID>32</dbinst : COUNTRY.COUNTRYID>
<dbinst :COUNTRY.NAME>Deutschland</dbinst: COUNTRY . NAME>

</dbinst:COUNTRY>
<dbinst:COUNTRY>

<dbinst:COUNTRY.COUNTRYID>152</dbinst : COUNTRY.COUNTRYID>
<dbinst:COUNTRY .NAME>Espafia</dbinst : COUNTRY.NAME>

</dbinst:COUNTRY>
<.o.. />

Figure 4: Example of Data represented with OWL based on its own Schema

6 Summary and Further Research

In this paper we have shown how to represent schema
and data items originally stored in relational data-
base systems using our own OWL ontology. Rela-
tional. OWL enables us to semantically represent the
schema of any relational database. This representa-
tion itself can be interpreted, due to the properties of
OWL Full, as a novel ontology. Based on the latter
ontology, we can now semantically represent the data
stored in this specific database.

The advantage of this representation technique
is obvious: Both, schema and data changes can
automatically be transferred to and processed by
any remote database system, which is able to un-
derstand knowledge representation techniques used
within OWL. Misunderstandings are impossible.

Besides the refinement and completion of the con-
crete schema representation, we consider on how
to adopt our technique to other types of database
systems. Similar solutions can easily be found for
Object-Oriented Databases, Hierarchical Databases
like IMS, or its hybrid the modern and more common
X.500 or LDAP Directory Systems (Howes, Smith &
Good 1999).

A further extension for Relational. OWL could be
a corresponding protocol extending the possibilities
of Relational. OWL to particularly support data ex-
changes or replications. There we could employ the
advantages of our knowledge representation technique
for recurring problems occurring within such a data
exchange process, e.g. identifying the same data items
on remote databases.

Although autonomously communicating databases
in a metadata exchange are still more vision than re-
ality, our model takes us one step further.

References

Antoniou, G. & van Harmelen, F. (2003), Web Ontol-
ogy Language: OWL, in S. Staab & R. Studer,
eds, ‘Handbook on Ontologies in Information
Systems’, Springer-Verlag.

Barrett, T., Jones, D., Yuan, J., Sawaya, J., Uschold,
M., Adams, T. & Folger, D. (2002), RDF Repre-
sentation of Metadata for Semantic Integration
of Corporate Information Resources, in ‘Interna-
tional Workshop Real World and Semantic Web
Applications 2002’.

Berners-Lee, T. (1998), ‘Relational Databases
and the Semantic Web (in Design Issues)’,
http://www.w3.org/Designlssues/RDB-

RDF .html.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001),
‘The semantic web’, Scientific American .

Biron, P. V. & Malhotra, A. (2001), ‘XML schema
part 2: Datatypes’, http://www.w3.org
TR/2001/REC-xmlschema-2-20010502/ .

Bizer, C. (2003), D2R MAP-A Database to
RDF Mapping Language, in “WWW2003, The
Twelfth International World Wide Web Confer-
ence’, Budapest, HUNGARY. poster presenta-
tion.

Bray, T., Paoli, J. & Sperberg-McQueen, M.
(1997), ‘Extensible Markup Language (XML)’,
http://www.w3.org/TR/1998 /REC-xml-
19980210.

Broekstra, J., Klein, M., Decker, S., Fensel, D., van
Harmelen, F. & Horrocks, 1. (2001), Enabling
Knowledge Representation on the Web by Ex-
tending RDF Schema, in ‘Proceedings of the
tenth international conference on World Wide
Web’, ACM Press, pp. 467—478.

Dean, M. & Schreiber, G. (2004), ‘OWL
Web Ontology Language Reference’,
http://www.w3.org/TR/2004/REC-owl-ref-
20040210/.

Doan, A., Madhavan, J., Domingos, P. & Halevy,
A. (2002), Learning to Map between Ontologies
on the Semantic Web, in ‘Proceedings of the
eleventh international conference on World Wide
Web’, ACM Press, pp. 662-673.

Halevy, A. Y., Ives, Z. G., Mork, P. & Tatarinov,
I. (2003), Piazza: Data Management Infrastruc-
ture for Semantic Web Applications, in ‘Proceed-
ings of the twelfth international conference on
World Wide Web’, Budapest, Hungary, pp. 556—
567.

Hori, M., Euzenat, J. & Patel-Schneider, P. F. (2002),
‘OWL Web Ontology Language XML Pre-
sentation Syntax’, http://www.w3.org/TR/owl-
xmlsyntax/.

Howes, T. A., Smith, M. C. & Good, G. S. (1999),
Understanding and Deploying LDAP Directory
Services, New Riders, Indianapolis.

Jena - A Semantic Web Framework for Java (2004),
http://jena.sourceforge.net/.

Litwin, W. & Abdellatif, A. (1986), ‘Multidatabase
Interoperability’, Computer 19(12), 10-18.

McGuinness, D. L. & van Harmelen, F. (2004),
‘OWL Web Ontology Language Overview’,
http://www.w3.org/TR/2004/REC-owl-
features-20040210/.

Melnik, S. (2001), ‘Storing RDF in a relational data-
base’, http://www-db.stanford.edu/~melnik/
rdf/db.html.

Miller, E. & Hendler, J. (2004), ‘Web Ontology Lan-
guage (OWL)’, http://www.w3.org/2004/OWL.

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M.,
Naeve, A., Nilsson, M., Palmér, M. & Risch,
T. (2002), EDUTELLA: A P2P Networking In-
frastructure Based on RDF, in ‘Proceedings of

the Eleventh International Conference on World
Wide Web’, ACM Press, pp. 604-615.

Patel-Schneider, P. F. & Horrocks, I (2004),
‘OWL Web Ontology Language Semantics
and Abstract Syntax Section 2. Abstract
Syntax’, http://www.w3.org/TR/2004/REC-
owl-semantics-20040210/syntax.html.

Pérez de Laborda, C. & Conrad, S. (2003), A Se-
mantic Web based Identification Mechanism for
Databases, in ‘Proceedings of the 10th Interna-
tional Workshop on Knowledge Representation
meets Databases (KRDB 2003), Hamburg, Ger-
many, September 15-16, 2003’, Vol. 79 of CEUR
Workshop Proceedings, Technical University of
Aachen (RWTH), pp. 123-130.

Pérez de Laborda, C., Popfinger, C. & Conrad, S.
(2004), DicAME: A Vision of an Active Mul-
tidatabase with Push-based Schema and Data
Propagation, in ‘Proceedings of the GI-/GMDS-
Workshop on Enterprise Application Integration
(EAT’04)’, Vol. 93 of CEUR Workshop Proceed-
ngs.

Popfinger, C., Pérez de Laborda, C. & Conrad, S.
(2004), Link Patterns for Modeling Informa-
tion Grids and P2P Networks, in II-Yeol Song,
Stephen W. Liddle, Tok Wang Ling, and Peter
Scheuermann, eds., ‘Conceptual Modeling - ER
2004, 23rd International Conference on Concep-
tual Modeling, Shanghai, China, November 8-12,
2004 Proceedings’, Vol. 3288 of Lecture Notes in
Computer Science, Springer Verlag.

The Apache DB Project (2004), ‘Torque’,
http://db.apache.org/torque/.

