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Abstract
Visual modeling, particularly Data Flow Diagrams (DFDs), plays an essential role in modern software
development, aiding in the design, understanding, and communication of system structures and potential
security and privacy threats. Despite their importance, the manual creation of visual models is time-
consuming highlighting the need for automation in the generation of DFDs from user requirements.
Automating the generation of DFDs presents a significant challenge, especially in accurately interpreting
user requirements and abstracting them into correct and complete diagram elements. The complexity of
this task is compounded by the need for semantic accuracy and the ability to facilitate visual editing
for human intervention. This study explores the use of Large Language Models (LLMs) to automate
DFD generation, utilizing GPT-3.5, GPT-4, Llama2, and Mixtral models. This study emphasizes human
oversight and employs an open-source diagramming tool to ensure that diagrams are accurate, complete,
and editable. The findings reveal GPT-4’s superior capability in generating complete DFDs, with signifi-
cant progress from open-source models like Mixtral, indicating a viable path toward automated visual
modeling. This approach advances scalable automation in creating visual software models, with broader
implications for automating other diagram types.
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1. Introduction

Visual modeling is an essential part of modern software development. It facilitates the design
and understanding of systems while improving communication and documentation [1, 2]. One
application of visual modeling is identifying potential security [3, 4] and privacy threats [5, 6]
in software systems. One of the prominent diagrams for this case is the Data Flow Diagram
(DFD). DFD illustrates data movement within processes, stakeholders, and the data store. DFDs
also provide an understanding of system operations at multiple levels of granularity. They have
proven effective in characterizing the system in privacy threat analysis [5]. In addition, the
standard syntax of DFD has been extended [4] and adapted to explicitly model security [3] and
privacy concerns [6].
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However, manually creating visual models such as DFD is a time-consuming process[7],
which can be a challenge when conducting threat modeling[7]. To address this issue, attempts
have been made to automate creating DFDs from user requirements[8]. However, accurately
interpreting and abstracting user requirements into DFD elements remains challenging using
standard NLP approaches such as POS tagging and dependency tree [9]. The emergence of Large
Language Models (LLMs) provides new opportunities to address the challenges of understanding
semantic nuances.

Novel LLMs have garnered increased interest within the software engineering domain, par-
ticularly in the automation of model creation[10]. Although LLMs have demonstrated potential
in converting Unified Modeling Language (UML) diagrams into code-based diagrams like
PlantUML[10], concerns persist regarding the semantic accuracy of the generated models[10].
Furthermore, code-based diagrams present limitations regarding accessibility for visual edit-
ing. This feature is particularly important for individuals without coding experience or when
communicating complex models to clients.

This study explores the potential of Large Language Models (LLMs) in assisting software
development teams with diagram generation, focusing on the creation of Data Flow Diagrams
(DFDs) by leveraging the capabilities of widely used LLMs, including GPT-3.5 and GPT-4,
alongside two of the most proficient open-source models currently available, Mixtral-8x7B
and Llama2. The objective is to produce diagrams that are not only accurate and complete
but also editable using the open-source diagramming tool1. Recognizing the limitations of
semantic validity in previous studies[10], the importance of human oversight in the process is
emphasized. This research addresses several questions related to the effectiveness of LLMs in
producing usable diagrams for software development teams. Through empirical investigation,
the completeness and correctness of the DFDs generated by these models are assessed. Specifically,
this study aims to answer the following questions:

RQ1 How do the Large Language Models (GPT-3.5, GPT-4, Mixtral-8x7B, and Llama 2) compare
in terms of generating syntactically correct Data Flow Diagrams (DFDs)?

RQ2 How well do the DFDs generated by these Large Language Models represent the system’s
functionalities when compared to each other?

To address these research questions, the paper first outlines the syntactic rules specific to
DFDs in Section 2. The proposed methodology is introduced in Section 3. The experiments
conducted and the findings are described in Section 4. The threats to the validity of the approach
are discussed in Section 5. Finally, the study concludes and summarizes the insights in Section
6.

2. Data Flow Diagram

Data Flow Diagrams (DFD) illustrate the movement of data between external entities, processes,
and data stores within a system and serve as a tool to reveal relationships between system
components and express functional requirements for complex systems [11]. The syntax and

1https://app.diagrams.net/
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semantics rules that govern component connections and data transformations are fundamental
to DFD correctness and ensure consistency across diagrams through specific guidelines [12].
These rules include:

1. External Entity: Each external entity must have at least one input or output data flow
that facilitates interaction with the system.

2. Process: Each process within the DFDmust have at least one input and/or output dataflow
to ensure that processes are not isolated. Output flows typically have different names
than input flows to distinguish the types of information being handled clearly.

3. Data flow direction: Data flows should move in one direction only, preventing cyclic or
backward flows that might make the diagram difficult to interpret.

4. Connection to Process: Each data flow must connect to at least one process, providing a
clear path for data movement within the system and ensuring that data does not exist in
isolation.

5. Data Store Movement: Data cannot move directly from one data store to another; it must
be processed by a process, emphasizing the role of processes in data transformation and
movement.

There are also different levels of DFD; the higher the level, the more detail there is. In addition
to syntactic rules, semantic rules ensure consistency between levels by requiring that the names
of external entities and the data flow between processes and external entities remain the same
across levels. [12]. In this study, the focus is solely on level one of the DFD.

3. Proposed Approach

This section presents the proposed approach of how to use large language models (LLMs) to
transform a set of user stories into a DFD. Figure 1 summarizes the workflow of the proposed
approach.

The process begins when a development team defines a user story set. Since the DFD
is intended to represent the data flow clearly, overcrowding it with too many elements or
connections can lead to confusion and reduce its readability. Therefore, an optional grouping
of functionalities is recommended. The diagram shows an example from the ALFRED project,
taken from the user story dataset [13]. It is a virtual assistant that helps elderly people to stay
active. The stories can be grouped into several functional groups, such as health and safety
features, communication and social interaction, etc. Each functional group, identified by its
thematic or functional similarity among user stories, is represented by a distinct Data Flow
Diagram (DFD).

These groups of user stories can then be used as input to a prompt as shown in Figure 2. The
prompt is divided into four main parts: Task Description, Detailed Instruction, User Stories
Input, and Few-Shot Prompt. This structure is designed to sequentially guide the LLM through
the process of understanding the task, the method of execution, the input to be transformed,
and the format in which the output should be structured.

The task description introduces the objective for the LLM, focusing on the correct represen-
tation of DFD elements without delving into the specific syntax rules of DFDs. Adding detailed



Figure 1: The method for creating a Data Flow Diagram (DFD) starts with user requirements. From
there, it optionally groups functionality before using prompts in LLMs. The output of the prompts is in
CSV format, which is then imported into draw.io. This process results in a generated, editable DFD.

instructions aims to enhance the LLM’s ability to abstract concepts and ensure compliance
with syntax requirements. Abstracting information effectively is vital to prevent the LLM from
treating user stories as separate entities. The LLM must identify similarities among processes,
actors, and data stores, capturing the essential flow of information accurately. The Few-Shot
Prompt section introduces a CSV template that outlines the mandatory sequence the LLM must
follow, aligning with the predefined syntax for use in draw.io. It is argued that generating the
specific syntax without any initial template (zero-shot generation) is impractical in this context,
considering the specific syntax required by the custom draw.io CSV import.

The output generated in response to this prompt includes the requested CSV format and
additional textual information. Due to the format of this output, users are advised to interact
through a chat interface under human oversight.

Finally, the Draw.io CSV import feature is utilized by first defining the style of the DFD
elements and connections to create a standardized DFD representation. One advantage of using
draw.io for diagrams, as opposed to code-based diagrams [10], is its editable nature. This allows
for human visual input, which can be beneficial when communicating with customers.

4. Preliminary Evaluation

This preliminary evaluation aims to address the research question through empirical analysis.
To ensure a thorough investigation, a variety of projects from an open dataset of user stories[13]
were utilized. Following this, the LLMs and the evaluation metrics used to assess their output
are detailed. Evaluators were then presented with DFDs generated by these models and asked
to evaluate them. Lastly, the findings of the evaluation are outlined and discussed.



Figure 2: Prompt to Generate the CSV syntax of the Data Flow Diagram.

4.1. Experiment Setup

The study involved experimenting with four Large Language Models (LLMs). Among these, two
were provided by OpenAI: GPT-3.5 Turbo and GPT-4 Turbo, accessible through the ChatGPT
interface2. The other two open-source models, Llama2-70B3 by Meta AI and Mixtral-8x7B4 by
Mistral AI, were accessed via the Together.AI5 chat playground.

For the empirical analysis, three software engineering instructors with experience teaching
DFDs participated. They evaluated the DFDs generated by each method based on completeness
and correctness on a scale from 1 to 5, where 5 represented the highest score. The LLMs used are
pseudonymized to eliminate any bias resulting from the instructor’s familiarity with the LLM’s
capabilities. Prior to the evaluation, a meeting was held to standardize the scoring methodology
among the three evaluators and the author.

The evaluation criteria are as follows:

• Completeness: This metric assessed whether the DFD included all essential elements
(processes, data stores, external entities, and data flows) for a comprehensive system
description. Each component must be connected to at least one other component to avoid
isolated elements.

• Correctness: This involved verifying that the DFD accurately reflected the system’s
requirements, including logical data flow and consistent representation of external entities

2https://chat.openai.com
3https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
4https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
5https://api.together.xyz
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and data stores following the system’s external interactions. The goal was to ensure that
the DFD faithfully represented the semantic content of the user stories.

From the open dataset[13], 17 projects were chosen, each featuring a variety of user stories.
To keep the complexity of the DFDs at a manageable level for evaluation, five representative
user stories from each project were selected. These stories were chosen to illustrate the system’s
primary functions and demonstrate the effectiveness of LLMs in delineating data flows among
various stakeholders, with a specific focus on stories involving multiple stakeholders.

Five out of the 17 projects were assessed collectively by the three evaluators to maintain
a manageable workload for the evaluators. The evaluators then individually assessed three
projects, while the author evaluated the remaining three. The projects selected for collective
evaluation included Alfred, CamperPlus, Recycling, NSF, and Datahub. To assess the complete-
ness and correctness of the generated DFDs, a 1-to-5 Likert scale was used, enabling evaluators
to quantify their judgments regarding the completeness and correctness of each DFD.

GeneratingDFDs beganwithmanually entering the user stories into a chat interface, following
a specific prompt described in Figure 2. The responses containing the desired CSV format were
then integrated into predefined Draw.io CSV templates and uploaded to Draw.io for editing. The
platform’s auto-layout feature was used to organize the diagram elements, eliminating the need
for manual adjustments. All materials produced, including CSV files, Draw.io configurations,
and final DFD images, were documented and made available in a dedicated public repository6.

4.2. Performance Results

The DFD example produced by this approach is presented in Appendix A. Table 1 displays the
median completeness and correctness scores for each LLM method from the five collectively
selected projects. Among these, GPT-4 is highlighted as the most accurate in generating DFDs,
with the highest scores in completeness and correctness. This underscores GPT-4’s superior
capability in interpreting and converting user stories into DFDs. Mixtral, an open-source model,
demonstrates commendable performance by producing useful DFDs with a respectable degree
of accuracy and completeness. It outperforms closed-source models like GPT-3.5, which display
moderate to lower effectiveness. Llama2 received the lowest scores, especially in correctness,
suggesting that it faces challenges in understanding the semantics of the user stories. These
results can also answer the two research questions:

Answer to RQ1: GPT-4 outperformed other LLM for generating syntactically
correct DFDs, scoring a median of 4.0 on a 1 to 5 Likert scale.

Answer toRQ2: GPT-4 outperformed other LLM for accurately representing system
functionalities in DFDs, scoring a median of 4.0 on a 1 to 5 Likert scale.

Note that there are no special syntax rules in the prompt. This demonstrates the LLM’s
internal knowledge of standard DFD conventions. Even if it is not a perfect score in terms of
completeness and correctness, including human involvement in the further processing of the

6https://github.com/gunturbudi/drawio_llm
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DFD could improve the applicability of the generated DFDs. In addition, the chat modality of
these models offers the potential for iterative refinement of DFDs. Future studies could explore
how iterative prompting could guide LLMs in adapting and improving DFDs. The threshold
between what humans would accept the prompt and later edit in editable diagramming tools
opens up an interesting empirical observation.

Table 1
The Median Scores of Completeness (Cm)
and Correctness (Cr)

Method Cm (5) Cr (5) Cm (17) Cr (17)
GPT-3.5 2.0 1.5 2.5 2.0
GPT-4 4.0 4.0 4.0 4.0
Llama2 1.0 1.0 2.0 1.0
Mixtral 3.5 3.0 3.5 3.0

Table 2
Correlation Coefficients between Evaluator
Evaluator Pair Spearman Kendall
1 & 2 .594 (<.001) .532 (<.001)
1 & 3 .666 (<.001) .549 (<.001)
2 & 3 .594 (<.001) .505 (<.001)
Average 0.618 0.529

Table 2 presents the correlation coefficients among pairs of evaluators, aiming to assess
the level of concordance between them to ensure reliability in their assessments. To achieve
uniform coding, scores are converted into rankings among LLMs, even if an evaluator assigns
identical scores to multiple LLMs within a project. The ranking is determined based on the
lowest rank within each group, using a dense ranking method that increments by one across
different groups for consistency and clarity.

All pairs of evaluators demonstrate statistically significant positive correlations in their
scoring, with Spearman’s correlation coefficients ranging from moderate to strong (0.618 on
average). While slightly lower, Kendall’s tau values also indicate positive relationships and are
significant (0.529 in average). These findings suggest a consistent agreement in the scoring
among the evaluators, with higher scoring by one evaluator associated with higher scoring by
another. The statistical significance of these correlations (p-values at <0.001) strongly supports
the reliability of these observed associations, indicating that such agreement in scoring is not
due to random chance but reflects a genuine pattern of concordance among the evaluators.

4.3. Discussion

Completeness scores are typically higher than correctness scores for all models, indicating that
while LLMs can accurately identify necessary elements of DFDs with the correct syntax, they
struggle to grasp the underlying semantics or logical connections between processes. This
finding is consistent with previous research [10] and highlights the importance of a collaborative
approach between humans and AI in the early stages of system design, particularly in diagram
modeling. Nevertheless, the ability of LLMs to understand the syntax of DFD without explicitly
mentioning the syntax and convention is a potential way to adapt to other open and widely
used models, such as Business Process Model and Notation (BPMN) and UML.

The evaluator also found that data flow in the DFD tends to move exclusively to the left in
horizontal and downward in vertical orientations, as shown in Appendix A. This observation
suggests that data typically flows from external entities to processes and from processes to data
stores, but rarely in the opposite direction. This limitation is likely due to the examples used



in the prompts, which demonstrated data flow in only one direction, highlighting the critical
impact that the choice of examples in few-shot prompts can have on the model’s performance.

This research employed a single prompt, which hinders the LLM potential of prompt engi-
neering. For example, explicitly specifying the desired criteria for the DFD within the prompt
might have been more advantageous than relying on the inherent knowledge of the LLM.
Additionally, exploring the possibility of incorporating various aspects of DFD into a few-shot
prompt represents another viable strategy. Despite LLM’s understanding of the DFD syntax,
it’s critical to refine the few-shot examples to ensure they can accurately represent all potential
directions of data flow.

Finally, it’s important to recognize the inherent risks and limitations of relying solely on
AI-generated models, such as the potential for confusing them with reality, losing information,
or applying models that are inappropriate or incomplete [1].

5. Threats to Validity

This study faces threats to validity from two major fronts: the subjective nature of evaluating
Data Flow Diagrams (DFDs) generated by Large Language Models (LLMs) and the selection
process of user stories. Subjective evaluations may not accurately capture the constructs of
completeness and correctness due to evaluators’ variability, oversight of diagram details, and
biases, challenging the construct validity of the findings. Concurrently, the potential bias
introduced by selecting a limited, possibly simpler set of user stories poses a risk to the external
validity of this study. This selection might skew the results towards more favorable outcomes by
not fully representing the complexity and diversity necessary for a comprehensive assessment
of LLM performance in generating DFDs.

To mitigate the first threat, a meeting is conducted between the author and three raters, and
a clear expectation of what the Likert scale should mean for scoring is set. As for the second
threat, the author set selection criteria for user stories and ensured that only these criteria
were followed. However, there is still much scope to improve the validity of future research.
Developing a structured assessment framework with clear, objective criteria for evaluating
charts and automated comparison methods with predefined ”gold standard” charts would be
beneficial. These approaches aim to standardize the assessment process and reduce subjectivity
to provide a more objective and reliable measure of the completeness and correctness of the
diagrams. In addition, training evaluators and incorporating multiple perspectives into the
evaluation process can further align judgments and capture a broader range of insights into the
quality of the diagrams.

6. Conclusion and Future Work

Visual modeling has long been a key tool for uncovering the complexity of software requirements.
Recent advances in large language models (LLMs) offer promising ways to augment human
efforts in this domain. This study investigated the capacity of LLMs for generating Data Flow
Diagrams (DFDs) within software development processes. The preliminary empirical evaluation
focused on assessing the completeness and correctness of DFDs produced by GPT-3.5, GPT-4,



Llama2, and Mixtral-8x7B. The results show the leading performance of GPT-4 in achieving
a particularly high score in the generation of syntactically correct DFD and the accurate
representation of system functionalities in DFD. In addition, the efficacy of the Mixtral-8x7B
model emphasizes the value of open-source models in broadening access to AI technologies in
software engineering.

This research identified a common drawback of LLMs which is failing to accurately capture
the semantics of the user requirements [10]. This highlights the imperative for human oversight
in AI-assisted design processes. By synergizing the capabilities of LLMs with human expertise,
there is potential to initiate diagrammatic representations of software systems effectively. De-
veloping interactive tools that incorporate user input could significantly improve the fidelity of
diagrams and promote a more collaborative design methodology. Consequently, a concentrated
effort to refine LLMs’ understanding of system semantics is essential. Such improvements would
enable these models to more accurately encapsulate the technical nuances and domain-specific
details that are essential for complete and accurate visual representations.
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(a) DFD generated from GPT-4 (b) DFD generated from GPT-3.5

(c) DFD generated from Llama2 (d) DFD generated from Mixtral

Figure 3: DFDs Generated from Large Language Models
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