
Proceedings of the 12th Majorov International Conference on Software Engineering and Computer Systems, December 10-11, 2020, Online

& Saint Petersburg, Russia

EMAIL: igelomori@gmail.com (A. 1); antonov@itmo.ru (A. 2)
ORCID: 0000-0003-2362-4361 (A. 1); 0000-0002-4596-9275 (A. 2)

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Practical Comparison of High-Level Synthesis and Hardware
Generation Frameworks: CPU Floating Point Unit Case

Oleg Morozova, Alexander Antonova

a ITMO University, Kronverksky Pr. 49, bldg. A, Saint-Petersburg, 197101, Russia

Abstract
The research is devoted to analyzing and matching advantages and drawbacks of various

high-level design environments for the components of modern CPU cores. In the paper, high-

level synthesis (HLS) and hardware generation frameworks (HGF) are compared for the case

of floating-point execution unit (FPU). We use HGF-based FPU available in open-source

SonicBOOM RISC-V CPU design from Berkeley as reference. Original HLS-based design of

FPU module is proposed. This design is functionally equivalent to HGF-based one, but is

described in behavioral (untimed) style, and its microarchitecture is optimized automatically

by the HLS tool. The designed FPU has been synthesized in Vivado HLS and successfully

tested in FPGA device. The research has shown that raising abstraction level up to behavioral

one has provided the design with comparable frequency and resource characteristics,

however, with significantly more concise design specification and automatic generation of

microarchitecture. Based on these estimations, we envision HLS to be promising not only for

accelerators that are external from CPUs, but also for selective, execution-centric

components of modern CPUs themselves.

Keywords
High-level synthesis, hardware generation, hardware microarchitecture, floating-point unit,

RISC-V

1. Introduction

Hardware designing based on register-transfer level (RTL) and corresponding design languages

(SystemVerilog, VHDL) has been dominant in industry in the last decades due to efficient abstraction

from basic structural devices (gates, multiplexers, etc.), understandable concepts by a wide

community of developers, and good support by the design tools. However, time-to-market, cost, and

complexity restrictions are motivating exploration of approaches to improve the design process. These

improvements include support of algorithmic specifications as design entry, automation of

microarchitectural synthesis from high-level specifications and configurations, and ensuring

scalability of designs to meet various performance, power, and area constraints.

2. Theoretical background
2.1. High-level synthesis and hardware generation approaches

High-level synthesis (HLS) and hardware generation frameworks (HGF) are two widely known

approaches to improvement of hardware design process. Despite some common priorities (abstract

specification, improving configurability, utilizing software experiences in hardware domain), these

approaches differ significantly.

High-level synthesis is typically understood as automated synthesis of hardware structure from

behavioral (algorithmic), untimed specifications, effectively forming a new distinct abstraction level

[1]. C/C++/SystemC programming languages are typically used as design entry. Microarchitectural

synthesis is performed by the tool automatically, and, though it is directed to a certain extent via

pragmas and constraints, design entry is abstracted from it. Majority of HLS tools perform a typical

set of operations, including allocation of basic functional units, scheduling of operations regarding

their dependencies and time constraints, and binding of these operations to allocated functional units.

Optimizations are applied to programmatic models (such as Control and Data Flow Graph, CDFG).

Shorter design cycle using behavioral synthesis allows many alternative circuit implementations to be

explored, enlarging design space for better implementations.

Hardware generation frameworks improve RTL designing via exposing its abstractions (registers,

modules, combinational circuits, etc.) to general-purpose programming environments. Typically, they

are implemented as an embedded domain-specific language (eDSL), i.e. as a library. Unlike HLS,

microarchitectural synthesis is not abstracted in design entry, but can be embedded in multiple custom

generators. HGFs provide feature-rich environment for specification of RTL generation, offering

programmatic construction of hardware, improving flexibility in defining and processing of

configurations, layering new eDSLs, etc. Facilitation of programming generators instead of “fixed”

designs enables deep adaptation of the hardware to the project needs and constraints. RTL-like

models (such as FIRRTL) are typically used as intermediate representations for application of

optimizations.

With their advantages and drawbacks, both HLS and HGF approaches have gained significant

traction in academic and industrial designing. However, their typical application domains have some

variations. Though HGF is more like a general-purpose approach (similar to generic RTL), it still

requires digital design expertise from the designers. Also, the designers should be simultaneously

programming experts and know the details of how RTL abstractions are embedded in certain HGF.

HLS (ideally) does not require the designer to be a hardware expert, but targets acceleration co-

processors with static scheduling of operations and pipelined microarchitecture. As a result, HLS is

not usually positioned for designing hardware units with custom and dynamic scheduling of

computational process, including CPUs. Even simple, in-order implementations suffer from

suboptimal performance, mostly because of conservative, static branch scheduling [2].

To adopt HLS for CPU-like hardware applications, the following strategies can be implemented

[3].

Definition of microarchitecture explicitly in high-level language. To reflect dynamic

scheduling mechanisms, they can be explicitly programmed in high-level language. For CPU

applications, these mechanisms can include dynamic speculation, instruction reordering, data

forwarding, stalling, etc. Though this approach does not impose restrictions on complexity of these

mechanisms (custom ones can be freely included as well), this approach effectively lowers the design

level, transforming behavioral approach into microarchitectural one. Expertise in hardware

microarchitecture is required to implement this approach.

Allocation of statically scheduled structural units and designing them separately in high-level

environment. Though this approach requires hardware microarchitecture expertise for allocation of

these units and their integration, these units themselves can be extracted for abstract high-level

definition of their behavior and automation of their optimization. For CPU applications,

“computational” execution pipelines (integer, floating-point, DSP, custom ones) can hypothetically be

good candidates for such extraction, since even in complex out-of-order microarchitectures operations

are issued to such units when the data operands are ready, and the number of clock cycles needed

does not depend on other CPU subsystems [4]. In this paper, we explore the case of floating-point unit

– an important mathematical CPU block that was often implemented as external co-processor in the

past, and now is typically a part of CPU die and can occupy more that 10% of chip area [5].

2.2. CPU floating point unit functionality

CPU floating-point unit (FPU) provides basic operations for numbers represented in floating-point

format. The common format for single precision floating-point number is defined by IEEE-754

standard [6]:

(−1)𝑆 ∗ 𝑀 ∗ 2𝐸 , (1)
where S stands for sign, E is exponent, and M is mantissa. The binary IEEE-754 representation

defines a 32-bit word, with one bit for sign, 8 bits for exponent, and 23 bits for mantissa. As a basic

set of floating-point operations, we use those defined in RISC-V architecture – a modern and open

instruction set architecture being widely used both in academia and industry in recent years. An

extension that includes floating-point operations on single precision numbers is denoted RV-F, which

derives from the name of the "Float" data format. RISC-V uses 32 registers for floating-point

numbers, denoted f0 – f31, with a size of 32 bits each. FPU works with both a separate floating-point

register file and a common register file. Therefore, the module must accept and return data in both

float and integer formats.

Table 1 gives a summary of these operations.

Table 1
Floating-point operations defined in RISC-V architecture

Operation Description

FADD, FSUB, FMUL, FMIN, FMAX Arithmetic functions, input and output are float

FSGNJ, FSGNJN, FSGNJX
Sign-injection instructions, input and output are
float

FEQ, FLT, FLE, FCLASS
Comparison operations, input is float, output is
integer

FCVT.W.S, FCVT.S.W, FCVT.WU.S, FCVT.S.WU
Transfer operations from float to integer and
vice versa.

FMADD, FMSUB, FNMSUB, FNMADD
Floating-point fused multiply-add instructions,
input and output are float

3. Design of HGF-based FPU in BOOM

SonicBOOM is the third iteration of Berkeley Out-Of-Order Machine (BOOM) project. BOOM is

a high-performance, synthesizable and parameterizable RV64GC RISC-V core, which means it

supports multiplication and division extensions, atomic, single and double precision floating point

operations, and short instructions. BOOM is currently one of the most complete and productive open-

source RISC implementations and demonstrates the use of the main contemporary mechanisms such

as superscalar processing of instructions, speculation, branch prediction, cache memory, etc. The core

is designed based on Chisel hardware generation framework.

Chisel allows to flexibly construct class hierarchies of modules for various templates and

communication mechanisms with the rest of the system (see Fig. 1).

Figure 1: Class hierarchy for functional units of SonicBOOM RISC-V CPU [7].

In BOOM, execution of a floating-point instruction occurs in two different modules: fDiv/fSqrt for

calculating the square root and division, and the FPU module that executes all other instructions. For

simplicity, only FPUs without fDiv/fSqrt will be considered.

BOOM’s FPU consists of for subblocks: sfma for single-precision operations, dfma for double-

precision operations, fpiu for fp-to-int operations, and fpmu for fp-to-fp operations. Calculation

algorithms are specified in “combinational” style and successively copied in register chains using

Chisel’s Pipe primitive with configurable delay. After EDA tool applies retiming, fully pipelined

implementation with initiation interval of one clock cycle is obtained. To simplify write port

processing, the delay is set to the same value for all subblocks.

BOOM uses interfaces and modules from the RocketChip processor core, which uses interfaces

and modules from the Hardfloat core. Clock and reset signals are specified implicitly.

The interface consists of two buses, the output ExeUnitResp and the input FpuReq. ValidIO is a

built-in Chisel function that implements the creation of an interface with the valid enable signal and

the specified bus type. The output interface resp has type ExeUnitResp, the standard interface for all

BOOM function blocks. ExeUnitResp consists of a data bus and a ValidIO bus with flags. The flag

bus is specified in the same execution unit file and consists of a MicroOp bus for transmitting service

information and a flags for Floating Point exception flags from the RISC-V specification. The flags

are part of the FCSR register.

The Input interface req consists of the valid FpuReq interface. It has a MicroOp bus, three buses

for transferring data from floating-point registers and one 5-bit bus for transferring the value of the

exception flags.

Generation of certain FPU implementation is controlled by 4 parameters:

• minimum instruction length,

• maximum instruction length,

• arithmetic block latency based on SFMA operations,

• arithmetic block latency based on DFMA operations.

In Fig. 2, the configuration used for FPU implementation is shown.

case class FPUParams(
 minFLen: Int = 32,

fLen: Int = 64,

…

sfmaLatency: Int = 3,

dfmaLatency: Int = 4)

Figure 2: FPU configuration used for generation of implementation.

Using SonicBOOM generator, FPU implementation has been generated and implemented for

educational Digilent Nexys4-DDR board with Artix-7 FPGA device. We used Vivado 2020.2 for this

task. Resulting characteristics have been compared to a similar implementation synthesized using

Vivado HLS tool (see subsequent Sections).

4. Designing a FPU module with an HLS tool
4.1. Designed behavioral model of FPU

To compare the reference HGF-based design to HLS-generated one, functionally equivalent unit

for HLS has been designed. According to HLS methodology, HLS-based design is a software function

that specifies solely the behavior of the module and does not fixate its microarchitecture (see Fig. 3).

return_floats FPU(t_floats val){

 return_floats val_out = inizialize();

 if (val.funct3 == 0 && val.funct7 == 0)

 val_out.rd_f = val.rs1 + val.rs2;

 else if (val.funct3 == 0 && val.funct7 == 4)

 val_out.rd_f = val.rs1 - val.rs2;

 else if (val.funct3 == 0 && val.funct7 == 8)

 val_out.rd_f = val.rs1 * val.rs2;

 else if (val.funct7 == 16)

 val_out = FSGNJ_FSGNJN_FSGNJX(val, val_out);

...

 val_out = FCVTWS_FCVTSW_FCVTWUS_FCVTSWU(val, val_out);

 else if (val.funct3 == 1 && val.funct7 == 112)

 val_out = FCLASS(val, val_out);

 else

 val_out.err = 0;

 if (isnan(val_out.rd_f) != 0)

 val_out.nan = 1;

 return (val_out);

}

Figure 3: Behavioral FPU design for Vivado HLS (similar code fragments are omitted).

The structure of the designed block is implemented as a branching function, where an operation is

selected based on the func7 and func3 RISC-V instruction fields, as well as the value of the rs2

operand.

There are four sub-functions: calculating the equality operation FEQ, branching for sign change

operations FSGNJ/FSGNJN/FSGNJX, format change operations

FCVTWS/FCVTSW/FCVTWUS/FCVTSWU and defining the type of variable FCLASS.

Input and output signals are specified as structures. The input structure includes:

• floating-point operands

• integer operand

• funct7 and funct3 RISC-V instruction fields

The output structure includes:

• floating-point result

• integer result

• instruction error flag

• NaN flag

The functions signbit, copysignf, fabsf, fpclassify, islessequal, isgreaterequal, isnan from the C

library “math.h” were used. Compared to native C functions, the math.h library functions can reduce

the use of LUT by 40%, FF by 50%, and achieve a higher clock speed by 62.5%.

HLS-based implementation has also been synthesized to RTL, implemented and tested in hardware

on Digilent Nexys4-DDR FPGA board.

4.2. Hardware test infrastructure

To provide interactive control, observation and debug capability for designed FPGA modules from

PC programming environment, custom infrastructure has been used.

The key element in this infrastructure is UDM (UART-based Debug Module) FPGA module (see

Fig. 4). This module can initiate simple bus transactions in FPGA fabric under the control of PC

program. UDM is managed via UART interface that is lightweight, easy to implement, and available

in all FPGA boards. The protocol working between UDM and PC allows to initiate transactions and

receive responses. This allows PC to “emulate” CPU host in custom system-on-chip designs. On PC,

UDM is supported in Python 3 environment. Read or write function calls on PC become requests

appearing on UDM system bus.

Figure 4: Infrastructure for interactive hardware testing of custom FPGA-based designs.

UDM module consumes minimum amount of hardware resources (<1% of LUTs and flip-flops on

Artix-7 FPGA device), can be implemented in minutes, and requires minimum setup (restricted to

COM port number definition).

Table 2
CSRs allocated for FPU hardware testing.

Address Mnemonic Description

0x08 FPU_START Enabling signal
0x0C FUNC7 Unsigned 7-bits RISC-V instruction field
0x10 FUNC3 Unsigned 3-bits RISC-V instruction field
0x14 RS1 [31:0]

First source floating-point register value
0x18 RS1 [63:32]
0x1С RS2 [31:0]

Second source floating-point register value
0x20 RS2 [63:32]
0x24 RS3 [31:0]

Third source floating-point register value
0x28 RS3 [63:32]
0x2C RSI Source integer register value
0x30 RESULT [31:0]

Result floating-point register value
0x34 RESULT [63:32]
0x38 RESULT_I Result integer register value
0x3С FLAG_NAN Flag indicating that the result is NAN
0x40 FLAG_ERROR Flag indicating that the function code is invalid

For HLS-based FPU, test several control and status registers (CSRs) have been allocated (see

Table 2). These registers have been connected to the FPU and UDM system bus. Each test iteration

sends the instruction number, the values of the operands, then starts the FPU and reads the error flags

and the result values.

5. Comparison of HLS and HGF based implementations

Resulting characteristics for HGF-based and HLS-based implementations are shown in Table 3.

Table 3
Comparison of HGF and HLS based implementations.

Characteristics HGF-based module (reference) HLS-based module (designed)

Top frequency 92 Mhz 136 Mhz
Initiation interval 1 clock cycle 1 clock cycle
Latency 4 clock cycles 10 clock cycles
LUT 4738 3441
Flip-flops 1454 2929
DSP 11 26
Lines of code 230 (+1200 in HardFloat) 120

It can be seen that the modules have the same initiation interval of one clock cycle, comparable

frequency and resource characteristics.

HLS-based implementation is faster, but has bigger latency. According to our experiments,

restricting maximum latency is impractical, since it is possible only with close to fold reduction of

frequency. This makes absolute latency almost the same, but reduces bandwidth.

Also, HLS-based implementation consumes less LUTs, but more flip-flops and DSP blocks. While

DSP utilization (at the expense of general-purpose LUTs) is predictably better for high-level

environment, more than two-fold consumption of DSPs requires additional investigation. Increased

flip-flops consumption of HLS-based implementation is likely due to deeper pipelining.

When it comes to design specification mechanisms, for HLS, as well as for HGF, it is possible to

set custom latency. In HLS this is possible through the use of pragmas, while in HGF it is done

through explicit parameterization of the pipeline. Actually, reference HGF-based implementation

heavily relies on retiming in lower-level RTL synthesis tool. In HLS, since pragma is a synthesizer

directive, it is easier to change the computation schedule with this method, rather than directly adding

parameters to the module structure. However, since the synthesis is carried out automatically by the

tool, the desired result in HLS must be achieved heuristically.

To sum up, designing CPU execution units in high-level synthesis looks promising to implement

high-level, easily extendable, scalable CPU projects, while preserving sufficient quality-of-results.

6. Future work

In the future, the research is planned to develop in the following directions:

1. The designed HLS-based module is supposed to be integrated in Rocket and/or BOOM

project and validated as part of actual RISC-V CPU;

2. In-depth exploration of the synthesized netlists in HGF and HLS projects and identification of

the discrepancies in their structures;

3. Experimental explicit programming of floating-point computation algorithms in synthesizable

C/C++ instead of relying on HLS tool to synthesize this logic;

4. Exploration of floating-point capabilities in alternative high-level tools, including open-

source ones (LegUp [9], GAUT [10]);

5. Exploration of feasibility of high-level synthesis tools for alternative CPU execution pipelines

(integer, DSP, custom ones);

6. Exploration of high-level execution units design targeting ASIC devices.

7. Conclusion

Raising abstraction level, improving configurability of component base and adopting various

design techniques from software domain is often considered inevitable in hardware designing to

satisfy hardware project constraints at the moment and in the future. Despite the recent improvements

in RTL design offered by hardware generation frameworks, design specification on behavioral level

seems especially promising. However, this transition should be done with regard to quality of results,

which may not be sufficient for the entire diversity of hardware.

Using the example of CPU floating-point execution unit, we are showing that comparable

implementation results for selected elements of CPU can be achieved on behavioral level and using

automatic synthesis of the unit’s microarchitecture. This motivates further comparative exploration of

configurability and efficiency of HGF and HLS environments for execution-related and other selected

subsystems of modern CPUs, as well as other complex hardware projects.

8. Acknowledgements

The work has been done in Software Engineering and Computer Systems Faculty of ITMO

University. Design of hardware test infrastructure for interactive control, observation and debug of

custom hardware modules based on FPGA devices (conducted by A. Antonov) has been supported by

Russian Science Foundation, grant № 20-79-00219.

9. References

[1] M. Fingeroff, High-Level Synthesis Blue Book. Xlibris Corporation (2010).

[2] S. Skalicky, T. Ananthanarayana, S. Lopez, and M. Lukowiak, Designing Customized ISA

Processors using High Level Synthesis. In: International Conference on ReConFigurable

Computing and FPGAs (ReConFig), pp. 0–5 (2015).

[3] A. Antonov, Methods and Tools for Computer-Aided Synthesis of Processors Based on

Microarchitectural Programmable Hardware Generators, Ph.D dissertation, ITMO University,

Saint-Petersburg, http://fppo.ifmo.ru/dissertation/?number=63419, last accessed 2019/05/27.

[4] J.P. Shen, M.H. Lipasti, Modern Processor Design: Fundamentals of Superscalar Processors.

Waveland Press (2013).

[5] Hwa-Joon Oh, et al., A Fully Pipelined Single-Precision Floating-Point Unit in the Synergistic

Processor Element of a CELL Processor. IEEE Journal of Solid-State Circuits, Vol. 41, No. 4

(2006).

[6] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp. 1-70 (2008).

[7] RISCV-BOOM’s documentation, URL: https://docs.boom-core.org/en/latest/sections/execution-

stages.html, last accessed 2020/11/14.

[8] A. Antonov, ActiveCore, URL: https://github.com/AntonovAlexander/activecore, last accessed

2020/11/14.

[9] A. Canis, et al., LegUp: An open-source high-level synthesis tool for FPGA-based

processor/accelerator systems. In: Trans. Embed. Comput. Syst., vol. 13, no. 2 (2013).

[10] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, E. Martin, GAUT: A High-Level Synthesis

Tool for DSP Applications, From C algorithm to RTL architecture. In: High-Level Synthesis, pp.

147–169, Eds. Springer Netherlands (2008).

