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Abstract

We propose a method to gather large amounts of definitions from math-
ematical documents available online. Recent work indicates that text
classification algorithms can have excellent accuracy at determining
when a certain paragraph is in fact a definition or not. These al-
gorithms are trained on large math corpora available online like the
arXiv website. The IXTEX source code of these documents is first con-
verted into a more structured format like XML or HTML with the
software package LaTeXML. The training data for the classifier is then
obtained by searching for the definitions that the author labeled with a
ITEX macro. The second phase of the system consists of extracting the
term being defined from each definition. This task is performed by a
Named Entity Recognition (NER) model trained using data from web-
sites with mathematical content. The data is finally organized accord-
ing to several different properties like semantic similarity and content
dependency.

1 Introduction

In this paper we describe a system for the extraction of definitions and definienda from large collections of
digital mathematical documents like the arXiv website. The main objective of this system is to organize all
the mathematical lexicon both by dependency and semantically. This can be done using the content of each
definition, since the definition of a new term depends on previously ones. And, by clustering terms that occur
in similar contexts. We also go over the implementation of a prototype of such system and the processing of the
different sources of digital documents used to create this first implementation. The resulting system, although
unfinished, provides a convincing proof of concept as well as a baseline for the development of more effective
systems of this type in the future.

2 Obtaining the Data

The two main sources of data used in this project are the arXiv and Wikipedia websites. To download the data
from the arXiv without affecting the website’s traffic, we used the bulk download service!. The ITEX source
of each article is compressed together in large tar files. Similarly, the Wikipedia data can be downloaded as a
compressed multistream file?.

Copyright ©) by the paper’s authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: C. Kaliszyk, E. Brady, J. Davenport, W.M. Farmer, A. Kohlhase, M. Kohlhase, D. Miiller, K. Pak, and C. Sacerdoti Coen (eds.):
Joint Proceedings of the FMM and LML Workshops, Doctoral Program and Work in Progress at the Conference on Intelligent
Computer Mathematics 2019 co-located with the 12th Conference on Intelligent Computer Mathematics (CICM 2019), Prague,
Czech Republic, July 8-12, 2019, published at http://ceur-ws.org

Thttps://arxiv.org/help/bulk data_s3

2https://dumps.wikimedia.org/enwiki/



'Bott-Danilov-Steenbrink vanishing theorem' 'Banach manifold’

'p-good cover’ "Loewy filtration’
'non-zerodivisor’ 'graded-commutative product’
"Frobenius submanifold’ 'local Harbourne constant’
"holomorphic one-dimensional foliations' "donnés par’
'universal expansion’ 'Berenstein-Zelevinsky triangles’
"non-toric purely log-terminal blow-up’ 'DL-gallery’
"cubical algebra’ "'smooth lifting’
"virtual bundle’ 'stalkwise fibration’
'symplectic structure’ '4-dimensional quadric’

Table 1: Examples of the terms found on the math.AG articles from 2015
2.1 Processing the arXiv articles

The IXTEX source from the arXiv has to be further processed before it becomes useful. This is done with the
LaTeXML software package [8]. LaTeXML converts the TEX source first to XML and optionally to HTML by
using an additionally script. For the purpose of identifying the definitions labeled by the author, the XML output
is enough.

<theorem class="1ltx_theorem_definition" inlist="thm theorem:definition" xml:id="Thmdefinitionl">
<tags>
<tag>Definition 1</tag>
<tag role="refnum">1</tag>
<tag role="typerefnum">Definition 1</tag>
</tags>
<title class="ltx_runin"><tag><text font="bold">Definition 1</text></tag>.</title>
<para xml:id="Thmdefinitionl.pl">
<p class="ltx_emph"><text font="italic">Let <Math mode="inline"
tex="k" text="k" xml:id="Thmdefinitionl.pl.m1">
<XMath>
<XMTok role="UNKNOWN">k</XMTok>
</XMath>

Figure 1: Excerpt of the output produced by LaTeXML on a definition in an article

3 Classifying Definitions

Recent work indicates that well known text classification algorithms [1, 2] can have excellent accuracy at deter-
mining whether a given paragraph is in fact a definition. In [4] for example, a supervised learning method is
first trained using word embeddings. These word embedding are created using the contents of the arXiv articles
fed into a embedding algorithm like GloVe [11]. This has been implemented already and is available in [3]. Our
system still does not use word embeddings for its classification, it is one of the main features we plan to add to
the system in order to improve the classifier.

As training data for the classifier, we use the passages of certain articles that are labeled as definitions by
the author by placing them in certain I¥TEX macro environments. These macros are normally defined in the
preamble of the document using the \newtheorem macro. LaTeXML resolves the user defined macros and labels
the corresponding XML tag in the output file like in figure 1.

In order to produce the negative examples, we randomly sample paragraphs out of the article and assume
they are not definitions. This introduces some imperfections in the training set, because some of the selected
paragraphs necessarily contain some definitions.

We have performed successful experiments using common general purpose algorithms implemented in the
scikit-learn Python library [10]. And these were confirmed with the results shown on the website https:
//corpora.mathweb.org/classify_paragraph. In table 2 we can observe the result of the classifier on some
simple examples.

Text classifiers normally take each paragraph of an article and output an estimate of the probability of it being
a definition or not. Figure 2 presents the basic performance metrics of the some of the classifiers implemented
in the scikit-learn library. The Support Vector Classifier was observed to have the best performance and a more


https://corpora.mathweb.org/classify_paragraph
https://corpora.mathweb.org/classify_paragraph

’ Input to the Classifier \ Result ‘

a banach space is defined as a complete vector space. True
This is not a definition honestly. even if it includes tech- | False
nical words like scheme and cohomology
There is no real reason as to why this classifier is so good. | False
a triangle is equilateral if and only if all its sides are the | True
same length.

Table 2: Simple examples of the behaviour of the classifier

MultinomialNB , ngrams=(1,4) DecisionTreeClassifier
**kkkxResultskkkx **k*x*kResultsxkkxx

Accuracy: 86.6386% Accuracy: 81.3609%

Log Loss: 2.723683288081348 Log Loss: 6.437730639470123
MultinomialNB RandomForestClassifier
*x*kkxResultsk*kx **xx*Resultsxkx*xx

Accuracy: 86.1733% Accuracy: 83.6580%

Log Loss: 1.8957941996159562 Log Loss: 0.6044826387423514
svC , C= 2000 AdaBoostClassifier
*xxkResultskkkk ***kkResultskkkx

Accuracy: 89.3283Y Accuracy: 84.4868

Log Loss: 0.29110830190582887 Log Loss: 0.6717126298133219
NuSVC GradientBoostingClassifier
**kkkResultskkkx **k*x*kResults*xkkx

Accuracy: 84.0215Y% Accuracy: 85.8098%

Log Loss: 0.34342025343628446 Log Loss: 0.3531810109520398

Figure 2: comparison of the most common classification algoriths on classifying definitions

detailed view of the result is pictured in table 3. In the future we plan to use the fasttext method [6] which has
the best tradeoff between classification speed and accuracy.

precision | recall | Fj-score | support
nondefs 0.73 0.91 0.81 2,217
definitions 0.95 0.84 0.89 4,661
micro avg 0.86 0.86 0.86 6,878
macro avg 0.84 0.87 0.85 6,878
weighted avg 0.88 0.86 0.87 6,878

Table 3: Overall performance of the SVC classifier on the test set

4 Extracting Definienda

After determining the definitions in the text, the system is required to find what is the term that is being defined
in each definition. It is assumed that the definiendum is one or more adjacent words in the definition. This
task can be interpreted as a Named Entity Recognition (NER) problem. Several different techniques have been
developed to deal with it; as it is considered one of the most important subtasks of Information Extraction [9].

For the first approach to this problem, we used the ChunkParserI package from the NLTK library [7]. This
module uses a supervised learning algorithm that is trained on examples of definitions tagged with part of speech
(POS) and IOB. Each word in the definition is tagged with the token O for Outside, B-DFNDUM for the
beginning of a definition and I-DFNDUM for the inside of definitions. Figure 3 specifies the order in which



these tags are allowed to appear. The POS is obtained using the pretrained model included in the NLTK library.
After the training is done, the model tries to predict the IOB tags. In table 4 an example of a successful

identification of the definiendum is shown.
start ->

start ->

Figure 3: Possible states and switches for the IOB tags

text We define a Banach space as a complete  vector  space
POS PRP VBP DT NNP NN IN DT JJ NN NN
I0B @) O O B-DFNDUM I-DFNDUM @) O ©) O O

Table 4: Input example used in training the IOB parser.

To obtain the tagged text, the whole body of text from Wikipedia was used. The examples of definitions were
obtained by filtering the articles with the two following properties:

e Articles that have a section with the word definition.
e The title of the article must appear at least once in this section.

These sections were assumed to be definitions and the title of the article which they belong to was assumed to
be the definiendum. Ounly 5,229 articles were found matching this criteria (February 2019) out of the more than
6 million articles in the English Wikipedia. The dataset was split into training and test data, the results are
shown in figure 5. When run on the definitions found on the algebraic geometry (math.AG) articles uploaded to
arXiv on 2015, the results are pictured on figure 4.

Several difficulties were observed with this approach, for instance, many of the articles from Wikipedia are
about topics completely unrelated to mathematics. Also, after stripping all the wiki markup from the text some
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of the remaining text made no sense, this means that there was a high chance of the POS tags to be defective
and hence the IOB would also be tainted.

’ Input to the Classifier \ Result ‘
Let n > 1. Recall that the lexicographic order <; on N™ is defined by v = | True Positive
(v1,...,0,) <p (w1, ..., wy,) = w if and only if either v = w or there is some 4,

1 <7 < n, with v; = wj, for all j in the range 1 < j < 4, and v; < w;. Then
<; is an admissible order on N™ in the sense of cite{BWK:98}. Indeed N,
together with componentwise addition and <;, forms a totally ordered abelian
monoid. The lexicographic order <; can be defined similarly on Z™, forming a
totally ordered abelian group.

(Upper semicontinuity of valuation) Let f be a nonzero element of k[z1,...,z,] | False Positive
and let a € k™. Then there exists a neighbourhood V' C k™ of a such that for
all b € V vy (f) <1 va(f).

This claim concerns valuation-invariant lifting in relation to P, (A): it asserts | True Negative
that the condition, ‘each element of Py (A) is valuation-invariant in S’, is suf-
ficient for an A-valuation-invariant stack in R™ to exist over S.

Let f/g be a nonzero element of K, let U C k™ be an open set throughout | False Positive
which g # 0, and let @ € U. Then there exists a neighbourhood V' C U of a
such that for all b € V ord,(f/g) < orda(f/g).

Table 5: Examples of the performance of the classifier and NER system on article arXiv:1501.06563
The terms identified by the NER system have been underlined, the rest of the typesetting is taken verbatim
from the original article.

5 Conclusions and Future Work

The main objective of this article is to showcase the feasability of a system that can search for definitions and
important terms in large bodies of mathematical text. This system should have extremely good classification
performance in order to avoid the errors propagating to the NER system. On the other hand, the system needs
to be fast enough to tackle large corpora such as all the mathematical articles in the arXiv. Considering the
performance of the state of the art methods for text classification and NER available today, and after observing
the performance of the current prototype, we believe that this system is possible.

The next step in order to use more sophisticated methods is to use word embeddings or language models.
Methods that utilize these achieve better performance in both of the classification and NER tasks.

In order to further better the performance of the NER subtask we also plan on increasing the amount of
training data. The technique we used for the Wikipedia data can be adapted to other websites that host
similar content like The Stacks Project (https://stacks.math.columbia.edu/) and the Groupprops subwiki
(https://groupprops.subwiki.org). Additionally, applying domain adaptation methods might help to improve
performance in case that the labeled data deviates significantly from nonlabeled data [5].
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