
TLA+ specification of PCR parallel programming
pattern

Work in Progress

José E. Solsona1 Sergio Yovine2

Universidad ORT Uruguay

September 2020

1solsona@fi365.ort.edu.uy
2yovine@fi365.ort.edu.uy

José E. Solsona, Sergio Yovine TLA+ specification of PCR 1 / 35

Agenda

1 Goals

2 PCR: Produce-Consume-Reduce pattern
High level description
PCR elements: sintax & semantics
Example: the Fibonacci Prime counter v1
Composition
Example: the Fibonacci Prime counter v2

3 TLA+ specification of PCR
High-level overview
Contexts and Contexts mappings
Concrete PCR modules and the main spec
PCR elements with basic functions
PCR elements with nesting
Spec properties and verification

4 Current state and further work

José E. Solsona, Sergio Yovine TLA+ specification of PCR 2 / 35

Agenda

1 Goals

2 PCR: Produce-Consume-Reduce pattern

3 TLA+ specification of PCR

4 Current state and further work

José E. Solsona, Sergio Yovine TLA+ specification of PCR 3 / 35

Goals

Our research goal is to formalize the semantics of a parallel programming
pattern called PCR in terms of TLA+. In this way, we can leverage
TLA+ related tools to prove temporal properties of PCR programs. Be-
sides correctness and termination, we are particularly interested in proving
refinement. Moreover, we envisage to develop a translator from PCR into
TLA+ to make the integration seamless.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 4 / 35

Agenda

1 Goals

2 PCR: Produce-Consume-Reduce pattern
High level description
PCR elements: sintax & semantics
Example: the Fibonacci Prime counter v1
Composition
Example: the Fibonacci Prime counter v2

3 TLA+ specification of PCR

4 Current state and further work

José E. Solsona, Sergio Yovine TLA+ specification of PCR 5 / 35

High level description

The PCR pattern aims at expressing computations consisting of a producer
consuming input data items and generating, for each one of them, a data
set to be consumed by several consumers working in parallel. Their outputs
are finally aggregated back into a single result by a reducer.

PCRs emphasize the independence between different computations in order
to expose all parallelization opportunities.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 6 / 35

High level description

Data flow inside a PCR is as follows:

1 For each input data item, the producer component generates a set of
output values; each one being immediately available for reading.

2 Consumers read values from the outer scope and from the private
data channels to perform their computations.

3 A reducer combines values from one or more data sources coming
from the producer and one or more consumers, generating a single
output item for every input item processed by the producer.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 7 / 35

High level description

Some remarks:

Reads in data channels are nondestructive, i.e., the same value can
be read multiple times by any consumer and by the reducer.

No input is ignored, i.e., every item is handled by some compo-
nent—all dashed arrows carry the same number of data items to be
read.

Producer, consumers, and reducer work in parallel subject to data de-
pendencies: all input items must be available for a consumer/reducer
instance in order to perform its calculation.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 8 / 35

PCR elements: sintax & semantics

We refer as basic functions, to user provided functions implemented in
the host language. These are iterated by the produce, consume and
reduce elements of the PCR pattern.

Syntax of the principal PCR elements (simplified version):

p = produce[Seq] f x where f is a basic function or another PCR,
and x is PCR input variable

c = consume f x p
where f is a basic function or another PCR,
x is PCR input variable and p is producer
output variable.

r = reduce ⊕ v0 c
where ⊕ is a commutative and associative
operation, v0 is an initial neutral value and
c is consumer output variable.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 9 / 35

PCR elements: sintax & semantics

Output variables p and c describes full history of assignments for producers
and consumers respectively. This is achieved by dynamic and automatic
indexing of each computed value. We denote by pi the i -th produced
value to be consumed at instance i for which corresponding result is ci .

This property is leveraged into a syntactic mechanism which allows stream
operations look-ahead/look-behind to be used on variables (subject to
some restrictions to be discussed) by indexing.

For example, to produce pi as the i -th Fibonacci number, two previous
indexes are accessed to compute the sum: pi−1 + pi−2.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 10 / 35

PCR elements: sintax & semantics

PCR execution starts with the producer iterating f which produces values
pi for indexes i in some domain.
The domain of i is determined by an iteration space prescribed to f which
is also provided by the user.

Definition of the iteration space consist on:

lbnd f = λ x . e where λ x . e is the lower bound expressed
as a function of input variable x

ubnd f = λ x . e where λ x . e is the upper bound expressed
as a function of input variable x

step f = λ i . e
where λ i . e is a step function

José E. Solsona, Sergio Yovine TLA+ specification of PCR 11 / 35

Example: the Fibonacci Prime counter v1

We illustrate previous concepts by two alternative but equivalent PCR
specifications of an algorithm that counts primes among the first N Fi-
bonacci numbers. The first PCR is called fibPrimes1, it works as follows:

1 The producer fib generates the sequence F0, F1,..., FN of Fibonacci
numbers.

2 Each instance i ∈ [0,N] of the isPrime consumer checks, in paral-
lel, the primality of Fi , resulting in the unordered output of indexed
boolean values isPrime(Fi).

3 The reducer count counts the number of those outputs which are
true.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 12 / 35

Example: the Fibonacci Prime Counter v1

Sintax
1 // Basic functions
2 fun fib(N,p,i) =
3 if i < 2
4 then 1
5 else pi−1 + pi−2

6
7 fun isPrime(N,p,i) = ...
8
9 fun count(a,b) =

10 a + (if b then 1 else 0)
11
12 // Iteration space
13 lbnd fib = λ x . 0
14 ubnd fib = λ x . x
15 step fib = λ i. i + 1
16
17 // PCR definition
18 PCR fibPrimes1(N)
19 par
20 p = produceSeq fib N
21 forall p
22 c = consume isPrime N p
23 r = reduce count 0 c

Semantics

p0 pi−2 pi−1 pi

c0

r

.

pN

cN
. . .

In this example, for each i ∈ [0,N] we have
pi = Fi and ci = isPrime(Fi).

r =
∑

i ∈ [0,N](if ci then 1 else 0)

José E. Solsona, Sergio Yovine TLA+ specification of PCR 13 / 35

PCR composition

PCRs can be composed by hierarchical nesting, this ability allows reusing
components and controlling the desired grain of parallelism.

Let I be the index dynamically assigned to a particular execution of a PCR.
Any child PCR inherits the index of the father and extends its dimension
by writing in its producer variable, say p, the (I , i)-th value pI ,i , for every
i according to his iteration space.

This multidimensional indexing allows for the concurrent execution of any
two instances I 6= J of the producer, each one generating its own set of
p values, namely pI ,i and pJ ,j .

José E. Solsona, Sergio Yovine TLA+ specification of PCR 14 / 35

Example: the Fibonacci Prime counter v2

The second version of our example is the PCR fibPrimes2, where isPrime
is another PCR instead of a basic function and it works as follows:

1 The producer divisors generates all the possible divisors of the input
number F .

2 Each instance i of the notDivides consumer checks, in parallel, the
divisibility of F by di , resulting in the unordered output of indexed
boolean values bi .

3 The reducer and computes the conjunction of those outputs.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 15 / 35

Example: the Fibonacci Prime counter v2

Sintax
1 // Basic functions
2 fun divisors(F,d,i) = i
3
4 fun notDivides(F,d,i) =
5 not (F % di = 0)
6
7 // Iteration space
8 lbnd divisors = λ x . 2

9 ubnd divisors = λ x .
√
x

10 step divisors =
11 λ i. if i = 2 then 3 else i + 2
12
13 // PCR definitions
14 PCR fibPrimes2(N)
15 par
16 p = produceSeq fib N
17 forall p
18 c = consume isPrime p
19 r = reduce count 0 c
20
21 PCR isPrime(F)
22 par
23 d = produce divisors F
24 forall d
25 b = consume notDivides F d
26 a = reduce and true b

Semantics

p0 pi−2 pi−1 pi

c0

r

.

pN

cN. . .

d0, 2 d0,√c0

b0, 2 b0,√c0

. . .

. . .

a0

dN , 2 dN ,√cN

bN , 2 bN ,√cN

. . .

. . .

aN. . .

. . .

. . .

For each i ∈ [0,N] and j ∈ [2,
√

ci], di,j de-
notes the j -th possible divisor produced for Fi .

ai =
∧

j ∈ [2,
√
ci]

bi,j

José E. Solsona, Sergio Yovine TLA+ specification of PCR 16 / 35

Agenda

1 Goals

2 PCR: Produce-Consume-Reduce pattern

3 TLA+ specification of PCR
High-level overview
Contexts and Contexts mappings
Concrete PCR modules and the main spec
PCR elements with basic functions
PCR elements with nesting
Spec properties and verification

4 Current state and further work

José E. Solsona, Sergio Yovine TLA+ specification of PCR 17 / 35

High-level overview

We organize our projects across different TLA+ modules in a way is con-
venient for us to handle and hopefully will also be useful for the task of
automatic translation from PCR syntax to TLA+.

PCRBase.tla

PCRIterationSpace.tla

PCR<Name>.tla

MainPCR<Name>.tla

Typedef.tla

Spec ∨P(I)
∨C (I)
∨R(I)

José E. Solsona, Sergio Yovine TLA+ specification of PCR 18 / 35

Contexts and Contexts mappings

In a PCR, variables are streams indexed with multidimensional indexes
which are automatically generated by the underlying runtime system. We
formalize this by contexts and context mappings.

Let VarPType and VarCType be basic data types. For producer and
consumer output variables we define:

VarP
∆
= [Nat → [v : VarPType ∪ {NULL}, r : Nat]]

VarC
∆
= [Nat → [v : VarCType ∪ {NULL}, r : Nat]]

Where field v denotes the value of the variable at some i -th assignment,
with i ∈ Nat and NULL meaning it has not occured so far, and field r is
used to keep track of the number of times it has been read.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 19 / 35

Contexts and Contexts mappings

A context represents the PCR state at inner scope:

Ctx
∆
= [in : InType, input

i p : Nat , iteration index

v p : VarP , producer history

v c : VarC , consumer history

ret : VarRType, reducer result

ste : {OFF , RUN , END}] discrete state

Multidimensional indexes are modeled by sequences of Nat . A context
mapping is a partial function from indexes to contexts:

CtxMap
∆
= [Seq(Nat)→ Ctx ∪ {NULL}]

Any PCR have its own context mappping map ∈ CtxMap, so map[I] is
the PCR context at some index I , or in other words, the I -th PCR
instance.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 20 / 35

Contexts and Contexts mappings

For convenience, we give names to context elements:

in(I)
∆
= map[I].in

i p(I)
∆
= map[I].i p

v p(I)
∆
= map[I].v p

v c(I)
∆
= map[I].v c

out(I)
∆
= map[I].ret

state(I)
∆
= map[I].ste

We read v p(I)[i].v as the i -th produced value at index I , that is, infor-
mally pI ,i .

Also, some useful predicates are defined for output variables:

written(var , i)
∆
= var [i].v 6= NULL

read(var , i)
∆
= var [i].r > 0

José E. Solsona, Sergio Yovine TLA+ specification of PCR 21 / 35

Iteration space

A PCR has associated an iteration space which defines the indexes gen-
erated by the PCR. We define an iterator() operator which describes a
valid range in terms of higher-order operators step(), lowerBnd() and
upperBnd().

range(start , end , step())
∆
=

let f [i ∈ Nat]
∆
= if i ≤ end

then {i} ∪ f [step(i)]
else {}

in f [start]

iterator(I)
∆
= range(lowerBnd(in(I)), upperBnd(in(I)), step)

José E. Solsona, Sergio Yovine TLA+ specification of PCR 22 / 35

Concrete PCR modules and the main spec

Every concrete PCR module describes its initial conditions by means of
operator initCtx :

initCtx (x)
∆
= [in 7→ x ,

i p 7→ lowerBnd(x),
v p 7→ [n ∈ Nat 7→ [v 7→ NULL, r 7→ 0]],
v c 7→ [n ∈ Nat 7→ [v 7→ NULL, r 7→ 0]],
ret 7→ initial neutral value,
ste 7→ OFF]

And also describes what is the possible Next step as a disjunction of
actions:

Next(I)
∆
= ∨ ∧ state(I) = OFF

∧ Start(I)
∨ ∧ state(I) = RUN
∧ ∨ P(I)
∨ C (I)
∨ R(I)
∨Quit(I)

José E. Solsona, Sergio Yovine TLA+ specification of PCR 23 / 35

Concrete PCR modules and the main spec

Main PCR module instantiates the root PCR and any other PCR involved. Here
the main system specification is defined. Let PCR1 and PCR2 be two instances
of some PCR modules, then main module will have roughly this structure:

Init
∆
= ∧ x ∈ InType1
∧map1 = [I ∈ Seq(Nat) 7→ if I = 〈0〉

then PCR1 ! InitCtx(x)
else NULL]

∧map2 = [I ∈ Seq(Nat) 7→ NULL]

Done
∆
= ∧ ∀ I ∈ Seq(Nat) : PCR1 !Finished(I)
∧ ∀ I ∈ Seq(Nat) : PCR2 !Finished(I)
∧ vars′ = vars

Next
∆
= ∨ ∃ I ∈ Seq(Nat) : PCR1 !Next(I)
∨ ∃ I ∈ Seq(Nat) : PCR2 !Next(I)
∨Done

Fair
∆
= ∧ ∀ I ∈ Seq(Nat) : WFvars(PCR1 !Next(I))
∧ ∀ I ∈ Seq(Nat) : WFvars(PCR2 !Next(I))

Spec
∆
= Init ∧ 2[Next]vars ∧ Fair

José E. Solsona, Sergio Yovine TLA+ specification of PCR 24 / 35

PCR elements with basic functions

We further illustrate our specification using the PCR fibPrimes1 example.

Producer specification:

p = produceSeq fib N P(I)
∆
=

∧ i p(I) ∈ iterator(I)
∧map1′ = [map1 except

! [I].v p[i p(I)] = [v 7→ fib(in(I), v p(I), i p(I)),
r 7→ 0],

! [I].i p = step(@)]
Consumer specification:

c = consume isPrime N p C (I)
∆
=

∃ i ∈ iterator(I) :
∧ written(v p(I), i)
∧ ¬read(v p(I), i)
∧ ¬written(v c(I), i)
∧map1′ = [map1 except

! [I].v p[i].r = 1,
! [I].v c[i] = [v 7→ isPrime(in(I), v p(I), i),

r 7→ 0]]

José E. Solsona, Sergio Yovine TLA+ specification of PCR 25 / 35

PCR elements with basic functions

We further illustrate our specification using the PCR fibPrimes1 example.

Reducer specification:

r = reduce count 0 c R(I)
∆
=

∃ i ∈ iterator(I) :
∧ written(v c(I), i)
∧ ¬read(v c(I), i)
∧map1′ = [map1 except

! [I].ret = count(@, v c(I)[i].v),
! [I].v c[i].r = @+ 1,
! [I].ste = if cDone(I , i)

then END
else @]

Where cDone is a predicate that holds true if every consumer variable on
index other than i has been read.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 26 / 35

PCR elements with nesting

PCR fibPrimes2 uses PCR isPrime as a consumer.

First, we show the producer of the PCR isPrime as it is not a sequential
one.

Producer specification:

d = produce divisors F P(I)
∆
=

∃ i ∈ iterator(I) :
∧ ¬written(v p(I), i)
∧map3′ = [map3 except

! [I].v p[i] = [v 7→ divisors(in(I), v p(I), i),
r 7→ 0]]

José E. Solsona, Sergio Yovine TLA+ specification of PCR 27 / 35

PCR elements with nesting

Consumer specification of PCR fibPrimes2:

c = consume isPrime p C (I)
∆
= C call(I) ∨ C ret(I)

C call(I)
∆
=

∃ i ∈ iterator(I) :
∧ written(v p(I), i)
∧ ¬read(v p(I), i)
∧map2′ = [map2 except ! [I].v p[i].r = 1]
∧map3′ = [map3 except

! [I ◦ 〈i〉] = isPrime ! initCtx(v p(I)[i].v)]

C ret(I)
∆
=

∃ i ∈ iterator(I) :
∧ read(v p(I), i)
∧ ¬written(v c(I), i)
∧ isPrime !finished(I ◦ 〈i〉)
∧map2′ = [map2 except

! [I].v c[i] = [v 7→ isPrime !out(I ◦ 〈i〉),
r 7→ 0]]

Where isPrime is an instance of module PCRIsPrime.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 28 / 35

Spec properties and verification

Correctness and termination properties are specified in the main module.
Our two previous PCR examples, fibPrimes1 and fibPrimes2, have the
same properties:

solution(x)
∆
= let allFibonacci

∆
= {fibonacci [n] : n ∈ 0 . . x}

in Cardinality({k ∈ allFibonacci : isPrime(k)})

Correctness
∆
= 2(fibPrimes !finished(〈0〉)⇒ fibPrimes !out(〈0〉) = solution(N))

Termination
∆
= 3fibPrimes !finished(〈0〉)

Where fibPrimes stands for an instance of either module
PCRFibPrimes1 or PCRFibPrimes2 and N ∈ Nat is the input variable.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 29 / 35

Spec properties and verification

We can relate fibPrimes1 and fibPrimes2 by proving the latter is an im-
plementation of the former, or in other words, the former is an abstraction
of the latter, under an appropriate refinement mapping.

In module MainPCRFibPrimes1 there is a context mapping
map1 ∈ fibPrimes1!CtxMap. This is the high-level spec.

In module MainPCRFibPrimes2 there are two context mappings, namely
map2 ∈ fibPrimes2!CtxMap and map3 ∈ isPrime!CtxMap. This is the
low-level spec. Here, we instantiate MainPCRFibPrimes1 with map1 sub-
stituted for an expression in terms of map2 and map3.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 30 / 35

Spec properties and verification

This refinement works by contracting time between actions C call and C ret .

subst
∆
= [I ∈ domain map2 7→

if map2[I] 6= NULL
then [map2[I] except

! .v p = [i ∈ domain @ 7→
if ∧ fibPrimes2 !read(map2[I].v p, i)
∧ ¬isPrime !finished(I ◦ 〈i〉)

then [v 7→ @[i].v ,
r 7→ 0]

else @[i]
],

! .v c = [i ∈ domain @ 7→
if ∧ fibPrimes2 !read(map2[I].v p, i)
∧ isPrime !finished(I ◦ 〈i〉)

then [v 7→ isPrime !out(I ◦ 〈i〉),
r 7→ @[i].r]

else @[i]
]

]
else NULL]

PCRFibPrimes1 = instance MainPCRFibPrimes1 with map1← subst

José E. Solsona, Sergio Yovine TLA+ specification of PCR 31 / 35

Spec properties and verification

Model checking and Theorem proving:

We try to make the specifications to be TLC friendly and also TLAPS
friendly. Best of both worlds.

Currently we can model check properties like correctness, termination
and refinements on relatively small models.

For very large state spaces simulation can be useful.

Till now, we have only used TLAPS to prove type invariance.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 32 / 35

Agenda

1 Goals

2 PCR: Produce-Consume-Reduce pattern

3 TLA+ specification of PCR

4 Current state and further work

José E. Solsona, Sergio Yovine TLA+ specification of PCR 33 / 35

Current state and further work

Currently we have applied the presented approach to other known
problems like Count Words, MergeSort and NQueens. More examples
are on the way.

Other PCR syntax blocks are missing: iterate, feedbackloop.

Handle early termination to support eureka computations.

Translate PCR to TLA+.

Formalize an abstract model of a target execution runtime and prove
refinements.

José E. Solsona, Sergio Yovine TLA+ specification of PCR 34 / 35

Thanks!

José E. Solsona, Sergio Yovine TLA+ specification of PCR 35 / 35

	Goals
	PCR: Produce-Consume-Reduce pattern
	TLA+ specification of PCR
	Current state and further work

