
Operational Semantics of Transactions

Andreas Prinz Bernhard Thalheim

DResearch Digital Media GmbH, Computer Science Institute
Otto-Schmirgal-Str. 3, Brandenburg University of Technology at Cottbus
D-10319 Berlin, Germany PostBox 101344, D-03013 Cottbus
Email prinz@DResearch.de Email thalheim@informatik.tu-cottbus.de

Abstract

Mathematics is forcing towards a consistent frame-
work of theory development. Computer Science is
an engineering discipline and sometimes suffers from
ad-hoc definitions. Transactions are a concept that
is commonly used in the database area. It is often
defined in the form: given a syntactic construct in
an abstract form and declare a number of properties
an engine should support which is not specified and
invisible.

This paper aims in providing an operational se-
mantics for transactions. A DBMS implementation
is then considered to be a faithful refinement of the
operational semantics.

1 Introduction

Transactions are one of the fundamental frameworks
in the information systems area. It is necessary to
define the notion of “transaction” that is robust ac-
cording to the following requirements:
• Logical semantics must coincide with operational

semantics for transactions.
• Parallel execution of transactions must be defin-

able inside the operational semantics used for
transactions.
• One refinement of the transaction model is the

implementation of transaction execution by a
DBMS.
• Arbitrary order of execution: Transactions can be

executed in any order as long as they are not
competing for resources.
• Rigid punch: Transaction execution leaves traces

in the database whenever the effect of the trans-
action does not contradict the database.

1.1 Variety of Definitions

“Definitions are a matter of luck” is a humorous
statement often made by A.N. Kolmogoroff and H.
Thiele. The transaction definition made in a variety
of books and papers seems to be a good example of
this claim:
TA as obligation (Embley 1998): “A transaction is a

program unit that accesses the database; it re-
trieves and may update data. A database system
has the responsibility of executing a transaction
so that it is both atomic and correct. ... A trans-
action is a program unit that preserves correct-
ness and atomicity.”

Copyright c©2003, Australian Computer Society, Inc. This pa-
per appeared at Fourteenth Australasian Database Conference
(ADC2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, Vol. 17. Xiaofang Zhou
and Klaus-Dieter Schewe, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

TA as an agent (Garcia-Molina et al. 2000): “A trans-
action, like any program, executes a number of
steps in sequence; often several of these steps
will modify the database. Each transaction has
a state, which represents what has happened so
far in the transaction. The state includes the
current place in the transaction’s code being exe-
cuted and the values of any local variables of the
transaction that will be needed later on.”

TA as special program (Codd 1990): “A transaction
is a collection of activities involving changes to
the database, all of which must be executed suc-
cessfully if the changes are to be committed to the
database, and none of which may be committed if
any one or more of the activities fail. Normally,
such a collection of activities is represented by a
sequence of relational commands. The beginning
of the sequence is signaled by a command such
as BEGIN or BEGIN TRANSACTION. Its
termination is signaled by a command such as
END or COMMIT - or, if it is necessary to
abort the transaction, ABORT.”

Two views on TA’s (Hsu 1998): “An end user com-
municates with a database through a mechanism
called a transaction. A transaction can be de-
fined from the user viewpoint and from the sys-
tem viewpoint. The end user (the operator, the
system administrator, etc.) sees a transaction
as a request/reply unit expressed in the form of
a source program. The system sees a transac-
tion as a sequence of operations (reads, writes,
etc.) on the data elements. The user conveys a
change to the DBMS via a transaction and awaits
a reply from the system. The DBMS then imple-
ments the set of operations (defined in the trans-
action) on a subset of data elements by execut-
ing the transaction under a set of the changes
through a “successful” execution of the transac-
tion. The DBMS guarantees the incorporation of
the changes through a “successful” execution of
the transaction. We will refer to such execution
of a transaction as “commit”.
A transaction T must possess a set of well-
defined properties to be able to correctly reflect
in the database the changes to the part of the
real world. In executing a transaction, the sys-
tem guarantees that all the changes proposed in
the transaction, not only a part of them, are in-
corporated correctly in the database. ”

TA as concurrent operation (Elmasri/Navathe 2000):
“The execution of a program that accesses or
changes the contents of the database is called
a transaction. The transaction submitted by
various users may execute concurrently and may
access and update the same database records. If
this concurrency is uncontrolled, it may lead to
problems such as an inconsistent database.”



TA as specific application programs (Lewis et al. 2002):
“ A transaction is a program that can perform
the following functions:
1. It can update a database to reflect the
occurrence of a real-world event that effects the
state of the enterprise the database is modeling.
An example ...
2. It can ensure that one or more real-world
events occur. ...
3. It can return information derived from the
database. ”

The problems of the variety becomes worse if in
the same source a variety of definitions is used. Beside
the definition of (Hsu 1998) in (Hsu/Kumar 1998) an-
other definition (Härder/Reuter 1998) is used which
is repeated by most of the books in the database area
(Vossen 1991):
The concept of a transaction, which includes all
database interactions between BeginOfTransaction
and EndOfTransaction in the preceding example, re-
quires that all of its actions be executed indivisibil-
ity: Either all actions are properly reflected in the
database or nothing has happened. No changes are
reflected in the database if at any point in time before
reaching the CT, the user enters the ERROR clause
containing the RestoreTransaction. To achieve this
kind of indivisibility, a transaction must have four
properties:
Atomicity. It must be of all-or-nothing type described

before, and the user must, whatever happens,
know which state he or she is in.

Consistency. A transaction reaching its normal end
(EOT, end of transaction), thereby commit-
ting its results, preserves the consistency of the
database. In other words, each successful trans-
action by definition commits only legal results.
This condition is necessary for the fourth prop-
erty, durability.

Isolation. Events within a transaction must be hidden
from other transactions running concurrently. If
this were not the case, a transaction could not
be reset to its beginning for the reasons sketched
earlier. The techniques that achieve isolation are
known as synchronization, and since Gray et al.
.. there have been numerous contributions to this
topic of database research ..

Durability. Once a transaction has been completed
and has committed its results to the database,
the system must guarantee that these results
survive any subsequent malfunctions. Since
there is no sphere of control constituting a set of
transactions, the database management system
(DBMS) has no control beyond transaction
boundaries. Therefore, the user must guarantee
that things the system says have happened have
actually happened. Since, by definition, each
transaction is correct, the effects of an inevitable
incorrect transaction (i.e., the transaction con-
taining faulty data) can only be removed using
countertransactions.

Another requirement used is the serializability re-
quirement:
Running two transactions in parallel should have the
same effect as running them one after the other.
Transaction order is important for the effect. Con-
sider one transaction changing the value for x to 2x
and another transaction changing x to x− 2. There-
fore, order of execution matters. Execution of the sec-
ond after the first gives 2x− 2. Execution of the first
after the second gives 2x− 4. Therefore, serializabil-
ity means that running a number of transactions in

parallel should have the same effect as running them
sequentially in a certain order.

These definitions are taught in database courses.
Therefore, the database community defined in brief
that a transaction is nothing else as a sequence of
database operations that preserve the ACID properties.

1.2 State Models Used in Transaction Defi-
nitions

There are very few papers and books proposing a
state model of transaction execution. Let us summa-
rize and extend the models proposed so far. We notice
that the description below is not explicitly proposed
in the literature but can be extracted on the basis of
the intentional, narrative descriptions.
State model: The transaction engine has five states

(Gray/Reuter 1993):
BeginOfTransaction (BOT): The transactions

marked by ‘not finalized’ are in the BOT
state and wait for execution.

Run: The transaction engine runs the transac-
tion and executes read, write and compute
statements.

Abort: The transaction is in an abort state. The
resources occupied are freed. After com-
pletion the transaction returns to the BOT
state.

Commit: The transaction engine has completed
the statements of the transaction and checks
now the correctness of the integrity con-
straints. If the constraints are valid the
next state is the EOT state. Otherwise, the
engine directs the transaction to the abort
state.

EndOfTransaction (EOT): The transaction en-
gine completes the execution of the trans-
action and marks the transaction by ‘final-
ized’.

This state model is displayed in Figure 1.

H
HHH

HHj �
��
�
��*

HHH
HHHj

6

�

�BOT

Run

Abort

CommitEOT

Figure 1: The States of a Transaction in the State
Chart Approach

The model is often used in the literature in the
form displayed in Figure 1 without the return
from abort to BOT. However, transactions are
rerun if they fail or abort.

Event model: The event model (Elmasri/Navathe
2000) is based on the events the recovery man-
ager may use.
BeginOfTransaction: The label BOT marks the

beginning of a transaction.
Read or Write: The transaction engine exe-

cutes elementary operations for the given
transaction.

EndOfTransaction: The read/write sequence has
ended. Now integrity is to be checked.

CommitTransaction: The CommitTransaction
event signals the successful completion of
the transaction.

Additionally, the recovery manager uses events:



Rollback: The transaction has not been success-
ful. Effects to the database must be undone.

Redo: The redo event causes the manager to re-
peat the operation.

Undo: The undo event forces the manager to re-
pair the effects of applying a singleton op-
eration to the database.

The ovals used in Figure 2 show system activities,
i.e., state transitions:
Active: The transaction sequence is currently ex-

ecuted.
Partially committed: The sequence has been exe-

cuted and the concurrency controller checks
whether there is an interference with other
transactions. Furthermore, integrity con-
straints are checked by the transaction en-
gine.

Committed: The transaction has been success-
fully completed. The auxiliary logs are re-
moved.

Failed: The effects of the transaction on the
database are compensated.

Terminated: The transaction has been success-
fully completed or has failed. In the case
that the transaction failed no effect on the
database can be observed.

The event model state transition diagram is pic-
tured in Figure 2.

-

BeginOf
Transaction

Active

�
�
�
�

?

-

EndOf
Transaction

Partially
Committed

�
�
�
�

?
Commit

Committed

�
�
�
�

?

Failed

�
�
�
�HHH
HHH

HHHj Terminated

�
�
�
�

?

HHH
HHH

HHHj

��
���

�����

?

� �Read
Write

Figure 2: The Event Model of Transactions

Statechart model: The transaction engine starts
(Weikum 2002) at the Begin state. After calling
the transaction the transaction state is changed
to Active. The transaction is either running or
blocked by the engine due to the database state
or the state of other transactions. An active
transaction is either committed or aborted.
The statechart of transactions is displayed in Fig-
ure 3.

The three models use a transaction engine (or sched-
uler or recovery engine) for the explanation what is
considered to be a transaction. It seems, however,
that transactions should be defined without referring
to an engine or an implementation.

2 General Definition of Transactions

2.1 Basic Definitions

Transactions are defined over databases schemata.
Let (S,Σ) be a database schema and OBS the set
of basic modification and retrieval operations defined
on S.

� �

� �
Begin

Committed

Aborted

Active

?

� �

6� �
Running Blocked

Resume

Block�
�
��t

-

6

�

�Commit

Reject

Restart

�
�
��t

Figure 3: The Statechart Model of Transactions

Typically, the elementary modification operation is
the write operation defined on locations loc = (R, o)
of an object o in a class RC defined on R. The elemen-
tary retrieval operation is the read operation defined
on locations (R, o) of an object o in a class RC defined
on R.

Basic modification operations are the insertion,
deletion and the updating operations defined for an
object o in a class RC defined on R or a group of
objects. These operations are typically bound by an
identification predicate for the object or the group
of objects. In object-relational databases we assume
that the identification predicate is value-based .

Basic retrieval operations are the select expres-
sions defined by structural recursion on the structur-
ing S. Classical SQL expressions are expressions of
the form

map(filter(join(...), ψ), S)
where the filter predicate is again an expression, the
target structure for the mapping (or construction) is
S.

The static constraints in the schema (S,Σ) can
be transformed to transition constraints (Thalheim
2000). A transition constraint (Ψpre,Ψpost) defines
the preconditions and postconditions for state transi-
tions of databases defined over S. Given a transition
τ converting the database SC1 to the database SC2 =
τ(SC1). The transition constraint (Ψpre,Ψpost) is
valid for the transition (SC1 , τ(SC1)) if SC1 |= Ψpre

entails SC2 |= Ψpost.
Static constraints Σ are therefore converted to a

transition constraint (Σ,Σ).

2.2 Syntax of Transactions

Transactions are defined on the basis of elementary
operations. Following (Levene/Loizou 1999), we de-
fine a transaction T over (S,Σ) as a finite sequence
o1; o2; o3; ...; om of basic modification and retrieval op-
erations over (S,Σ).

Transactions may be applied to the database state
SC sequentially and form a transition

T (SC) = om(...(o2(o1(SC)))).

2.3 Functional semantics of transactions

Logical semantics is based on the validity of transi-
tion constraints. The transaction is considered to be
a singleton transition. Given a transaction T over
(S,Σ) and a database SC .

The result of applying the transaction T to SC is
the database T (SC).

The effect of application of T to SC is defined as



a transition constraint preserving transformation

T (SC) =
{
T (SC) if T (SC) |= Σ
SC if T (SC) 6|= Σ

The transaction can be thus understood as an invari-
ant state transition.

Transactions T1 and T2 are competing if
read(T1)∩write(T2) 6= ∅ or read(T2)∩write(T1) 6=
∅ or write(T2) ∩ write(T1) 6= ∅ . The sets
read(Ti) and write(Ti) consists of the locations of
objects which are read or written by the transaction
Ti.

Parallel execution of transactions T1 ‖T2 is cor-
rect if either the transactions are not competing or
the effect of T1‖T2(SC) is equivalent to T1(T2(SC))
or to T2(T1(SC)) for any database SC . If paral-
lel execution is correct transaction execution can be
scheduled in parallel.

Logical semantics of transactions is defined by
consistency (each transaction preserves transition

constraints) and
parallelization (transaction can be executed in par-

allel).
We observe that atomicity is not considered. Atomic-
ity is declared by granularity of transitions. Further-
more, we are not concerned with durability. Durabil-
ity is not a logical property but rather a property of
storage.

2.4 Operational semantics of transactions

Instead of using an abstract interpretation and a
set of models, an abstract Moore-automaton M =
(Z, f, I, Zfinal) is used with the set Z of states, its
subset Zfinal of final states, the state transition func-
tion f , and the initialization function I which assigns
a starting state I(p, d) = zp,d ∈ Z to each program
p and each input d. The interpretation of the pro-
gram p and the input d is the sequence of states
zp,d = z0, z1, ..., zi, ... with zi = f(zi−1) for i ≥ 1.
If the sequence is finite for np,d and znp,d ∈ Zfinal
then the program p is correct for d. If f(zi) is un-
defined for some i and zi 6∈ Zfinal then the program
does not have a meaning for d. If the sequence is in-
finite with zi 6∈ Zfinal for all i ∈ N then the program
is not terminating for d.

A variety of approaches has been developed for
definition of operational semantics:
Scheduling, access and recovery models: Transactions

are executed in parallel and independent from
each other. In order to support this require-
ment, access, scheduling and recovery models
are developed (Biskup 1995).
Given a set of transactions T1, ..., Tn. A sched-
ule S(T1, ..., Tn) of Ti = oi,1, ..., oi,ni , 1 ≤ i ≤ n
is assignment of moments S(oi,j) of time to the
operations of the transactions which preserves
the order of operations within each transaction.
Now an access plan can be specified for the ob-
jects to be used in transactions. An access plan
is roughly called conflict-free if no transaction
reads a value which is under change by another
transaction.
This approach has the advantage that the trans-
action machine is constructed. The disadvantage
is the complexity of the constructive approach.
Any change in transaction policy or constraint
enforcement policy imposes a severe number of
changes in the definitions.

Abstract automata models are widely used for pro-
gramming languages. Such abstract models have
the advantage that refinement of requirements
is reflected by refinement of abstract automata.
For this reason, this approach is preferable if we
are able to to define such abstract automata.

Operational semantics for transactions must be
based on parallel execution of processes. Therefore,
we need a machine that allows to model parallel exe-
cution.

3 Defining Operational Semantics Through
Abstract State Machines (ASM)

3.1 Functional Semantics for Transactions
using ASM

Abstract state machines (ASM) M (Gurevich 1997,
Gurevich 2000, Stärk, Schmid & Börger 1996) provide
a framework for specification of parallel execution.
Abstract state machines are defined by a number of
rules

IF condition DO actions
which can be applied to a state space in parallel .

The condition or guard is an arbitrary first-order for-
mula.

The notion of the state space is the classical no-
tion of mathematical structures (?) where data are
abstract objects collected in relations or characteris-
tic functions. The state space consists of static func-
tions (which never change during any run) and dy-
namic functions. Controlled functions are dynamic
functions which are updateable only by ASM rules.
Monitored functions are only updated by the envi-
ronment. Interaction functions are updatable both
by the ASM and the environment. Derived functions
are neither updatable by the ASM nor by the envi-
ronment but are defined in terms of other functions.

Actions are updates of the state space, i.e., func-
tions of the form

f(t1, ..., tn) := t
whose execution is changing the value of the lo-

cation loc represented by the function f at the given
parameters. The notion of the ASM run is the same
as the computation notion of transition systems.

An ASM computation step in a given state is the
simultaneous execution of all rules whose guard is true
in the state if these updates are consistent. An update
set U is consistent if there are no pairs f(t1, ..., tn) := t
and f(t1, ..., tn) := t′ in U with t 6= t′. The firing a
consistent update set U in a state A results in a new
state B in which controlled and interaction functions
are changed by the update set.

Simultaneous execution allows to abstract from ir-
relevant details of sequential execution and to use syn-
chronous parallelism. We observe that, therefore, the
model fits very well to transaction execution.

ASM semantics has been been used for definition
of semantics of object-oriented models in (Gottlob
et al. 1991) and for defining database recovery in
(Gurevich et al. 1997).

Distributed ASM use a set A of agents. In our
setting, each transaction is an agent. The set of all
operations is denoted by M . The operations x ∈ M
may belong to different transactions T at the same
time. The following requirements are applied to runs
ρ :
• The set M is a partially ordered set with the

predicate <. The set { y | y ≤ x } is finite for
each x.
• For each transaction T ∈ A the set {x | x ∈ T }

is linearly ordered.



• The application function Ξ of application of M
assigns a state of M to the empty set of oper-
ations. The function Ξ assigns a state to each
initial segment of M . The state Ξ(X) is the re-
sult of performing all operations in X.
The application function is restricted by the co-
herence condition:
If x is a maximal operation in a finite initial seg-
ment X of M and Y = X \ {x}, then the trans-
action T with x ∈ T is an active transaction in
Ξ(Y ) and Ξ(X) is obtained from Ξ(Y ) by per-
forming x at Ξ(Y ).

3.2 Models of Modification of Database Sys-
tems.

Modification in-place: Any modification caused by an
operation of the transaction to the data in the
secondary memory is directly written to the lo-
cation of those data. In order to be able to undo
a modification in the case of failure of the trans-
action the changes are recorded. The undo thus
applies to the case that the transaction fails or
aborts.

Modification in-private: The transaction keep their lo-
cal spaces. The local space can be abandoned if
the transaction fails or aborts. If the transaction
commits then the data of local space which are
associated to the data in the secondary memory
are flushed to the secondary memory.

Shadow modification: With the start of the transac-
tion, a shadow page which is identical to the cur-
rent page is allocated. This shadow page shows
the state of data before the transaction. The
transaction works on the original page. If the
transaction fails the shadow is used for recovery.
If the transaction commits the shadow page is
removed.

3.3 Abstract Operational Semantics for
Transactions using ASM

The concurrency control can be solved by a large
variety of approaches. Database books usually dis-
cuss one or some of the approaches and introduce the
transaction concept on the basis of those approaches.
It is, however, not necessary, to introduce transac-
tions on the basis of a specific solution. Furthermore,
transaction machines also implement one or some of
possible solutions. The transaction model is, however,
far more general than the specific solution provided
by a given DBMS. In the sequel we shall discuss two
of the approaches.

We require that each of the solutions is a refine-

ment of the relation Ξ̆−→ . The refinement of the
transaction relation should be conservative, i.e., all

properties valid for Ξ̆−→ must be preserved.
Conceptually, each transaction is working over a

local copy of the database and writing the results of
its work into the global database at the end. In order
to cover all approaches for databases in the abstract
presentation, we introduce the following abstract op-
erations:
CreateOwnDB for creating a local copy of the

global database,
PrepareMergeDB for preparing the merging into

the global database,
MergeOwnDB for merging the results into the

global database,
FreeOwnDB for housekeeping at the end of the lo-

cal database,

ReadOwnDB for reading values from the local
database, and

WriteOwnDB for writing values to the local
database.

These operation are refined in the sequel for sev-
eral approaches of transaction implementation.

The State Space for Transactions. We distinguish
between
Status of the transaction: The status of the transac-

tion Status(transaction) is either undef (denot-
ing inactivity of transactions in the queue), ac-
tive (denoting that a transaction is currently run-
ning), commit (denoting that a transaction has
been committed), ready2commit (denoting that a
transaction is ready for committing), failed (de-
noting that the transaction has failed), or done
(denoting that a transaction has been success-
fully completed). See also the state transition
diagram below.

Content of the transaction: Syntactically, transac-
tions are sequences of basic computations,
retrieval and modification operations. The
content Content(transaction) of the transaction
is used for recharging the queue of operations to
be performed by the database system.
The content of a transaction is given by a
queue Queue(transaction) of operations to be
performed.

Persistent database space: The database is kept per-
sistently. Any change to the database must pre-
serve transition constraints. We use the Sta-
bleDB for representing the persistent database.

The General State Transition Diagram for Transac-
tions.. The diagrams discussed above cannot cap-
ture the entire picture of transaction processing. We
use additional states for the definition of transactions:

Ready2Commit: The effect of application of the
transaction is checked against the database.

ICtrue: If data under change are kept within the lo-
cal space of the transaction the space is prepared
for writing to the database.

Failed: The local space is used recovering from fail-
ure of the transaction.

Inactive: The transaction is ready for execution but
not yet scheduled.

The state model of the transaction displayed in Figure
1 is extended to the model shown in Figure 4.

H
HHH

HHj
HHH

HHj

6

6

��
6

�

�
�
�
�
�	

-s

BOT

Run

Failed

AbortedInactive

Ready2CommitICtrueCommitted

EOT

Figure 4: The States of a Transaction

We use a Z-like notation for specification of the
rule

ruleName: IF condition DO actions , i.e.,



ruleName:
condition

actions

The abstract setting for transactions can be now
defined by the following rules:

BOT:
Status(Self) = undef

Status(Self) := active
Queue(Self) := Content(Self)
CreateOwnDB()

This rule specifies the instantiation of the local
space of the transaction after it has been scheduled.

RUN:
Status(Self) = active

IF Queue(Self) 6= ∅
THEN

CASE Top(Queue(Self)) OF
read(loc): ReadOwnDB(loc)
write(loc,val): WriteOwnDB(loc,val)
compute(expr,loc):
WriteOwnDB(loc,compute(expr,loc))

ENDCASE

Queue(Self) := Pop(Queue(Self))
ELSE Status(Self) := ready2commit
ENDIF

The RUN state rule for transactions specifies
the run of the transaction. This run is modeled
without consideration of concurrent writes to the
stable database. Concurrent writes appear in the
state ICtrue. We shall show later how we can cope
with this situation by introducing a central location
log space for transactions.

READY2COMMIT:
Status(Self) = ready2commit

IF OwnDB |= Σ
THEN Status(Self) := ICtrue
ELSE Status(Self) := ICfalse
ENDIF

The READY2COMMIT state rule checks whether
a consistent state can be reached if the local mod-
ification data of the transaction are written to the
stable database.

FAILED:
(Status(Self) = failed ∨ Status(Self) =ICfalse)

Status(Self):= aborted

In the abstract setting, the FAILED rule simply
transfers the status of the transaction to aborted. We
will discuss in the next subchapters the refinement
of this rule.

ABORTED:
Status(Self) = aborted

IF CanReschedule(Self) THEN
Status(Self) := undef
FreeOwnDB()

The ABORTED rule transfers the state of the
transaction to the inactive state. From there it
becomes active again. The activation is triggered by

the monitored function CanReschedule.

ICTRUE:
Status(Self) = ICtrue

PrepareMergeDB()
Status(Self) := committed

If the transaction is completed and does not
invalidate the integrity constraints we can prepare
the states for writing data to locations in the stable
database. This state will be modified due to problems
of isolation.

COMMITTED:
Status(Self) = committed

MergeOwnDB()
FreeOwnDB()
Status(Self) := done
Program(Self) := undef

The COMMITTED rule checks out the transac-
tion. The data which are in the queue for writing are
now written in parallel to the stable database.

For completeness we do now define an abstract
version of the interface operations.

CreateOwnDB:

OwnDB(Self) := globalDB
initOwnDB(Self) := globalDB

MergeOwnDB:

for all x ∈ Location :
OwnDB(Self,x) 6= initOwnDB(Self,x)
globalDB(x):= OwnDB(Self,x)

FreeOwnDB:

// do nothing here

ReadOwnDB(where:Location):

return OwnDB(Self,where)

WriteOwnDB(where:Location, val:Value):

OwnDB(Self,where):= val

3.4 Operational Semantics for Transactions
in the In-Private Setting

Operational semantics of transaction can be refined in
a large variety of ways. We shall demonstrate this va-
riety for transactions in the in-private setting. These
variations demonstrate the advantage of the abstract
definition discussed in section 3.3. The transactions
which are enabled to run are supported by:
Current database: The current database Cur-

rentDB(transaction,location) keeps all those
data that are used in the working space and
that are related to data on the same location at
the secondary storage device.

Flash data: The moment of writing may depend on
the actual conditions of the machine. There-
fore, we write data which may be transferred to



the database in the secondary storage device to
Ready2Write(location).

Log data for constraint checking: The data which are
generated by the transaction must be checked.
We write all these data to the space Trans-
fer4Write (transaction, location)).

Change space: The database system may also write
data directly to the stable database. In this case,
we record overwriting of data by the transaction
using the space LogDB(transaction,location).
This space allows to undo the effects the trans-
action caused in the secondary storage.

Variables: The transaction may use additional vari-
ables for computation. These variables belong
to a transaction and have a location. We use
the space CurrentDB(transaction,location) for
recording.

Concurrency control data: The transaction machine
may use also data for concurrency control of sets
of competing transactions. Typical concurrency
control data are lock data, i.e. the lock space
Lock(location) partially assigning a location to
a transaction or the read-write-lock space Read-
Lock(location) which partially assigns a location
to a set of transactions and WriteLock(location)
which partially assigns a location to one transac-
tion.

Most of the literature on TA uses only one or a small
number of the variety.

It suffices to describe the meaning of the abstract
operations in order to get the in-private setting:
CreateOwnDB:

CurrentDB(Self,*) := undef
Transfer4Write(Self,*) := undef

PrepareMergeDB:

FOR ALL x ∈
(σTA=t(Transfer4Write))[Location]

∩ StableDB[Location]
DO Ready2WriteDB(x) :=

Transfer4Write(Self,x)
ENDDO

MergeOwnDB:

FOR ALL x ∈ Ready2WriteDB[Location]
DO StableDB(x) := Ready2WriteDB(x)
ENDDO

FreeOwnDB:

// still do nothing here

ReadOwnDB(where: Location):

CurrentDB(Self,loc) := StableDB(loc)

WriteOwnDB(where:Location, val:Value):

Transfer4Write(t,loc) := CurrentDB(t,loc)

We observe now
OwnDB = StableDB ∪

((σTA=t(Transfer4Write))[Location]
∩ StableDB[Location])

Proposition 1 If the run of transactions t1, ..., tk
is applicable then the transition by the transactions
t1, ..., tk in the in-private setting is atomic and con-
sistent.

Proposition 2 Durability is preserved for transac-
tions in the in-private setting.

We observe however that isolation is not pre-
served by this set of rules. There are many isolation
deficiencies for parallel execution. The following list
is not exhaustive:
(LU): Transactions may read data from a location
before another transaction uses this location, com-
pute new values and write to the location after an-
other transaction has written to this location. This
behavior is called lost update.
(DR): A transaction may abort and may have writ-
ten to a location. Another transaction may read data
from this location before the state of the location is
changed to the one before the first transaction has
been performed. This behavior is called dirty read be-
fore abort . The same problem occurs if a transaction
writes several times to the location and another trans-
action reads from this location between the writes.
This situation is called dirty intermediate read .
(DW). A transaction that is aborting later changes a
location. The location is later (but before the abort
of the first transaction) used by another transaction
for computation of data which are written to another
location or direct change of the same location. This
behavior is called dirty write.
(NRR). A transaction may read several times from a
location. The location has been changed by another
transaction between the read operations of the first
transaction. This behavior is called non-repeatable
read .
(PR): A transaction inserts or deletes data to a loca-
tion between the execution of aggregation functions
in another transaction which predicates operate on
the location of the first transaction. This behavior is
called phantom read .

We observe that the transaction execution in the in-
private setting does not have any dirty read or dirty
write.

We shall demonstrate now that a number of refine-
ments of the rule set above exists such that isolation
can be reached:
Lock space solutions: We use the Lock(location)

space or the ReadLock(location) and Write-
Lock(location) spaces.
Let us consider the case of utilization of the
Lock(location) space. The assignment of locks
can follow different strategies:
Obtain all locks at the beginning: The transac-

tion obtains all locks necessary during
initialization of the transaction. Two
settings are applicable:
Optimistic setting: Locks are only obtained

for write operations. The controller
causes an abort of the transaction or an
assignment of a wait state whenever an-
other transaction is competing for this
location.

Pessimistic setting: All locks are obtained
for all read and write operations.

Obtain locks just in time: Whenever a write op-
eration (or in the pessimistic setting a read
operation) is performed by the transaction
the corresponding lock is obtained.



The release of the locks can be based on two
strategies:
Release as early as possible: Whenever the trans-

action does not need the data from loca-
tion the lock is released. If the transaction
aborts a specific recovery technique is nec-
essary.

Release at the end of the transaction: All locks
obtained by the transaction are released at
the end.

The utilization of the ReadLock(location) and
WriteLock(location) is similar. Read locks are
collected as long as there is no write attempt. If
there is a write attempt to loc by t then the set of
read lock to the location is singleton ReadLock =
{ t } or empty. Otherwise the transaction either
must be aborted or must cause an abort of the
other transactions using this location.
In the case of occupied locks two options can be
applied:
Aborting the transaction: The transaction cannot

be continued and is aborted.
Delaying the transaction: The transaction is

transferred to a wait state. The state is
changed whenever all locks can be obtained.

The invocation of aborted or not completed
transactions may be ordered by a number of ap-
proaches, e.g.,
Kill-wait approach: If a transaction t makes a re-

quest that competes with an operation of
another transaction t′ then the order of the
transaction request the first transaction to
wait if the order of t is less than that of t′.
In the other case t is aborted.

Wait-die approach: If the transaction t is com-
peting with another transaction t′ and the
order of the first transaction is less than
that of the second the first transaction is
aborted. In the other case, the first trans-
action waits.

Typical orders are based on time stamps.
The locking may be performed on locations or on
clusters of locations, e.g., pages. In this case we
use predicate locks which specify the granularity
of locking.

Intermediate storage solutions: We may execute all
transactions first and use an intermediate storage
UsedDB(loc) for the data that have already been
obtained by other transactions. In this case, the
ReadOwnDB rule is changed by a locking rule:
ReadOwnDB(where:Location):

IF UsedDB(loc) = undef ∨
UsedDB(loc) = Self

THEN

CurrentDB(Self,loc) := StableDB(loc)
UsedDB(loc) := t

ELSE Status(Self) := aborted
ENDIF

In a similar form the FreeOwnDB rule is changed
by adding actions for release of locations in
UsedDB.
The variety of solutions discussed for lock space
solutions is also applicable to the case of inter-
mediate storage.

Monitor-based solutions: Shared data environments
can be enhanced by monitors, i.e., extensions of
the objects by modules acting similar to an access
and write guard. Any transaction accessing or
writing to objects performs its operation through
the monitor associated with that object. Moni-
tors are therefore locking programs on the stor-
age level. If an object is unlocked then a trans-
action may access the object and write to the
object. A transaction may obtain object locks
and release them in the FreeOwnDB rule.
We may distinguish, therefore, a number of ap-
proaches for implementing monitors similar to
the implementation of lock space solutions. The
transaction is performing in the BOT a message
exchange with the StableDB. Similarly to lock
space solutions, optimistic and pessimistic strate-
gies and release strategies can be applied.

Let us change the rule set used above for the pes-
simistic locking at the beginning and abortion of the
transaction if the locks cannot be obtained:
CreateOwnDB:

CurrentDB(Self,*) := undef
Transfer4Write(Self,*) := undef
FOR ALL x ∈

{ loc |read(loc) ∈ Content(Self)
∨ write(loc) ∈ Content(Self) }

DO

IF Lock(loc) = undef
THEN Lock(loc) := t

ELSE Status(Self) := failed
ENDDO

This locking technique is combined with release at
the end by a change of the following rule:
FreeOwnDB:

FOR ALL loc : (Lock(loc) = t)
DO Lock(loc) := undef
ENDDO

The other rules remain unchanged.

Now we can prove the following property:

Proposition 3 Transaction execution in the in-
private setting based
· on pessimistic locking at the beginning
· with the aborting option if locks cannot be obtained
· with release at the end

is a conservative refinement of the relation Ξ̆−→ .

Similar propositions can be derived for the other iso-
lation solutions. Most DBMS use locking techniques.
Older DBMS have used also techniques based on in-
termediate storage. These solutions have shown sim-
ilar performance parameters as locking techniques.

Monitor-based techniques are not used in classi-
cal relational DBMS. These solutions are currently
experienced to real-time and distributed databases.
As far as we know, however, these techniques are not
well-documented.

3.5 Operational Semantics for Transactions
in the In-Place Setting

Let us now discuss in brief the in-place setting for
transactions. We follow the approach used in section
3.4. We introduce the general state description. We



can derive similar properties. The in-place setting is
an optimistic strategy. If the transactions does not
abort the treatment is much simpler than in the case
of the in-private setting. This advantage is, however,
only observable in centralized environments. In dis-
tributed environments, the in place setting requires
sophisticated monitoring.

The states of transactions pictured in Figure 4 are
specified as follows:
CreateOwnDB:

CurrentDB(Self,*) := undef
Transfer4Write(Self,*) := undef
LogDB(Self,*) := undef

This rule uses an explicit LogDB for recording the
actions of the transaction.

PrepareMergeDB:

// do nothing here

MergeOwnDB:

// do nothing here

FreeOwnDB:

FOR ALL x ∈ (σTA=t(LogDB))[Location]
DO StableDB(x) := LogDB(Self,x)

LogDB(Self,x) := undef
ENDDO

ReadOwnDB(where:Location):

CurrentDB(Self,loc) := StableDB(loc)

WriteOwnDB(where:Location, val:Value):
WriteOwnDB()

IF LogDB(Self,loc) = undef
THEN LogDB(Self,loc) := StableDB(loc)
ENDIF

StableDB(loc) := CurrentDB(Self,loc)
Transfer4Write(t,loc) := CurrentDB(t,loc)

We obtain the equality: OwnDB = StableDB .
All activities performed are directly written to

the StableDB. If the transactions abort these writes
must be compensated by an undo action. All writes
must be recorded in the LogDB. We use the LogDB
only for a write performed by one transaction. If
history of writes must be recorded the treatment of
LogDB must be more sophisticated.

The integrity constraint control becomes simpler
since the StableDB must be checked without consid-
eration of other ASM states.

The undo action is simple as long as only one write
to the LogDB is allowed. If we must record a history
then monitoring or locking approaches can be used.

The next three rules are very simple since they
change only the state of the transaction.

Proposition 4 If the run of transactions t1, ..., tk
is applicable then the transition by the transactions
t1, ..., tk in the in-place setting is atomic and consis-
tent.

Proposition 5 Durability is preserved for transac-
tions in the in-place setting.

Isolation can be based on similar techniques that
have already been discussed in section 2.4.

4 Towards an Understanding of Constraint
Enforcement Used in SQL’99

Integrity enforcement becomes more complex if trans-
actions are considered. SQL’99 (SQL 1999) has intro-
duced a rather confusing treatment.
SQL’99 constraints can be coupled with integrity en-

forcement policy in a large variety:
Checking mode: The integrity enforcement can

be deferred until the end of transactions
or can be forced to an immediate control
directly at the moment a change in the
database appears.

Choice of statement or row level: The granularity
of enforcement can be at the row level or at
the statement level. If row level is chosen
each modification (insert, delete or update)
of object forces application of integrity con-
trol.

Constraints may be pre- or post-conditions:
Constraints may be checked before or after
a statement or a modification is executed.

Scope conditions for reference columns allow to
disable or enable the application of referen-
tial integrity constraints.

Matching conditions soften the satisfaction of ref-
erential integrity constraints. The equalities
to be checked can be partially fulfilled.

Reference types are based on tuple (or object)
identifiers and can be used instead of for-
eign key values.

Triggers are based on the event-condition-action
paradigm of rules depending on events performed
on a class. Events are modification actions exe-
cuted on the database. Triggers have a number
of variations:
Number of triggers per events and events per trigger:

Triggers can be based on exactly one or
several events. Events can be attached to
one or several triggers.

Activation time of triggers can be before or af-
ter appearance of the event specified for the
trigger. Further, activation conditions may
be defined.

Conflict resolution of execution order of triggers
may be based on different policies.

Order of constraint check differs. DB2 checks first key
and unique constraints, second referential con-
straints and then check constraints. Sybase, Or-
acle and Informix control first check constraints,
then key constraints and last referential con-
straints. Ingres and MS SQL check first keys
and uniqueness, then check constraints and last
referential constraints.

SQL’92 declarative constraints are not null conditions,
key conditions, check conditions, foreign key
constraints, uniqueness conditions, domain con-
straints and assertions. Although they have not
yet been completely implemented by DBMS they
are kept in the standard for SQL’99. It should
be noted, however, that the SQL’99 standard
did not restrict to one semantics for these con-
straints.



This large variety must be understandable with trans-
action models. We feel the urgent need for sophisti-
cated transaction models with an operational seman-
tics which helps in understanding which model has to
be chosen in which case for which integrity constraint
enforcement policy. The models proposed above en-
able us in defining an operational semantics and in
reasoning on the effects of the choices made by the
application programmer.

This large variety becomes completely confus-
ing if rule triggering is considered. Except
(Schewe/Thalheim 1998), rule triggering is not well-
understood in the database community. The SQL
standard allows one event per trigger and an arbi-
trary number of triggers per event. This approach is
used in DB2, MS SQL, Sybase SQL Anywhere and
partially in Informix. Ingres and Oracle do not limit
the number of events per trigger. Sybase uses the op-
posite approach: only one trigger per event is allowed
but the number of events per trigger is not limited.
It can be shown that the Sybase approach leads to
better programming.

The SQL’99 approach suffers from a number of
pitfalls:
Local definition without global understanding.

Trigger avalanches.

Unknown implications.

Swinging transaction systems.

Constraint modification anomaly.

A better approach is the derivation of such a
specialization of a given basic operation which pre-
serves the integrity constraint. We may use the great-
est consistent specialization (Schewe/Thalheim 1999)
as such specialization. (Link 2002) provides a nice
framework for applying this approach to tailored re-
finements.

The transaction models discussed above at the
conceptual level can be refined by combining the trig-
ger execution frame with the state transition diagram
of a transaction.

The state model uses additional structures of the
working space:
Immediate constraints are either checked at the row or

at the statement level. There are two activation
modes:
Check before execution for constraints mode is

‘immediate’ and whose activation time is
‘before’.

Check after execution for constraints which are
checked after execution of a statement or
after modification of a tuple.

Deferred constraints are checked at the end. They re-
place the set Σ in the READY2COMMIT state.

Using queues instead of sets of constraints models the
order of constraint check which is different in current
DBMS.

The state model in Figure 4 is extended by
the states Prepare4RunNext, ApplicationOfImmedi-
ateTrigger, and Ready4Next. Due to paper length we
do not elaborate the application of these options.

5 Conclusion

Transactions are specified at the logical level as
atomic operations which preserve consistency of a
database. They can be potentially executed in par-
allel if they are not competing for resources or if the
competition can be resolved. The logical level does
not consider specific details of implementation op-
tions. Implementation options depend on the support

of the computation and main-memory engine, on the
solutions for the isolation of competing transactions
and on the consistency enforcement mode.

This paper proposes both a logical semantics and
an operational semantics for transactions which can
be refined in dependence on the options.

References

Biskup, J. (1995), Foundations of information sys-
tems, Vieweg, Braunschweig, (in German).

Codd, E.F. (1990), The relational model for database
management - Version 2 Addison-Weslay.

Elmasri R. & Navathe, S.B. (2000 ), Fundamentals of
database systems, Benjamin/Cummings Publ.

Embley, D. (1998), Object database development,
Addison-Wesley.

Gottlob, G., Kappel, G. & Schrefl, M. (1982), ‘Se-
mantics of object-oriented data models: The
evolving algebra approach’, in LNCS 504,
Springer, 144-160.

Garcia-Molina, H., Ullman, J.D. & Widom, J. (2000),
Database system implementation, Prentice-Hall.

Gurevich, J., Soparkar, N. & Wallace, C. (1997), For-
malizing database recovery, Journal of Universal
Computer Science, 3, 4, 320-340.

Gray J. & Reuter, A. (1993), Transaction processing:
Concepts and techniques, Morgan-Kaufman.

Gurevich, Y. (May 1997), Draft of the ASM Guide.
Technical Report, Univ. of Michigan EECS
Department, CSE-TR-336-97.
Available from the ASM website via
http://www.eecs.umich.edu/gasm/

Gurevich, Y. (2000), Sequential abstract-state ma-
chines capture sequential algorithms. ACM
Transactions on Computational Logic, 1,1, 77-
111.

Haerder T. & Reuter, A. (1998), Principles
of transaction-oriented database recovery, in
(Hsu/Kumar 1998), 16-55.

Hsu M. & Kumar, V. (1998), Introduction to
database recovery, in (Hsu/Kumar 1998), 6-15.

ISO International Standard: Database language
SQL - Part 2: Foundation (SQL Foundation).
(1999), International Organization for Standard-
ization & American National Standard Institut,
ANSI/ISO/IEC 9075-2:99, Sept. 1999.

Kumar V. & Hsu M. (eds.), (1998), Recovery mech-
nisms in database systems, Prentice-Hall.

Lewis, P.M., Bernstein, A. & Kifer, M. (2002),
Databases and transaction processing: An
application-oriented approach, Addison-Wesley.

Levene M. & Loizou, G. (1999), A guided tour to re-
lational databases and beyond, Springer.

Link, S. (2002), ‘Towards a tailored theory of con-
sistency enforcement in databases’, in Proc.
FoIKS’02 (eds. T. Eiter, K.-D. Schewe), LNCS
2284, Springer, 160-177.

Malzew, A.I. (1970), Algebraic systems, Nauka, (in
Russian).



Schewe K.-D. & Thalheim, B. (1998), ‘Limitations of
rule triggering systems for integrity maintenance
in the context of transition specification’, Acta
Cybernetica, 13, 277-304.

Schewe K.-D. & Thalheim, B. (1999), ‘Towards a the-
ory of consistency enforcement’, Acta Informat-
ica, 36, 2, 97-141.

Stärk, R., Schmid, J. & Börger, E. (2001), Java and
the Java virtual machine: Definition, verification
and validation, Springer.

Thalheim, B. (2000), Entity-relationship modeling –
Foundations of database technology, Springer.

Thalheim, B. (2001), Abstraction layers in database
structuring: The star, snowflake and hierarchical
structuring, Preprint I-13-2001, Computer Sci-
ence Institute, Brandenburg University of Tech-
nology at Cottbus.

Vossen, G. (1991), Data Models, database languages
and database management systems, Addison
Wesley 1991.

Weikum, G. & Vossen, G. (2002), Transactional
information systems: Theory, algorithms, and
the practice of concurrency control and recovery,
Morgan-Kaufman.


