Conjunction
Capers

A TLA* Truffle

Image: Amazon

Ron Pressler, October 2020

“Just as natural pearls grow from grains of sand that have irritated
oysters, these programming pearls have grown from real problems
that have irritated programmers. The programs are fun, and they
teach important programming techniques and fundamental design
principles.”

Jon Bentley, Programming Pearls, Communications of the ACM

TLA* Truffle

In the spirit of Programming Pearls and Graphics Gems

e an instructive example of program calculation or proof, or
e a nifty presentation of an old or new data structure, or

* an interesting application or programming technique.

“polished, elegant, instructive, entertaining”

Richard Bird, How to Write a Functional Pearl

The lTechnique

Image: Amazon

The Canonical TLA Formula

A State-Machine Specification

Init A[][Next], ...\ Fairness

Vvars

The Meaning of a TLA Formula

The Meaning of a TLA Formula

Conjunction is Composition

The Meaning of a TLA Formula

Conjunction

F=>A G=8B F=>A G=8B

FAG=>A FANG=>B

Conjunction of Canonical TLA Formulas

Init A]| Next], .. A Fairness
N\
Init A]|Next], .. A Fairness

Conjunction of Canonical TLA Formulas

A Init A Init
/\ D [NeXt]varS /\ D [Ne‘Xt]VCZFS

N\ Fairness A Fairness

Conjunction of Canonical TLA Formulas

A Init A Init
A O[Nextl,gy A C[Nextl,
A Fairness A Fairness

Init A Init A[J[7?77?]999 A Fairness A Fairness

Conjunction of Canonical TLA Formulas

1 (pV@QA@TVS) =VpAT

VDAS
VgAr
VgASs

(2) [JAA[IB=[](A A B)

(3) [1[A],,, = [1(A V UNCHANGED vars)

=[](A V vars’ = vars)

Conjunction of Canonical TLA Formulas

1 [Next], .. A [][Next],,,

= [](V Next A Next

V Next A UNCHANGED vars
V Next A UNCHANGED vars
V UNCHANGED vars A UNCHANGED vars)

Conjunction of Canonical TLA Formulas

1 [Next], .. A [][Next],,,

= []|V Next A Next

V Next A UNCHANGED vars

Conjunction of Canonical TLA* Formulas

A

Compose(NextA, varsA, NextB, varsB)

\V NextA N\ NextB
V NextA N UNCHANGED wvarsB
V NextB N UNCHANGED varsA

Conjunction of Canonical TLA* Formulas

A

Compose(NextA, varsA, NextB, varsB)

\V NextA N\ NextB
V NextA N UNCHANGED wvarsB
V NextB N UNCHANGED varsA

x'=A x'eA

Conjunction of Canonical TLA* Formulas

A

Compose(NextA, varsA, NextB, varsB)

V NextA N\ NextB
V UNCHANGED wvarsB N NextA
\VV UNCHANGED wvarsA N NextB

Conjunction of Canonical TLA* Formulas

A

Spec = N Initl N
A Init2 N\

L

Nextl|,1 A Fairnessl
Next2|,o N\ Fairness?

L

A

A Initl N Init2
A O[Compose(Nextl, vl, Next2, v2)|,1, v2)
A Fairnessl N\ Fairness?2

Spec

Conjunction of Canonical TLA* Formulas

Nexztl2 = Compose(Nextl, vl, Next2, v2)

Next123 = Compose(Next12, (vl, v2), Next3, v3)

Next1234 = Compose(Next123, (vl, v2, v3), Nextd, v4)

Next12345 = Compose(Next1234, (vl, v2, v3, vd), Nexth, v5)
Nexzt123456 = Compose(Next12345, (vl, v2, v3, v4, v5), Next6, v6)
Next1234567 = Compose(Next123456, (vl, v2, v3, v4, v5, v6), Next7, v7)

vars = (vl, v2, v3, v4, v5, v6, v7)
Init = Initl A Init2 A Init3 A Initd A Initd A Init6 A Init7
Next = Next1234567

b

Spec Init A O|Next],qrs

Example |

Image: Amazon

Behavioral Programming

David Harel, Assaf Marron, Gera Weiss, CACM, 2012

A novel paradigm for programming reactive
systems centered on naturally specified
modular behavior.

BY DAVID HAREL, ASSAF MARRON, AND GERA WEISS

can
mod

Behavioral
Programming

SPELLING OUT THE requirements for a software system
under development is not an easy task, and translating
captured requirements into correct operational software

oe even harder. Many technologies (languages,
eling tools, programming paradigms) and

metl

nodologies (agile, test-driven, model-driven) were

designed, among other things, to help address these
challenges. One widely accepted practice is to formalize
requirements in the form of use cases and scenarios.

Onirvanrl eviendeoe thic annraoach 1nta 1101 o ceanarinc

To illustrate the naturalness of con-
structing systems by composing be-
haviors, consider how children may be
taught, step-by-step, to play strategy
games (See Gordon et al.*). For exam-
ple, in teaching the game of Tic-Tac-
Toe, we first describe rules of the game,
such as:

EnforceTurns: To play, one player
marks a square in a 3 by 3 grid with X,
then the other player marks a square
with O, then X plays again, and so on;

SquareTaken: Once a square is
marked, it cannot be marked again;

DetectXWin/DetectOWin: When
a player places three of his or her marks
in a horizontal, vertical, or diagonal
line, the player wins;

Now we may already start playing.
Later, the child may infer, or the teach-
er may suggest, some tactics:

AddThirdO: After placing two Os in
a line, the O player should try to mark
the third square (to win the game);

PreventThirdX: After the X player
marks two squares in a line, the O play-
er should try to mark the third square
(to foil the attack); and

DefaultOMoves: When other tac-
tics are not applicable, player O should
prefer the center square, then the cor-

Behavioral Programming

TIC-TaC-Toe 1. Board: At each step, an X or an O is marked on the board

VARIABLE board
A

vl = (board)

N =3

Empty = -

Player = {"X", “0"}
Mark = Player

Square = {Empty} U Mark

A

BoardType = board € [(1..N)x (1..N)— Square]
BoardFull = Yi,j € 1.. N : board[i, j| # Empty

A

Initl board = [i, j € 1 .. N — Empty]

A

Next1 14,5 €1.. N, mark € Mark : A board|i, j| = Empty

A board" = [board EXCEPT ![i, j] = mark]

A

Board = Initl A O[Nextl],,

A

TicTacToel = Board

Properties we can state at this point:
THEOREM TicTacToel = OBoardType

A

OnceSetAlwaysSet =
Vi, 7 €1..N:0(F3mark € Mark : board|i, j| = mark = O(board|i, j| = mark))
THEOREM TicTacToel = OnceSetAlwaysSet

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

Tic-Tac-Toe

Behavioral Programming

2. EnforceTurns: X and O play in alternating turns

VARIABLE current,

turn Necessary for some properties we may wish to state
A

v2 = (vl, turn, current)

Other(player) = 1F player = “X' THEN “O” ELSE “X’
Opponent = Other(current)

A

TurnType = A current € Player
A turn € Nat

nit2 = A turn = (
A current = "X X starts
Nexzt2 = A turn’ = turn + 1

A current’ = Opponent
Adi,j €1..N: Aboard|i, j| = Empty
A board'|i, j] = current

EnforceTurns = Init2 A O[Next2],o

TicTacToe2 = TicTacToel A EnforceTurns

Properties we can state at this point:

THEOREM EnforceTurns = TurnType

Alternating = O[current’ # current]ys

THEOREM FEnforceTurns = Alternating

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

3. DetectWin: Detect win or draw and end game

VARIABLE win
v3 = (v2, win)

m =
Behavioral Programming .. : ..
g/znType = win € { Empty } U Result
- ameEnd = win € Result
Tic-Tac-Toe bine £ ([€1 N)iy € 1. N} orbonal
U{[iE1..Ni—><$,i>]::l?€1..N} vertical

U{[iEl..N*—)(i, i>]}U{[i€1..Nr—)<i,N—i+1>]} diagonal

fog = [z € DOMAIN g — f[g[z]]
BoardLine(line) = board o line

Won(player) = Jline € Line : BoardLine(line) =[i € 1 .. N — player]

NoWin = —3Iplayer € Player : Won(player)’
StopGame = board’ = board UNCHANGED board — fails TLC
Init3 = win = Empty
Next3 = V A win = Empty
A V dplayer € Player : Won(player)” A win’ = player
V NoWin A BoardFull" N win’ = “Draw”
V NoWin A ~BoardFull’ N UNCHANGED win
e 3 V A win € Player
-] Statistics A\ UNCHANGED win
A StopGame
State space progress (click column header for graph) DetectWin = Init3 A O[Next3],s
Time Diameter States Found Distinct States ~ «clecloed = TiclacToez n Detect Win
000025 1 O 21 630 5 478 Properties we can state at this point:
00:00:05 5 58,0 4'1 2 THEOREM DetectWin = WinType
00:00:02 0 1 1 GameEnds WhenPlayer Wins = O(win € Player = O[board’ = board]-v3)

GameEnds WhenPlayer Wins = O[(win € Player = UNCHANGED board)|, 3
THEOREM TicTacToe3 = GameEnds WhenPlayer Wins

A

AtLeastb TurnsToWin = win # Empty = turn > 2x N — 1
THEOREM TicTacToe3 = O(AtLeastb TurnsToWin)

GameEnds WhenBoardFull = BoardFull = GameEnd
THEOREM TicTacToe3 = O(GameFEnds WhenBoardFull)

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

Tic-Tac-Toe

Behavioral Programming

4. AddThirdToWin: Add third mark to win

So far, we’ve specified the rules of the game. Now we start adding tactic rules. This one says that
if a player has two marks in a line they should place the third to win.

But we run into a problem: the tactics may be contradictory, and prioritization is required.
b-threads can be prioritized, and we could simulate that mechanism with with maps of boolean
functions, but that would be overly clever, especially in a simple specification such as this. Instead,
we’ll order the rules by their priority, and explicitly model priorities. This means that new rules
would need to be inserted in the sequence of rules into their right position.

A

Count(mark, line) Cardinality({¢ € 1 .. N : BoardLine(line)|i] = mark})

CanWin(player) = Jline € Line : A Count(player, line) = N — 1
A Count(Empty, line) =1

MarkLast(line) = 3i€1..N: ABoardLine(line)[i| = Empty

A board'[line[i]] = current
v4 = 03
Init4 = TRUE
Nextd = CanWin(current) =

dline € Line : Count(current, line) = N — 1 A MarkLast(line)

A

Priorityl = CanWin(current)

A

AddThirdToWin = Init4 N\ O{Nextd],4
TicTacToed = TicTacToe3 N AddThirdToWin

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

Behavioral Programming

Tic-Tac-Toe

5. BlockOpponentFromWinning: Block the other player if they’re about to win

VO = 4
Init5 = TRUE
Nexts = CanWin(Opponent) A —Priorityl =

dline € Line : Count(Opponent, line) = N — 1 N\ MarkLast(line)

Priority2 = Priorityl V CanWin(Opponent)

BlockOpponentFromWinning = Inith A Nexth|,s

TicTacToe5 = TicTacToed N BlockOpponentFrom Winning

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

Behavioral Programming

Tic-Tac-Toe

6. MarkCenterlfAvailable: Prefer center square

A

CenterSquare = (N +1)=+2, (N +1)=2)
CenterFree = board|CenterSquare] = Empty

v6 = V5
Init6 = TRUE
Next6 = (CenterFree A —Priority2) = board'[CenterSquare] = current

Priority3 = Priority2 V CenterFree

MarkCenterIfAvailable = Init6 A O[Next6],q
TicTacToe6 = TicTacToed N MarkCenterIfAvailable

Properties we can state at this point:

A

FirstMarksSquare turn = 1 = board|CenterSquare| #= Empty
THEOREM TicTacToeb = O(FirstMarksSquare)

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

Behavioral Programming

= |
TI C - Ta C - TO e 7. MarkCornerIfAvailable: Prefer corner square

CornerSquares = {1, N} x {1, N}
CornerFree = 3 corner € CornerSquares : board[corner] = Empty

V(7 = 6
Init7 = TRUE
Next?7 = (CornerFree A —~Priority3) =
3 corner € CornerSquares : A board|corner| = Empty

A board'|corner| = current

Priorityd = Priority3 V CornerFree
MarkCornerIfAvailable = Init7 A O[NextT] 7
TicTacToe7 = TicTacToe6 A MarkCornerIfAvailable

Properties we can state at this point:

SecondMarksCorner = turn = 2 = 3 corner € CornerSquares : board|corner| # Empty

THEOREM TicTacToe7 = O(SecondMarksCorner)

The tactics are sufficient to always force a draw
A

AlwaysDraw = (win ¢ Player)
THEOREM TicTacToe7 = OAlwaysDraw

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

Behavioral Programming
Tic-Tac-Toe

Next12 = Compose(Nextl, vl, Next2, v2)

Next123 = Compose(Next12, (vl, v2), Next3, v3)

Next1234 = Compose(Next123, (vl, v2, v3), Nextd, v4)

Next12345 = Compose(Next1234, (vl, v2, v3, v4), Next5, v5)
Next123456 = Compose(Next12345, (vl, v2, v3, v4, v5), Next6, v6)
Next1234567 = Compose(Next123456, (vl, v2, v3, v4d, v5, v6), Next7, v7)

vars = (vl, v2, v3, vd, v5, v6, VT)
Init = Initl A Init2 A Init3 A Initd A Inits A Init6 A Init7
Next = Next1234567

TicTacToe0 = Init A Next|yars N WEF yors (Next)

A

Terminates = win #= Empty) Statistics

THEOREM TZC Tac TO@O — <> Terminates State space progress (click column header for graph)
Time Diameter States Found Distinct States
00:00:06 10 378 62
00:00:05 8 188 44

00:00:02 0] 1 1

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf

Behavioral Programming

Resources

https://pron.github.io/files/TicTacToe.pdf

e Behavioral Programming Home Page: http://www.wisdom.weizmann.ac.il/~bprogram/

* Rethinking Software Systems: A friendly introduction to Behavioral Programming: https://youtu.be/PW8VAWAQUCA

* Bridging Specifications and Code: Behavioral Programming with React: https://vimeo.com/298554103

https://pron.github.io/files/TicTacToe.pdf
https://pron.github.io/files/TicTacToe.pdf
http://www.wisdom.weizmann.ac.il/~bprogram/
https://youtu.be/PW8VdWA0UcA
https://vimeo.com/298554103
http://www.wisdom.weizmann.ac.il/~bprogram/
https://youtu.be/PW8VdWA0UcA
https://vimeo.com/298554103

Example |

Image: Amazon

Proving Possibility Properties

Leslie Lamport, Theoretical Computer Science, 1998

Proving Possibility Properties

Leslie Lamport

Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto, California 94303,
USA

Abstract

A method is described for proving “always possibly” properties of specifications in
formalisms with linear-time trace semantics. It is shown to be relatively complete
for TLA (Temporal Logic of Actions) specifications.

Key words: Branching time, linear time, temporal logic.

1 Introduction

Does proving possibility properties provide any useful information about a
system? Why prove that it is possible for a user to press g on the keyboard

anrnd FAr a ~4 cithaorntiontlxr +A arnroor A1 Fho carroan? \Aa vavr +hat +ha 11a0r ~an

Proving Possibility Properties

Although possibility properties may tell us nothing about a system, we do not
reason about a system; we reason about a mathematical model of a system. A
possibility property can provide a sanity check on our model. Proving that it is
always possible for a press(q) action to occur tells us something useful about
the model. In general, we want to prove that a model allows the occurrence
of actions representing events that the system cannot prevent.

Proving Possibility Properties

Although possibility properties may tell us nothing about a system, we do not
reason about a system; we reason about a mathematical model of a system. A
possibility property can provide a sanity check on our model. Proving that it is
always possible for a press(q) action to occur tells us something useful about
the model. In general, we want to prove that a model allows the occurrence
of actions representing events that the system cannot prevent.

To prove P (P), we find an action M and a conjunction G of fairness prop-
erties such that

Init A O[N], A OO[M], A G = OOP (4)

Checking Possibility Properties

Spec = Init N Next|yors N\ Fairness

PROPOSITION Init N

Next|yqrs N\ <

M yors N G =

OP

Checking Possibility Properties

Init N\

Next

vars /\

vars /\ G

Checking Possibility Properties

Init A\ O{Next|yars N COM|yors N G

VARIABLE ©

A Init N\ O|Next|yars
At = FALSE A Ot = (M A UNCHANGED t)|(yars. ty N WF (4ars, ¢y (f' = TRUE) A G

CO[M]yars = Ot = (M A UNCHANGED t)](yars. ty N WEF (445, 1) (1 = TRUE)

Checking Possibility Properties

VARIABLE ¢

A

Trigger t = FALSE A t' = TRUE

PossibilitySpec —
A Init N\ t = FALSE
A OV A Next
Nt = M
/A UNCHANGED ¢
V Trigger A UNCHANGED vars|yars, ¢)
A G ANWF (yars, 1y (Trigger)

PROPOSITION PossibilitySpec = OO P

Example lli

Image: Amazon

Model-Based Trace-Checking

Yvonne Howard et al., UK Software Testing and Research, 2003

Model-Based Trace-Checking

Yvonne Howard, Stefan Gruner, Andrew M Gravell, Carla Ferreira, Juan Carlos Augusto

DSSE, Department of Electronics and Computer Science, University of Southampton
Southampton, SO17 1BJ
Email: ymh @ecs.soton.ac.uk

Abstract

Trace analysis can be a useful way to discover problems in a program under test.
Rather than writing a special purpose trace analysis tool, this paper proposes that
traces can usefully be analysed by checking them against a formal model using a
standard model-checker or else an animator for executable specifications. These
techniques are illustrated using a Travel Agent case study implemented in J2EE. We
added trace beans to this code that write trace information to a database. The traces
are then extracted and converted into a form suitable for analysis by Spin, a popular
model-checker, and Pro-B, a model-checker and animator for the B notation. This
illustrates the technique, and also the fact that such a system can have a variety of
models, in different notations, that capture different features. These experiments have
demonstrated that model-based trace-checking is feasible. Future work is focussed on
scaling up the approach to larger systems by increasing the level of automation.

1 Introduction

From the tester’s perspective, tracing is perhaps considered a last resort. When a program or
system crashes, it may be necessary to analyse a trace recorded in a log file which can be
tedious. A trace viewer [Helmbold90] can help with this task, but human intuition is still

Conformance in TLA

Implication is refinement/implementation

Model-Based Trace-Checking In TLA+

MODULE System

VARIABLES x, Yy, z, tickTock
A

vars = (x, Y, 2, tickT00k>
TypeOK = Az € Nat

Ny € Nat
Nz € Nat
A tickTock € {“tick”, “tock” }
Init = Az €0..9
ANy e0..9 -] Statistics
Nz =0
A tickTock = "tick” State space progress (click column header for graph)
Next A V A tickTock = “tick” Time Diameter States Found Distinct States
: Y " 00:00:03 3 12,000 2,000
A\ tz,ckTock — “tock 00:00:02 0 100 100
NZ =2+ Yy
A\ UNCHANGED (z, y)
V' A tickTock = "tock”
A tickTock’ = “tick”
ANx' €0..9
ANy €0..9
/\ UNCHANGED 2
Safety 2 Init A D[Neazt]mm Just the safety part of the spec
A

Spec Safety N WF ,4.s(Next)

Model-Based Trace-Checking in TLA*

Trace = {

)
tick"), (1, 0, 1,
tick"), (0, 3, 3,
tick”), (3, 2, 5,
tick"), (5, 2, 7,
tick"), (2, 7, 9

tock”), (1, 1, 1,
tock”), (2, 2, 3,
tock”), (2, 4, 5,
tock”), (4, 4, 7,
tock”), (6, 4, 9,

tick”), (1, 1, 2,
tick”), (2, 2, 4,
tick”), (2, 4, 6,
tick”), (4, 4, 8
tick"), (6, 4, 1

Model-Based Trace-Checking in TLA*

VARIABLES z, vy, z, tickTock
Model = INSTANCE System

VARIABLE % the trace index

Read = Modellvars = Traceli]

Init = i=1A Read

Next = i < Len(Trace) Ni' =i+ 1A Read’
TraceBehavior = Init A (Next| vrodel! vars,

Model-Based Trace-Checking in TLA*

VARIABLES z, vy, 2, tickTock

Model = INSTANCE System
vars = <£E, Y, 2, tiCkTOC/Q If we write Model! vars, TLC complains.

VARIABLE 7 the trace index

“Reading” a record is just vars = Trace|t|, but unfortunately TLC isn’t happy with that, so:
Read = LET Rec = Trace[i] IN z = Rec[l]Ay = Rec[2] Az = Rec|3| A tickTock = Rec|4]

Unfortunately, TLC also isn’t happy with just Read’ — which is equivalent to:
A

ReadNext = LET Rec = Trace[i']IN 2’ = Rec[1] Ay’ = Rec[2] A 2’ = Rec[3] A tickTock’ = Rec4]

. = 1 N\ Read
i < Len(Trace) Ni" =i+ 1 A\ ReadNext

Inat
Next

A
A

TraceBehavior = Init N Next|yars, i)

Model-Based Trace-Checking in TLA*

N tickTock = "tick"
ANi=1
Ax=1
ANy=0
Nz=0

A tickTock = "tock"
ANi=2
Ax=1
ANy=0
Nz=1

TraceBehavior = Model! Safety -

A tickTock = "tock"
Ni=4
Ax=1
ANy=1
Nz=2

-] Statistics

State space progress (click column header for graph)

N tickTock = "tick"

Time Diameter States Found Distinct States Ai=s
00:00:02 20 40 20 Nt
00:00:02 0 1 1

A tickTock = "tock"
ANi=6
Ax=0
ANy=3
Nz=3

Model-Based Trace-Checking in TLA*

A
Traces =

logl —
((1, 0, 0, “tick”), (1, 0, 1 1,1,1 1, 2, “tock”),
(0, 3, 2, "tick™), (0, 3, 3, “tock™), (2, 2, 3, "tick"), (2, 2, 4, “tock”),
(3, 2, 4, “tick"), (3, 2, 5, “ 2.4, 5, "t 4, 6, “tock™)),
log2 +—>

((5, 2, 0, “tick™), (b,
(2,7, 8, "tick™), (2,
log3 —

((3, 4, 0, “tick™), (3, 4,
(2,2, 9, “tick"), (2, 2

, “tock™),
0, “tock™)),

, “tick”), (0, 9, 9, “tock”),
, “tick™), (2, 6, 8, “tock”))|

Model-Based Trace-Checking in TLA*

VARIABLES =, vy, z, tickTock
Model = INSTANCE System
= (z,y, z, tickTock)

vars —

VARIABLE log, the log file

7 the trace index

Trace = Traces|log]
Read = LET Rec = Tracel[i] IN © = Rec[l]Ay = Rec[2] Az = Rec[3] A tickTock = Rec|
ReadNext = LET Rec = Tracel[i'|IN 2’ = Rec[l] Ay’ = Rec[2] A 2/ = Rec[3] A tickTock’ = Rec|

Init = log € DOMAIN Traces Ai = 1 A Read
Next = Ai < Len(Trace) Ni' =i+ 1 A ReadNext
A UNCHANGED log Each trace follows a single log

TraceBehavior = Init N Next|(1og. i, vars)

IS

Model-Based Trace-Checking in TLA*

A tickTock = "tick"

N tickTock = "tick" A tickTock = "tick"

Ai=1 ANi=1 Ni=1
ANx=3 Ax=5 Ax=1
Ny =4 Ny=2 ANy=0
ANz=0 ANz=0 Nz=0
Nlog = "log3" Nlog = "log2" Nlog = "logl"

A tickTock = "tock"
ANi=2
Ax =3
Ny =4
Nz=17

Nlog = "log3"

TraceBehavior = Model! Safe

INvEg s avgy

N tickTock = "tock"
ANi=2
Ax=5
Ny=2
Nz=17

Nlog ="log2"

A tickTock = "tock"
Ni=2
Ax=1
ANy=0
Nz=1

Nlog = "logl"

N tickTock = "tick"
ANi=3
Ax=4
Ny=4
Nz=17

Nlog ="log2"

A tickTock = "tick"
ANi=3
Ax =1
ANy=1
Nz=1

Nlog = "logl"

N tickTock = "tock"

D
D
D
D

N tickTock = "tock"

D
D
D
D
D
D

N tickTock = "tock"
Ni=4
Ax =1
Ny=4
ANz=8
Nlog ="log2"

ANy=1
Nz=2

Nlog = "log3" Nlog = "logl"

AtickTock = "tick"
Ai=35
ANx=2
Ny =2
Nz=9

Nlog ="log3"

AtickTock = "tick"
Ai=35
ANx=2
Ny=17
Nz=38

Nlog ="log2"

A tickTock = "tick"
ANi=5
Ax=0
Ay=3
Nz=2

N tickTock = "tock"
ANi=6
Ax =2
Ny=2
Nz=4

Nlog ="log3"

N tickTock = "tock"
ANi=6
Ax=2
Ny=7
ANz=9

Nlog ="log2"

N tickTock = "tock"
ANi=6
Ax=0
ANy=3
Nz=3

Nlog = "logl"

Model-Based Trace-Checking in TLA*

A

Trace = (0,1,2,3,4,5,6,7,8,9, 10)

Model-Based Trace-Checking in TLA*

A

Trace = (0,1,2,3,4,5,6,7,8,9, 10)

TraceBehavior = Az, vy, tickTock : Model! Safety

Model-Based Trace-Checking in TLA?

VARIABLES z, 1

tvars = (z, i)

Read = LET Rec = Traceli] IN 2z = Rec
ReadNext = LET Rec = Traceli']IN 2’ = Rec
InitTrace = i = 1A Read

NextTrace = i < Len(Trace) A i’ =i+ 1 A ReadNext

Model-Based Trace-Checking in TLA*

VARIABLES z, 1

tvars = (z, i)

Read = LET Rec = Traceli] IN 2z = Rec
ReadNext = LET Rec = Traceli']IN 2’ = Rec
InitTrace = i = 1A Read

NextTrace = i < Len(Trace) A i’ =i+ 1 A ReadNext

VARIABLE

Init = InitTrace A tt = 0
Next = V Ai < Len(Trace)
ANttt =1 — tt
A Vit =0 A NextIrace
V it =1 A UNCHANGED tvars
V UNCHANGED (tt, tvars) So that we don’t get a deadlock error in TLC

TraceBehavior = Init N Next| . 5.)

Model = INSTANCE System WITH tickTock < IF tt = 0 THEN “tick’ ELSE “tock’,

r < IF tt =0 THEN 2z ELSE 2z — 1,
y < 1

Model-Based Trace-Checking in TLA*

TraceBehavior = A x, vy, tickTock : Model! Safety

/

Model-Based Trace-Checking in TLA*

TraceBehavior = A x, vy, tickTock : Model! Safety

GueD

NOT ATHEOREM Model! Safety N\ TraceBehavior = FALSE

NOT ATHEOREM Model! Safety N TraceBehavior = FALSE

Model-Based Trace-Checking in TLA*

vars = (z, vy, z, tickTock)
tvars = (z,)

INSTANCE Svystem

D

Model

ComposedSpec = Model! Safety N\ TraceBehavior =
A Model! Init N\ Init’Trace
A O[Compose(Model! Next, vars, NextTrace, tvars)| yars, tvars)

Model-Based Trace-Checking in TLA*

TraceFinished = i > Len(Trace)

Check = ComposedSpec = O(—TraceFinished)

Model-Based Trace-Checking in TL

TraceFinished = i > Len(Trace)

(= TraceFinished)

Check = ComposedSpec =

-1 Statistics

State space progress (click column header for graph)

Time Diameter States Found Distinct States
00:00:02 20 5,704 1,057
00:00:02 0 100 100

-] Statistics

State space progress (click column header for graph)

Time Diameter States Found Distinct States
00:00:03 3 12,000 2,000
00:00:02 0 100 100

Invariant ~TraceFinished is violated.

+] Error-Trace Exploration

Error-Trace

Name

v & <|nitial predicate>

E

B tickTock

HE B B B @

HE B B B @

HE B B B @

HE B B B @

HE B B B B

E

B tickTock

& <Action line 377,

tickTock

X

y

z

& <Action line 377,

tickTock

X

y

z

& <Action line 377,

tickTock

X

y

z

& <Action line 377,

tickTock

X

y

z

& <Action line 377,

tickTock

X

y

z

& <Action line 377,

col1t...

col 1t...

col 1t...

col1t...

col1t...

col1t...

Value

State (hum = 1)
1

"tick"

0

1

0

State (hum = 2)
2

“tock"

0

1

1

State (hum = 3)
2

“tick"

0

2

1

State (hum = 4)
3

“tock"”

0

2

2

State (hum = 5)
3

“tick"

0

3

2

State (hum = 6)
4

“tock"

0

3

3

State (hum =7)
4

“tick"

Model-Based Trace-Checking in TLA*

Resources

https://pron.github.io/files/Trace.pdf

https://github.com/tlaplus/CommunityModules

https://github.com/lemmy/BlockingQueue

https://pron.github.io/files/Trace.pdf
https://pron.github.io/files/Trace.pdf
https://github.com/tlaplus/CommunityModules
https://github.com/tlaplus/CommunityModules
https://github.com/lemmy/BlockingQueue
https://github.com/lemmy/BlockingQueue

Conjunction
Capers

A TLA* Truffle

Image: Amazon

