A Collaborative Approach for Caching Dynamic Data in Portal
Applications

Mehregan Mahdavi

John Shepherd

Boualem Benatallah

School of Computer Science and Engineering
University of New South Wales,
Sydney 2052, Australia,
Email: {mehrm, jas,boualem}@cse.unsw.edu.au

Abstract

Portals are one of the rapidly growing applications on the
Web, providing a single interface to access different sources
(providers). Providing fast response time is one of the crit-
ical issues in such applications. Dissatisfaction of users dra-
matically increases with increasing response time, resulting in
abandonment of Web sites, which in turn could result in loss
of revenue by businesses. In this paper we address the per-
formance of such applications through caching techniques. We
discuss the limitations of existing solutions and introduce a
caching strategy based on collaboration between the portal and
its providers. Providers trace their logs, extract information
to identify good candidates for caching and notify the portal.
Caching at the portal is mainly decided based on scores calcu-
lated by providers and associated with objects. We evaluate the
performance of the collaborative caching strategy using simu-
lation data. We also address the issue of heterogeneous scoring
policies by different providers and introduce mechanisms to
regulate caching scores.

Keywords: Web Caching, Caching Dynamic Data,
Web Portal, Web Services, Mediator Systems

1 Introduction

Web Portals are emerging Internet-based applica-
tions enabling access to different sources (providers)
through a single interface. Using Web portals
can help users to effectively find the desired in-
formation, service, or product between a (large)
number of providers without navigating through
them individually. In other words, the por-
tal is a mediator representing an integrated ser-
vice which is the aggregation of all services pro-
vided by the individual providers. DBusiness por-
tals, such as Amazon (www.amazon.com) and FEz-
pedia (www.expedia.com), are examples of such ap-
plications where customers can search for services or
products to use or buy on-line.

Providing fast response time is one of the criti-
cal issues in portal-enabled applications. Network
traffic between the portal and individual providers,
server workload, or failure at provider sites are some
contributing factors for slow response time. Previ-
ous research (Wong 1999, Zona Research Inc. 2001)
has shown that dissatisfaction of clients dramatically
increases with increasing response time, resulting in
abandonment of Web sites. This, in turn results in
loss of revenue by businesses.

Caching is one of the key techniques which
promises to overcome some of the portal perfor-

Copyright (©2004, Australian Computer Society, Inc. This pa-
per appeared at Fifteenth Australasian Database Conference
(ADC2004), Dunedin, New Zealand. Conferences in Research
and Practice in Information Technology, Vol. 27. Klaus-Dieter
Schewe and Hugh Williams, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

mance issues. In particular, caching response mes-
sages (which we also refer to as dynamic objects or ob-
jects!, for short) gives portals the ability to respond to
some customer requests locally. As a result, response
time to the client is improved, client satisfaction is
increased and better revenue for the portal and the
providers is generated. In addition, network traffic
and the workload on the providers’ servers are con-
siderably reduced. This in turn improves scalability
and reduces hardware costs.

Inherent in the notion of caching are the ideas that
we should maintain as many objects as possible in the
cache, but that the cache is not large enough to hold
all of the objects that we would like. This introduces
the notion that some objects are better candidates for
caching than others. The best candidates for caching
are objects which are requested frequently and not
changed very often. For rapidly changing or infre-
quently accessed objects, it might not be beneficial
to cache them at all.

A caching policy is required to determine which ob-
jects should be cached. Products such as Oracle Web
Cache (Oracle Corporation 2001b), IBM WebSphere
Edge Server (http://www.ibm.com) , and Dynamai
(http://www.persistence.com/products/dynamai/)
from Persistence Software enable system administra-
tors to specify caching policies. This is done mainly
by including or excluding objects or object groups
(e.g., objects with a common prefix in the URI)
to be cached, determining expiry date for caching
objects or object groups, and etc. Server logs (i.e.,
access log, and database update log) are also used to
identify objects to be cached.

Caching dynamic objects at portals introduces
new problems to which existing techniques cannot
be easily adapted. Since the portal may be dealing
with a large number of providers, determining “cache-
worthy” objects by an administrator or by process-
ing logs is impractical. On one hand, an adminis-
trator cannot identify candidate objects in a highly
dynamic environment where providers may join and
leave the portal frequently. On the other hand, keep-
ing and processing access logs in the portal is imprac-
tical due to high storage space and processing time
requirements. Moreover, the providers’ database up-
date logs, which are critical in determining which ob-
jects have been modified, are not normally accessible
to the portal.

In this paper we examine caching solutions to
increase the performance in Web portals. We in-
troduce a caching strategy based on collaboration
between the portal and its providers to overcome
the above-mentioned problems. Providers trace their
logs, extract information to identify good candidates
for caching and notify the portal. Providers associate
a score with each response message which represents

Dynamic objects are data items requested by the portal, such
as XML or SOAP response messages.

the usefulness of caching this object.

Clearly, such a scheme imposes overheads on the
providers, and leaves open the possibility that they
may try to subvert the caching system by claiming
that all of their pages are essential to remain in the
cache. We show that the overheads are minimal and
introduce mechanisms to regulate caching scores, to
overcome these problems.

The remainder of this paper is organised as fol-
lows. Section 2 provides an overview of portals, their
architecture, implementation and performance issues.
In Section 3 we introduce a collaborative caching
strategy based on a score associated with objects by
providers. Experimental results to evaluate the effec-
tiveness of this strategy are presented in Section 4.
More details about existing caching solutions and re-
lated works are described in Section 5. Finally, some
conclusions are presented in Section 6.

2 Web Portals:

mance Issues

Architectures and Perfor-

Web portals enable access to different providers
through a single interface. Providers register their
services in the portal to commence a relationship be-
tween the portal and themselves. Providers fall into
two broad categories, based on their relationship with
each other:

e Complementary: Complementary providers
are those who provide different elements of a
composite service or product. For example, in
a travel planner portal, services such as flight,
accommodation, and car rental are complemen-
tary services. Another example is a computer
manufacturing portal where each provider may
provide different parts of a computer.

e Competitor: Competitor providers are those
who provide the same service or product. They
compete with each other either in providing bet-
ter quality of Service (QoS), e.g., faster response
time or a cheaper price. Fast response time
through the portal is a QoS which both portal
and provider try to provide. A computer selling
portal is an example where providers compete
with each other in selling their products, such as
PCs or printers.

The relationship between the portal and the
providers can be realized in two ways:

e Centralized: Each provider sends its content
to the portal and the contents from different
providers are combined and maintained by the
portal. When the portal receives a query, e.g.,
a browse request, it processes the query locally.
Each provider is responsible for providing up-
dated content to the portal.

e Distributed: Each provider maintains its con-
tent. When the portal receives a query, it for-
wards the query to the appropriate provider(s).
Each provider processes the query and returns its
result to the portal. The provider may need to
contact other providers, e.g., a service or prod-
uct is made of different services or items which
are provided by other providers. The final result
will be integrated at the requesting portal and
returned to the user.

The centralized approach has the advantage that
all queries are carried out on the portal under a sin-
gle integrated schema. This has some administrative
and performance benefits (especially in the speed of
answering queries), and works effectively in domains

Clients Portal Providers

@ | Content /

g\ Cache / %
b Content

Meta-Data

i

Figure 1: A Distributed Portal

] =

where data is not highly dynamic (e.g. the catalogue
of an on-line bookshop). However, it has a number
of serious disadvantages. In particular, it is not suit-
able for application domains, such as ticket booking
systems or purchasing systems, where “freshness” of
data is critical; since providers are responsible for
sending content updates, they will typically do this
only periodically. Another potential problem arises if
providers have relationships with a number of portals;
it becomes costly for the provider to keep the content
up-to-date at all portals. We focus on distributed por-
tals for the remainder of this paper.

In a distributed portal, which may include com-
plementary providers, competitor providers or both,
the relationship between portal and providers is not
necessarily fixed and pre-established. It can be rather
highly dynamic where new providers can join or ex-
isting providers can leave the portal. Figure 1 shows
the general architecture of a distributed portal along
with the providers. Meta-data is information about
providers, provided when they register their service.
As can be seen in the figure, each provider may have
a relationship with a number of portals. Moreover,
each provider may have a number of sub-providers.

The distributed approach is more appropriate for
applications which need fresher data, since providers
are queried directly and always provide answers based
on up-to-date content. However, this clearly intro-
duces significant overheads into the query processing
(message handling, extra network traffic, possibility
of failure of provider sites), which may result in slow
response to the user.

A potential solution to the response time problem
for distributed portals is to cache response messages
(e.g., SOAP or XML) from providers at the portal.
Caching data from providers can reduce network traf-
fic. It also reduces the workload on the provider Web
application server and database server by answering
some requests locally in the portal site. Less workload
on the provider site leaves more processing power to
process incoming queries which results in more scala-
bility and reduces hardware costs.

In environments where the providers are mainly
complementary, the performance of the portal is lim-
ited by the performance of the provider with the worst
performance among the providers taking part in a
composite service. Providing data from a shorter dis-
tance (i.e. locally on the portal) improves the re-
sponse time to the user. This can in turn help in
better user satisfaction and finally in better revenue
for the portal and the provider. For example, if a
fast browse session for composite services or products
is provided, users might be more willing to continue
shopping, which may finally lead to using the service
or buying the product. Moreover, users will be more
likely to come back later.

In competitor environments caching is of more in-
terest for providers. If a portal lists the contents from
different providers as they arrive, providers with bet-

ter response time have a better chance to be listed
for the user. Assuming that in most cases users are
only interested in the “Top N” results, failure to pro-
vide a fast response may result in a provider losing
the chance to be listed in “Top N” results. This may
result in less revenue for the business.

The use of a cache of provider objects in the por-
tal immediately raises the issues of how many objects
can/should be cached, which objects are the best can-
didates for replacement when the cache fills, and how
is information provided to the portal in order to de-
termine this. These issues are addressed by our col-
laborative caching strategy.

3 A Collaborative Caching Strategy

Caching a particular object at the portal depends
on the available storage space, response time (QoS)
requirements, access and update frequency of ob-
jects. The best candidates for caching are those
who are: (i) accessed frequently, (ii) not changed
very often, and (iii) expensive to compute or deliver
(Kossmann & Franklin 2000, Florescu, Yagoub, Val-
duriez & Issarny 2000).

As mentioned earlier, due to the potentially large
number of providers and dynamicity of the environ-
ment, it is not feasible to identify “cache-worthy” ob-
jects on the portal, either by a system administra-
tor or by mining server logs: a human administrator
cannot handle frequent changes to the collection of
providers; maintaining and processing access logs in
the portal imposes too much storage and processing
overhead; database update logs from the providers
are typically not accessible to the portal.

In order to provide effective caching in a dis-
tributed, dynamic portal environment, we propose
a strategy based on the collaboration between the
providers and the portal. A caching score (called
cache-worthiness) is associated to each object, deter-
mined by the provider of that object. The cache-
worthiness of an object, a value in the range [0,1],
represents the usefulness of caching this object at the
portal. A value of zero indicates that the object can-
not be cached in the portal, while a value of 1 indi-
cates that it is desirable to cache the object in the
portal (Mahdavi, Benatallah & Rabhi 2003). The
cache-worthiness score is sent by the provider to the
portal in response to a request from the portal. The
decision whether to cache an object or not is made by
the portal, based on the cache-worthiness scores along
with other parameters such as recency of objects, util-
ity of providers, and correlation between objects.

The caching strategy is supported by two major
tables, the cache look-up table used by the portal to
keep track of the cached objects, and the cache val-
idation table used by the providers to validate the
objects cached at the portal(s). When a hit is de-
tected at the portal for a provider’s response mes-
sage, a validation request message is sent to the rel-
evant provider. The provider checks the freshness of
the object by probing the cache validation table to
find the relevant entry. If the cache validation table
does not contain an entry for the object, it means
that the corresponding object is not fresh anymore
due to changes in the database. It is also possi-
ble that entries are removed for other reasons such
as space limitations. After the object is sent back,
the portal responds to the user request and a copy
of the object may be cached at the portal. Clearly,
this approach uses a pull-based consistency mecha-
nism. Other mechanisms such as those presented
in (Ramamritham, Deolasee, Kathar, Panchbudhe &
Shenoy 2000, Deolasee, Katkar, Panchbudhe, Rama-
maritham & Shenoy 2001, Duvuri, Shenoy & Tewari

2000, Olston & Widom 2002, Cao & Ozsu 2002, Liu
& Cao 1998) can be considered. However, this is not
a focus of this paper.

Changes in the back-end database invalidate en-
tries in the cache validation table. If changing the
content of the database affects the freshness of any ob-
ject, then the appropriate entry in the provider cache
validation table will be removed. Solutions for detect-
ing changes in the back-end database and/or invali-
dating the relevant objects are provided in (Anton,
Jacobs, Liu, Parker, Zeng & Zhong 2002, Selcuk, Li,
Luoand, Hsiung & Agrawal 2001, Challenger, Iyengar
& Dantzig 1999), and Dynamai. For this purpose,
the technique presented in Dynamai is used, where
the incoming (update) requests are used to invalidate
cached objects.

Server logs in the provider sites are used to calcu-
late a score for cache-worthiness, using the following
parameters:

e The access frequency is calculated by process-
ing Web application server access log.

e The update frequency is calculated by process-
ing database update log.

e The computation cost is calculated by process-
ing the database request/delivery log and calcu-
lating the time elapsed between the request and
delivery of the result from the database.

e The delivery cost is measured by the size of
the object. Larger objects are more expensive to
deliver in terms of time and network bandwidth
consumption.

The score for cache-worthiness is computed as the
aggregation of the above parameters.

Although, all providers may use the same strategy
to score their objects, the scores may not be consis-
tent. This is mainly due to the fact that: (i) each
provider uses a limited amount of logs to extract re-
quired information which varies from one to another,
(ii) each provider may use different weight for each
term, (iii) the computation cost may depend on the
provider hardware and software platform, workload
and etc., (iv) providers may use other mechanisms
to score the objects, and (v) malicious providers may
claim that all of their own objects should be cached,
in order to “freeze out” other providers.

To achieve an effective caching strategy, the por-
tal should detect such inconsistencies and regulate
the scores given by different providers. For this pur-
pose, the portal uses a regulating factor A(m) for
each provider. When the portal receives a cache-
worthiness score, it multiplies it by A(m) and uses the
result in the calculation of the overall caching score.
For each provider, A(m) can be set by the adminis-
trator at the beginning. It is adapted dynamically by
tracing the performance of the cache for individual
providers.

Adapting A(m) dynamically is done through the
following process carried out by the portal:

e When the number of false hits (i.e., hits occurred
at the portal while the object is already invali-
dated) for a provider exceeds a threshold, then
the portal decreases A(m) for the provider.?

e When the number of real hits (i.e., hits occurring
at the portal while the object is still fresh and can
be served by the cache) for a provider exceeds a
threshold, then the portal increases A(m).

2Note that this provides regulation of cache-worthiness scores
to counter providers who seek to gain some advantage by claiming
that all of their content should be cached in the portal.

Our experimental results show that the above col-
laborative caching strategy can improve performance
in terms of throughput and network bandwidth us-
age. They also show that a cache replacement strat-
egy based on eviction of objects with least cache-
worthiness performs better than other strategies such
as FIFO and LRU.

4 Experiments

In order to evaluate the performance of the collabora-
tive caching strategy, we have built a simulation plat-
form. This platform enables us to simulate the be-
haviour of a portal with different number of providers,
different message sizes, etc. and allows us to evaluate
performance measures such as network bandwidth us-
age and throughput. To evaluate the performance, we
run two simulations for each collection of parameter
settings, one with caching and one without caching,
and compare the performance results. In the rest of
this paper we call them CacheCW and NoCache, re-
spectively. We also test the performance of the cache
replacement strategy based on cache-worthiness (used
in CacheCW). We compare its performance with two
other cache replacement strategies, FIFO and LRU.
In the rest of this paper CacheFIFO and CacheLRU
stand for the collaborative caching strategy using
FIFO and LRU for cache replacement.

The requests to objects from providers are gener-
ated based on random selection according to a Zipf
distribution (Breslau, Cao, Fan, Phillips & Shenker:
1999). Scores for cache-worthiness are assigned to the
objects in such a way that larger values are assigned
to more popular objects and smaller values to less
popular ones. The most important variable parame-
ters used in the experiments are:3

e Average number of providers

e Average number of cacheable objects per
provider (e.g., depending on the affordable pro-
cessing and space overhead needed for calculating
and storing cache-worthiness scores by providers)

e Average size of objects
e Cache size
e Network bandwidth

e The ratio of read requests to write requests

The experimental results shown in this paper are ex-
tracted using 20 providers with an average of 10000
cacheable objects each, network bandwidth equal to
10Mb/s, and the ratio of read requests to write
requests equal to 90%. Average object size and
cache size are varied between 8KB/16KB/32KB and
20MB/100MB/1GB in different experiments. In the
rest of this section, we present experimental results
which evaluate the performance of the caching strat-
egy based on network bandwidth usage and through-
put.

4.1 Network Bandwidth Usage

In the first experiment, we study the amount of net-
work bandwidth usage per request. We run the sim-
ulation for 120 minutes. We vary the average size of
objects between 8KB, 16KB, and 32KB among the
simulation instances and generate the graph in Fig-
ure 2. A cache size equal to 1GB is assumed for all
three simulation instances.

3The simulation platform allows us to set the value for these
parameters.

ID NoCache [0 CacheCWl
20
S —
£ 100
i)
< 80 B
LY
g 60 -
-
x 404
o
Al
%}
Z
0
8K 16K 32K
Object Size

Figure 2: Network Bandwidth Usage per Request

As Shown in Figure 2, the caching strategy reduces
the network bandwidth usage per request. According
to the figure, CacheCW decreases the bandwidth usage
per request, 1.32, 1.35, and 1.4 times for 8KB, 16KB,
and 32KB sizes, respectively. It should be mentioned
that each user request generates a number of sub-
requests to providers. This is a random number and
the maximum can be varied in the simulation. In
other words, each request results in a number of re-
sponse messages to be sent by providers. That is why
the amount of network usage per request is a num-
ber of times more than the average size of response
messages.

4.2 Throughput

In the second experiment, we study the throughput.
Figure 3 shows the throughput measured as the num-
ber of performed requests per minute for different size
of objects, i.e., 8K, 16K, and 32K. The results are
based on 120 minutes simulation with a cache size
equal to 1GB.

The throughput of NoCache stays almost constant
at all the times. For CacheCW, it takes a while till the
throughput reaches a stable value. This is because
the cache is empty at the beginning and it takes some
time until the cache is filled up. The caching strategy
improve throughput 1.3, 1.32, and 1.35 times for 8KB,
16KB, and 32KB sizes, respectively.

4.3 Cache Replacement Strategy

In the third experiment, we compare the cache re-
placement strategy based on cache worthiness with
two other strategies, FIFO and LRU. In this experi-
ment an average size of objects equal to 16KB is as-
sumed. We vary the cache size between 1GB, 100MB,
and 20MB and compare hit ratios (i.e., number of hits
divided by number of accesses) of three strategies.
Figure 4 shows that where there is not much limita-
tion on the cache size (e.g., 1GB), all three strategies
perform similarly. When there is cache size limitation
(e.g., 100MB, or 20MB) CacheCW performs better fol-
lowed by CacheLRU and then CacheFIFOQ. Figure 4 (c)
shows that with more limitation on the cache size
the difference becomes significant. For the cache size
equal to 20MB, the hit ratios are 0.23 for CacheCW, fol-
lowed by 0.17 for CacheLRU, and 0.14 for CacheFIFO.

4.4 Cache Size

In the last experiment, we study the effect of cache
size on the overall performance (i.e., network band-

\+ NoCache CacheCW\

600 +
~ 500 | ﬁ
£
£
S 400 -
g
S 300 -
o
ey
S 200
2
K=
F 100 -
0 T T T 1
0 30 60 90 120
Time (min)
(a) Average Size: 8KB
\+ NoCache CacheCW\
350 +
300 //M
£
£ 250 |
o
[}
< 200 4
5
2150
j2]
=]
© 100 |
=
50 -
0 T T T 1
0 30 60 90 120
Time (min)
(b) Average Size: 16KB
\+ NoCache CacheCW\
180 -
160 -
€ 140 |
€
T 120 -
=
= 100 -
=}
%— 80 -
> 60 -
2
,'E 40 4
20 -
0 T T T 1
0 30 60 90 120
Time (min)

(c) Average Size: 32 K
Figure 3: Throughput

width usage, and throughput). We run CacheCW with
different sizes of cache and compare the results to-
gether. Figure 5 (a) shows that a cache size equal
to 100MB will result in maximum throughput (i.e.,
315 request per minute). Increasing the cache size
has a slightly negative impact on the throughput.
This is mainly because of the more overhead incurred
for probing larger Cache Look-up Table by the portal

\ - CacheCW ~- CacheFIFO - CacheLRU \

0.3 1

0.25 4

hit/access
o

o = o

[l (2] N

. . .

0.05 1
0 T T T 1
0 30 60 90 120
Time (min)
(a) Cache Size: 1GB
| = CacheCW ~ CacheFIFO ~ CacheLRU
0.3 -
0.25 |
w 02
1]
[}
3 0.15 -
s
< 01
0.05 -
O T T T 1
0 30 60 90 120
Time (min)
(b) Cache Size: 100MB
| = CacheCW ~ CacheFIFO ~ CacheLRU
0.25 -
0.2 1
Q
Q
s
= 01
=
0.05 |
O T T T 1
0 30 60 9 120
Time (min)

(c) Cache Size: 20MB
Figure 4: Hit Ratio of Cache Replacement Strategies

when the cache size increases. Figure 5 (b) proves
this claim. For cache sizes larger than 100MB there
is a very slight improvement in cache hit ratio. But as
said before, due to the overhead, it does not impact
the throughput positively. According to Figure 5 (c)
cache sizes larger than 100MB have an insignificant
effect on reducing network bandwidth usage. The ex-
periments show that the optimal value for cache size

Throughput (reg/min

] — o o o o o o a1}
< — N < [Te) o o o
% — N o
0
o
z
Cache Size (MB)
(a) Throughput
0.3
0.25 = m I B [l
0.2 1
o
& 0.15 -
£
0.1+
0.05 | H
0 T .
— o o o o o o m
— N < Te} o o)
— N
-
Cache Size (MB)

(b) Hit Ratio

1)
ul
I

un
o
I

N
o
L

Network Usage (KB/req)
w IN
(3] (6]

w
o
|

100
200
1GB

1
10
20
40
50

NoCache

Cache Size (MB)

(c) Network Bandwidth Usage
Figure 5: Effect of Cache Size on Performance

is around 100MB. However, this value depends on the
system parameters such as the number of providers,
number of objects per provider, access and update
patterns.

5 Related Work

In (Luo & Naughton 2001), caching dynamic Web
pages at a proxy server is enabled by sending and
caching some programs on the proxy server. These
programs generate the dynamic part of some Web
pages while the static part can be directly provided
from the cache.

A database accelerator increases the performance
by reducing the communication between the applica-
tion server and the database server. It also reduces
the load on the back-end database resulting in more
scalability (Oracle Corporation 2001 a, TimesTen Inc.
2002). Products such as Oracle Application Server
Database Cache (Oracle Corporation 2001a) and
TimesTen (TimesTen Inc. 2002) enable this kind of
caching.

Caching the result of dynamic Web pages at
Web application server can reduce the workload on
the Web application server and back-end database
(Selcuk et al. 2001, Anton et al. 2002). Under
a hit, the Web application server answers the re-
quest using the cache if it is still valid. Changes
in back-end database invalidate relevant Web pages
that use the modified data. Current application
servers such as BEA WebLogic Application Server
(http://www.bea.com) , IBM WebSphere Applica-
tion Server , and Oracle Application Server support
caching dynamic Web pages.

Cache servers can be deployed in front of Web
application servers. This type of caching solution
is known as server acceleration. It intercepts re-
quests to the Web application server and either an-
swers the request (if the result is cached) or forwards
the request to the origin server. After a cache miss,
the server accelerator caches any cacheable result re-
turned by the origin server and forwards the reply
back to the requester. Some examples include IBM
WebSphere Cache Manager , and Oracle 9i AS Web
Cache (Oracle Corporation 2001b). They promise
caching dynamic and personalized Web pages.

Companies such as Akamai
http://www.akamai.com), and Digital Island
http://www.digitalisland.com) have been providing
Content Delivery/Distribution Network (CDN)
services for several years. CDN services are designed
to deploy cache/replication servers at different
geographical locations called edge servers. The
first generation of these services was designed to
cache static objects such as HTML pages, image,
audio and video files. Nowadays, Fdge Side Includes
(ESI) (http://www.esi.org) enables the definition
of different cacheability for different fragments of
an object. Processing ESI at these servers enables
dynamic assembly of objects at edge servers which
otherwise may be done at server accelerator, proxy
server or browser.

Some applications may need a customized caching
technique. Therefore, the existing caching solutions
might be insufficient. Application level caching is nor-
mally enabled by providing a cache API, allowing ap-
plication writers to explicitly manage the cache to
add, delete, and modify cached objects (Challenger
et al. 1999, Degenaro, Iyengar & Ruvellou 2001).

The performance of individual cache servers in-
creases when they collaborate with each other by
replying each other’s misses. Protocols such as In-
ternet Communication Protocol (ICP) (Wessels &
Claffy 1997), Summary Cache (Fan, Cao & Broder
2000), and Cache Array Routing Protocol (CARP)
(Microsoft Corporation 1997) enable collaboration
between proxy servers to share their contents. ICP
was developed to enable querying of other proxies in
order to find requested Web objects. In Summary
Cache, each cache server keeps a summary table of

the content of the cache at other servers to minimize
the number of ICP messages. CARP is rather a rout-
ing protocol which uses a hash function to determine
the owner of a requested object in an array of proxy
servers.

Maintaining cache consistency has been studied in
(Ramamritham et al. 2000, Deolasee et al. 2001, Du-
vuri et al. 2000, Olston & Widom 2002, Cao &
Ozsu 2002, Liu & Cao 1998).

Web Cache Invalidation Protocol (WCIP) enables
maintaining consistency using invalidations and up-
dates. In server-driven mode, cache servers subscribe
to invalidation channels maintained by an invalida-
tion server. The invalidation server sends invalida-
tion messages to channels. These invalidation mes-
sages will be received by cache servers. In the client-
driven mode cache servers periodically synchronize
the objects with the invalidation server. The inter-
val depends on consistency requirements (Li, Cao &
Dahlin 2001).

Caching policies for Web objects are studied in
(Aggrawal, Wolf & Yu 1999, Cao & Irani 1997, Cheng
& Kambayashi 2000).

WEAVE (Florescu et al. 2000, Yagoub, Florescu,
Valduriez & Issarny 2000) is a Web site management
system which provides a language to specify a cus-
tomized cache management strategy.

Triggers can be deployed to detect changes on
the back-end database and invalidate cached ob-
jects. Oracle Web Cache (Oracle Corporation 20015)
uses a time-based invalidation mechanism (Anton
et al. 2002).

Server logs can be used to detect changes and in-
validate relevant entries, as proposed in CachePor-
tal (Selcuk et al. 2001). It intercepts and analyzes
three kinds of system logs to detect changes on base
data and invalidate the relevant entries. These logs
include HTTP request/delivery logs to determine re-
quested page, query instance request/delivery logs to
determine the query issued on the database based on
the user query, and database update logs. A sniffer
module finds the map between query instances and
URLs based on HTTP and query instance logs and
generates a QI/URL map table. An invalidator mod-
ule uses the database update logs and invalidates the
cached copies based on the updates and the QI/URL
map table.

The Data Update Propagation (DUP) algorithm
(Challenger et al. 1999) uses object dependence graph
for the dependence between cached objects and the
underlying data. The cache architecture is based on
a cache manager which manages one or more caches.
Application programs use an API to explicitly man-
age caches to add, delete, and update cache objects.

Dynamai uses an event-based invalidation for
cache objects. Two kinds of events may change and
therefore invalidate a dynamic Web page in the cache:
First, the content of the database may change by the
application through the Web interface. Second, it can
be changed by an external event such as system ad-
ministrator or another application. In the first case,
the application can monitor incoming requests, and
if they cause an update on the database, affected
query instances will be invalidated. In the second
case, the invalidation mechanism will be programmed
in a script file and executed by the administrator to
invalidate appropriate query instances. For request-
based invalidation, some dependency and event rules
are defined by the application developer or system ad-
ministrator. They identify all dependencies between
Web pages and all the events that a request may cause
which in turn may invalidate other Web pages.

6 Conclusions and Future Work

In this paper, we have studied portals as a growing
class of Web-based applications and addressed the im-
portance of providing fast response time. We dis-
cussed the limitations of existing solutions in provid-
ing an effective caching solution in portals, and intro-
duced a collaborative caching technique to address
these limitations.

The experimental results show that the collabora-
tive caching strategy can improve the performance by
reducing the network bandwidth usage and increas-
ing the throughput. However, its performance de-
pends on effective collaboration between the portal
and providers.

Further experiments are needed to determine the
most effective strategies for regulating heterogeneous
caching scores from different providers. Moreover, the
maximum number of objects each provider should cal-
culate the cache-worthiness for and keep an entry in
cache validation table needs to be further investigated.
This number will depend on the affordable process-
ing and space overhead for calculating and storing
cache-worthiness scores by providers, along with the
overhead for storing and updating the entries in the
cache validation table.

References

Aggrawal, C., Wolf, J. L. & Yu, P. S. (1999), Caching
on the World Wide Web, in ‘ITEEE TKDE’,
Vol. 11.

Anton, J., Jacobs, L., Liu, X., Parker, J., Zeng, Z.
& Zhong, T. (2002), Web Caching for Database
Aplications with Oracle Web cache, in ‘ACM
SIGMOD’. Oracle Corporation.

Breslau, L., Cao, P., Fan, L., Phillips, G. & Shenker:,
S. (1999), Web Caching and Zipf-like Distribu-
tions: Evidence and Implications, in ‘IEEE IN-
FOCOM’, pp. 126-134.

Cao, P. & Irani, S. (1997), Cost-Aware WWW Proxy
Caching Algorithms, in ‘The USENIX Sympo-
sium on Internet and Systems’.

Cao, Y. & Ozsu, M. T. (2002), ‘Evaluation of Strong
Consistency Web Caching Techniques’, WWW
5(2), 95-124.

Challenger, J., Iyengar, A. & Dantzig, P. (1999), A
Scalable System for Consistently Caching Dy-
namic Web Data, in ‘IEEE INFOCOM’'.

Cheng, K. & Kambayashi, Y. (2000), LRU-SP: A
Size-Adjusted and Popularity-Aware LRU Re-
placement Algorithm for Web Caching, in ‘IEEE
Compsac’, pp. 48-53.

Degenaro, L., Iyengar, A. & Ruvellou, 1. (2001),
Improving Performance with Application-Level
Caching, in ‘International Conference on Ad-
vances in Infrastructure for Electronic Business,

Science, and Education on the Internet (SS-
GRR)’.

Deolasee, P., Katkar, A., Panchbudhe, A., Rama-
maritham, K. & Shenoy, P. (2001), Adaptive
Push-Pull: Disseminating Dynamic Web Data,
in ‘The Tenth World Wide Web Conference
(WWW-10).

Duvuri, V., Shenoy, P. & Tewari, R. (2000), Adaptive
Leases: A Strong Consistency Mechanism for the
World Wide Web, in ‘IEEE INFOCOM’2000’.

Fan, L., Cao, P. & Broder, A. (2000), Summary
Cache: A Scalable Wide-Area Web Cache Shar-
ing Protocol, in ‘IEEE/ACM Transactions on
Networking’, Vol. 8.

Florescu, D., Yagoub, K., Valduriez, P. & Issarny,
V. (2000), WEAVE: A Data-Intensive Web Site
Management System, in ‘The Conference on Ex-
tending Database Technology (EDBT)’.

Kossmann, D. & Franklin, M. J. (2000), Cache In-
vestment: Integrating Query Optimization and
Distributed Data Placement, in ‘ACM TODS’.

, D, Cao, P. & Dahlin, M. (2001),
‘WCIP: Web Cache invalidation Protocol’,
http://www.ietf.org/internet-drafts/draft-danli-
wrec-wcip-01.txt.

Liu, C. & Cao, P. (1998), Maintaining Strong Cache
Consistency in the World-Wide Web, in ‘Inter-
national Conference on Distributed Computing
Systems’.

Luo, Q. & Naughton, J. F. (2001), Form-Based
Proxy Caching for Database-Backed Web Sites,
in ‘VLDB Conference’, pp. 191-200.

Mahdavi, M., Benatallah, B. & Rabhi, F. (2003),
Caching Dynamic Data for E-Business Applica-
tions, in ‘International Conference on Intelligent
Information Systems (IIS’03): New Trends in In-
telligent Information Processing and Web Min-
ing (ITPWM)’.

Microsoft Corporation (1997), ‘Cache Array Rout-
ing Protocol and Microsoft Proxy Server 2.0,
http://www.mcoecn.org/WhitePapers/Mscarp.pdf.
White Paper.

Olston, C. & Widom, J. (2002), Best-Effort Synchro-
nization with Source Cooperation, in ‘ACM SIG-
MOD'.

Oracle Corporation (2001a), Oracle9i Application
Server: Database Cache, Technical report, Or-
acle Corporation, http://www.oracle.com.

Oracle Corporation (2001b), Oracle9iAS Web
Cache, Technical report, Oracle Corporation,
http://www.oracle.com.

Ramamritham, K., Deolasee, P., Kathar, A., Panch-
budhe, A. & Shenoy, P. (2000), Dissemination of
Dynamic Data on the Internet, in ‘DNIS 2000’.

Selcuk, K., Li, W.-S., Luoand, Q., Hsiung, W.-P.
& Agrawal, D. (2001), Enabling Dynamic Con-
tent Caching for Database-Driven Web Sites, in
‘ACM SIGMOD Conference’.

TimesTen Inc. (2002), Mid-Tier Caching,
Technical report, TimesTen Inc.,
http://www.timesten.com.

Wessels, D. & Claffy, K. (1997), ‘Application of In-
ternet Cache Protocol (ICP), version 2’, Network
Working Group, Internet-Dratft.

Wong, S. (1999), ‘Estimated $4.35 Billion
Ecommerce Sales at Risk FEach Year’,
http://www.zonaresearch.com/info/press/99-
june30.htm.

Yagoub, K., Florescu, D., Valduriez, P. & Issarny,
V. (2000), Caching Strategies for Data-Intensive
Web Sites, in ‘“VLDB Conference’, Cairo, Egypt.

Zona Research Inc. (2001), ‘Zona Re-
search Releases Need for Speed 1T,
http://www.zonaresearch.com/info/press/01-
may03.htm.

Li

