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Abstract
In the context of adoption, evaluating prospective adoptive parents using psychometric assessments such as the Minnesota
Multiphasic Personality Inventory (MMPI) questionnaire is essential for understanding their psychological profiles. However,
interpreting such complex data can be both challenging and time-consuming. In this study, we propose a meta-analysis
tool to assist psychologists in their initial interpretation and analysis of MMPI-2 results by providing a clear data-driven
visualization of key psychometric scales. Our system employs unsupervised learning techniques to uncover meaningful
patterns and relationships in the data with minimal prior input. Specifically, a genetic algorithm is used to optimize clustering
quality by selecting the most relevant psychological scales, enhancing cluster separation, and improving data interpretability.
We also explored and compared the effectiveness of several clustering algorithms, including K-Means, Gaussian Mixture
Model, and Spectral Clustering, to maximize the capabilities of our tool.
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1. Introduction
Adoption is the process whereby individuals or families
assume the parenting of a child who is not biologically
their own. According to specific studies [1, 2, 3, 4], some-
times adoptees could have problems in psychological de-
velopment, social relationships, and establishing a sense
of identity. Therefore, finding suitable adoptive parents
is crucial for the well-being of the child.

For that reason, standardized psychometric tests [5, 6,
7, 8] are used to assess the personality and psychopathol-
ogy traits of prospective adoptive parents. An example of
such a test is the Minnesota Multiphasic Personality In-
ventory (MMPI) psychological test [9], proposed in 1943.
Over the years, several variations of the test have been
developed. The most commonly used versions today
include the MMPI-2 [10], which was published in 1989
specifically for adults; the MMPI-A [11], designed for ado-
lescents and introduced in 1992; the MMPI-Restructured
Form, a condensed version of the MMPI; and the recently
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released MMPI-3 [12], published in 2020.
For the evaluation of the results, the set of most impor-

tant psychometric scales to be analyzed is usually hand-
picked by field experts as it is highly task-dependent. For
that reason, in this study, we propose an unsupervised
learning algorithm capable of clustering the data gath-
ered with the MMPI-2 test using as little as possible prior
knowledge during the preprocessing and postprocessing
of the data.

The clustering [13] process is an unsupervised learning
technique designed to identify similarities within data
without predefined categories. In our case, by analyzing
the geometric properties of the data, the goal is to capture
as many similarities as possible, even when the under-
lying distribution is not known a priori. Our approach
involves the development of a machine learning based
[14, 15, 16, 17] genetic algorithm [18, 19, 20, 21] aimed at
optimizing both the minimum centroid distance and the
minimum inter-cluster distance, enhancing the cluster-
ing quality. We also conducted experiments with three
different clustering algorithms (K-Means [22, 23, 24, 25],
Gaussian mixture model [26, 27], and Spectral clustering
[28]) to determine the most suitable one for our system.
In particular, given that the number of clusters is not
predetermined, careful interpretation of the results is
necessary to attribute meaningful explanations to each
cluster.
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1.1. Roadmap
This paper is organized as follows: first, an overview
of the MMPI-2 questionnaire, its scales, and traditional
MMPI clustering methods is presented in Section 2. Next,
Section 3 provides a detailed description of the core tech-
niques used in our algorithm. In Section 4, we describe
the dataset employed in this experiment. Following this,
Section 5 offers a comprehensive explanation of the sys-
tem we developed and its evaluation process. The clus-
tering results produced by our system are then presented
in Section 6. Finally, Section 7 summarizes the article’s
content and outlines potential areas for future improve-
ment.

2. State of the Art

2.1. MMPI-2 Overview
The MMPI-2 is used as a personality assessment tool
in clinical and non-clinical contexts to discern psy-
chopathologies and behavioral traits in individuals. It
comprises a series of true/false questions, known as items,
which are grouped into various scales designed to mea-
sure specific aspects of the subject’s disposition.

Validity scales scrutinize the subject’s approach to
the test and demeanor, identifying inconsistencies or
attempts to manipulate responses. Among them, the Lie
scale (L) evaluates honesty during the test, while the
K scale assesses defensive tendencies and reluctance to
acknowledge personal issues.

In addition, the MMPI incorporates ten primary clini-
cal scales designed to detect a spectrum of psychological
disorders, encompassing Hypochondriasis (Hs), Depres-
sion (D), Hysteria (Hy), Psychopathic Deviate (Pd), Mas-
culinity/Femininity (Mf), Paranoia (Pa), Psychasthenia
(Pt), Schizophrenia (Sc), Hypomania (Ma), and Social
Introversion (Si). Furthermore, content scales target spe-
cific personal attitudes, including anger issues (ANG),
low self-esteem (LSE), family problems (FAM), and work-
related challenges (WRK), among others.

Additionally, supplemental scales are used in combina-
tion with the content scales to determine if some symp-
toms are attributed to alternative potential causes such
as controlled hostility, alcoholism, and more.

Moreover, Psy-5 scales measure dimensional traits
of personality disorders, including Aggressiveness, Psy-
choticism, Constraint, Neuroticism, and Extraversion.

Finally, to ensure uniform interpretation across all
scales, scores are transformed into T-scores, ranging from
30 to 120. Typically, scores exceeding 65 are considered
significant and warrant further examination.

2.2. Traditional MMPI Clustering
Methods

Following this concise overview of the MMPI-2 test, prior
attempts to cluster datasets derived from this assessment
have typically involved manually selecting sets of the
aforementioned psychometric scales.

In [29], an algorithm very similar to K-Means (orig-
inally described in [30]) was applied to data obtained
from MMPI-2 tests administered to women in their third
trimester of pregnancy. The objective was to determine
the personality characteristics of women who develop
perinatal depression.

Similarly, in [31], clusters were generated to identify
groups of chronic low-back pain patients based on per-
sonality traits identified through the MMPI-2 test.

Another notable study is presented in [32], where the
authors investigated individuals trained to simulate Post-
traumatic Stress Disorder (PTSD). They conducted cluster
analysis on MMPI-2 clinical and validity scales, identi-
fying two well-fitting cluster solutions. Discriminant
and multivariate analyses of variance (MANOVAs) were
employed to evaluate the clusters, revealing significant
differences in MMPI-2 content scales. Specifically, de-
mographic variables had minimal influence on cluster
membership, but there were discrepancies in the reported
clarity of PTSD education materials among clusters.

In [33], the authors investigated the MMPI-2-RF valid-
ity scales’ effectiveness in profiling chronic pain patients.
To identify clusters, a two-step exploratory cluster anal-
ysis was conducted, employing the auto-clustering selec-
tion feature in IBM SPSS 21 to select the optimal cluster
solution. Cluster analysis revealed two distinct patient
clusters. Cluster 1 displayed valid responses and exhib-
ited elevations primarily on somatic and low positive
emotion scales. In contrast, Cluster 2 comprised patients
who overreported on validity scales and demonstrated
elevations on multiple restructured clinical scales.

3. Core Techniques in Our
Algorithm

3.1. Genetic Algorithm
All cited works in this paper employ clustering tech-
niques with input from psychology experts to select rel-
evant psychometric scales for analysis. In contrast, our
system autonomously selects key scales using a genetic
algorithm [34]. Genetic algorithms (GAs) are adaptive
search procedures widely utilized in Artificial Intelli-
gence since the 1970s [35, 36, 37]. Drawing inspiration
from biological evolution, GAs simulate aspects of the
process of natural selection proposed by Charles Darwin.
They involve successive generations of candidate solu-
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tions undergoing reproduction, mutation, and selection
to converge toward optimal or near-optimal solutions.
Genetic algorithms have a broad range of applications
[38, 39, 40]; any problem that can be formalized as a
string of 0s and 1s can potentially be optimized using
this approach.

In summary, a general genetic algorithm workflow is
the following: firstly, an initial population of individuals
(each represented as a string of 0s and 1s) is randomly
generated. Next, a fitness value is assigned to each in-
dividual in the population according to a certain fitness
function. Then, multiple pools of individuals are ran-
domly selected, and a certain number of individuals are
chosen based on their fitness value to serve as parents
for the next population from each pool. For each pair of
parents, two children are produced using the following
criteria: a crossover index is randomly selected and deter-
mines how much of the first part of one parent’s string is
merged with the second part of the other parent’s string,
and vice versa. Finally, each bit of the generated children
is flipped according to a certain probability simulating
the mutation process. This algorithm continues until a
specific number of consecutive iterations occur without
any improvement in the best fitness value. When the al-
gorithm halts, the latest best individual found is selected
as the optimal solution discovered thus far.

3.2. Clustering Algorithms
Clustering algorithms belong to the unsupervised learn-
ing domain of artificial intelligence and are designed
to unveil concealed patterns and organize data points
into coherent clusters based on their intrinsic similari-
ties. These algorithms rely on different distance metrics
like Euclidean distance, cosine similarity, and the Jac-
card coefficient to quantify the resemblance between
data points. The typical representation of each resulting
cluster involves a centroid, acting as a central reference
point summarizing the collective traits of its constituent
data points. These algorithms can be broadly categorized
into several methodologies. Partitioning methods, exem-
plified by K-means, iteratively segment the dataset into
non-overlapping clusters, ensuring each data point exclu-
sively belongs to one cluster. Hierarchical methods, such
as Agglomerative clustering, construct a hierarchical ar-
rangement of clusters by iteratively merging or dividing
existing clusters based on similarity criteria, culminating
in a tree-like structure. Model-based methods, on the
other hand, assume that the data is generated by a proba-
bilistic model, such as a Gaussian Mixture Model (GMM),
allowing for the probabilistic modeling of clusters.

In our study, we focus on evaluating and comparing
the performance of K-means, Gaussian Mixture Model,
and Spectral Clustering.

In detail, K-Means partitions samples into a prede-

fined number of clusters through an iterative process:
randomly selecting K samples as initial clusters (and cen-
troids), assigning each sample to the cluster with the
nearest centroid, recomputing centroids, and terminat-
ing the process if no data points have switched clusters
or if the distance between new and old centroids falls
below a certain threshold.

Gaussian Mixture Model (GMM) endeavors to fit a
specified number (N) of normal distributions to dis-
tinct subsets of the original dataset by estimating their
mean and variance parameters using the Expectation-
Maximization (EM) algorithm [41].

Spectral Clustering, on the other hand, exploits the
spectral properties of the affinity matrix to capture the
underlying data structure, particularly in scenarios where
traditional clustering techniques may struggle with non-
linear or intricate relationships between data points. In
particular, it leverages techniques such as spectral decom-
position (eigenvalue decomposition) or singular value
decomposition (SVD), to transform data into a lower-
dimensional space and subsequently employs a standard
clustering algorithm, such as K-means, to partition the
data points into clusters.

4. Dataset
In this study, we utilized a dataset comprising 202 en-
tries and 813 features for each entry. These features
encompass anamnestic information, boolean answers to
the MMPI’s questions, and T-scores. Figures 1, 2, and
3 provide an overview of the statistics regarding some
of the anamnestic information and the clinical and con-
tent scales, calculated as T-scores, of the subjects in our
dataset. For preprocessing, we removed features with
either a single value or a predominant value (e.g., ‘Citizen-
ship’) and those with high variability (e.g., ’Profession’).
Additionally, we dropped the gender column since MMPI
scales have the same interpretation for both men and
women. The boolean answers to the MMPI’s questions
were also discarded, as the normalized T-score values
automatically encode this information.

To ensure data validity, according to the guidelines
provided by the authors of the MMPI test, applicants
with Lie scale scores exceeding 75 were excluded. Ad-
ditionally, none of the test-takers reached the cutoff of
30 unanswered questions on the ’cannot say’ scale that
should invalidate the test. We also examined other va-
lidity scales such as F, TRINT, and VRINT, but no en-
tries were excluded based on these scales. Applicants
with high values indicating alcohol or drug issues were
marked as rejected in advance.

The remaining data, consisting of 191 entries with 120
feature columns, was scaled to ensure all features had
the same magnitude within the range [0,1]. This scaling
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Figure 1: This image displays some of the anamnestic infor-
mation found in our dataset. From the top left to the bottom
right, we have: ’Profession’, ’Psychiatric Patients’, ’Citizen-
ship’, ’Gender’, ’Marital Status’, ’Education’, ’PMA’, and ’Age’.

Figure 2: This image displays statistics for various clinical
scales, calculated as T-values, found in the dataset.

Figure 3: This image displays statistics for various content
scales, calculated as T-values, found in the dataset.

was crucial to prevent the overwhelming importance of
certain features, particularly the MMPI scales, compared
to the boolean values.

5. Methodology and System’s
Evaluation

For clustering the dataset using a genetic algorithm, each
feature in our dataset has been encoded with a binary
digit [0,1]. This encoding allows each individual to rep-
resent a unique combination of features. Features as-
signed the value 1 will be considered in the clustering
process, while those denoted with 0 will be discarded.
Each individual is then evaluated using two different fit-
ness functions: the minimum inter-cluster distance and
the minimum centroid distance.

Theminimum inter-cluster distance calculates themin-
imum distance between two data points belonging to
different clusters through the following formula:

Table 1
This table presents the results achieved by combining various
clustering algorithms and fitness functions within our genetic
algorithm applied to a synthetically generated dataset (an
example is displayed in Fig. 4). The ’Accuracy’ column repre-
sents the proportion of correctly classified data points, while
the ’Iteration’ column indicates the number of iterations the
algorithm took to achieve the best result.

Clustering Algorithm Fitness Function Accuracy Iteration

K-Means Minimum Inter-Cluster Distance 79,5% 6
K-Means Minimum Centroid Distance 81.4% 5
GMM Minimum Inter-Cluster Distance 68,8% 5
GMM Minimum Centroid Distance 72,6% 7

Spectral Analysis Minimum Inter-Cluster Distance 62,3% 23
Spectral Analysis Minimum Centroid Distance 64,7% 25

𝑉 = min
𝑠𝑖∈𝐶𝑖
𝑠𝑗∈𝐶𝑖
𝑖≠𝑗

{𝑑(𝑠𝑖, 𝑠𝑗)} (1)

where 𝑠𝑖 and 𝑠𝑗 are two distinct data points belong-
ing to different clusters 𝐶𝑖 and 𝐶𝑗, respectively, and 𝑑(., .)
represents the Euclidean distance function.

The minimum centroid distance measures the distance
between the centroids of different clusters through the
following formula:

𝑉 = min
𝑖≠𝑗

{𝑑(𝑐𝑖, 𝑐𝑗)}, 𝑐𝑖 =
∑
𝑠𝑖∈𝐶𝑖

𝑠𝑖

|𝐶𝑖|
(2)

where 𝑠𝑖 and 𝑐𝑖 represents a data point and the cen-
troid of the cluster 𝐶𝑖, respectively, and 𝑑(., .) denotes the
Euclidean distance function.

To determine the best combination of the clustering
algorithm and fitness function, we evaluated all their pos-
sible combinations on a synthetically generated dataset.
This dataset was generated by sampling data points from
three normal distributions with closely located centroids
and large variance, making the clustering more challeng-
ing. Specifically, we used three 250-dimensional Gaus-
sian distributions with random means in the range [-
1.25,1.25] and a standard deviation equal to 20. To visual-
ize the synthetic dataset in two dimensions (refer to Fig.
4 for an example of the data that can be produced), we
applied the Principal Component Analysis (PCA) dimen-
sionality reduction algorithm [42]. The best results were
achieved by combining K-means with minimum centroid
distance, resulting in an accuracy of 81,4%. Results from
other combinations are presented in Table 1, while in Fig.
5 a visual representation of the results is proposed.

6. Results
To determine the optimal number of clusters for the K-
Means clustering algorithm on the analyzed dataset, we
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Figure 4: Example of a 2D synthetically generated dataset
that we have used to evaluate the best combination of cluster-
ing algorithm and fitness function for our genetic algorithm.
This dataset was sampled from three 250-dimensional Gaus-
sian distributions with randommeans in the range [-1.25, 1.25]
and a standard deviation of 20. To visualize the data in 2D, we
applied the Principal Component Analysis (PCA) algorithm
to reduce the dimensionality.

Figure 5: This image represents the accuracy obtained by
different clustering algorithms tested on a synthetic dataset
to determine the most suitable algorithm for our work. Specif-
ically, we compared K-means, Gaussian Mixture Model, and
Spectral Clustering, all using the Minimum Centroid Distance
as the fitness function. The results showed that K-means was
the best algorithm, achieving an accuracy of 81.4% compared
to the ground truth.

employed the Silhouette Analysis. This technique in-
volves computing the Silhouette Coefficient 𝑠 for each
element in the dataset, defined by:

𝑠 = 𝑏 − 𝑎
max(𝑎, 𝑏)

(3)

Figure 6: This image represents the Silhouette scores (y-axis)
obtained by our algorithm using different numbers of clusters
(x-axis). Higher Silhouette scores indicate denser and better-
separated clusters. For our dataset, the optimal score was
achieved using 2 clusters, as highlighted by the vertical red
dashed line.

where 𝑎 is the mean distance between a sample and all
other points in the same cluster, and 𝑏 is the mean dis-
tance between a sample and all points in the nearest
cluster. The Silhouette Score, which is the average of
the Silhouette Coefficients for all elements in the dataset,
indicates the quality of clustering. A higher mean Silhou-
ette Score suggests denser and better-separated clusters.
In our study, the optimal number of clusters found for
our dataset was 2, as shown in Fig. 6. The Fig. 7 provides
a comprehensive overview of Silhouette coefficients for
different numbers of clusters, demonstrating the decline
in clustering quality as the number of clusters increases.

Executing the PCA to the obtained clusters generates
the plot displayed in Fig. 8. It can be seen that on the
first principal component (x-axis) the two clusters are
well distinguished while on the second principal com-
ponent (y-axis) they both spread homogeneously even
if the elements belonging to the green cluster are more
concentrated around the zero value of that axis.

In a more detailed analysis, Fig. 9 illustrates the intra-
cluster average values for the four main group scales:
Validity, Clinical, Content, and Supplemental. As ob-
served, the elements in the green cluster consistently
show lower average values compared to those in the red
cluster, with the exception of the Validity scale. This
reversal in trend may prompt psychologists to further ex-
amine these two clusters, as the scales within the Validity
group are designed to indicate how reliable and truthful
the test responses are. However, the differences between
the clusters are minor, and both demonstrate a high level
of reliability in responses, with few outliers. One of the
key insights from this analysis is the notable difference in
the Content scale, suggesting that individuals in the red
cluster may exhibit more psychological issues compared
to those in the green cluster.

A similar trend, observed in Fig. 8, is also highlighted
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Figure 7: Starting from the top, each plot in this image rep-
resents the Silhouette coefficients of all the elements in the
dataset, obtained by our algorithm using 2, 3, and 4 clusters,
respectively. The y-axis displays the dataset elements divided
by the cluster to which they belong, while the x-axis shows
the Silhouette coefficient. The vertical red dashed line repre-
sents the Silhouette score and it is evident that the clustering
quality declines as the number of clusters increases.

in Fig. 11, where the x-axis represents the average values
of the Content scale and the y-axis the average values of
the Clinical scale for each element in the dataset.

Finally, Fig. 10 provides a deeper analysis of the
weights associated with the psychological scales for the
first and second principal components of the PCA. From
this plot, it is clear that for the elements in the green clus-
ter, high values on scales related to the Content group
correspond to highly positive weights, while low values
correspond to negative weights. In contrast, the red clus-
ter exhibits an inverted trend. For the second principal
component, the red cluster elements are more evenly
distributed across the dimension, while the green cluster
elements generally show lower values across the scales.
From these graphs, psychology experts can gain insights
into the most relevant psychological scales within the

Figure 8: This image displays the results of the Principal
Component Analysis (PCA) in two dimensions on the ana-
lyzed dataset, highlighting the two clusters (red and green)
identified by our algorithm.

Figure 9: This image displays the four main group scales
(Validity, Clinical, Content, and Supplemental) on the x-axis,
and the y-axis presents the intra-cluster average values for
each of these psychological scales for the two clusters (red
and green) identified by our algorithm.

dataset, thereby speeding up and simplifying the initial
data analysis.

7. Conclusion
In this study, we proposed a novel approach for analyzing
MMPI-2 profiles of prospective adoptive parents using
evolutionary clustering techniques. By incorporating
a genetic algorithm to autonomously select the most
relevant psychometric scales, we aimed to streamline
the clustering process and reduce reliance on manual
selection by domain experts.

By employing a genetic algorithm to automatically
select the most relevant psychological scales, combined
with K-Means clustering based on minimum centroid
distance and Silhouette analysis, we determined that two
clusters were the optimal choice to describe the analyzed
dataset.

These clusters displayed distinct psychological profiles,
with notable differences particularly in the content and
clinical scales, which may serve as valuable insights for
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Figure 10: These two plots display, for the two clusters identified by our algorithm (red and green), the intra-cluster average
value for each single psychological scale in the dataset on the y-axis, and the weights associated with the first principal
component in the top plot and the second principal component in the bottom plot on the x-axis.

Figure 11: This image shows the average values of the content
scale on the x-axis and the clinical scale on the y-axis for each
element in the dataset. The division along the x-axis is clearly
visible, while on the y-axis, elements in the green cluster tend
to be more concentrated, whereas the red cluster elements
are more evenly distributed across the clinical scale.

psychologists when assessing potential adopters.
The implications of our approach are twofold: first, it

offers a data-driven methodology that enhances the ini-
tial interpretation of complex MMPI-2 profiles, assisting
psychologists in identifying meaningful patterns without
prior assumptions. Second, it underscores the potential
of unsupervised learning techniques, such as genetic al-
gorithms, in improving psychometric data analysis by
automating feature selection and optimizing clustering
quality.

Future work may involve expanding the dataset and

further refining the genetic algorithm to handle larger
and more diverse MMPI profiles. Additionally, exploring
the integration of other clustering methods and incorpo-
rating newer versions of the MMPI test, such as MMPI-3,
may provide further improvements and adaptability in
diverse psychological evaluations.
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