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Abstract

The Protégé plug-in NoHR allows the user to com-
bine an OWL 2 EL ontology with a set of non-
monotonic (logic programming) rules — suitable,
e.g., to express defaults and exceptions — and
query the combined knowledge base (KB). The
formal approach realized in NoHR is polynomial
(w.r.t. data complexity) and it has been shown that
even very large health care ontologies, such as
SNOMED CT, can be handled. As each of the
tractable OWL profiles is motivated by different ap-
plication cases, extending the tool to the other pro-
files is of particular interest, also because these pre-
serve the polynomial data complexity of the com-
bined formalism. Yet, a straightforward adaptation
of the existing approach to OWL 2 QL turns out to
not be viable. In this paper, we provide the non-
trivial solution for the extension of NoHR to OWL
2 QL by directly translating the ontology into rules
without any prior pre-processing or classification.
We have implemented our approach and our evalu-
ation shows encouraging results.

1 Introduction

NoHR! is a plug-in for the ontology editor Protégé” that al-
lows its users to query combinations of £ EI ontologies and
non-monotonic rules in a top-down manner.

Its motivation stems from the fact that many current ontolo-
gies, such as the very large health care ontologies widely used
in the area of medicine, e.g., SNOMED CT,? are expressed in
OWL 2 EL, one of the OWL 2 profiles [Motik er al., 2013],
and its underlying description logic (DL) ££*" [Baader et
al., 2005]. Yet, due to their monotonic semantics, i.e., pre-
viously drawn conclusions persist when new additional in-
formation is adopted, DL-based ontology languages [Baader
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et al., 2010] are not suitable to model defaults and exceptions
with a closed-world view, a frequently requested feature, e.g.,
when matching patient records to clinical trial criteria [Patel
et al., 2007].

Among the plethora of approaches for extending DLs with
non-monotonic features and deal with this problem (c.f. re-
lated work in [Eiter et al., 2008; Motik and Rosati, 2010]),
NoHR builds on Hybrid MKNF [Motik and Rosati, 2010],
which is based on the logic of minimal knowledge and nega-
tion as failure (MKNF) [Lifschitz, 19911, under the well-
founded semantics [Knorr et al., 2011], a formalism that com-
bines DLs and non-monotonic rules as known from Logic
Programming (see also [Alberti et al., 2012] for further moti-
vation in its favor).

This choice is motivated, on the one hand, by the fact that
non-monotonic logic programming rules are one of the most
well-studied formalisms that admit expressing defaults, ex-
ceptions, and also integrity constraints in a declarative way,
and are part of RIF [Boley and Kifer, 2013], the other expres-
sive language for the Semantic Web whose standardization
is driven by the W3C.* On the other hand, Hybrid MKNF
provides a very general and flexible framework for combin-
ing DL ontologies and non-monotonic rules (see [Motik and
Rosati, 2010]). In addition, [Knorr et al., 20111, which is
a variant of [Motik and Rosati, 2010] based on the well-
founded semantics [Gelder et al., 1991] for logic programs,
has a (lower) polynomial data complexity and is amenable
for applying top-down query procedures, such as SLG(O)
[Alferes et al., 2013], to answer queries based only on the in-
formation relevant for the query, and without computing the
entire model.

NoHR is thus applicable to combinations of non-
monotonic rules and OWL 2 EL ontologies. However, other
applications (see, e.g., [Calvanese et al., 2011; Savo et al.,
2010]) require ontologies using DL constructors which are
not covered by OWL 2 EL, such as concept and role negation
or role inverses, as admitting these would raise its polynomial
complexity [Baader et al., 2005].

OWL 2 QL and the DL-Lite family [Calvanese erf al.,
2007; Artale et al., 2009] to which the DL underneath OWL 2
QL belongs, D L-Liteg, is suitable in these cases and has re-
cently drawn a lot of attention in research and in applications.
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Even though a simple language at first glance, it is expres-
sive enough to capture basic ontology languages, conceptual
data models, e.g., Entity-Relationship, and object-oriented
formalisms, e.g., basic UML class diagrams. Reasoning fo-
cuses on answering queries by rewriting the initial query, with
the help of the ontology, into a set of queries that can be an-
swered using an industry-strength SQL engine over the data.
This provides the very low data complexity of LoGSpace for
query answering, but also links directly to applications in
ontology-based data access (OBDA) [Calvanese er al., 2011;
Kontchakov et al., 2011]. Altogether, OWL 2 QL is naturally
tailored towards huge datasets.

In order to provide also such applications based on OWL 2
QL with the additional expressive power obtained from com-
bining DL ontologies with non-monotonic rules, in this paper,
we extend NoHR to OWL 2 QL. Whereas, at first sight, this
could seem like a routine exercise, the fact that, to the best of
our knowledge, no dedicated open-source OWL 2 QL clas-
sifier with OWL API is available, and applying the £L rea-
soner ELK [Kazakov er al., 2013], currently used in NoHR,
to classify a DL-Liter ontology is obviously not possible,
we have to follow a different path here, namely translate the
ontology directly into rules. This introduces some non-trivial
problems, in particular, the need to capture unsatisfiable con-
cepts and roles and irreflexive roles, for which in [Calvanese
et al., 2007] a closure of so-called negative axioms is com-
puted, potentially introducing a huge number of additional
axioms. We solve this problem by introducing an extension
of the graph, used, e.g., in [Lembo et al., 2013] for classifica-
tion in OWL QL, to negative axioms. The resulting transla-
tion is implemented as a module of the NoHR translator, and
its performance evaluated. Our main contributions are:

e A procedure for translating D L-Liter ontologies into
rules which allows answering queries over hybrid KBs
combining such ontologies and non-monotonic rules;

e An substantial extension of the Protégé plug-in NoHR to
include OWL 2 QL ontologies, beyond D L-Liter via
normalizations, including optimizations on the number
of created rules and the use of tabling in the top-down
query engine XSB Prolog;’

e An evaluation of our extension that shows that NoHR
for OWL 2 QL maintains all positive evaluation results
of the OWL 2 EL version [Ivanov et al., 2013], and is
even faster during pre-processing, as no classification is
necessary, in exchange for an on average slightly longer
response time during querying.

The remainder of the paper is structured as follows. In
Sect. 2, we briefly recall DL-Litegr and MKNF knowl-
edge bases as a tight combination of the former DL and
non-monotonic rules. Then, we present the translation of
D L-Liter ontologies which allows us to query such MKNF
knowledge bases in Sect. 3. In Sect. 4, we discuss the changes
made in the implementation for OWL 2 QL including opti-
mizations, and evaluate it in Sect. 5, before we conclude in
Sect. 6.

5http: //xsb.sourceforge.net

2 Preliminaries

2.1 DL-Liteg

The description logic underlying OWL QL is DL-Liteg,
one language of the D L-Lite family [Calvanese er al., 2007;
Artale et al., 2009], which we recall following the presenta-
tion in [Knorr and Alferes, 2011].

The syntax of DL-Liter is based on three disjoint sets of
individual names N, concept names N¢, and role names NRg.
Complex concepts and roles can be formed according to the
following grammar

B—A|3Q C—B|-B Q—P|PT R—-Q|—Q

where A € N¢ is a concept name, P € Ng a role name, and
P~ its inverse. We also call B a basic concept, Q) a basic
relation, C' a general concept and R a general role.

A DL-Liter knowledge base O = (T,.A) consists of a
TBox 7 and an ABox A. The TBox contains general inclu-
sion axioms (GCI) of the form B T C and role inclusion
axioms (RI) of the form Q C R, with B, C, @, and R de-
fined as above. We term positive inclusion axioms all GCIs
and RIs in O such that C'is a basic concept and R is a basic
relation, respectively, and all other GCIs and Rls negative in-
clusion axioms. We also assume that ()~ denotes the role P
if Q = P, and P~ if Q = P. The ABox contains assertions
of the form A(a) and P(a,b) where A € N¢, P € Ng, and
a,b € N,. Assertions C(a) for general concepts C' can be
included by A C C and A(a) for a new concept name A.

The semantics of DL-Liter is based on interpretations
T = (AZ,.T) consisting of a nonempty interpretation domain
AT and an interpretation function - that assigns to each indi-
vidual a a distinct® element aZ of AZ, to each concept name
A asubset AZ, and to each role name P a binary relation Pz
over Z. This can be extended as usual:

(P7)F ={(i2,i1) | (ir,42) € PT}  (-B)* = AT\ BY
(3Q)" ={i| (1,) € @7} (-Q)F = AT x AT\ QF

An interpretation Z is a model of GCI B T C and of RI
Q C Rif BT C €T and QT C R” respectively. 7 is also a
model of an assertion A(a) (P(a,b)) if aZ € A ((a,bT) €
PT). Given an axiom/assertion o we denote by Z |= « that
T is a model of a. A model of a DL-Liter KB O = (T, A)
is an interpretation Z such that Z = « holds for all « €
T U A, and O is satisfiable if it has at least one model, and

unsatifiable otherwise. Also, O entails axiom «, written O =
«a, if every model of O satisfies «.

2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal
knowledge and negation as failure (MKNF) [Lifschitz, 1991].
Two main different semantics have been defined [Motik and
Rosati, 2010; Knorr et al., 2011], and we focus on the well-
founded version [Knorr et al., 2011], due to its lower com-
putational complexity and amenability to top-down querying
without computing the entire model. Here, we only point out

®Hence, the unique name assumption is applied and, as shown
in [Artale et al., 2009], dropping it would increase significantly the
computational complexity of D L-Liter.



important notions following [Ivanov et al., 2013], and refer to
[Knorr et al., 2011] and [Alferes et al., 2013] for the details.

We start by recalling MKNF knowledge bases as presented
in [Alferes er al., 2013] to combine an ontology and a set of
non-monotonic rules (similar to a normal logic program).
Definition 1. Let O be an ontology. A function-free first-
order atom P(t1,...,t,) s.t. P occurs in O is called DL-
atom;, otherwise non-DL-atom. A rule r is of the form

H<+ Ay,...,A,,notBy,... , notB,, N

where the head of v, H, and all A; with 1 <4 < n and B;
with 1 < j < m in the body of r are atoms. A program P
is a finite set of rules, and an MKNF knowledge base K is a
pair (O, P). A rule r is DL-safe if all its variables occur in at
least one non-DL-atom A; with 1 < ¢ < n, and K is DL-safe
if all its rules are DL-safe.

DL-safety ensures decidability of reasoning with MKNF
knowledge bases and can be achieved by introducing a new
predicate o, adding o(7) to P for all constants ¢ appearing in
KC and, for each rule r € P, adding o(X) for each variable X
appearing in r to the body of r. Therefore, we only consider
DL-safe MKNF knowledge bases.

Example 1. Consider an MKNF knowledge base K as given
below for recommending CDs adapted from [Knorr et al.,
2011] (with some modifications). We denote DL-atoms and
constants with upper-case names and non-DL-atoms and
variables with lower-case names.’

JHasArtist™ T Artist
JdHasComposed T Piece
HasComposed™ T HasArtist

recommend(z) < Piece(z), notowns(z), notlowEval(z),

Piece C JHasArtist
Artist © —Piece

interesting(x)

interesting(x) < Piece(z), notowns(z), Piece(y), owns(y),

Artist(z), HasArtist(y, z), HasArtist(z, z)

owns(Summertime) < Piece(Summertime) <

HasArtist(Summertime, Gershwin) <
HasComposed(Gershwin, RhapsodyInBlue) +

This example shows that we can seamlessly express defaults
and exceptions, such as recommending pieces as long as they
are not owned or having a low evaluation, and at the same
time taxonomic/ontological knowledge including information
over unknown individuals, such as every piece having at least
one artist without having to specify whom, but also features of
DL-Liteg, such as domain and range restrictions (of roles).

The semantics of MKNF knowledge bases K is usually
given by a translation 7 into an MKNF formula 7(K), i.e., a
formula over first-order logic extended with two modal oper-
ators K and not. Namely, every rule of the form (1) is trans-
lated into KH + KA;,..., KA, ,notB,...,notB,,,
7(P) is the conjunction of the translations of its rules, and
m(K) = Kn(O) A w(P) where w(O) is the first-order trans-
lation of O. Reasoning with such MKNF formulas is then

"To ease readability, we omit the auxiliary atoms that ensure DL-
safety and leave them implicit.

commonly achieved using a partition of modal atoms, i.e.,
all expressions of the form K¢ for each K¢ or noty oc-
curring in 7(K). For [Knorr et al., 2011], such a partition
assigns true, false, or undefined to (modal) atoms, and can
be effectively computed in polynomial time. If K is MKNF-
consistent, then this partition does correspond to the unique
model of K [Knorr et al., 2011], and, like in [Alferes et al.,
2013], we call the partition the well-founded MKNF model
Muw¢(K). Here, K may indeed not be MKNF-consistent if the
ontology alone is unsatisfiable, or by the combination of ap-
propriate axioms in O and rules in P, e.g., A C =B, and
A(a) < and B(a) <. Strictly speaking, unlike [Ivanov et
al., 2013], we do not have to make assumptions on the satisfi-
ability of O as we are not going to use a classifier when pro-
cessing D L-Liter ontologies. Still, for the technical results
established in Sec. 3, we will rely on satisfiability, since we
are able to entail everything from an unsatisfiable O, whereas
the translation into rules defined in Sec. 3 would not permit
that. This is why in the following, we assume that O oc-
curring in /C is satisfiable, which does not truly constitute a
restriction as we can always turn the ABox into rules with-
out any effect on M,¢(KC). An alternative approach would be
to use one of the paraconsistent semantics for MKNF knowl-
edge bases [Kaminski er al., 2015], but this is outside the
scope of this paper, and an issue for future work as currently
no paraconsistent correspondence to the querying procedure
SLG(O) used here exists.

2.3 Querying in MKNF Knowledge Bases

In [Alferes et al., 2013], a procedure, called SLG(O), is de-
fined for querying MKNF knowledge bases under the well-
founded MKNF semantics. This procedure extends SLG res-
olution with tabling [Chen and Warren, 1996] with an ora-
cle to O that handles ground queries to the DL-part of /C by
returning (possibly empty) sets of atoms that, together with
O and information already proven true, allows us to derive
the queried atom. We refer to [Alferes et al., 2013] for the
full account of SLG(Q), and only recall a few crucial notions
necessary in the following.

SLG(O) is based on creating top-down derivation trees
with the aim of answering (DL-safe) conjunctive queries

Q= q()?) +— Ay,...,A,,notBy, ..., notB,, where each

variable in () occurs in at least one non-DL atom in (), and
where X is the (possibly empty) set of requested variables
appearing in the body.

In general, the computation of M, (K) uses two different
versions of K in parallel to guarantee that a) coherence is en-
sured, i.e., if =P (a) is derivable, then notP(a) has to be
true as well (cf. also [Knorr et al., 2011]), and b) MKNF-
consistency of K can be verified. For a top-down approach
this is impractical, so, instead, a doubled MKNF knowledge
base K¢ = (O, 04, P?) is defined in which a copy of O with
new doubled predicates is added, and two rules occur in P¢
for each rule in P, intertwining original and doubled predi-
cates (see Def. 3.1 in [Alferes et al., 2013]). It is shown that
an atom A is true in My (K) iff A is true in M,¢(K?) and A
is false in My (KC) iff A% is false in My (K4). Note that K¢
is necessary in general, but we can use K here if it contains
no negative inclusion axioms.



In [Alferes et al., 2013], the notion of oracle is defined to
handle ground queries to the ontology, but before we recall
that notion, we use an example to illustrate the idea.

Example 2. Recall IC in Ex. 1. Here, we omit K% and restrict
ourselves to IC, which suffices our purposes. Consider query
q = recommend(Summertime). By instantiating the body
of the matching rule head in KC with x = Summertime, we
obtain two new queries. The first one, Piece(Summertime),
can be answered by means of the rule with matching head.
The second, notowns(Summertime), is handled by query-
ing for owns(Summertime), for which a corresponding rule
exists, so notowns(Summertime) fails, hence q is false.

Consider q1 = recommend(RhapsodyInBlue).  Us-
ing the same rule with matching rule head we obtain
four new instantiated queries from the rule body. Now,
Piece(RhapsodyInBlue) cannot be derived from the rules,
but we can query the ontology and the oracle will return,
e.g., a query HasComposed(z;, RhapsodyInBlue) that if
proven true can be added to O, which would allow us
to derive the queried goal. This query succeeds because
of HasComposed(Gershwin, RhapsodyInBlue) <, and so
does Piece(RhapsodyInBlue).  Then, we cannot prove
owns(RhapsodyInBlue) nor lowEval(RhapsodylnBlue),
so both fail, succeeding their (default) negated queries. For
the remaining new query interesting( RhapsodyInBlue), the
second rule head matches, creating further subgoals. The
first two were just answered, as the next two with y =
Summertime for q. The remaining also follow from the in-
terplay of O and P in K, so q1 succeeds.

We recall the notions of a complete and a (correct) partial
oracle from [Alferes et al., 20131

Definition 2. Let K¢ = (O, 0%, P%) be a doubled MKNF
KB, 7 a set of ground atoms (already proven to be true),
S a ground query, and £ a set of ground atoms such that
each L € L is unifiable with at least one rule head in P
The complete oracle for O, denoted compTe, is defined by
compTo(Z,S,L) iff OUTUL = SorOUTUL = S. A
partial oracle for O, denoted pTp, is a relation pTo(Z, S, L)
such that if pTo (Z, S, £), then OUZUL = S or OYUTUL =
S for consistent O UZ U £ and O% U T U L, respectively.

A partial oracle pTp is correct w.r.t. compTp iff, for all
MKNF-consistent ¢, replacing compTp in SLG(O) with
pT o succeeds for exactly the same set of queries.

Partial oracles may avoid returning unnecessary answers L,
such as non-minimal answers or those that try to derive an
MKNF-inconsistency even though K¢ is MKNF-consistent.
Also, correctness of partial oracles is only defined w.r.t
MKNF-consistent C. The rationale is that, when querying
top-down, we want to avoid checking whether the entire KB
K¢ is MKNF-consistent. This leads to para-consistent deriva-
tions if K% is not MKNF-consistent, e. g., some atom P is true,
yet P? is false, while other independent atoms are evaluated
as if K¢ was MKNF-consistent (see [Alferes et al., 2013]).

3 Translating the Ontology into Rules

As argued for the case of £ [Zi’ [Ivanov et al., 2013], axioms
with 3 on the right-hand side, e.g., Piece T JHasArtist,

cannot be translated straightforwardly into rules, nor do they
directly contribute to the result when querying for ground in-
stances, e.g., of HasArtist(x,y). Still, such axioms may con-
tribute to derivations within O, which is why, in [Ivanov et al.,
2013], a classification using the dedicated and highly efficient
&L reasoner ELK [Kazakov et al., 2013] is first applied to de-
rive implicit consequences. These, together with all axioms
in O, are then translated into rules, now discarding certain
axioms with 3 on the right-hand side.

Here, since to the best of our knowledge no dedicated,
open-source OWL 2 QL classifier with OWL API is avail-
able, we opt to follow a different path, namely translate the
ontology directly into rules. This also simplifies and short-
ens the preprocessing phase and avoids a priori-classification,
but requires some non-trivial considerations to ensure that no
derivations are lost in the process, which we will explain next.

Essentially, axioms, such as Piece C JHasArtist, cannot
be translated into a rule HasArtist(z,y)  Piece(z) us-
ing a universal variable y, as this would allow us to derive
HasArtist(z, y) for any Piece(z) and y, which is clearly not
what the axiom expresses. Using a new constant c instead of y
would not be correct either, as querying for HasArtist(x, y)
would return HasArtist(x, ¢) for any Piece(x) for the same
c. Therefore, we proceed differently by introducing new
auxiliary predicates that intuitively represent the domain and
range of roles. For our example, this will yield the rule
DHasArtist(z) < Piece(x) where DHasArtist stands for
the domain of HasArtist (and RHasArtist its range). Us-
ing such auxiliary predicates also means that we have to
make sure that, e.g., HasArtist(Summertime, Gershwin)
allows us to derive DHasArtist(Summertime), which can
be achieved via an additional rule DHasArtist(z) <
HasArtist(z, y). Moreover, for HasComposed™ C
HasArtist, it does not suffice to translate the ax-
iom to HasArtist(z,y) < HasComposed(y,z), but
also link the new auxiliary predicates for both roles,
by adding, DHasArtist(z) < RHasComposed(z) and
RHasArtist(z) < DHasComposed(x).

We now formalize this translation, and we start by intro-
ducing notation on how to translate general concepts and
roles. For that purpose, we formally introduce for each role
P € Ng auxiliary predicates DP and RP with the intuition
of representing the domain and range of P. Also, similar to
previous work in [Alferes er al., 2013; Ivanov et al., 2013],
we use special atoms NH (#;) in SLG(O) that represent a
query ~H (t:) to the oracle. These are, of course, only rele-
vant if O contains negative inclusion axioms.

Definition 3. Let C' be a concept, R a role, = and y variables,
and v a new (anonymous) variable (disjoint from x and y).



We define ¢r(C, z) and ¢tr(R, x, y) as follows:
(x) ifC=A

A
DP(z) ifC =3P
tr(C,z) = ¢ RP(x) ifC =3P~
NA(z) ifC=-4
tr(-Q,z,v) ifC=-3Q
P(z,y) ifR=P
_ J P(y,x) ifR=P~
B2 =\ Nploy) ifC =P
NP(y,z) ifC=-P~

We obtain tr?(C,x) and tr%(Q,x,y) from tr(C,z) and
tr(Q,z,y) by substituting all predicates P in ¢r(C,z) and
tr(Q, x,y) with P%, respectively.

tr(C,x) and tr(R, z,y) handle both positive and negative
inclusions and no additional case distinction is necessary.

Before we present the actual translation, we need to in-
troduce one central notion, namely a graph to represent the
axioms in a given TBox T as well as the implicitly derivable
axioms, which will be necessary for defining the translation
itself, but also turn out useful when establishing the correct-
ness of the translation. Graphs have been used for classifi-
cation in OWL QL (of positive inclusion axioms) [Lembo et
al.,2013], and we extend the notion here to also take negative
inclusion axioms into account. We thus introduce the digraph
(directed graph) of T as follows.

Definition 4. Let 7 be a DL-Liter TBox. The digraph of
T, Gr = (V, &), is constructively defined as follows.

1. If A € N, then A and —A are in V;

2. If R € Ng, then P, 3P, dP~, =P, -4P, and ~P~ are
in V;

3.If By C By € T, then the edges (B, Bs) and
(—By,—Bj)arein &;

4. If Q1 C Q2 € T, then the edges (Q1,Q2), (Q7, Q3 ).
(HQla HQQ)’ <3Q;? HQg)’ ("Q27 "Ql)7("Q27; "Q;)y
(=3Q2,~3Q1) e (-3Q5,~3QT) are in &;

5.1f By C =By € T, then the edges (By,—Bs) and
(B2,—Bj) arein &;

6. If Q1 T —Q2 € T, then the edges (Q1,Q2),
(Q;a_'Qli)’ (anu_EIQQ)9 (3Q27_E!Q1)s
(3Q71,~3Q5 ) and (3Q5 ,~3IQ7 ) arein £.

Basically, each possible general concept and general role
over N¢c and Ng is a node in Gy, and the directed edges
represent logical implications that follow from the axioms.
Namely, for items 3. and 5., the subset inclusion itself and its
contrapositive are in £, and this is similar for items 4. and 6.,
only that the additional combinations due to inverses, 3, and
— have to be taken into account. In this sense, the graph can
be understood as capturing all subset inclusions (explicit and
implicit) in O, i.e., whenever there is a path from concept C
to concept C5 and from role R; to role Ry, then C; C C5 and
Ry T Ry hold respectively. An Example of such a digraph is
given in Fig. 1 for the TBox 7 from Example 1.

One observation to be made in Fig. 1, is that
JdHasComposed = —3dHasComposed, i.e., HasComposed

JHasComposed

JHasComposed™ HHas/llrM',slf
Piece/ —JHasArtist  Artist
3H>9Artist —Artist —Piece
—~JHasArtist™ —3HasComposed™
—JHasComposed
HasComposed ™ —HasArtist HasComposed —~HasArtist™
Has/%rtist —\HasColmposedf HasAlrtist’ —HasComposed

Figure 1: The digraph G+ for Example 1

is irreflexive. Even though this does not entail any assertion,
knowing that Vz.—~HasComposed(z, z) does hold should be
captured in the translation. We introduce ¥(7), the set of
irreflexive roles in T, to be able to ensure exactly that.

Definition 5. Let 7 be a DL-Litegr TBox and G its di-
graph. W e define W(7') as the smallest set of all P € Nr
that satisfy at least one of the following conditions:

1. For some By C =By € T, there exist paths from 3P to
By and from 3P~ to Bs;

2. For some By C =By € T, there exist paths from 3P~
to By and from 3P to Bo;

3. For some Q1 C —Qy € T, there exist paths from P to
@1 and from P~ to Qs;

4. For some Q1 C —Qs € T, there exist paths from P~ to
(1 and from P to Q5.

This notion builds on G7, which is also required for detect-

ing a further set of derivations. Imagine we would (wrong-
fully) add Artist & dHasComposed~ to O in Example 1.
Then there would be a path from Artist to both Piece and
= Piece, i.e., the concept Artist would be unsatisfiable. Note
that independently of whether the hybrid KB is MKNF-
inconsistent or not, we need to make sure that all unsatisfiable
concepts and roles are determined, so we introduce Q(7T),
quite similar in spirit to ¥ (7).
Definition 6. Let 7 be a DL-Litegr TBox and G its di-
graph. We define Q(7) as the smallest set of all A € N¢
such that, for some B; C —B; € T, there exist paths from A
to both By and Bs, and all P € Ng that satisfy at least one of
the following conditions:

1. For some By C =By € T, there exist paths from 3P to
both B; and Bs;

2. For some By C =By € T, there exist paths from 3P~
to both By and Bs;

3. For some Q1 C —Qy € T, there exist paths from P to
both ()1 and Qs;

4. For some Q1 C —Q2 € T, there exist paths from P~ to
both @1 and Q5.

With all pieces in place, we can finally introduce the defi-
nition of the translation of a D L-Liter ontology into rules.

Definition 7. Let O be a DL-Liter ontology. We define
Pé from O, where B;, B are basic concepts, @1, ()2 basic



roles, x, y variables, and a, b individuals, as the smallest set
containing:

(e) forevery P € Ng:
DP(z) < P(z,y)
RP(y) « P(z,y)

(al) for every A(a) € O:
Ala) + Ad(a) < notN A(a)

(a2) for every P(a,b) € O:

P(a,b) + P(a,b) < notN P(a,b)

(s1) forevery By C By € O:
tr(Bs, ) < tr(Bi, x)
trd(By, z) + trt(By, z), nottr(-Bs, )
tr(—By,z) < tr(—Ba,x)

(s2) forevery @1 CE Q2 € O:
tr(Qa, z,y) < tr(Qu, 2, y)
tr (Q27 L, y) A tTd(Q17 L, y>7 nOttT(“QQa z, y)

tTgElQQ,x) +— tr(3Q1, x)

tr1(3Qq, ) + tr*(3Q, z), nottr(—3Qz, x)
tr(3Q5 , x) < tr(3Q7 , x)
trd(3Q5 , ) + tr(3Q7 , x), nottr(-3Q; , x)
tr(_‘le z, y) « tr(_'Q27 xz, y)

(nl) forevery By C —~Bs € O:
tr(—By,x) + tr(Bay,x)

(n2) forevery Q1 C —Q5 € O:
t?”(_‘QQ, z, y) — tT(Qla xZ, y)
tr(_‘Qh €z, y) — tT(QQa Z, y)

(i1) forevery A € Q(T): NA(x) «

(i2) forevery P € Q(T): NP(z,y) <

(ir) forevery P € ¥(7): NP(x,x) +

DPY(z) « P4(x,y)
RP%(y) < P(x,y)

tr(—Bg,x) + tr(B,x)

Item (e) ensures that the domain and range of roles is cor-
rectly encoded, items (al) and (a2) translate the ABox, items
(s1) and (s2) the positive inclusions, items (nl) and (n2) the
negative inclusions, and items (il), (i2), and (ir) introduce
the rules representing unsatisfiable concepts and unsatisfiable
and irreflexive roles. Note, that 77% contains the rule repre-
sentation for both © and O, which is why items (e)—(s2)
contain doubled rules. Of course, if O does not contain neg-
ative inclusion axioms, then we can skip all these, as well as
items (n1)—(ir) which will not contribute anything anyway in
this case. The additional default atoms are added to the dou-
bled rules to be in line with the idea of the doubling of rules
in [Alferes et al., 2013]: whenever, e.g., A(z) is “classically
false” for some z, i.e., N A(x) holds, then we make sure that
A%(x) is derivable as false for that same x from the rules,
but not necessarily A(x), thus allowing to detect potential
MKNF-inconsistencies. That is also the reason why neither
(n1)—(ir) nor the contrapositives in (s1) and (s2) do produce
the doubled counterparts: atoms based on predicates of the
forms NC? or N R? are not used anywhere. Finally, the dou-
bled rules in (e) do not contain the default negated atom as
this case only associates domain and range to a role assertion,
either present in the ABox or derived elsewhere. Addition-
ally, predicates NDP or NRP are not used anywhere, so
such default negated atoms would be of no impact.

We can establish three correspondences between entail-
ment from satisfiable O and the program resulting from the
translation Pg). First, we consider positive atoms.

Lemma 1. Let O be a DL-Liter ontology, A a unary and
R a binary predicate:

o O k= A(a) iff PG = A(a) and O |= R(a,b) iff P =
R(a,b).

A similar property holds for (classically) atoms.

Lemma 2. Let O be a DL-Liteg ontology, A a unary and
R a binary predicate:

e O | —A(a) iff P4 = NA(a) and O = —R(a,b) iff
Pd = NR(a,b).

We can also show the correspondent to Lemma 1 for the
doubled predicates.

Lemma 3. Let O be a DL-Litegr ontology, A a unary and
R a binary predicate:

e 01 = Ada) iff PS E Ad(a) and O = R(a,b) iff
Pd = R(a,b).

Thus, we can define a correct partial oracle based on Pg,.

Theorem 4. Let K¢ = (O, O, P) be a doubled MKNF KB
and pTE" a partial QL oracle such that pTS*(Z, S, L) iff
PLUTUL = S. Then pTgL is a correct partial oracle w.r.t.
compTo.

Instead of coupling two rule reasoners that interact with
each other using an oracle, we can simplify the process alto-
gether and integrate both into one rule reasoner. The resulting
approach is decidable with polynomial data complexity.

Theorem 5. Let K = (O, P) be an MKNF KB with O in
DL-Liter. An SLG(O) evaluation of a query in Ko, =
(0, (PTUPY)) is decidable with data complexity in PTiME.

4 System Description

In this section, we briefly describe the changes to the archi-
tecture of our plug-in and discuss some optimizations imple-
mented w.r.t. the translation described in Sec. 3.

To allow the usage of OWL QL ontologies, changes were
essentially made in the translator. First, since now two
OWL profiles are supported we have introduced a switch that
checks the profile of the loaded/edited ontology. If it is in
OWL EL, then NoHR behaves as described in [Ivanov et al.,
2013], i.e., the reasoner ELK is used to classify the ontology
and return the inferred axioms to translator, which are then
translated. Otherwise, we treat O of the hybrid KB based on
the translation described in Sec. 3 for OWL QL.

Notably, in Sec. 3, we only considered D L-Liter while
OWL QL includes a number of additional constructs which
often can be expressed in DL-Liter. To account for that,
we first normalize such expressions to axioms in DL-Liteg.
This includes ignoring certain expressions, most of which do
not contribute anything to derivations, e.g., SubClassOf (B
owl:Thing), while others make the ontology unsatisfi-
able, such as ClassAssertion (owl:Nothing a), al-
though, as mentioned before, with no effect when querying
the translated rules. The details on the normalization can be
found in the appendix of the extended paper.
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Figure 2: Preprocessing time for LUBM for the two transla-
tion modes

Subsequently, the graph is constructed, for determining un-
satisfiable concepts and unsatisfiable and irreflexive roles, af-
ter which the translation is performed, which includes a num-
ber of optimizations. First, whenever there are no negative in-
clusions, the doubled rules are omitted in the cases (e)—(s2) of
Def. 7. Additionally, case (e) is limited to those rules whose
heads appear in the body of another rule. Both steps reduce
the overall number of rules created during the translation.

The second group of optimizations is related to tabling in
XSB, which contributes to help answering queries very effi-
ciently in a top-down manner, and avoid infinite loops while
querying. However, simply declaring all predicates to be
tabled is very memory-consuming, so we reduced the num-
ber of tabled predicates without affecting loop detection. For
example, only predicates that appear in any rule head and in
any rule body need to be tabled. In addition, rules with an
empty body (facts) can be ignored in the previous criterion,
as these will not cause an infinite loop.

5 Evaluation

In this section, we evaluate our system and show that a) pre-
processing is even faster when compared to NoHRs EL ver-
sion, which was already capable of preprocessing large on-
tologies in a short period of time, b) querying scales well,
even for over a million facts/assertions in the ABox, despite
being slightly slower on average in comparison to EL, and c)
adding rules scales linearly for pre-processing and querying,
even for an ontology with many negative inclusions.

Tests were performed on a Notebook running Linux
3.17.6-1-ARCH (x86_64) with 1.8 GHz 4x Intel Core i3 pro-
cessor and 4 GB of RAM. We used XSB 3.4.0 for querying,
ran all tests in a terminal version and Java with “-XX:+Ag-
gressiveHeap” option, and report averages over 5 runs.

First, we considered LUBM? [Guo er al., 20051, a standard
benchmark for evaluating queries over a large data set. The
ontology itself is already rather simple and we reduced it even
a bit further by removing all axioms that are not common to
both OWL 2 QL and EL. The resulting ontology has only
ninety logical axioms, but this way we can use it with both
translators included in NoHR and compare their performance.
We created instances of LUBM 1-10 with assertions ranging

$http://swat.cse.lehigh.edu/projects/lubm/
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Figure 3: Query time for three LUBM queries

from roughly 100,000 to over 1,300,000 and performed pre-
processing from loading the ontology to loading the transla-
tion result in XSB. The results for both translators EL and
QL can be found in Fig. 2. Note that the segment “Initializa-
tion” is the time for preparing the translation, which for EL
includes classifying the ontology, while the larger part of the
segment “Other” corresponds to loading the ontology.

We can observe that QL is considerably faster, indeed up
to 40s for LUBM10, to a considerable extent due to avoiding
classification. Besides that, the preprocessing time increases
linearly, and the overall time for preprocessing is acceptable
in our opinion as this is only done once before querying.

Next, we also queried the resulting ten rule sets in XSB for
both EL and QL using queries from the LUBM benchmark,
that were manually transformed from SPARQL to queries us-
able in XSB. Among the fourteen provided queries, we chose
seven, because the others were either no longer meaningful
due to removal of certain axioms/DL constructors during the
initial simplifications we applied to LUBM, or because ini-
tial tests revealed that XSB would run out of memory for a
query, simply because, for our test system with 4GB mem-
ory, too much data was being gathered in the tables to answer
the query. In more detail, we used the queries 1, 2, 3, 4, 5,
7, 10 from the LUBM benchmark. The results are shown for
some representatives in Fig. 3. Basically, for queries 1, 3, 4,
and 10, no real difference between EL and QL exists and the
response time is strictly below 1s. For query 7, there exists a
slight difference in favor of EL with 2.5s vs. 1s for LUBM10,
whereas for queries 2 and 5 the difference increases. In all
cases, the response time grows linearly w.r.t. the increasing
size of LUBM, and we can conclude that on average query-
ing in QL is slightly slower. Here, EL compensates for the
longer preprocessing, and this effect becomes more visible,
the more complex the query is and the more data needs to
gathered to answer it. Intuitively, this can be explained by
looking at a simple example with two axioms A C 3R and
3R C B For EL, classification, yields A C B and only one
axiom is translated and only one derivation step is required in
XSB to obtain, say B(a) from A(a). For QL, both axioms
are translated directly without classification, using DR, but
now, two derivation steps would be required in XSB to ob-
tain B(a) from A(a). It thus seems that deciding which of
the two forms of translations performs better depends on the
kind (and number) of queries we pose.

Finally, with the aim of also testing a more expressive
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OWL 2 QL ontology, we used the LIPID ontology,” which
has, besides 749 subclass axioms, 1,486 class disjointness
axioms and 20 inverse object properties in combination with
non-monotonic rules. The latter were created by means of
the rule generator already used in [Ivanov er al., 2013] with
a ratio 1:10 between rules and facts, also introducing some
new predicates not present in the ontology itself. We per-
formed the preprocessing step and observed only slight ef-
fects due to the increasing amount of rules. The time for
processing the ontology was naturally stable for all steps,
and overall processing time was between 2 and 3s. Notably,
the considerable amount of negative inclusions had no sig-
nificant impact on time, e.g., when constructing the graph.
Then, we posed three simple queries (Queryl-3), namely
Acyl_Ester_Chain(X), Lipid(X), and Entity(X) to the result-
ing rule sets in XSB. The results are shown in Fig. 4. As
we can see, the response time is still very reasonable, from
clearly below 1s to up to 8s. Still, the results in our opinion
already show the effect of the arbitrary rules that tend to intro-
duce links between predicates that increase the search space.
This can be noted in particular for Query1, where in one case
a smaller set of rules results in a higher response time, simply
because no generated rule set is a subset of another. We note
that performance tests of querying (non-monotonic) rules and
ontologies would considerably benefit from real datasets but
to the best of our knowledge currently none are available.

6 Conclusions

We have extended NoHR, the Protégé plug-in that allows to
query non-monotonic rules and ontologies in OWL 2 EL,
to also admit ontologies in OWL 2 QL. While the principal
architecture of the tool remains the same, the crucial mod-
ule that translates the ontology into rules with the help of a
classifier simply cannot be re-used, which is why we intro-
duced a novel direct translation for OWL 2 QL ontologies to
cover this profile. We have implemented this translation and
discussed optimizations. The evaluation shows that it main-
tains all positive evaluation results of the OWL 2 EL version
[Ivanov et al., 2013], and is even faster during pre-processing,
as no classification is necessary, in exchange for an on aver-
age slightly longer response time during querying.

Besides the OWL 2 EL profile supported by NoHR, and
compared to in Sect. 5, also [Gomes et al., 2010; Knorr and

’http://bioconto.dcs.aber.ac.uk/ql-ont/

Alferes, 2011] both build on the well-founded MKNF seman-
tics [Knorr et al., 2011]. While [Gomes et al., 2010] uses
the non-standard CDF framework integrated in XSB, which
complicates compatibility to standard OWL tools based on
the OWL API, [Knorr and Alferes, 2011] presents an OWL 2
QL oracle based on common rewritings in the underlying DL
DL-Liter [Artale et al., 2009], but would require constant
interaction between a rule reasoner and a DL reasoner, which
is why we believe it to be less efficient than our approach.
Two related tools are DReW [Xiao et al., 2013] and HD
Rules [Drabent et al., 2007], although based on different un-
derlying formalisms to combine ontologies and rules (c.f.
[Eiter er al., 2008; Motik and Rosati, 2010] for a compari-
son), which, again, considerably complicates comparison.
Future work includes the extension to OWL 2 RL, but
developing an alternative for OWL 2 QL using the classi-
fier integrated in ontop [Kontchakov et al., 2014] once its
OWL API becomes available, or even the general reasoner
Konclude [Steigmiller et al., 20141, could shed more light
on whether classification or direct translation fares better for
proper OWL 2 QL ontologies. The efficiency of the latter rea-
soner also motivates looking into non-polynomial DLs, with
possible influences from recent work on rewriting disjunctive
datalog programs [Kaminski et al., 2014]. Finally, we may
extend NoHR for OWL 2 QL (and EL) to the paraconsistent
semantics [Kaminski er al., 2015] that would provide true
support to the already occasionally observed paraconsistent
behavior, or alternatively, to either generalizations of hybrid
KBs [Gongalves and Alferes, 2010; Knorr et al., 2014; 2012;
Knorr, 2015] or dynamics in hybrid KBs [Slota er al., 2011;
Slota and Leite, 20121, or even both [Gongalves et al., 2014].
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