TLA™ specification of PCR parallel programming pattern

José Solsona* Sergio Yovine'

Universidad ORT Uruguay
August 31, 2020

Programming correct parallel software in a cost-effective way is a challenging task requiring a
high degree of expertise. In [1], it is proposed a pattern-based formally grounded tool that eases
writing parallel code. In particular, the tool is based on a platform-agnostic parallel programming
pattern called PCR. The PCR pattern aims at expressing computations consisting of a producer
consuming input data items and generating for each of them, a data set to be consumed by several
consumers working in parallel. Their outputs are finally aggregated back into a single result by a
reducer. PCR emphasize the independence between different computations in order to expose all
opportunities for parallelism.

The semantics of PCR is given in terms of the formal language FXML [2]. However, FXML has
no associated verification tool. Therefore, our current research goal is to formalize the semantics of
PCR in terms of TLA™T. In this way, we can leverage TLAT related tools to prove properties. Be-
sides correctness and termination, we are particularly interested in proving refinement. Moreover,
we will envisage to develop a translator from PCR into TLA™" to make the integration seamless.
To start up with, we have been working on the formalization of some concrete examples of PCR
specifications from [1] in the TLA™T specification language. In this presentation, we will discuss
our work in progress.

We defined a TLAT base module that specifies the common skeleton of a PCR, that is, all
constant definitions. In a PCR, variables are streams indexed with multidimensional indexes which
are automatically generated by the underlying runtime system. To capture the semantics of this
behavior in TLAT we define conterts and context mappings. A context contains input, output and
state variables in the inner scope of the PCR. Multidimensional indexes are modeled by sequences
of Nat. A context mapping maps indexes to contexts. Field v denotes the value of a variable, say
x, at index ¢, with NULL meaning the ith assignment to x has not occured so far. Field r is used
to keep track of the number of times it has been read.

VarP = [Nat — [v : VarPType U {NULL}, r : Nat]] Producer variable type
VarC = [Nat — [v: VarCType U {NULL}, r : Nat]] Consumer variable type
VarR = VarRType Reducer variable type, i.e, PCR output type
CtzType = [in : InType U {NULL}, Input

i—p : Nat U{NULL}, Iterator index

v_p : VarP, Producer history

v_c : VarC, Consumer history

ret : VarR, Reducer result and PCR output

ste : {OFF, RUN, END}| Discrete state

A PCR has associated an iteration space which defines the indexes generated by the PCR and ap-
pended to the dynamic outer scope index. To cope with iteration spaces, in the TLAT base module
we define an [terator operator which resorts to higher-order operators, namely Step, LowerBnd,
and UpperBnd, which have to be explicitly defined when a concrete PCR is instantiated.

Tterator(id)
Bound(id)

= AllFromTo(Step, LowerBnd(in(id)), UpperBnd(in(id)))

= i_p(id) € Iterator(id)

A TLA™ specification of a concrete PCR, extends a base module. In particular, it must define
the actual behavior of the PCR produce, consume, and reduce actions, in terms of parameterized
TLA™ actions P(id), C(id), and R(id), respectively, where id is the index that identifies the
context. The following snippets correspond to part of the Fibonacci Prime Counter PCR in [1]:
(1) PCRFibPrimes generates Fibonacci numbers up to input N, and (2) PCRIsPrime acts as a
consumer which is dynamically invoked for each Fibonacci number to check its primality.

*solsona@fi365.ort.edu.uy
tyovine@fi365.ort.edu.uy

PCRFibPrimes producer P(id) action generates Fibonacci numbers while Bound(id) holds.
P(id) = A Bound(id) i_p(id) <N
A map’ = [map EXCEPT Update PCRFibPrimes context mapping at index id.
Hid).v=pli-p(id)] = [v — fib(v_p(id), i—p(id)), 7 — 0], fib(v,7) £ vi—a + vi_1.
id].i—p = Step(Q)] i_p(id)’ = i_p(id) + 1.

PCRIsPrime consumer C(id) action checks divisor does not divide input (Fibonacci number of index id).
C(id) = 3j € Iterator(id) :

A Written(v_p(id), j) v_p(id) at index j has been written, i.e, v_p(id)[j] # NULL.

A —Read(v_p(id), j) Producer variable at j has not been read.

A =~ Written(v_c(id), j) Cons var at j has not been written, i.e, v_c(id)[j] = NULL.

AN map’ = [map EXCEPT Update PCRIsPrime context mapping at index id.
![id].v-p[j].r = @+ 1, Increment read counts of producer variable at index j.
[id].v=c[j] = [v— notDivides(v_p(id)[j].v, in(id)), r — 0]]

There is a Main module that instantiates all PCR involved in the specification, together with
predicate Init and action Next. The flexible variables map; and mapy are the context mappings
for PCRFibPrimes and PCRIsPrime, respectively.

CtzMapl = [Seq(Nat) — PCRFibPrimes! CtzType U {NULL}] Mapping for PCRFibPrimes
CtzMap2 = [Seq(Nat) — PCRIsPrime! CtzType U {NULL}] Mapping for PCRIsPrime

Init = AN € InTypel

A mapl = [id € Seq(Nat) — Computation starts with PCRFibPrimes
IF id = (0) in root context (0) and input N
THEN PCRFibPrimes!InitCtz(N)
ELSE NULI]

A map2 = [id € Seq(Nat) — NULL]

Nextl(id) = A mapl[id) # NULL
A V A PCRFibPrimes! Off (id)
A mapl’ = [mapl EXCEPT ![id].ste = RUN]
V' A PCRFibPrimes! Running(id)
A PCRFibPrimes! Next(id) P(_), C(_) or R(_) action
A UNCHANGED N

Next2(id) 2 . Analog to Nextl

Next = V3id € Seq(Nat) : Nextl(id) PCRPFibPrimes step
V 3id € Seq(Nat) : Next2(id) PCRIsPrime step
V Done

Correctness, termination, and refinement theorems are specified in the Main module.

Solution(in) = LET fibValues = {Fibonacci(n):n € {m € Nat: m < in}}
IN Cardinality({f € fibValues : isPrime(f)})

Correctness = O(PCRFibPrimes! Finished((0)) = PCRFibPrimes! Out((0)) = Solution(N))
Termination = <&PCRFibPrimes! Finished((0))

In the presentation we will provide further details of the specification, give insights on the approach,
discuss stating and model-checking refinements, and sketch future work towards automatically
generating TLA™ specifications from general PCR.

References

[1] G. Pérez and S. Yovine. Formal specification and implementation of an automated pattern-based
parallel-code generation framework. STTT, 2017.

[2] S. Yovine, I. Assayad, F. Defaut, M. Zanconi, and A. Basu. Formal approach to derivation of concurrent

implementations in software product lines. Algebra for Parallel and Distributed Processing, pages 359—
401, 2008.

