File:Erays.png

From Wikimedia Commons, the free media repository
Revision as of 19:10, 2 May 2011 by HereToHelp (talk | contribs) ({{int:filedesc}}: svg please)
Jump to navigation Jump to search

Original file (1,000 × 500 pixels, file size: 17 KB, MIME type: image/png)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

Description
English: polar coordinate system and mapping from the complement (exterior) of the closed unit disk to the complement of the filled Julia set for c=-2
Polski: Układ współrzędnych biegunowych oraz funkcja odwzorowująca dopełnienie dysku jednostkowego na dopełnienie zbioru Julia.
Date  Edit this at Structured Data on Commons
Source Own work by uploader in Maxima and Gnuplot with help of many people ( see references )
Author Adam majewski
This image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.


It is recommended to name the SVG file “Erays.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.

Long description

Here are two diagrams :

  • on the left is dynamical plane for
  • on the right is dynamical plane for

On left diagram one can see :

Right diagram is image of left diagram under function (the Riemann map) which maps the complement (exterior) of the closed unit disk to the complement of the filled Julia set

For  :

It is :

  • a simplest case for analysis,
  • only one case when formula for computing is known.

maps [1]:


I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
You may select the license of your choice.

Maxima source code

R_max:5;
R_min:1;
dR:R_max-R_min;
psi(w):=w+1/w;
NmbrOfRays:10;
iMax:100; /* number of points to draw */
GiveCirclePoint(t):=R*%e^(%i*t*2*%pi); /* gives point of unit circle for angle t in turns */
GiveWRayPoint(R):=R*%e^(%i*tRay*2*%pi); /* gives point of external ray for radius R and angle tRay in turns */ 
/* f_0 plane = w-plane */
/* unit circle */
R:1;
circle_angles:makelist(i/(10*iMax),i,0,10*iMax-1); /* more angles = more points */
CirclePoints:map(GiveCirclePoint,circle_angles);
/* external circles */
circle_radii:makelist(R_min+i,i,1,dR);
WCirclesPoints:[];
for R in circle_radii do 
  WCirclesPoints:append(WCirclesPoints,map(GiveCirclePoint,circle_angles));
/* external w rays */
ray_radii:makelist(R_min+dR*i/iMax,i,0,iMax);
ray_angles:makelist(i/NmbrOfRays,i,0,NmbrOfRays-1);
WRaysPoints:[];
for tRay in ray_angles do 
  WRaysPoints:append(WRaysPoints,map(GiveWRayPoint,ray_radii));
/* f_c plane = z plane = dynamic plane */
/* external z rays */
ZRaysPoints:map(psi,WRaysPoints);
/* Julia set points */
JuliaPoints:map(psi,CirclePoints);
Equipotentials:map(psi,WCirclesPoints);
load(draw); /* Mario Rodríguez Riotorto   http://www.telefonica.net/web2/biomates/maxima/gpdraw/index.html */
draw(file_name = "erays",
  pic_width=1000, 
  pic_height= 500,
  terminal  = 'png,
  columns  = 2,
  gr2d(title = " unit circle with external rays & circles ",
   point_type = filled_circle,
   points_joined =true,
   point_size    =  0.34,
   color         = red,
   points(map(realpart, CirclePoints),map(imagpart, CirclePoints)),
   points_joined =false,
   color         = black,
   points(map(realpart, WRaysPoints),map(imagpart, WRaysPoints)),
   points(map(realpart, WCirclesPoints),map(imagpart, WCirclesPoints))
   ),
  gr2d(title      = "Image under psi(w):=w+1/w; ",
   points_joined =true,
   point_type = filled_circle,
   point_size    =0.34,
   color         = blue,
   points(map(realpart, JuliaPoints),map(imagpart, JuliaPoints)),
   points_joined =false,
   color         = black,
   points(map(realpart, ZRaysPoints),map(imagpart, ZRaysPoints)),
   points(map(realpart, Equipotentials),map(imagpart, Equipotentials))
   ) 
 );


References

  1. Peitgen, Heinz-Otto; Richter Peter (1986) The Beauty of Fractals, Heidelberg: Springer-Verlag ISBN: 0-387-15851-0.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:50, 4 November 2008Thumbnail for version as of 14:50, 4 November 20081,000 × 500 (17 KB)Soul windsurfer (talk | contribs){{Information |Description= More angles |Source= |Date= |Author= |Permission= |other_versions= }}
14:30, 4 November 2008Thumbnail for version as of 14:30, 4 November 20081,000 × 500 (12 KB)Soul windsurfer (talk | contribs){{Information |Description={{en|1=polar coordinate system and mapping from the complement (exterior) of the closed unit disk to the complement of the filled Julia set for c=-2}} {{pl|1=Układ współrzędnych biegunowych oraz funkcja odwzorowująca dope

The following page uses this file: