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Abstract

The mining of informative rules calls for methods that in-

clude different attributes (e.g., weights, quantities, multiple-

concepts) suitable for the context of the problem to be ana-

lyzed. Previous studies have focused on algorithms that con-

sidered individual attributes but ignored the information gain

in each rule when the interaction of two or more attributes

are taken into account. Motivated by the above, we devel-

oped a framework called CrystalBall that supports declar-

ative mining of different rules (i.e., variants) involving several

attributes. It eliminates the time and cost of engineering algo-

rithms as practiced in previous studies, and introduces a foun-

dation for cross-variant enhancements. The framework consists

of a generic rule mining engine (VI), and a variant description

language (VDL) for defining attribute-specific behavior. Be-

sides demonstrating the flexibility of the framework, we also

discuss the experimental studies, the limitations of the frame-

work, as well as future work in the paper.

Keywords: Framework, Apriori, Association Rules

1 Introduction

The mining of association rules has been a well
researched problem that can be classified broadly
into two categories. The first category focuses
primarily on mining different variants of rules
(i.e., rules that consider different attributes such
as weights, quantities, multiple-concepts) and
how to efficiently discover them (Agrawal &
Srikant 1994, Cai, Fu, Cheng & Kwong 1998, Han &
Fu 1995, Han, Pei & Yin 2000, Mannila, Toivonen
& Verkamo 1995, Park, Chen & Yu 1995, Savasere,
Omiecinski & Navathe 1995, Zaiane, Han &
Zhu 2000). Research in the latter category explores
other aspects of rule mining such as specifying
constraints (Ng, Lakshmanan & Han 1998, Ng,
Lakshmanan & Han 1999, Pei & Han 2000) and
evaluating its interestingness (Dong & Li 1998, Liu,
Hsu & Ma 1999, Liu, Hu & Hsu 2000). Generally,
studies in both categories focus on a single variant
at a time, and include specific techniques to find the
rules or evaluate the interestingness efficiently. In
many data mining tasks, domain experts are often
interested in getting the most informative rule. This
may be achieved by considering different attributes
at the same time. However, doing so may lead to the
loss of efficient discovery mechanisms and engages the
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domain analyst in the time and resource-consuming
cycle of engineering an algorithm. Hence, previous
work has ignored the fundamental need for different
variants to interact with one another to achieve
the ultimate goal of knowledge discovery. In the
following examples, we illustrate scenarios extracted
from real world applications that call for the need
to mine informative rules by considering multiple
attributes simultaneously.

Example 1 (Mining Supermarket Data with
Recurrent Weighted Items) Suppose an analyst
is interested in items that have been co-purchased
with a certain promotional item. For a more accurate
analysis, items are assigned weights to improve the
discovery of frequent itemsets that represent co-
purchases. In additional to knowing what is bundled,
he is also interested in how many of each item have
been purchased together. These two attributes (i.e.,
weights and quantity) have never been considered
together by any algorithms despite the informative
rule it produces.

Example 2 (Finding Abstract Spatial Objects
with Multiple Minimum Support) Suppose an
analyst is interested to find the co-occurrence of a
class of spatial objects with respect to another. Since
some classes of spatial objects appear frequently
while others occur rarely, using a single support
threshold is inappropriate. Therefore, the analyst
would like to specify individual support for each class
of spatial objects. To find such rules requires the
consideration of two attributes — multiple concept
levels and individual support. Existing algorithms
do not find such rules.

The key problem faced by domain experts in the
above scenarios is that they have to either settle for
what is in the data mining package, or expend time
and resources to engineer the appropriate algorithm.
Neither is desirable and the problem resurfaces when-
ever new variants are needed or discovered. Another
important point made by the examples is the need to
consider interactions among different attributes asso-
ciated with the data. Current methodologies have ig-
nored this issue and created several ad-hoc algorithms
in which most data mining applications support only
a subset. Hence, a proliferation of algorithms for dif-
ferent variants becomes daunting and a framework
for unifying and eliminating the process, we believe,
would be a welcome development. This is what Crys-

talBall is about – a framework to discover informa-
tive rules without the cost of engineering algorithms.
This would be the solution that domain experts de-
sire. Our contributions, set in the above context, an-
swer the following questions:



• How do we eliminate the daunting pro-
cess of developing algorithms, and at the
same time, continue to discover informa-
tive rules? We propose a rule mining engine
(called VI) that is generic in nature. This en-
gine does not make any assumption about the
data nor the attributes under consideration. Its
behavior is entirely dependent on the domain ex-
pert’s constraints. The algorithm, which is an ex-
tension of the Apriori (Agrawal & Srikant 1994),
is given in Figure 1 and discussed in Section 2.

• How is the domain knowledge conveyed to
the data mining engine? The analyst, with
domain knowledge about the data and the associ-
ated attributes, considers how each attribute in-
fluences the results of the data mining task. This
is done declaratively via the Variant Description
Language (or VDL in short) that is discussed in
Section 2.2 and Section 3.

• Can the framework be realized in practice?
We present an implementation as a proof of con-
cept on the framework’s feasibility. We also con-
duct performance testing to determine the over-
heads involved as a result of abstractions about
the type of objects (e.g., supermarket items, spa-
tial objects, sequences etc.), its associated at-
tributes (e.g., weight, quantity etc.), and variant-
specific constraints (e.g., how to generate candi-
dates). Section 4 discusses this in detail.

• What are the strengths and limitations of
the framework? The “power” of the frame-
work depends on the capabilities of the rule min-
ing engine and the variant description language.
In Section 5, we provide an informal evaluation
of the two components to give the reader an idea
on the extensiveness of the framework.

2 Framework for Mining Rules

We begin with the question on what a generic engine
for mining variants of rules can be. Our proposal
centers around two key components: the algorithmic
engine, and the variant description language.

2.1 Algorithmic Engine (VI)

Our observation on the current state of algorithms for
mining rules shows that most of them are variations
of the Apriori model. Efficient techniques (e.g., (Das,
Ng & Woon 2001, Han & Pei 2000, Park, Chen &
Yu 1997)), though available, are restricted to “plain-
vanilla” rules. Since most are Apriori-based, we have
taken the intuitive approach to derive the skeleton
framework. The methodology is to identify the com-
mon aspects of each variant and decouple their differ-
ences.

We noted that the Apriori approach to finding
frequent itemsets can be generalized into six steps;
namely, (1) prepare the input to the algorithm, (2)
generate candidates from the input, (3) remove can-
didates that are confirmed infrequent, (4) determine
if a transaction supports a candidate; if so, (5) iden-
tify the support contribution, and finally (6) select
candidates satisfying the support threshold. The fre-
quent candidates then become the seed for the next
pass. With this observation, we formulate the VI al-
gorithm as shown in Figure 1.

We have consciously omitted the evaluation of con-
fidence for a rule since the generalization of that fol-
lows directly with the discovery of frequent itemsets.

Algorithm VI(I: set of candidate 1-itemsets, ϕmin:
minimum support)
begin

Lp = ∅; k = 1; Ik = I;
do

foreach i ∈ Ik do

Lk = Lk ∪ MineItemsets(i, Lp, ϕmin);
Lp = Lk; k++; Ik = L1;

until Lp = ∅;
end

procedure MineItemsets(i: candidate, Lp: frequent
(k − 1)-itemsets, ϕmin: minimum support)
begin

Lf = ∅; Sk = CandidateGen(i, Lp, Sk−1);
foreach T ∈ Transaction-DB do

foreach s ∈ Sk do

if (Support(T, s))
then Count(s) += GetSupport(s, T );

endfor

endfor

foreach s ∈ Sk do

if (Satisfy(Count(s), ϕmin)) then Lf = Lf ∪ {s};
endfor

return Lf ;
end

Figure 1: The Variant-Independent (VI) algorithm.

Having said that, the reader may note that an item
refers to any concept such as a supermarket product,
a spatial object or a sequence. In the simplest case,
the input are atomic items representing candidate 1-
itemsets. Since Lp is initially empty, the support of
each candidate 1-itemset is collected. The 1-itemsets
are then evaluated and forms the seed for generating
candidates in the next pass. Notice that the frequent
(k-1)-itemsets obtained at the end of each pass are
stored in Lp and iteratively extended with the fre-
quent 1-itemsets. Therefore, VI discovers all frequent
itemsets in the database with respect to the input.

A slight deviation from the Apriori is the way we
have structured the framework. To cover the en-
tire problem space, the number of passes through the
database depends on the size of the largest frequent
itemset and the number of frequent 1-itemsets. This
may raise concerns about performance. Nevertheless,
the speed penalty may be minimized or made insignif-
icant as discussed in Section 4.2. There are two fac-
tors that motivated the deviation: the intuitive in-
tegration with the work of (Johnson, Lakshmanan &
Ng 2000, Ng et al. 1998, Ng et al. 1999) and the ease
of describing variant-specific behaviors (discussed in
the next section).

From an analyst’s standpoint, the process of find-
ing insights usually involves a section of the problem
space and a subset of the database. Extending Exam-
ple 1, the analyst may be interested in the sales trans-
actions for the past one year (a subset of the database)
containing dairy items (a subset of the problem space)
where the sub-total for the dairy items in each trans-
action is less than $10 (i.e., the mining constraint).
Existing algorithms do not structure naturally to sup-
port such goals. Instead, most attempt to cover the
entire problem space leading to unfocused and time
consuming computations. Recognizing this, we devel-
oped VI with consideration for goal-oriented tasks.

Back to Figure 1, notice that the core of VI is the
MineItemsets procedure. Instead of covering the
entire problem space, its input attribute allow the an-
alyst to specify the subject of interest (the candidate
x), the problem space to cover (considering only cer-
tain itemsets, frequent or infrequent) and the thresh-
old (ϕmin) to operate for the current pass. Hence,
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Figure 2: Focused mining of maximum knowledge.

MineItemsets can better integrate constrained min-
ing mechanisms such as those proposed by Ng et
al. (Ng et al. 1998, Ng et al. 1999) and facilitate
manipulation at a higher level using implementations
such as the 3W model (Johnson et al. 2000). More
importantly, MineItemsets is variant-independent
and allows different attributes to be considered to
mine informative rules. Set in this context, we believe
the analyst at the supermarket will be more likely to
achieve his goal with informative rules that provide
deeper insights to the task relevant data.

As a concluding note to this section, Figure 2
illustrates, graphically, how mining constraints and
the 3W implementation inter-operate with MineIt-
emsets to achieve user focused mining of maximum
knowledge. For the supermarket analyst, the input
to the mining constraints would be dairy items whose
sub-total is less than $10. To select only transac-
tions for the past one year, he uses the 3W oper-
ators. Finally, the support threshold and variant-
specific constraints are entered directly into MineIt-
emsets. The three sets of input thus control the can-
didates to be generated. The feedback of the frequent
itemsets closes the loop to ensure goal focused dis-
covery of the rules. Notice that VI does not operate
on its own. The VDL, discussed next, provides the
mechanism to describe variant-specific behaviors.

2.2 Expressing Variants of Rules

Viewed as a black box, we ask MineItemsets the
question: “Which itemsets in Lp, with x consid-
ered, are frequent?”. The answer depends on the
six steps of mining frequent itemsets. Since step 1
is the input from the mining constraints and 3W
operations, addressing the remaining steps will pro-
vide the answer. From Figure 1, each step is rep-
resented as a function point in the algorithm. The
task of expressing variant-specific behaviors there-
fore reduces to describing how the function points
(i.e., CandidateGen(), Support(), GetSupport(),
Satisfy()) should behave.

We first introduce a variant description language
(VDL) to facilitate specification of attribute specific
behaviors. Figure 3 shows the list of symbols and its
semantic in the context of the VDL. The syntax of the
VDL is shown below. For clarity and compactness,
we used mathematical constructs in this section and
the next. We then consider the users’ standpoint and
propose a VDL implementation that is SQL-like.

define [variant-name]

generate-cand by [expression] prune if [expression]

select-cand if [expression] compute-cnt by [expression]

select-freq if [expression]

The label variant-name uniquely identifies a defi-
nition while expression is a mathematical construct

Symbol Description

f a frequent 1-itemset discovered from the
seed of the algorithm

Lp the set of frequent itemsets discovered in
the previous pass

C the candidate itemset generated by
extending f and Lp; c ∈ C and ci is ith

element of C
Sk the candidate itemsets of size k before

any pruning by CandidateGen()

T a transaction in the database
ϕmin the minimum support threshold
f(s) f is an attribute of s and f(s) returns the

attribute value of f in s (e.g., MSB(s))
×a(f, Lp) SortLex({{f} ∪ x | x ∈ Lp}), the cross of

two itemsets where items are ordered
lexicographically (SortLex()) and
duplicates removed (by definition of ∪)

×r(f, Lp) (f×a Lp) ∪ ({⊕
|x|+1
i=1 f}) ∪

SortLex({f⊕ x | x ∈ Lp}), the cross of two
itemsets where items are lexicographically
ordered and duplicates retained (⊕ operator)

Figure 3: Symbols and its semantic in the context of
the variant description format (VDL).

that describes the specifics of a particular variant.
The “generate-cand by” and “prune if” defines the
behavior of CandidateGen(). The “select-cand if”
specifies how Support() is evalutated. The contri-
bution of support is expressed in “compute-cnt by”
for GetSupport(), and the behavior of Satisfy()
is dependent on the definition of “select-freq if” in
the VDL. Due to space constraints, we discuss an
example of how variant-specific behaviors are defined
using the above. Figure 4 contains the description
of other variants and are elaborated in (Ong, Ng &
Lim 2002a).

Example 3 (Mining Rules with Multiple Con-
cepts) One of the attributes that we can include is a
concept taxonomy to mine items at multiple concept
levels. As observed by Han and Fu (Han & Fu 1995),
mining at the atomic level generates too many rules
that are unlikely to be strong due to the small average
support of each item within a large itemset. Hence,
a domain analyst may introduce a concept taxonomy
to mine informative rules using a higher level of ab-
straction. In the context of CrystalBall, this is
done by writing the VDL defined as follows.

define MultiLevelRules

generate-cand by f×a Lp

prune if ∃c ∈ C, C − {c} /∈ Lp

select-cand if C ⊆ GetConcept(T, `)

compute-cnt by 1

select-freq if Count(C) > ϕmin

In the above, the analyst enters a set of concept
items (not atomic items) and define GetConcept()
to map atomic items in the database. In the goal
driven scenario, the input is the concept items and
GetConcept() may be defined using the VDL (like-
wise for Weight, Qty, MIS, and MSB). Together with
Figure 1, we see that the definition of a candidate
may be produced by combining an item (f) with a
list of itemsets (Lp) found frequent in the previous
pass. Once generated, it is evaluated using the cri-
teria defined in the “prune if” part of the VDL. The
expression in “prune if” of Example 3 specifies the
anti-monotone property as observed in the Apriori
algorithm. If the candidate is not pruned, it will



Variant VDL Description

define conventional-apriori
Apriori/ generate-cand by f×a Lp

Spatial prune if ∃c ∈ C, C − {c} /∈ Lp

Rules select-cand if C ⊆ T
compute-cnt by 1
select-freq if Count(C) > ϕmin

define recurrent-rules
Rules generate-cand by f×r Lp

with prune if ∃c ∈ C, C − {c} /∈ Lp

Recurrent select-cand if C ⊆ T ∧ ∀c ∈ C, Qty(c) 6 Qty(T.c)

Items compute-cnt by min({b
Qty(T.ci)

Qty(ci∈C)
c}

|C|
i=1)

select-freq if Count(C) > ϕmin

define weighted-rules
Rules generate-cand by f×a (Sk−1 −
with {s ∈ Sk−1 | Count(s) < MSB(s)})
Weighted select-cand if C ⊆ T
Items compute-cnt by Count(C)×

∑
Weight(c ∈ C)

select-freq if Count(C) > ϕmin

define multi-support-rules
Rules generate-cand by {
with {ci, cj} | ci, cj ∈ {
Multiple yp ∈ {
Minimum i1, i2, . . . , iz | ∀(m < n) ∈ [1..z],
Support MIS(im ∈ I1) 6 MIS(in ∈ I1)

} | ∀(k < q), Count(yk) 6 MIS(yq) ∧
Count(yq) > MIS(yp) ∧ Count(yp) > MIS(yq)

} | (i < j) ∧ (|x ∈ Lp| = 1) ∧
Count(cj) > MIS(ci) ∧ Count(ci) > MIS(ci)

} ∪ {f×a Lp | 1 6= |x ∈ Lp|}
prune if ∃c, c1, c2 ∈ C, C − {c} /∈ Lp ∧

((c1 ∈ C − {c}) ∨ (MIS(c1) = MIS(c2))
select-cand if C ⊆ T
compute-cnt by 1
select-freq if Count(C) > min(MIS(c ∈ C))

define sequence-rules
Sequences generate-cand by {

〈f1, . . . , f|f| ∪ {x′|x|}〉 | (|f| = |X|) ∧

(f ′ ∈ f ∈ f) ∧ (x′ ∈ x ∈ X ∈ Lp) ∧
〈f1 − { f ′1}, . . . , f|f|〉 = 〈x1, . . . , x|X| − { x′|x|}〉

} ∪ {
〈f1, . . . , f|f|, {x

′
|x|}〉 | (|f| < |X|) ∧

〈f1 − { f ′1}, . . . , f|f|〉 = 〈x1, . . . , x|X| − { x′|x|}〉

}
prune if ∃(c′ ∈ c) ∈ C, C.c− {c′} /∈ Lp

select-cand if ∀c ∈ C, ci ⊆ (ti ∈ T )
compute-cnt by 1
select-freq if Count(C) > ϕmin

Figure 4: VDL description for other variants.

be checked against the transactions in the database.
We determine if a transaction supports the candidate
by the criteria given in the “select-cand if” of the
VDL. In the example, GetConcept() translates the
atomic items in the transaction to the desired level `
to facilitate comparison. If the subset property holds,
the engine determines the support count contributed
by evaluating the expression in “compute-cnt by”,
which in this case, is simply 1. Finally, after the
pass through the database, VI evaluates each item-
set (based on “select-freq if”), returning those that
are frequent.

Of course, the existing VDL description is not ap-
propriate from the users’ standpoint. The syntax is
awkward and is difficult to express via the keyboard.
At the same time, the mathematical constructs are
also difficult to interpret programmatically. Consid-
ering the users’ standpoint, the VDL should be im-
plemented like any 4GL languages. Recently, we pro-
posed a SQL-like implementation of the VDL (Ong,
Ng & Lim 2002b) which is shown below. This VDL
describes the same task of mining plain association
rules as depicted mathematically in Figure 4.

GENERATE conventional-apriori USING

CANDIDATES FROM AprioriJoin(f, Lp)

PRUNE IF EXISTS C - C.c NOT IN Lp

VOTE IF Subset(C, T)

INCREMENT C.Count BY 1

SELECT IF C.Count >= MinSupp

Back to Example 3, we see that the VDL speci-
fies the behavior of VI at the itemset level. In our
initial work, we operated on a set of itemsets lead-
ing to complex specification and poor performance.
Going down to the itemset level simplifies the VDL
and admits efficient in-lining of the expressions with
the algorithmic engine. Also, the reader may note
the optional use of the “prune if” clause in the VDL
as illustrated in the mining of weighted items1. Of
course, the ability to describe each attributes alone is
insufficient. A domain analyst can actually combine
different attributes easily in CrystalBall to mine
informative rules. We devote the next section to this
discussion.

3 Mining Informative Rules

So far, we have described some existing variants using
the VDL. In this section, we show how new variants
can be created by combining different attributes into
a coherent whole for mining informative rules. Rather
then explaining the procedure, we illustrate the pro-
cess with the two examples discussed earlier.

3.1 Mining Supermarket Data

The analyst in Example 1 considered two attributes
in the rules to extract: the weight and the recurrence
of an item. Using CrystalBall, the analyst’s goal
is to write the VDL to be interpreted by the algo-
rithmic engine, VI. The first step is to determine how
candidates should be generated. Since we are build-
ing on existing attributes, we derive the candidate
generation procedure from Figure 4.

In the weighted case, candidates are obtained by
extending the candidate itemsets from the previous
pass with f (i.e., f ×a Sk−1). In the case of mining
recurrent items, the VDL specifies that candidates
are generated by f×r Lp. Since the candidates are all
possible patterns that can occur in the database, the
union of their supersets is the set of all candidates
that we need to consider in our example.

Observation 1 From Figure 3, f ×r Lp is actually

(f ×a Lp) ∪ {{⊕
|x|+1
i=1 f}} ∪ {{f ⊕ x | x ∈ Lp}}. Since

×r is an extension of ×a, then (f×a Lp) ⊆ (f×r Lp).
Likewise, Sk−1 ⊇ Lp and thus, the candidate genera-
tion is specified as f×r Sk−1.

In this example, the analyst would probably skip
the pruning criteria since his goal is focused (i.e.,
transactions for the last year containing diary items
whose sub-total is less than $10). In such cases where
the problem space is small, it is more productive to
collect all the support counts in a single scan of the
data. However, for the purpose of illustration, we
discuss how he derives the expressions for pruning
candidates.

Observation 2 The mining of weighted items
invalidates the anti-monotone property as each
weight alters the final support. As a result, the
pruning criteria of recurrent items (with strong
dependence on anti-monotone) cannot be used.

1 Since by definition, “prune if” evaluates a candidate after
it has been generated, the posterior pruning in the algorithm
proposed by Cai et al. has to be expressed in “generate-cand
by” instead to maintain the anti-monotone property.



Instead, the posterior pruning using the minimum
support bound (i.e., MSB) is applied to maintain
the anti-monotone property so that Apriori-like
performance is sustained. Thus, there will be no
“prune if” clause and “generate-cand by” is extended
to f×r (Sk−1−{ s ∈ S | Count(s) < MSB(s)}) instead.

Comparing the criteria for selection in Figure 4,
we see that the recurrent definition has a stricter
criteria over the weighted one. Unlike the notion of a
weight of an item, the quantity of an item influences
a transaction in supporting an itemset.

Observation 3 Considering both attributes imply
the conjunction of the attributes’ criteria, which
reduces to (C ⊆ T ) ∧ (∀c ∈ C, Qty(c) 6 Qty(T.c)).

The next step is to determine the support
count. Each item has an associated weight that alters
the raw support count obtained from the database.
Depending on the context and requirement, if an
item occurs twice in the itemset, the analyst may
consider the contribution of the item weight twice or
simply once. Either way, the support count will be
altered differently.

Observation 4 Considering recurrences in the total
weight of an itemset, we compute the final support
count for this scenario by substituting the raw sup-
port computed in the recurrence case as the raw sup-
port of the weighted itemset. Hence, the support of an

itemset is min({b
Qty(T.cj)
Qty(cj∈C)c

|C|
j=1})×

∑
Weight(c ∈ C).

The last step (to select candidates that are fre-
quent) is relatively straightforward. A check with
Figure 4 shows that all have the same evaluation cri-
teria. Thus, the criteria for “select-freq if” follows.
Putting them together, we obtain the final VDL as
shown below.

define informative-rules-for-example-1

generate-cand by f×r (Sk−1 − {s ∈ S | Count(s) < MSB(s)})

select-cand if (c ⊆ T ) ∧ (Qty(c) 6 Qty(T.c))

compute-cnt by min({b
Qty(T.cj)

Qty(cj∈C)
c
|C|
j=1})×

∑
Weight(c ∈ C)

select-freq if Count(c) > ϕmin

3.2 Mining Abstract Spatial Objects

In Example 2, we moved from supermarket items to
spatial objects and considered two other attributes:
high level concept and multiple minimum support
(a variation of weighted items). From Example 1,
the analyst observes that the creation of variants in
CrystalBall is semi-mechanical and rationalize as
follows.

• The set of candidates generated by a particular
variant, or the union of candidates produced by
different variants is the superset that provides
a complete cover of the composition’s problem
space.

• A candidate cannot be pruned unless it is known
to be infrequent in the coming passes with all
attributes considered.

• Testing if a transaction supports a candidate re-
quires that it satisfies all attributes under con-
sideration. As such, the strictest criteria is used.
This also applies to the evaluation of a candidate
to determine its eligibility as frequent.

• Support counting is done in two steps: derive the
lowest raw support count and then consider the
attributes that alter this value.

• If a particular clause has the same criteria for all
attributes considered, the composition follows.

Using the above observations, the analyst derives
the following VDL. In the same way, we can explain
the VDL using these considerations.

define informative-rules-for-example-2

generate-cand by {{ci, cj} | ci, cj ∈ { yp ∈ {
i1, i2, . . . , iz | ∀(m < n) ∈ [1..z],

MIS(im ∈ I1, `) 6 MIS(in ∈ I1, `)
} | ∀(k < q), Count(yk) 6 MIS(yq , `) ∧

Count(yq) > MIS(yp, `) ∧ Count(yp) > MIS(yq , `)
} | (i < j) ∧ (|x ∈ Lp| = 1) ∧ Count(cj) > MIS(ci, `) ∧

Count(ci) > MIS(ci, `)
} ∪ { f×a Lp | 1 6= |x ∈ Lp|}

prune if ∃c, c1, c2 ∈ C, C − {c} /∈ Lp ∧

((c1 ∈ C − {c}) ∨ (MIS(c1, `) = MIS(c2, `))

select-cand if C ⊆ GetConcept(T, `) compute-cnt by 1

select-freq if Count(c) > min(MIS(c ∈ C, `))

The input contains spatial objects at the concept
level ` as designated by the analyst. At the same
time, MIS() has been extended to return the indi-
vidual support of a spatial object at a given con-
cept level. By the first observation, candidates gener-
ated for multiple minimum support covers the prob-
lem space of the composition. With the extension of
MIS(), the pruning criteria considers both attributes
before discarding a candidate as determined in the
second observation. In the third observation, a trans-
action can only support a candidate if it satisfies the
attributes considered. Since multiple support thresh-
olds do not affect the evaluation, the only constraint
is to import each transaction at the appropriate con-
cept level. This is done using the “select-cand if”
criteria in Example 3. Using the last observation,
the support count is 1. Finally, a candidate is de-
termined frequent by the smallest support threshold
in the itemset at concept level ` (again by the third
observation).

From the above examples, we illustrated the value
proposition of combining existing variants to create
informative rules. More importantly, CrystalBall

is not limited to the existing variants. It is possi-
ble to consider new attributes, implement the mecha-
nism using the VDL, and later, combined with exist-
ing variants to create other types of association rules.

4 Experimental Studies

The objective of this study is to develop a proof of
concept on the framework’s feasibility. We then com-
pare how the framework approach performs with re-
spect to optimum implementations. This is to assess
the overheads (a concern for some readers) involved
and to path the ground work for optimization.

4.1 Methodology

We conducted the experiments on a single-CPU
Pentium-3 workstation at 1.7 GHz, cache size 256KB,
and 256MB of RAM having Windows 2000 as the op-
erating system. We used text files as the database
(where each line represents a transaction), the .Net

runtime to execute the code, and the new C# pro-
gramming language to implement each variant and
the framework.



For a fair and realistic comparison, each variant
closely implements the algorithm suggested by the re-
spective authors. We then run tests on each variant
with different support thresholds and database pa-
rameters (i.e., the number of items, transactions, pat-
terns etc). The results are then compared to instances
created from CrystalBall. For each variant, we in-
stantiated an equivalent using the VDL in Figure 4
and benchmarked their performance. We next instan-
tiated two algorithms from CrystalBall to realize
the scenarios described in the examples earlier. Since
we are unaware of similar priori work, the tests per-
formed here served as a relative measure of how the
algorithms scaled with the inclusion of additional at-
tributes under different experimental settings.

In the first example, we first generate synthetic
transactions using the program from the IBMQUEST
site (IBM QUEST: The Data Mining Group n.d.).
Each transaction is then modified by altering the re-
currence value of certain items while pruning others
to maintain its average size. This is done by first se-
lecting the item in the transaction with the smallest
weight. A random positive number m, bounded by
the MaxOccur (Zaiane et al. 2000) value, is assigned
as its occurrence in the transaction. Next, m−1 other
items are selected at random from the transaction and
their occurrences decremented by 1. This is repeated
for the next smallest weighted item up to the number
of items to be modified for the current transaction.
Items with occurrence value less than 1 are pruned
and the transaction written to disk. The weight of
each item is generated using a normal distribution
with a mean of 0.5 and are assigned randomly.

In the second example, the synthetic transac-
tions are spatial objects instead of items, and are
generated using the same synthetic data generator.
The concept-tree is then constructed based on the
database and two given attributes: the average fan-
out f of each node and the number of levels ` of the
concept tree. Using f and `, the number of leaves
in the tree is determined and each spatial object is
assigned randomly to one of the leaf node. The in-
dividual support threshold is generated in the same
way as the weight in the first example except that the
mean of the normal distribution is now user specified.

To instantiate a variant from the framework, we
invoke the VDL interpreter described in Section 2.2
to translate the VDL into C# code and then emit
the executable by invoking the C# compiler. The
instance is then ran against the optimum implemen-
tation with the same test attributes to obtain a com-
parison of their results. Each instance created from
the framework uses a database cache to compensate
the extra passes through the database as noted in Sec-
tion 2. As a result, the physical I/O cost incurred in
our test is minimized, and eliminated in cases where
the entire database can be loaded into memory2. The
details are discussed below.

4.2 Discussions

We begin with Figure 5(a) which shows the relative
performance of the Apriori against an instance cre-
ated from CrystalBall under different test parame-
ters. In Figure 5(a), the CrystalBall instance per-
formed better than its optimum counterpart except
for higher thresholds in the third test parameter (i.e.,
T25N10KD100K). This speedup can be attributed to
optimizations in CrystalBall that overcome the

2When necessary, the structure of the framework can be modi-
fied to make the same number of passes as the Apriori without any
changes to the VDL definition.

overheads in the VDL. Specifically, the amount of
overheads in the VDL can be estimated by the num-
ber of “set” operations. Therefore, the Apriori variant
has the lowest overheads as seen in Figure 4.

Figure 5(b) shows the relative performance of the
MSApriori and its CrystalBall instance. Unlike
the Apriori, where a single support is used, the items
in MSApriori are given individual minimum support
(i.e., MIS). As such, the “support” in Figure 5(b) does
not translate to the “support” in the Apriori sense,
but refers to the average MIS value of each item. De-
pending on the combination of items in each trans-
action, and the way the MIS values are generated
synthetically, the runtime results do not exhibit a
logarithmic-like curve similar to other variations. For
example, the average support at 10% has more item-
sets than the average MIS support at 8% and 2%.
This is due to the selection of an itemset as frequent
by the smallest MIS value that exists within a can-
didate itemset (see “select-cand if” clause of multiple
minimum support rules in Figure 4). From the re-
sults, we see that the overheads incurred by the VDL
is now more than the improvements made by the op-
timization. This can be explained by Figure 4 where
the VDL for multiple minimum support is more com-
plicated than that of the classic Apriori.

Even a simple VDL can result in poor performance
if the VDL compiler is not optimizing (which is the
case in our prototype implementation). This hap-
pens when we compiled the VDL for mining multiple
concept rules. The initial performance of the Crys-

talBall instance was more than a magnitude slower
than the specific implementation. Investigation shows
that repeated translation (by GetConcept()) is com-
putationally expensive and the condition deteriorates
as the database grows larger. We overcome this
by caching the translated transaction instead of its
atomic version giving the results seen in Figure 5(c).
At higher support thresholds, both instances has
roughly the same runtime. However, the overheads
introduced by the translation (due to GetConcept())
becomes apparent at lower supports where the num-
ber of candidates increases.

The fourth graph (Figure 5(c)) compares the per-
formance of mining rules containing recurrent items.
The optimum implementation uses the MaxOccur al-
gorithm (Zaiane et al. 2000) and the CrystalBall

instance is created from the VDL described in Fig-
ure 4. Interestingly, the performance of both imple-
mentations at the support of 2% onwards remain rel-
atively consistent. This deviates from our normal ex-
pectation of how Apriori-like algorithms behave. The
rationale behind the observation lies not in the algo-
rithm, but the synthetic data generated. We want to
maintain the average transaction size as we twinned
the recurrences of selected items in the transaction.
Since items need to be removed after twinning, the
data condition is altered and causes support of item-
sets to exist at low frequency.

The last two graphs shows the absolute perfor-
mance of two compositions that mine rules described
in Example 1 (Figure 5(e)) and Example 2 (Fig-
ure 5(f)). We tested the performance with similar
parameters used in the first four tests but are syn-
thetically altered for each composition. Since compo-
sitions has more constraints and operations, the per-
formance of finding the frequent itemsets is expected
to be longer. Using the 3W model as a relative mea-
sure, finding rules in Example 1 requires a sequential
run of two algorithms, one to find weighted rules and
the other to discover recurrent items, before it can be
manipulated in 3W. In CrystalBall, this requires
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Figure 5: (a) - (d): Relative performance of CrystalBall against implementations including Apriori,
FastApriori, MSApriori (multiple support thresholds), MaxOccur (recurrent items) and MLApriori (multi-
ple concepts); (e) & (f): Performance of compositions created using CrystalBall for Example 1 and 2.
Smaller values on the Y axis indicates better performance. Each test is described using {S, I}.TxNyDz where
S represents the optimum implementation and I, the CrystalBall instance of S; x the average size of each
transaction; y the number of unique items (or spatial combinations in the case of Example 2), and z the number
of transactions in the database.



only one pass through the data, and all parameters
are pushed deep into the process and evaluated si-
multaneously. Although we do not conduct empirical
tests for this, CrystalBall’s approach should, intu-
itively, provide better performance.

Overall, the framework performed consistently be-
low that of its optimized cousins. This is expected due
to the abstractions involved and our focus on feasibil-
ity rather then performance, the future work to be
addressed next.

5 Framework Evaluation

We have, in the previous section, demonstrated the
feasibility of the framework and included a brief dis-
cussion on its performance. For completeness, we
present an informal evaluation of the framework, as
an extensive and formal review would be difficult
within the limits of the paper.

5.1 Algorithmic Engine

The comprehensiveness of the framework depends on
the algorithmic engine and the VDL. Currently, the
generic rule mining engine uses the Apriori algorithm
as its foundation. Comparing this against approaches
such as the FP-Growth, we see that the balance in
performance and the generic approach inherent in its
design is what motivated work in other variants to
be based on the Apriori. The generate-and-test ap-
proach, although inefficient in the current state-of-
the-art, is generic and intuitive for considering differ-
ent attributes. The task of candidate generation is
to enumerate all patterns in the problem space, and
then evaluate (i.e., candidate test) if it holds for the
given data. This makes it easy to specify what are the
possible patterns, and how to evaluate the patterns
in the context of different attributes.

For example, in Figure 4, we see that an attribute
p (e.g., weight) can be considered step by step through
the specification of constraints in the VDL to define
its behavior during mining. This attribute-focused
approach, we believe, should provide a sufficiently
general framework for describing new attributes be-
yond what has been studied in this paper. Above all,
the same approach is what makes the mining of infor-
mative rules (in a single run of the data mining task)
possible.

However, the strength of the Apriori is also
its weakness. The generate-and-test process in-
curs costly computations. According to Han and
Plank (Han & Plank 1996), the algorithm has de-
pendency on many parameters including the amount
of memory, the number of transactions, candidates,
frequent itemsets, and the length of a frequent item-
set. This meant that the Apriori has varying per-
formance under different environments and data con-
ditions (which is also observed in our tests, see
Figure 5)). Many techniques has been introduced
to improve Apriori (Agrawal & Srikant 1994, Das
et al. 2001, Hipp, Güntzer & Nakhaeizadeh 2000, Ng
et al. 1998, Ng et al. 1999, Park et al. 1997), and
some were used to enhance the performance of the
framework.

The other limitation of Apriori is in the type of
rules it can discover. In our current framework, we
are only capable of mining intra-transaction rules.
The algorithm does not considers situations such
as mining rules from inter-transactions (Tung, Lu,
Han & Feng 1999), multiple relations (Dehaspe &

Raedt 1997), or rules containing continuous vari-
ables (Srikant & Agrawal 1996). These variants, when
considered with different attributes, are equally infor-
mative and important. As an initial work, we have
chosen the Apriori as our starting point. To ensure
extensiveness and comprehensiveness of the frame-
work, future work in improving the data mining en-
gine will consider the issues mentioned above.

5.2 Variant Description Language

Evaluating the data mining engine provides a gauge
on the domain of rules that the current proposal is
capable of. Specifically, our evaluation of the algo-
rithmic engine reveals the ability to perform mining
of intra-transaction rules. Within this domain, the
extensiveness of intra-transaction rules are then de-
termined by the VDL.

The formal model of the VDL is the use of set
theory and first order logic as seen in the expres-
sions in Figure 4. Using the notion of a set of items,
the VDL closely models the underlying sub-system
of the Apriori architecture and that of a transaction
database. Adding first order logic predicates, differ-
ent attributes of each item relative to the database,
transaction, or any other entities may be retrieved.
This gives rise to the possibilities of attributes that
can be associated with an item and potentially, be-
yond those discussed in the paper. An item, in the
context of this paper, is a concept that may repre-
sent a physical product from the supermarket, a spa-
tial object in the spatial database, or a sequence of
events in an event log. A transaction is therefore a
set of such items that occurs with respect to certain
events (e.g., a purchase) or concepts (e.g., an image)
that relates the items together.

The modelling of items and transactions is an
important criteria towards the extensiveness of the
framework. The freedom to operate across multiple
domains and data sources gives good flexibility to the
framework. At the same time, it also encourages the
use of attributes associated with each domain to be
used for finding informative rules. By providing an
environment to consider these attributes, the frame-
work also encourages the possibilities of forming new
informative rules through composition of related at-
tributes obtained across different domains. We be-
lieve that this approach will help introduce new at-
tributes beyond those discussed in this paper.

From the samples given in Figure 3, we see that the
framework makes available the intermediate results
produced during a run of the data mining task. These
intermediate results are made available for manipula-
tion within the VDL. In addition, the VDL has contri-
butions at various decision points in the framework,
giving a fine granularity of control to the runtime be-
havior of the data mining engine. This gives the VDL
good manipulative power when combined with the
modelling of items and transactions discussed earlier.

The VDL is also expressive as demonstrated in the
description of various association rules in Figure 4.
Each function point is defined using first order logic
based on the intermediate results obtained at the in-
stance of evaluating the expression. At each function
point, attributes related to an item in the context of
the database or a transaction can be considered, eval-
uated, and altered in its value. More importantly,
the interaction of attributes is limited only by the se-
mantics of their composition and the objective of the
domain analyst. In summary, the characteristics ob-
served above should provide sufficient expressiveness



in mining intra-transaction rules currently considered
by the framework.

6 Related Work

The work in this paper was motivated from Man-
nila’s (Imielinski & Mannila 1996, Mannila 1997,
Mannila 2000) discussion on a theoretical framework
for data mining. He commented on the ad-hoc sit-
uation of data mining research and called for a sys-
tematic framework to develop KDD applications. A
framework for mining rules was discussed but lacked
details to support its feasibility. Our work contin-
ues from where Mannila stopped. Although far from
being a theoretical foundation for the mining of as-
sociation rules, it serves well as a concrete basis for
further work in this direction.

Mannila’s vision for a theoretical foundation was
realized at a high level by Johnson et al. (Johnson
et al. 2000). The 3W is a theoretical model for ma-
nipulating data mining tasks (algebraically) such that
the output of one can be manipulated and marshalled
to be the input of another. As illustrated in the pa-
per, the effect of such operations create more insights
that cannot be accomplished by individual tasks. In
the existing paradigm, different variant of rules are
discovered on its own by the respective algorithms.
To discover informative rules within the 3W model
translates to the availability of these algorithms be-
fore the 3W operators can be used to manipulate
and achieve the same end result as CrystalBall.
This dependency on the availability of the algorithms
is not addressed by the model, not to mention the
performance in practical situations where the tasks
ran sequentially. Again, CrystalBall complements
the 3W implementation by an efficient mechanism to
discover informative rules and eliminates the depen-
dency on the availability of algorithms for variants of
rules.

The MINE RULE operator proposed by Meo et
al. (Meo, Psaila & Ceri 1996) enables a uniform and
consistent description of the problem of discovering
rules. SQL-like, the MINE RULE operator describes the
different rule mining tasks for a subset of variants ad-
dressed in this paper. Meo’s framework is concerned
with the description of different tasks while our pro-
posal, similar in motivation, describes how different
attributes can be combined to discover the most in-
formative rule from the database. Viewed from an-
other perspective, the MINE RULE operator presents a
consistent interface for describing the task of mining
rules, and CrystalBall complements that with a
consistent algorithmic engine for mining informative
rules.

7 Conclusions

In this paper, our focus has been on the framework
that eliminates the cost of engineering algorithms via
a declarative approach to discover informative rules.
We demonstrated the coverage of the framework on
different variants of rules, and showed that the pro-
posal is feasible with an implementation.

Our immediate future work is to address the per-
formance aspects of CrystalBall. This is neces-
sary to realize the vision laid out in the beginning
of the paper, and to address emerging trends in ac-
tive mining where data and user needs changes over
time. Based on our preliminary findings, the deci-
sion to adopt the Apriori as the underlying model

of our framework does not impede performance en-
hancements. Our initial results to scale the frame-
work on large databases has been promising. In the
optimum case, we managed to achieve a performance
boost up to an order of magnitude over the Apriori al-
gorithm and close to the FP-Growth. Our preliminary
idea is as follows.

We construct a “transaction graph” that is a
compact representation of the database. Unlike the
FP-Tree that holds meta-data of the database, our
approach has no loss of information and hence sup-
ports the mining of different variants without any
modifications. Each node represents the unique item
in the database and contains the global properties
of the item (e.g., weight). The edges connecting the
nodes has transaction IDs and transaction specific at-
tribute values for each item it holds (e.g., quantity).
Given an candidate C, the basic idea is to traverse
only relevant edges and then perform a selective TID
intersection to determine the collection of transac-
tions that has the probability of supporting C. In
other words, we “prune” transactions that guaran-
tees no support for C, thus avoiding the overheads in
scanning the entire database. This subset of trans-
actions is the Transaction-DB scanned by algorithm
VI in Figure 1. Hence, if C appears only in i% of
the transactions, the traversal of our data structure
will return at most (i+ j)% of the transactions to be
scanned by VI, where j is the percentage of transac-
tions that appears to support C but failed to do so in
reality. Since i >> j (most of the time), the database
scan is close to the actual support (i.e., ≈ i%) and the
cost of traversing the data structure is only a fraction
of the database. We shall report the details of this
work in a future paper.

A survey on the landscape of data mining research
reveals that the focus has been primarily on the al-
gorithmic phases of the KDD process. In the con-
text of rule mining, most algorithmic efforts are due
to the consideration of new variants or the ability to
outperform an earlier proposal. However, the value
in doing so diminishes quickly as other aspects of
KDD are weakly addressed and the analyst’s goal
lies in a section of the problem space. We therefore
agree with (John 1999, Kohavi & Provost 2001) to
call for a focus on other aspects of KDD to realize
the goal of data mining. Some works has been ob-
served recently (Bayardo & Agrawal 1999, Galhardas,
Florescu, Shasha, Simon & Saita 2001, Raman &
Hellerstein 2001) and CrystalBall’s contribution
in this aspect is to eliminate the need for engineering
new algorithms. Given the engine and the variant-
specification language, new attributes can be consid-
ered and compositions developed. This in turn elim-
inates programming, frees the analyst from the re-
strictions of the data mining application, and creates
time for exploration of other KDD aspects.

Unlike other proposals, CrystalBall’s focus is
on deriving maximum information in the results.
Hence, CrystalBall mines informative rules that
previous proposals are incapable of. Our approach,
we believe, will bring us back to where we started,
i.e., to discover useful insights from data.
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