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Programming correct parallel software in a cost-effective way is a challenging task requiring a
high degree of expertise. In [1], it is proposed a pattern-based formally grounded tool that eases
writing parallel code. In particular, the tool is based on a platform-agnostic parallel programming
pattern called PCR. The PCR pattern aims at expressing computations consisting of a producer
consuming input data items and generating for each of them, a data set to be consumed by several
consumers working in parallel. Their outputs are finally aggregated back into a single result by a
reducer. PCR emphasize the independence between different computations in order to expose all
opportunities for parallelism.

The semantics of PCR is given in terms of the formal language FXML [2]. However, FXML has
no associated verification tool. Therefore, our current research goal is to formalize the semantics of
PCR in terms of TLA+. In this way, we can leverage TLA+ related tools to prove properties. Be-
sides correctness and termination, we are particularly interested in proving refinement. Moreover,
we will envisage to develop a translator from PCR into TLA+ to make the integration seamless.
To start up with, we have been working on the formalization of some concrete examples of PCR
specifications from [1] in the TLA+ specification language. In this presentation, we will discuss
our work in progress.

We defined a TLA+ base module that specifies the common skeleton of a PCR, that is, all
constant definitions. In a PCR, variables are streams indexed with multidimensional indexes which
are automatically generated by the underlying runtime system. To capture the semantics of this
behavior in TLA+ we define contexts and context mappings. A context contains input, output and
state variables in the inner scope of the PCR. Multidimensional indexes are modeled by sequences
of Nat . A context mapping maps indexes to contexts. Field v denotes the value of a variable, say
x , at index i , with NULL meaning the ith assignment to x has not occured so far. Field r is used
to keep track of the number of times it has been read.

VarP
∆
= [Nat → [v : VarPType ∪ {NULL}, r : Nat ]] Producer variable type

VarC
∆
= [Nat → [v : VarCType ∪ {NULL}, r : Nat ]] Consumer variable type

VarR
∆
= VarRType Reducer variable type, i.e, PCR output type

CtxType
∆
= [in : InType ∪ {NULL}, Input

i p : Nat ∪ {NULL}, Iterator index

v p : VarP , Producer history

v c : VarC , Consumer history

ret : VarR, Reducer result and PCR output

ste : {OFF , RUN , END}] Discrete state

A PCR has associated an iteration space which defines the indexes generated by the PCR and ap-
pended to the dynamic outer scope index. To cope with iteration spaces, in the TLA+ base module
we define an Iterator operator which resorts to higher-order operators, namely Step, LowerBnd ,
and UpperBnd , which have to be explicitly defined when a concrete PCR is instantiated.

Iterator(id)
∆
= AllFromTo(Step, LowerBnd(in(id)), UpperBnd(in(id)))

Bound(id)
∆
= i p(id) ∈ Iterator(id)

A TLA+ specification of a concrete PCR, extends a base module. In particular, it must define
the actual behavior of the PCR produce, consume, and reduce actions, in terms of parameterized
TLA+ actions P(id), C (id), and R(id), respectively, where id is the index that identifies the
context. The following snippets correspond to part of the Fibonacci Prime Counter PCR in [1]:
(1) PCRFibPrimes generates Fibonacci numbers up to input N , and (2) PCRIsPrime acts as a
consumer which is dynamically invoked for each Fibonacci number to check its primality.
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PCRFibPrimes producer P(id) action generates Fibonacci numbers while Bound(id) holds.

P(id)
∆
= ∧ Bound(id) i p(id) ≤ N

∧map′ = [map except Update PCRFibPrimes context mapping at index id .

! [id ].v p[i p(id)] = [v 7→ fib(v p(id), i p(id)), r 7→ 0], fib(v , i) , vi−2 + vi−1.

! [id ].i p = Step(@)] i p(id)′ = i p(id) + 1.

PCRIsPrime consumer C (id) action checks divisor does not divide input (Fibonacci number of index id).

C (id)
∆
= ∃ j ∈ Iterator(id) :

∧Written(v p(id), j ) v p(id) at index j has been written, i.e, v p(id)[j ] 6= NULL.

∧ ¬Read(v p(id), j ) Producer variable at j has not been read.

∧ ¬Written(v c(id), j ) Cons var at j has not been written, i.e, v c(id)[j ] = NULL.

∧map′ = [map except Update PCRIsPrime context mapping at index id .

! [id ].v p[j ].r = @ + 1, Increment read counts of producer variable at index j .

! [id ].v c[j ] = [v 7→ notDivides(v p(id)[j ].v , in(id)), r 7→ 0]]

There is a Main module that instantiates all PCR involved in the specification, together with
predicate Init and action Next . The flexible variables map1 and map2 are the context mappings
for PCRFibPrimes and PCRIsPrime, respectively.

CtxMap1
∆
= [Seq(Nat)→ PCRFibPrimes !CtxType ∪ {NULL}] Mapping for PCRFibPrimes

CtxMap2
∆
= [Seq(Nat)→ PCRIsPrime !CtxType ∪ {NULL}] Mapping for PCRIsPrime

Init
∆
= ∧N ∈ InType1
∧map1 = [id ∈ Seq(Nat) 7→ Computation starts with PCRFibPrimes

if id = 〈0〉 in root context 〈0〉 and input N

then PCRFibPrimes !InitCtx (N )
else NULL]

∧map2 = [id ∈ Seq(Nat) 7→ NULL]

Next1(id)
∆
= ∧map1[id ] 6= NULL
∧ ∨ ∧ PCRFibPrimes !Off (id)

∧map1′ = [map1 except ! [id ].ste = RUN ]
∨ ∧ PCRFibPrimes !Running(id)
∧ PCRFibPrimes !Next(id) P( ), C ( ) or R( ) action

∧ unchanged N

Next2(id)
∆
= . . . Analog to Next1

Next
∆
= ∨ ∃ id ∈ Seq(Nat) : Next1(id) PCRFibPrimes step

∨ ∃ id ∈ Seq(Nat) : Next2(id) PCRIsPrime step

∨Done

Correctness, termination, and refinement theorems are specified in the Main module.

Solution(in)
∆
= let fibValues

∆
= {Fibonacci(n) : n ∈ {m ∈ Nat : m ≤ in}}

in Cardinality({f ∈ fibValues : isPrime(f )})

Correctness
∆
= 2(PCRFibPrimes !Finished(〈0〉)⇒ PCRFibPrimes !Out(〈0〉) = Solution(N ))

Termination
∆
= 3PCRFibPrimes !Finished(〈0〉)

In the presentation we will provide further details of the specification, give insights on the approach,
discuss stating and model-checking refinements, and sketch future work towards automatically
generating TLA+ specifications from general PCR.
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