
Paraconsistent Relational Model: A Quasi-Classic Logic Approach

Badrinath Jayakumar and Rajshekar Sunderraman
Department of Computer Science, Georgia State University,

Georgia, USA
{bjayakumar2, raj}@cs.gsu.edu

Abstract

The well-founded model for any general deductive
database computed using the paraconsistent relational
model, based on four-valued logic, does not support in-
ference rules such as disjunctive syllogism. In order
to support disjunctive syllogism, we utilize the gener-
alization of the relational model to quasi-classic (QC)
logic, whose inference power is much closer to classi-
cal logic. As the paraconsistent relational model is ca-
pable of representing incomplete and inconsistent data,
we propose an algorithm to find QC model for inconsis-
tent positive extended disjunctive deductive databases.
To accomplish this, in addition to using existing gener-
alized algebraic operators, we introduce two new oper-
ators FOCUSC and FOCUSD .

1 Introduction
Most database systems that are currently in use are based on
the relational model. This model defines the falsity of its at-
tributes based on the absence of information (closed world
assumption). However, the model is not suitable for all ap-
plications. For example, if a database does not contain a per-
son’s allergy to a medicine, when a doctor queries the per-
son’s allergy to the medicine, the database will then return
false. To represent negative information in databases, we use
paraconsistent databases (Bagai and Sunderraman 1995).
Bagai and Sunderraman developed a framework to represent
negative facts in relational databases, which is based on four-
valued logic. The four-valued relation represents both posi-
tive and negative information, and negative facts are derived
from open world assumption. The authors (Bagai and Sun-
derraman 1995) also developed an application for the para-
consistent relational model that finds the weak well-founded
semantics of general deductive databases. For general de-
ductive databases and disjunctive deductive databases, var-
ious paraconsistent semantics have been proposed (Bagai
and Sunderraman 1996b; Subrahmanian 1990; Sunderraman
1997), all based upon Belnap’s four-valued model (Belnap Jr
1977). Even for logic programs, especially disjunctive
logic programs, various paraconsistent semantics are pro-
posed (Alcântara, Damásio, and Pereira 2004; Arieli 2002;
Damásio and Pereira 1998; Alcântara, Damásio, and Pereira
2002). All of which still come under Belnap’s four-valued
model.

However, such multi-valued logic does not support dis-
junctive syllogism (Hunter 1998). For example, suppose
a knowledge base contains {passed ∨ failed} about a stu-
dent. When new information about the student comes to the
knowledge base {¬failed}, the four-valued logic gives two
paraconsistent minimal models (Sakama and Inoue 1995)
{{passed, ¬failed}, {failed, ¬failed}}. Hence, ¬failed is
the only logical consequence of the two models. Whether
the student has passed or not cannot be inferred with four-
valued logic.

It is very clear from the above example that this four-
valued logic does not behave as expected in such situa-
tions. In order to get accurate models, it is required to use a
stronger form of four-valued logic for improving the ability
of reasoning. Therefore, we use QC logic (Hunter 2000). In
this paper, the algorithm to find the model for positive ex-
tended disjunctive deductive databases is proposed by using
QC logic with the paraconsistent relational model. To avoid
getting into an infinite iteration, it is assumed that the pro-
gram does not have recursions, and constraints are also not
used. In the model construction, for any disjunctive clause, it
is necessary to impose a link between each relation in union
and its complementary of the relation in order to enable non-
trivial classical conclusions.

The approach presented in this paper differs from the QC
model (Zhang, Lin, and Ren 2009) in its algebraic nature.
In this paper, we construct an algebraic equation for every
clause in which expressions of the equation containing carte-
sian products operates with a set of tuples instead of one
tuple at a time. In other words, the expression that repre-
sents disjunctive head operates on one tuple at a time. In
addition to that, algrebraic expressions can be optimized by
using various laws of equality.

The rest of the paper is organized as follows. In section
2, we introduce the preliminaries to understand the paper; in
section 3, we define a paraconsistent disjunctive relational
model; in section 4, we provide the key idea to understand
the paper; in section 5, we explain the algorithm with an
example; in section 6, we state the conclusion and future
work for this paper.

2 Preliminaries
Before we explain the details of actual contributions of this
paper, we must briefly review positive extended disjunctive

deductive databases and the paraconsistent relational model
(Bagai and Sunderraman 1996a; Zhang, Lin, and Ren 2009;
Bagai and Sunderraman 1995) .

Syntax. Given a first order language L, a disjunctive de-
ductive database P (Minker and Seipel 2002) consists of
logical inference rules of the form

r (rule) = l0 ∨ · · · ∨ ln ← ln+1 . . . lm

l0 . . . ln is called head of the rule and ln+1 . . . lm is called
body of the rule. A rule is called fact if the rule has no body.
A rule is called denial rule if the rule has only body and
no head. A rule is called definite clause or horn clause, if
the rule has only one literal in the head and has some literal
in the body. A rule is called positive disjunctive rule if the
rule has both body and head. Concretely, the rule r is called
positive extended disjunctive rule, if l0, . . . , ln, ln+1, . . . , lm
are either positive or negative (¬) literals.

For the given syntax of a positive extended disjunctive
deductive database, we reproduce the fixed point semantics
of P (Zhang, Lin, and Ren 2009).

Fixed Point Semantics. Let P be a positive extended dis-
junctive deductive database and I be a set of interpretations,
then TP (I) =

⋃
I∈I TP (I)

TP (I) =



∅, if ln+1, . . . , lm ⊆ I for some
ground constraint ← ln+1 . . . lmfrom P.

{J | for each ground rule
ri : l0 ∨ · · · ∨ ln ← ln+1 . . . lm such that
{ln+1 . . . lm} ⊆ I, J = I ∪

⋃
ri
J ′ where

J ′ ∈ Lits(focus(l0 ∨ · · · ∨ ln, I))}, otherwise.

In the definition of TP (I), focus removes comple-
mentary literals from disjunction (focus(l0 ∨ l1, I) =
l0 where I = {¬l1}). If all disjuncts (l0 . . . ln) are available
in I as complementary literals, then the disjunction of liter-
als becomes the conjunction of literals. Lits of conjunction
gives a set of conjuncts. On the other hand, Lits of disjunc-
tion is a collection of sets where every set in the collection
contains a disjunct.

The TP definition contains the constraint. We write it for
the sake of completeness, but our contribution in this paper
will not address the constraint.

The following two propositions are vital for our result.
Proposition 1. For any positive extended disjunctive deduc-
tive database P , TP is finite and TP ↑ n = TP ↑ ω where n
is a successor ordinal and ω is a limit ordinal.
Proposition 2. For any positive extended disjunctive deduc-
tive database P , Minimal QC Model(P) = min(µ(TP ↑ ω)
1) where min () stands for sets with a minimum number of
literals.

As we stated earlier, we use the paraconsistent rela-
tion model (Bagai and Sunderraman 1995) to find the QC
model for any given positive extended disjunctive deductive
database. In the following, we define the paraconsistent re-
lational model and its operators.

1µ(TP ↑ ω) = {I | I ∈ TP ↑ ω and I ∈ TP({I})}

Paraconsistent relations move forward a step to complete
the database. Unlike normal relations where we only re-
tain information believed to be true of a particular predicate,
we also retain what is believed to be false of a particular
predicate in the paraconsistent relational model. Let a rela-
tion scheme Σ be a finite set of attribute names, where for
any attribute name A ∈ Σ, dom(A) is a non-empty domain
of values for A. A tuple on Σ is any map t : Σ →

⋃
A∈Σ

dom(A), such that t(A)∈ dom(A) for each A ∈ Σ. Let τ(Σ)
denote the set of all tuples on Σ. An ordinary relation on
scheme Σ is thus any subset of τ(Σ). A paraconsistent re-
lation on a scheme Σ is a pair < R+, R− > where R+ and
R− are ordinary relations on Σ. Thus, R+ represents the set
of tuples believed to be true of R, and R− represents the set
of tuples believed to be false.
Algebraic Operators. Two types of algebraic operators are
defined here: i)Set Theoretic Operators, and ii) Relational
Theoretic Operators.
Set Theoretic Operators. Let R and S be two paraconsis-
tent relations on scheme Σ.

Union. The union of R and S, denoted R∪̇S, is a para-
consistent relation on scheme Σ, given that

(R∪̇S)+ = R+ ∪ S+, (R∪̇S)− = R− ∩ S−

.
Complement. The complement of R, denoted −̇R, is a

paraconsistent relation on scheme Σ, given that

−̇R+ = R−, −̇R− = R+

Intersection. The intersection ofR and S, denotedR∩̇S,
is a paraconsistent relation on scheme Σ, given that

(R∩̇S)+ = R+ ∩ S+, (R∩̇S)− = R− ∪ S−

Difference. The difference of R and S, denoted R−̇S, is
a paraconsistent relation on scheme Σ, given that

(R−̇S)+ = R+ ∩ S−, (R−̇S)− = R− ∪ S+

Example 1. Let {a, b, c} be a common domain for all at-
tribute names, and let R and S be the following paraconsis-
tent relations on schemes {X} and {X} respectively:

R+ = {(a), (b)}, R− = {(c)}
S+ = {(c), (b)}, S− = {(a)}

R∪̇S is

(R∪̇S)+ = {(a), (b), (c)}
(R∪̇S)− = {}

R∩̇S is

(R∩̇S)+ = {(b)}
(R∩̇S)− = {(a), (c)}

−̇R is
−̇R+ = {(c)}
−̇R− = {(a), (b)}

R−̇S is

(R−̇S)+ = {(a)}
(R−̇S)− = {(b), (c)}

Relation Theoretic Operators. Let Σ and ∆ be relation
schemes such that Σ ⊆ ∆, and R and S be paraconsistent
relations on schemes Σ and ∆.

Join. The join of R and S, denoted R.̇/S, is a paracon-
sistent relation on scheme Σ ∪∆ given that

(R.̇/S)+ = R+ ./ S+, (R.̇/S)− = (R−)Σ∪∆ ∪ (S−)Σ∪∆

Projection. The projection ofR onto ∆ , denoted π̇∆(R),
is a paraconsistent relation on ∆ given that

π̇∆(R)+ = π∆(R+)Σ∪∆

π̇∆(R)− = {t ∈ τ(∆) | tΣ∪∆ ⊆ (R−)Σ∪∆}
where π∆ is the usual projection over ∆ of ordinary rela-

tions.
Selection. Let F be any logic formula involving attribute

names in Σ, constant symbols, and any of these symbols
{==, ¬, ∧, ∨}. Then the selection of R by F , denoted
σ̇F (R)+, is a paraconsistent relation on scheme Σ, given
that

σ̇F (R)+ = σF (R)+, σ̇F (R)− = R− ∪ σ¬F (τ(Σ))

where σF is a usual selection of tuples satisfying F from
ordinary relations.

The following example is taken from Bagai and Sunderra-
man’s paraconsistent relational data model (Bagai and Sun-
derraman 1995).

Example 2. Strictly speaking, relation schemes are sets of
attribute names. However, in this example we treat them
as ordered sequence of attribute names, so tuples can be
viewed as the usual lists of values. Let {a, b, c} be a com-
mon domain for all attribute names, and let R and S be the
following paraconsistent relations on schemes 〈X,Y 〉 and
〈Y,Z〉 respectively:
R+ = {(b, b), (b, c)}, R− = {(a, a), (a, b), (a, c)}
S+ = {(a, c), (c, a)}, S− = {(c, b)}.
Then, R.̇/S is the paraconsistent relation on scheme

〈X,Y, Z〉:
(R.̇/S)+ = {(b, c, a)}
(R.̇/S)− = {(a, a, a), (a, a, b), (a, a, c), (a, b, a), (a, b, b),

(a, b, c), (a, c, a), (a, c, b), (a, c, c), (b, c, b), (c, c, b)}
Now, π̇〈X,Z〉(R.̇/S) becomes the paraconsistent relation

on scheme 〈X,Z〉:
π̇〈X,Z〉(R.̇/S)+ = {(b, a)}
π̇〈X,Z〉(R.̇/S)− = {(a, a), (a, b), (a, c)}
Finally, σ̇¬X=Z(π̇〈X,Z〉(R.̇/S)) becomes the paraconsis-

tent relation on scheme 〈X,Z〉:
σ̇¬X=Z(π̇〈X,Z〉(R.̇/S))+ = {(b, a)}
σ̇¬X=Z(π̇〈X,Z〉(R.̇/S))− = {(a, a), (a, b), (a, c)(b, b),

(c, c)}

In the rest of the paper, relations mean paraconsistent rela-
tions. In order to find the QC model easily in our algorithm,
we create a copy for a given relation. For any given relation
R, the copy ofR isR′. BothR andR′ are different relations
with the same attributes and the same tuples. R is called an
exact relation and R′ is called a copy relation. In addition
to that, the replica of R is R, where replica R has the same
name, the same tuples, and the same attributes. We assume
that a relation and its replica should not appear in the same
set, but it can appear in different sets. If two relations (a re-
lation and its replica) appear in the same set, then we merge
the tuples and write it as one relation.

Our main contributions of the paper start from the dis-
junctive relation.

3 Disjunctive Relation
Let a disjunctive relation scheme 2Σ be a finite set of at-
tribute sets, where for any attribute set A ⊆ 2Σ, dom(a)
is a non-empty domain of values for each a ∈ A. Let
τ(2Σ) denote the set of all tuples on 2Σ. A disjunctive
relation, DR, over the scheme 2Σ consists of two compo-
nents 〈DR+, DR−〉, where DR+ ⊆ τ(2Σ) and DR− ⊆
τ(2Σ). DR+ is the component that consists of a set of tu-
ples. While the tuples in DR+ typically represent the dis-
junction of facts, they also sometimes represent the conjunc-
tion of facts. At the same time, DR− is the component that
consists of a set of tuples. Each tuple in this component rep-
resents a conjunction of facts. In the case where the tuple
is a singleton, both DR+ and DR− have a definite fact that
has neither disjunction or conjunction.

Let T be a tuple in DR, then for all t ∈ T , Att(t) be an
attribute set that represents the element in the tuple of the
disjunctive relation DR, and let Att(R) be an attribute set
that represents the relation R over the scheme Σ.

The disjunctive relational model is very much different
from the disjunctive database introduced by Molinaro et al.
(Molinaro, Chomicki, and Marcinkowski 2009). The dis-
junctive database (Molinaro, Chomicki, and Marcinkowski
2009) is based on the relational model (not the paraconsis-
tent relational model), whereas disjunctive relational model
is based on the paraconsistent relational model. Moreover
unlike the disjunctive relational model, disjunctive databases
(Molinaro, Chomicki, and Marcinkowski 2009) are well-
suited for repairs. At the same time, the disjunctive rela-
tional model is also different from the relational model in-
troduced by Sunderraman that can handle disjunction (Sun-
derraman 1997). In Sunderraman’s relation model for dis-
junction, all the disjuncts should have the same arity in the
relation. However, in the disjunctive relational model, it can
be different.

In the following, we define rename operators, mapping,
and necessary functions, which all play a key role in con-
structing the QC model. In addition to that, we give an ex-
ample that relates the usage of the operators, mapping and
the functions which help to comprehend the algorithm.
Rename Operators. Rename operators change the at-
tributes for any relation. We define two rename operators:
i) Attribute Rename, and ii) Copy Attribute Rename.

Attribute Rename (Θ). Let R be a relation over scheme
Σ and Σ = {A1 . . . Am, R.A1 . . . R.Am} , Then

ΘA1...Am→R.A1...R.Am
(R)

and

ΘR.A1...R.Am→A1...Am
(R)

This operator (Θ) is used to maintain uniqueness of at-
tributes between any two relations.

Copy Attribute Rename (Ω). Let R be a relation over
scheme Σ and Σ = {A1 . . . Am, R

′
1.A1 . . . R

′
n.Am}. Then

ΩA1...Am→R′.A1...R′.Am(R)

and

ΩR′.A1...R′.Am→A1...Am
(R)

Tuple Mapping to Disjunctive Relation. The algebraic
equivalent for disjunction (∨) is union. So, we represent
the disjunctive information in P as paraconsistent unions
(∪̇) of relations. But it is not very flexible to construct the
QC model with paraconsistent unions (∪̇) of relations. So,
we map the information in relations to a disjunctive relation
DR. Let R1 . . . Rn be relations over schemes Σ1 . . .Σn
where every Σi ⊆ Σ and 1 ≤ i ≤ n. Then a set of
attribute sets for any DR obtained from R1∪̇ . . . ∪̇Rn is
{Σ1 . . .Σn}. Now, we map the tuples of relations contain-
ing paraconistent unions to a disjunctive relation. For each
t ∈ T , T is a tuple for any disjunctive relation (DR). Then
t : Σ → ∪A∈Att(Ri)dom(A) such that t(A) ∈ dom(A) for
every i in R1 ∪̇ . . . ∪̇ Rn where Att(t) = Att(Ri). Infor-
mally, a disjunctive relation can be considered a collection of
relations that has unions. It is intuitive to map each disjunc-
tive relation back to its base relations because every t ∈ T
of any disjunctive relation represents the corresponding tu-
ple in the relation (Ri).

In our approach, we need to find the name of the underly-
ing relation for any given element in T . Hence, the following
defintion:
NRelation. For any t ∈ T where T is a tuple for any dis-
junctive relation (DR) that is mapped from R1∪̇ . . . ∪̇Rn.
NRelation(t):= {Ri | Att(t) = Att(Ri) for any i in

R1∪̇ . . . ∪̇Rn }
NRelation returns the corresponding relation name (ei-

ther positive or negative) for the given t where t ∈ T and
T ∈ DR.

As we stated earlier, the positive component of disjunc-
tive relations contains tuples that are typically disjunctive,
but the positive component of disjunctive relations can be
conjunctive as well. As we are specifically handling the in-
consistencies associated with disjunction, we collect the tu-
ples that are disjunctive.
DISJ. Let DR be a disjunctive relation that is mapped from
R1∪̇ . . . ∪̇Rn. Then

DISJ(DR) = {T | ∀T ∈ DR+ such that T is disjunctive }
The following example is very specific, but helps to un-

derstand the algorithm clearly.

Example 3. Let R1, R2 and C are relations over schemes
{X} , {Y, Z} and {X,Y, Z} and domain for every attribute
is {a, b, c}. Then, we have the following equation:

(π̇{X,Y,Z}(R1(X)∪̇−̇R2(Y,Z)))[X,Y, Z] =

(π̇{X,Y,Z}(C(X,Y, Z)))+[X,Y, Z]

where C+= {(a, b, c)}, R−1 = {(b)} and R+
2 =

{(a, c), (b, c)}
Solution. Before the tuples of C are distributed to R1 and
R2, it is imperative to note that R1 and R2 contain definite
tuples, which are not disjunctive (conjunctive). The first step
is to map the definite tuples ofR1 andR2 to a disjunctive re-
lation. The definite tuples have no disjunction (conjunction)
in any disjunctive relation. So,we rename the attributes (Θ)
of R1 and R2. Then we map the definite tuples to DR.

In the rest of the paper, we differentiate positive and neg-
ative parts of a relation (disjunctive relation) with a double
line in every relation (disjunctive relation) diagram.

DR =

{R1.X} {R2.Y, R2.Z}
(b)

(a, c)
(b, c)

The next step is to distribute the tuples from C to each
individual relation in any union after applying Θ to R1 and
R2. It is necessary to apply Θ before the distribution of
tuples from C because we changed the attributes of R1 and
R2 before we map the definite tuples.

R1 =

{X}
(a)

(b)
and −̇R2 =

{Y, Z}
(b, c)

(a, c)
(b, c)

The next step is to again rename (Θ) the attributes.

R1 =

{R1.X}
(a)

(b)
and −̇R2 =

{R2.Y, R2.Z}
(b, c)

(a, c)
(b, c)

Then we map the newly added tuples of R1 ∪̇ −̇R2 to
DR.

DR =

{R1.X} {R2.Y,R2.Z}
(a) ∨ (b, c)

(b)
(a, c)
(b, c)

To find the relation name for any given element in
the tuple T where T ∈ DR, we use NRelation. So,
NRelation((b, c)) is −̇R2.

In addition to that, DISJ(DR) is (a) ∨ (b, c).
In the following section we introduce FOCUSC and

FOCUSD, which are very essential for handling inconsis-
tencies.

4 Key Idea for QC logic
It is very important to note that the paraconsistent relation
portrays a belief system rather than a knowledge system.
The key idea of QC logic is given by the resolution rule of
inference, which computes the focused belief. If the as-
sumptions are considered as beliefs for the resolution, then

the resolvent is called the focused belief. This ensures non-
trivial reasoning in QC logic. As an individual can be both
true and false for a given relation in the relational model,
we decouple the link during the model construction. This
is accomplished with the help of FOCUSD and FOCUSC .

FOCUSD. Let DR be a disjunctive relation on scheme 2Σ

and MR be a set of relations. Then
FOCUSD(DR,MR) = {T | ∀T ∈ DISJ(DR) ∧

∃t ∈ T ∧ ∃R ∈ MR ∧ Att(R) = Att(NRelation(t)) ∧
(NRelation(t) is positive ∧ t ∈ R− → (T = T \ t)) ∨
(NRelation(t) is negative ∧ t ∈ R+ → (T = T \ t))))}

As a special case, for a given tuple T where T ∈ DR+,
if FOCUSD removes every element t in tuple T , then we
convert the tuple T into a conjunction of the elements in
the tuple. This is similar to focus that we defined in the
Preliminaries section.

CONJ. Let DR be a disjunctive relation that is mapped
from R1∪̇ . . . ∪̇Rn. For any T ∈ DR,
CONJ(T):= { t1 ∧ · · · ∧ tn | ∀ti ∈ T ∧ n ≤ |T | }
Using CONJ, we define FOCUSC .

FOCUSC . Let DR be a disjunctive relation on scheme 2Σ

and MR be a set of relations. Then
FOCUSC(DR,MR) = {CONJ(T) | ∀T ∈

DR+ ∧ ∀t ∈ T ∧ ∃R ∈ MR ∧ Att(R) =
Att(NRelation(t)) ∧ ((NRelation(t) is positive ∧ t ∈
R−) ∨ (NRelation(t) is negative ∧ t ∈ R+))}
FOCUSD removes any element t , where t ∈ T and

T ∈ DR, that satisfies the predicate of FOCUSD. Simi-
larly, FOCUSC introduces conjunction among every t ∈ T
, where T ∈ DR, that satisfies the predicate of FOCUSC .
In any DR, any tuple T that contains conjunction should
never be affected by FOCUSD.

Example 4. Extending from Example 3. Let MR = {R′2}
where R′2

+= {(a, c), (b, c)}. R′2 is called a copy relation.

Solution.
MR = {R′2} where

R′2 =

{Y, Z}
(a, c)
(b, c)

We know that,

DR =

{R1.X} {R2.Y,R2.Z}
(a) ∨ (b, c)

(b)
(a, c)
(b, c)

The attributes of R′2 is different from R1 and
R2. Apply Θ(R′2) , Ω(Θ(R1)) and Ω(Θ(R1)). So,
FOCUSC(FOCUSD) can compare the attributes and per-
form necessary actions on T .

Now we apply focus to DR,
DR= FOCUSD (DR,MR)
In this case, in DR, the underlying relation for (b, c) is

−̇R2 but (b, c) lies in the positive part of R′2 in MR. There-
fore, FOCUSD removes it.

DR =

{R1.X} {R2.Y,R2.Z}
(a)

(b)
(a, c)
(b, c)

Apply Θ(R′2) , Θ(Ω(R1)) andΘ(Ω(R2)). These opera-
tions revert the relation back to its old attribute names. To
reiterate,DR+ contains tuples which in turn can contain dis-
junction. From the base DR, multiple DR can be obtained
by applying disjunction in tuples. Each newly created DR
from the base DR should not lose any tuple set; otherwise,
it leads to incorrect models. The following definition ad-
dresses the issue.
Proper Disjunctive Relation (PDR). Let DR be a base
disjunctive relation. A proper disjunctive relation is a set,
which contains all disjunctive relations that can be formed
from DR by applying disjunction in tuples. Concretely,
for every disjunctive relation (DRi), which is obtained from
DR by applying disjunction, τ(DR+) = τ(DR+

i) where 1
≤ i ≤ (2n − 1)τ(DR+) such DRi is a PDRi.

Example 5. Continuing from Example 4.

Solution. The next step is to create a set of proper disjunc-
tive relation from DR.
PDR = {PDR1}

PDR1 =

{R1.X} {R2.Y, R2.Z}
(a)

(b)
(a, c)
(b, c)

The size of PDR is 1. Correspondingly,
there should be one replica of base relations.
{{(π̇{X,Y,Z}(R1(R1.X)∪̇−̇R2(R2.Y,R2.Z)))[X,Y, Z]}}.
For every p in PDR, reverse map tuples to a set of base
relations.

R1 =

{R1.X}
(a)

(b)
and −̇R2 =

{R2.Y, R2.Z}
(a, c)
(b, c)

Finally, rename (Θ) each attribute name of every relation
back to its old name. Hence, R1 attribute is < X > and R2

attribute is < Y,Z >.
To individualize the relation, we have the following defi-

nition.
Relationalize. Let R1∪̇ . . . ∪̇Rn and R1, . . . , Rn be rela-
tions on scheme Σ.
Relationalize(π̇{Σ}(R1∪̇ . . . ∪̇Rn)[Σ]) : =

{R1, . . . , Rn}
The relationalize operator removes the unions among re-

lations and the projection for it. By doing so, the operator
produces a set of relations. If there is a select operation asso-
ciated with the expression, then apply the operation before
Relationalize is applied. Relationalize is in accordance
to Lits, which is one of the key operators for finding the QC
model (Zhang, Lin, and Ren 2009).

Example 6. Continuing from Example 5.

Solution. Relationalize(π̇{Y,X}[R1∪̇−̇R2](Y,X)) = {R1,
R2} where

R1 =

{X}
(a)

(b)
and −̇R2 =

{Y,Z}
(a, c)
(b, c)

or R2 =

{Y,Z}
(a, c)
(b, c)

Now R1 and R2 are called focused relations because R1

and R2 have no inconsistency.
During QC model construction, we encounter a set of re-

dundant relation sets. In order to remove it, we define the
following.
Minimize. Let {R11 . . . R1m} and {R21 . . . R2n} be two
sets of relations where m ≤ n.
Minimize({{R11 . . . R1n}, {R21 . . . R2m}}) : =

{{R11 . . . R1m} | R1i = R2j ∧ Att(R1i) = Att(R2j) ∧
τ(R1i) = τ(R2j) such that ∀i, 1 ≤ i ≤ m∧∃j, 1 ≤ j ≤ n}

By using the definitions and operators in Section 3 and
Section 4, we propose an algorithm in the following section.

5 QC Model for Positive Extended
Disjunctive Deductive Databases

By using the algebra of the relational model, we present a
bottom up method for constructing the QC model for the
positive extended disjunctive deductive database. The algo-
rithm that we present in this section is an extension of the
algorithm proposed by Bagai and Sunderraman (Bagai and
Sunderraman 1995). The reader is requested to refer to QC
logic programs (Zhang, Lin, and Ren 2009) and QC logic
(Hunter 2000). The QC model’s construction involves two
steps. The first step is to convert P into a set of relation
definitions for the predicate symbols occuring in P . These
definitions are of the form

Ur = DUr

where Ur is the paraconsistent union of the disjunctive head
predicate symbols of P , and DUr is an algebraic expres-
sion involving predicate symbols of P . Here r refers to
the equation number, 1 ≤ r ≤ N, where N refers to a total
number of equations. The second step is to iteratively evalu-
ate the expressions in these definitions to incrementally con-
struct the relations associated with the predicate symbols.
The first step is called SERALIZE and the second step is
called Model Construction.
Algorithm. SERALIZE
Input. A positive extended disjunctive deductive database
clause l0∨· · ·∨ ln ← ln+1 . . . lm. For any i, 0≤ i ≤ m, li is
either of the form pi(Ai1 . . . Aiki) or ¬pi(Ai1 . . . Aiki). Let
Vi be the set of all variables occurring in li
Output. An algebraic expression involving paraconsistent
relations.
Method. The expression is constructed by the following
steps :

1. For each argument Aij of literal li, construct argument
Bij and condition Cij as follows :

(a) If Aij is a constant a, then Bij is any brand new vari-
able and Cij is Bij=a.

(b) If Aij is a variable, such that for each k, 1≤ k < j,
Aik 6= Aij , then Bij is Aij and Cij is true.

(c) If Aij is a variable, such that for some k, 1≤ k < j,
Aik=Aij , then Bij is a brand new variable and Cij is
Aij = Bij .

2. Let l̂i be the atom pi(Bi1 . . . Biki), and Fi be the con-
junction Ci1 ∧ · · · ∧ Ciki . If li is a positive literal, then
Qi is the expression π̇Vi

σ̇Fi
(l̂i)). Otherwise, letQi be the

expression −̇π̇Vi
(σ̇Fi

(l̂i)).
As a syntatic optimisation, if all conjuncts of Fi are true
(i.e. all arguments of li are distinct variables), then both
σ̇Fi and π̇Vi are reduced to identity operations, and are
hence dropped from the expression.

3. Let U be the union (∪̇) of the Qi’s thus obtained, 0
≤ i ≤ n. The output expression is (σ̇F1(π̇DV (U)))
[B01 . . . Bnkn] where DV is the set of distinct variables
occurring in all li.

4. Let E be the natural join (.̇/) of the Qi’s thus obtained,
n+1 ≤ i ≤ m . The output expression is (σ̇F1(π̇DV (E)))
[B01 . . . Bnkn

]. As in step 2, if all conjuncts are true, then
σ̇F1 is dropped from the output expression.
From the algebraic expression of the algorithm, we con-

struct a system of equations.
For any positive extended disjunctive deductive database

P , EQN (P) is a set of all equations of the form Ur = DUr
,

where Ur is a union of the head predicate symbols of P ,
and DUr

is the union ∪̇ of all expressions obtained by the
algorithm SERIALIZE for clauses in P with the same Ur in
their head. If all literals in the head are the same for any two
rules, then Ur is the same for those two rules.
The final step is then to construct the model by incremen-
tally constructing the relation values in P . For any posi-
tive extended disjunctive deductive database, PE are the non
disjunctive-facts (clauses in P without bodies), and PB are
the disjunctive rules (clauses in P with bodies). P ∗E refers
to a set of all ground instances of clauses in PE . Then, PI =
P ∗E ∪ PB .

The following algorithm finds the QC model for P .
ALGORITHM. Model Construction
Input. A positive extended disjunctive deductive database
(P)
Output. Minimal QC Model for P .
Method : The values are computed by the following steps.

1. (Initialization)

(a) Compute EQN(PI) using the algorithm SERIALIZE for
each clause in PI .

(b) SModel= ∅ , For each predicate symbol p in PE , set
p+= {{a1 . . . ak} | p(a1 . . . , ak) ∈ P ∗E}, and p−= ∅ or
p−= {{a1 . . . ak} | ¬p(a1, . . . ak) ∈ P ∗E} and p+= ∅
SModel=p
End for.

2. (Rule Application)

(a) DModel= ∅.
For every SModel (SModel 6= ∅), create copies of the
relations in SModel and replace the SModel with the
copies.

(b) For every equation r of the form Ur = DUr
, create

DRr and insert the tuples from the copies in SModel
into the corresponding exact relation in the equation r.
Then map the definite tuples for the relations in Ur to

DRr. Compute the expression DUr and set the rela-
tions in Ur with D+

Ur
.

(c) Map the newly added tuples of Ur to DRr. Apply Θ
and Ω to every relation in Ur. Also apply Θ to every
relation in SModel. Then

DRr = FOCUSC(DRr, SModel)

DRr = FOCUSD(DRr, SModel)

Repeat FOCUSD until there is no change in DRr.
When there is no change is DRr, apply Θ to every re-
lation in SModel and apply Ω and Θ to every relation
in Ur.

(d) Create a set of proper disjunctive relations (PDRr)
from the focused DRr.

(e) Delete all tuples for the relations in Ur and create mul-
tiple replicas of Ur, which is denoted by the set Cr,
where |Cr| = |PDRr|.

(f) Re-map each p in PDRr to C where C ∈ Cr.
For every C ∈ Cr,
C= Relationalize(C)
/* Cr contains a collection of set of relations. */
DModel = DModel

⋃
Cr

/* Merging relations of every equation */
(g) Once all equations are evaluated for the current

SModel, perform the following: i) for every M ∈
DModel and for every exact relation for SModel that
is not in M , create the exact relation in M , and ii) for
every M ∈ DModel and for every exact relation for
SModel that is in M , insert the tuples from the copy
relation in SModel into the exact relation. Then add
DModel to TempModel.

(h) Once every SModel is applied, start from step 2 (a)
with SModel=Minimize (TempModel) and stop when
there is no change in SModel.

3. Minimal QC Model : Pick one (many) set (s) in SModel
whose sum of the size of all relations in the set (s) is (are)
minimal.

It is very intuitive from the algorithm that if the compu-
tation of DUr is empty for any SModel, then discard the
SModel. We found that the algorithm should be extended a
little to accommodate disjunctive facts, duplicate variables
in disjunctive literals, and constants in disjunctive literals.

The following example shows how the algorithm works.
In the example, to show the difference between any two sets,
we superscript the set with a number.
Example 7. Let P be a positive extended disjunctive deduc-
tive database. It has the following facts and rules :
r(a, c), p(a), p(c),¬f(a, b), s(c)
w(X) ∨ g(X) ∨ ¬p(X)← r(X,Y), s(Y)
w(X) ∨ g(X) ∨ ¬p(X)← ¬f(X,Y)

Solution. By step 1 (a) in initialization,
w(X)∨ g(X)∨¬p(X)← r(X,Y), s(Y) is serialized to
(π̇{X}(w(X)∪̇g(X)∪̇−̇p(X))[X]=

(π̇{X}(r(X,Y).̇/s(Y)))+[X]

and w(X)∨ g(X)∨¬p(X)← ¬f(X,Y) is serialized to
(π̇{X}(w(X)∪̇g(X)∪̇−̇p(X))[X]=

(π̇{X}(−̇f(X,Y)))+[X]
Both equations that are obtained after serialization have

the same left-hand side expression. So, it is written as one
equation (as show in (1)). EQN(PI) returns :

1. (π̇{X}(w(X)∪̇g(X)∪̇−̇p(X))[X]=
(π̇{X}(r(X,Y).̇/s(Y)))+[X]∪̇(π̇{X}(−̇f(X,Y)))+[X]

After step 1 (b) in initialization, SModel = {r, p, s, f}
where

r =
{X,Y }
(a, c) p =

{X}
(a)
(c)

s =
{Y }
(c) f =

{X,Y }
(a, b)

After step 2(a), SModel = {r′, p′, s′, f ′} (COPIES) where

r′ =
{X,Y }
(a, c) p′ =

{X}
(a)
(c)

s′ =
{Y }
(c)

f ′ =
{X,Y }
(a, b)

In step 2 (b), there is only one SModel and an equation. It
is necessary to insert the tuples from the copies in SModel
to the corresponding relations in the equation. DModel= ∅.
Then map the definite tuples toDR1 for the current SModel.

DR1 =

{w.X} {g.X} {p.X}
(a)
(c)

Compute the equation and assign it to U1. Map the newly
added (disjunctive) tuples to DR1.

DR1 =

{w.X} {g.X} {p.X}
(a) ∨ (a) ∨ (a)

(a)
(c)

By step 2 (c), DR1 = FOCUSD(DR1, SModel)

DR1 =

{w.X} {g.X} {p.X}
(a) ∨ (a)

(a)
(c)

By step 2 (d), PDR1 = {PDR1
1, PDR2

1,PDR3
1 }

PDR1
1 =

{w.X} {g.X} {p.X}
(a)

(a)
(c)

PDR2
1 =

{w.X} {g.X} {p.X}
(a)

(a)
(c)

PDR3
1 =

{w.X} {g.X} {p.X}
(a) ∨ (a)

(a)
(c)

Map every p in PDR1 back to a set of base relations.
We skip a step (2 (d)) here. After relationalizing the set of
relations (step 2 (f)), we write:
C1= {{ w, p }1,{g, p}2,{w, g, p }3}

{ w, p }1

w =
{X}
(a) p =

{X}
(a)
(c)

{ g, p }2

g =
{X}
(a) p =

{X}
(a)
(c)

{ w, g, p }3

w =
{X}
(a) g =

{X}
(a) p =

{X}
(a)
(c)

DModel= DModel
⋃
C1

By step 2 (g),
DModel = {{w, p, r, s, f}1, {g, p, r, s, f}2,

{w, g, p, r, s, f }3}
{ w, p, r, s, f }1

w =
{X}
(a) p =

{X}
(a)
(c)

r =
{X,Y }
(a, c) s =

{Y }
(c)

f =
{X,Y }
(a, b)

{ g, p, r, s, f }2

g =
{X}
(a) p =

{X}
(a)
(c)

r =
{X,Y }
(a, c) s =

{Y }
(c)

f =
{X,Y }
(a, b)

{ w, g, p, r, s, f }3

w =
{X}
(a) g =

{X}
(a) p =

{X}
(a)
(c)

r =
{X,Y }
(a, c)

s =
{Y }
(c) f =

{X,Y }
(a, b)

Add DModel to TempModel.
By step 2 (h), SModel=Minimize (TempModel)
The algorithm stops when there is no change in SModel.

We then skip further iterations and write the final result:
Minimal QC Model = { { w, p, r, s, f}1, {g, p, r, s, f}2 }
{ w, p, r, s, f }1

w =
{X}
(a) p =

{X}
(a)
(c)

r =
{X,Y }
(a, c) s =

{Y }
(c)

f =
{X,Y }
(a, b)

{ g, p, r, s, f }2

g =
{X}
(a) p =

{X}
(a)
(c)

r =
{X,Y }
(a, c) s =

{Y }
(c)

f =
{X,Y }
(a, b)

In other words, Minimal QC Model = {{w(a), p(a),
p(c), r(a, c), s(c),¬f(a, b)}, {g(a), p(a), p(c), r(a, c), s(c),

¬f(a, b)}}
Gelfond and Lifschitz adopt the way of trivializing re-

sults (Gelfond and Lifschitz 1991) while the algorithm toler-
ates inconsistencies. However, we observe that we have not
proven the CORRECTNESS of the algorithm. Our immedi-
ate future work is to prove that the algorithm mimics fixed
point semantics (Proposition 1 and Proposition 2) (Zhang,
Lin, and Ren 2009).

6 Conclusion
In this paper, we proposed an algorithm to find the QC model
for any positive extended disjunctive deductive database.
We also introduced the disjunctive relational model to rep-
resent the relations containing paraconsistent unions. The
algorithm that we presented here is based on the algorithm
that is used to compute the well-founded model for general
deductive databases by using the relational model (Bagai
and Sunderraman 1996a). In query-intensive applications,
this precomputation of the model enables efficient process-
ing of subsequent queries. Though we find the model for any
given positive extended disjunctive deductive database, the
algorithm does not find models for the databases with recur-
sions and constraints. One direction of future work could
be expanding the algorithm to allow recursions and con-
straints. Moreover, the model that we construct is too strong;
it causes disjunction introduction to fail, but it is supported
by QC logic. To compute the QC entailment, it is necessary
to have both weak and strong models. So another direc-
tion of future work could be finding the weak models for the
same program so that QC entailment could be achieved. The
creation of many proper disjunctive databases are expensive,
given the QC logic model computation, and are probably not
worth the extra computation. We notice that we have not
stated or proven the complexities of the algorithm, and we
have also left it for future work.

References
Alcântara, J.; Damásio, C. V.; and Pereira, L. M. 2002.
Paraconsistent logic programs. In Logics in Artificial Intel-
ligence. Springer. 345–356.
Alcântara, J.; Damásio, C. V.; and Pereira, L. M. 2004.
A declarative characterisation of disjunctive paraconsistent
answer sets. In ECAI, volume 16, 951. Citeseer.
Arieli, O. 2002. Paraconsistent declarative semantics for ex-
tended logic programs. Annals of Mathematics and Artificial
Intelligence 36(4):381–417.
Bagai, R., and Sunderraman, R. 1995. A paraconsistent
relational data model. International Journal of Computer
Mathematics 55(1-2):39–55.
Bagai, R., and Sunderraman, R. 1996a. Bottom-up compu-
tation of the fitting model for general deductive databases.
Journal of Intelligent Information Systems 6(1):59–75.
Bagai, R., and Sunderraman, R. 1996b. Computing the well-
founded model of deductive databases. International Jour-
nal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 4(02):157–175.

Belnap Jr, N. D. 1977. A useful four-valued logic. In Mod-
ern uses of multiple-valued logic. Springer. 5–37.
Damásio, C. V., and Pereira, L. M. 1998. A survey of para-
consistent semantics for logic programs. In Reasoning with
Actual and Potential Contradictions. Springer. 241–320.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New generation
computing 9(3-4):365–385.
Hunter, A. 1998. Paraconsistent logics, handbook of defea-
sible reasoning and uncertainty management systems: vol-
ume 2: reasoning with actual and potential contradictions.
Hunter, A. 2000. Reasoning with contradictory information
using quasi-classical logic. Journal of Logic and Computa-
tion 10(5):677–703.
Minker, J., and Seipel, D. 2002. Disjunctive logic pro-
gramming: A survey and assessment. In Computational
Logic: Logic Programming and Beyond, Essays in Honour
of Robert A. Kowalski, Part I, 472–511. Springer-Verlag.
Molinaro, C.; Chomicki, J.; and Marcinkowski, J. 2009.
Disjunctive databases for representing repairs. Annals of
Mathematics and Artificial Intelligence 57(2):103–124.
Sakama, C., and Inoue, K. 1995. Paraconsistent stable se-
mantics for extended disjunctive programs. Journal of Logic
and Computation 5(3):265–285.
Subrahmanian, V. 1990. Paraconsistent disjunctive deduc-
tive databases. In Multiple-Valued Logic, 1990., Proceed-
ings of the Twentieth International Symposium on, 339–346.
IEEE.
Sunderraman, R. 1997. Modeling negative and disjunctive
information in relational databases. In Database and Expert
Systems Applications, 337–346. Springer.
Zhang, Z.; Lin, Z.; and Ren, S. 2009. Quasi-classical model
semantics for logic programs–a paraconsistent approach. In
Foundations of Intelligent Systems. Springer. 181–190.

