
Proceedings of the Workshops of

the EDBT/ICDT 2014 Joint Conference

K. Selçuk Candan
Arizona State University, USA

Sihem Amer-Yahia
CNRS – LIG, France

Nicole Schweikardt
University of Frankfurt, Germany

Vassilis Christophides
University of Crete & FORTH-ICS, Greece

Vincent Leroy
University of Grenoble – CNRS, France

March 28th, 2014

Contents

Message from the Chairs . iii
Algorithms for MapReduce and Beyond (BeyondMR) . 1

Scheduling MapReduce Jobs on Unrelated Processors . 2
Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements 6
On the design space of MapReduce ROLLUP aggregates . 10
Determining the k in k-means with MapReduce . 19
Tagged Dataflow: a Formal Model for Iterative Map-Reduce 29
Processing Regular Path Queries on Giraph . 37
Graph-Parallel Entity Resolution using LSH & IMM . 41
Modular Data Clustering - Algorithm Design beyond MapReduce 50

Bidirectional Transformations (BX) . 60
Preface to the Third International Workshop on Bidirectional Transformations 61
Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala . 63
Towards a Framework for Multidirectional Model Transformations 71
Formalizing Semantic Bidirectionalization with Dependent Types 75
BenchmarX . 82
Towards a Repository of Bx Examples . 87
Intersection Schemas as a Dataspace Integration Technique 92
Bidirectional Transformations in Database Evolution: A Case Study “At Scale” 100
Entangled State Monads . 108
Spans of lenses . 112

Energy Data Management (EnDM) . 119
Pipeline Production Data Model . 120
Renewable Energy Data Sources in the Semantic Web with OpenWatt 128
A Generic Ontology for Prosumer-Oriented Smart Grid . 134
Computing Electricity Consumption Profiles from Household Smart Meter Data 140
ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems 148
Energy Data Management: Where Are We Headed? (panel) 156

Exploratory Search in Databases and the Web (ExploreDB) . 157
Exploratory Search in Databases and the Web . 158
Exploring Big Data using Visual Analytics . 160
On the Suitability of Skyline Queries for Data Exploration . 161
Hippalus: Preference-enriched Faceted Exploration . 167
The DisC Diversity Model . 173
Exploring RDF/S Evolution using Provenance Queries . 176
Skyline Ranking à la IR . 182
Multi-Engine Search and Language Translation . 188

Querying Graph Structured Data (GraphQ) . 191
An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language . . 192
GraphMCS: Discover the Unknown in Large Data Graphs . 200

i

Graph-driven Exploration of Relational Databases for Efficient Keyword Search 208
Implementing Iterative Algorithms with SPARQL . 216
A Map-Reduce algorithm for querying linked data based on query decomposition into stars . 224
Performance optimization for querying social network data 232
Frequent Pattern Mining from Dense Graph Streams . 240

Linked Web Data Management (LWDM) . 248
Quantifying the Connectivity of a Semantic Warehouse . 249
Scalable Numerical SPARQL Queries over Relational Databases 257
Similarity Recognition in the Web of Data . 263
Mining of Diverse Social Entities from Linked Data . 269
TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples 275

Multimodal Social Data Management (MSDM) . 279
Social Data and Multimedia Analytics for News and Events Applications 280
Event Identification and Tracking in Social Media Streaming Data 282
Recommendation of Multimedia Objects for Social Network Applications 288
Estimating Completeness in Streaming Graphs . 294

Mining Urban Data (MUD) . 300
Mining Trajectory Data for Discovering Communities of Moving Objects 301
Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing 309
Crowd Density Estimation for Public Transport Vehicles . 315
Traffic Incident Detection Using Probabilistic Topic Model . 323
Predictive Trip Planning – Smart Routing in Smart Cities . 331
Addressing the Sparsity of Location Information on Twitter 339
Efficient Dissemination of Emergency Information using a Social Network 347
Crowdsourcing turning restrictions for OpenStreetMap . 355
Big data analytics for smart mobility: a case study . 363
Smart Applications for Smart City: a Contribution to Innovation 365
Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial

Variation . 367
SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data 369
A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow . 371
Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city

center . 373
Sensing Urban Soundscapes . 375

Privacy and Anonymity in the Information Society (PAIS) . 383
A Hybrid Approach for Privacy-preserving Record Linkage 384
Clustering-based Multidimensional Sequence Data Anonymization 385
Efficient Multi-User Indexing for Secure Keyword Search . 390
Community Detection in Anonymized Social Networks . 396
Secure Multi-Party linear Regression . 406
Data Anonymization: The Challenge from Theory to Practice 415
A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems 416

ii

Message from the Chairs

We are delighted to present to you, on behalf of the entire conference organizing committee and
the workshop organizers, the proceedings of the Workshops of the EDBT/ICDT 2014 Joint
Conference, held on March 28, 2014, in Athens, Greece.

International Conference on Extending Database Technology (EDBT) and International
Conference on Database Theory (ICDT) are two prestigious forums for the exchange of the latest
research results in data management and the theoretical foundations of database systems. While
having the same overarching goal of presenting cutting-edge results, ideas, techniques, and
theoretical advances in databases, the workshops of the EDBT/ICDT joint conference are
separately tasked by focusing on emerging topics that complement the areas covered by the main
technical program.

This year, our program includes workshops focusing on eight exciting topics:

• Algorithms for MapReduce and Beyond (BeyondMR) workshop, aiming to explore
algorithms and computational models for systems that need large scale parallelization and
systems designed to support efficient parallelization and fault tolerance,

• Bidirectional Transformations (BX) workshop, bringing together researchers and
practitioners, established and new, interested in bidirectional transformations from
different perspectives,

• Energy Data Management (EnDM) workshop, focusing on conceptual and system
architecture issues related to the management of very large-scale data sets specifically in
the context of the energy domain,

• Exploratory Search in Databases and the Web (ExploreDB) workshop, aiming to
promote novel discovery methods that provide highly expressive discovery capabilities
over large amounts of entity-relationship data, which are yet intuitive for end-users,

• Linked Web Data Management (LWDM) workshop, aiming at stimulating participants to
discuss about data management issues related to the Linked Data and the relationships
with other Semantic Web technologies, and at the same time proposes a glance at new
issues,

• Multimodal Social Data Management (MSDM) workshop, bringing together experts in
social network analysis, natural language processing, multimodal data management and
integration, scalable data analysis, machine learning, to discuss how research
contributions in different computer science areas can help better explain social data and
build new applications,

• Privacy and Anonymity in the Information Society (PAIS) workshop, which provides a
platform for researchers and practitioners from computer science and other fields that are
interacting with computer science in the privacy area, such as statistics, healthcare
informatics, and law, to discuss and present current research challenges and advances in
data privacy and anonymity research, and

• Querying Graph Structured Data (GraphQ) workshop, which aims to encourage
discussions about how to efficiently and effectively support graph queries in different
application domains and seeks to provide the opportunity for cross-fertilization amoing
teams working on graph-structured data, with a particular focus on the querying issues.

iii

Before concluding, we would like to acknowledge those who have contributed to the success of
the workshops program. First of all, we would like to thank all workshop organizers who have put
together an exciting program as well as to all authors who submitted their works to the workshops.
We specially thank the authors of the accepted papers and the invited speakers who presented their
works in the workshops program. Needless to say, we are grateful to the members of the workshop
program committees and external reviewers who have helped put together a high-quality
workshops program and we would like to acknowledge the conference organizers and many
student volunteers for their invaluable help at various stages of the process. We would also like to
give our thanks to the sponsors who have financially supported the workshops and the editors of
the CEUR Workshop Proceedings (CEUR-WS.org) who have agreed to host these proceedings.

Sincerely,

K. Selçuk Candan, Workshops Chair
Sihem Amer-Yahia and Nicole Schweikardt, EDBT and ICDT Program Chairs
Vassilis Christophides, General Chair

iv

Algorithms for MapReduce and Beyond
(BeyondMR)

Foto N. Afrati (National Technical University of Athens, Greece)
Phokion G. Kolaitis (UC Santa Cruz & IBM Research, USA)

Jeffrey D. Ullman (Stanford University, USA)

1

Scheduling MapReduce Jobs on Unrelated Processors∗

D. Fotakis
National Technical University

of Athens
fotakis@cs.ntua.gr

I. Milis
Athens University of

Economics and Business
milis@aueb.gr

E. Zampetakis
National Technical University

of Athens
mzampet@corelab.ntua.gr

G. Zois
Université Pierre et Marie

Curie and Athens University of
Economics and Business
Georgios.Zois@lip6.fr

ABSTRACT
MapReduce framework is established as the standard ap-
proach for parallel processing of massive amounts of data. In
this work, we extend the model of MapReduce scheduling on
unrelated processors (Moseley et al., SPAA 2011) and deal
with the practically important case of jobs with any number
of Map and Reduce tasks. We present a polynomial-time
(32 + ε)-approximation algorithm for minimizing the total
weighted completion time in this setting. To the best of our
knowledge, this is the most general setting of MapReduce
scheduling for which an approximation guarantee is known.
Moreover, this is the first time that a constant approxima-
tion ratio is obtained for minimizing the total weighted com-
pletion time on unrelated processors under a nontrivial class
of precedence constraints.

Keywords
MapReduce, Scheduling, Unrelated Processors

1. INTRODUCTION
Scheduling in MapReduce environments has become in-

creasingly important during the last years, as MapReduce
has been established as the standard programming model
to implement massive parallelism in large data centers [5].
Applications of MapReduce such as search indexing, web
analytics and data mining, involve the concurrent execu-
tion of several MapReduce jobs on a system like Google’s
MapReduce or Apache Hadoop. When a MapReduce job is
executed, a number of Map and Reduce tasks are created.

∗This work was supported by the project Handling Uncer-
tainty in Data Intensive Applications, co-financed by the
European Union (European Social Fund - ESF) and Greek
national funds, through the Operational Program ”Educa-
tion and Lifelong Learning”, under the program THALES,
and by the project Heracleitus II.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Each Map task operates on a portion of the input elements,
translating them into a number of key-value pairs. Next,
all key-value pairs are transmitted to the Reduce tasks, so
that all pairs with the same key are available together at
the same task. The Reduce tasks operate on the key-value
pairs, combine the values associated with a key, and generate
the final result. In addition to the many practical applica-
tions of MapReduce, there has been a significant interest
in developing appropriate cost models and a computational
complexity theory for MapReduce computation (see e.g., [3,
6]), in understanding the basic principles underlying the de-
sign of efficient MapReduce algorithms (see e.g., [1, 7]), and
in obtaining upper and lower bounds on the performance
of MapReduce algorithms for some fundamental computa-
tional problems (see e.g. [2] and the references therein).
Motivation and Previous Work. Many important ad-
vantages of MapReduce are due to the fact that the Map
tasks or the Reduce tasks can be executed in parallel and
essentially independent from each other. However, to best
exploit massive parallelism available in typical MapReduce
systems, one has to carefully allocate and schedule Map
and Reduce tasks to actual processors (or computational
resources, in general). This important and delicate task is
performed in a centralized manner, by a process running in
the master node. A major concern of the scheduler, among
others, is to satisfy task dependencies within the tasks of the
same MapReduce job; all the Map tasks must finish before
the execution of any Reduce task of the same job. During
the assignment and scheduling process, a number of differ-
ent needs must be taken into account, e.g., transferring of
the intermediate data (shuffle), data locality, and data skew,
which give rise to the study of new scheduling problems.

Despite the importance and the challenging nature of sched-
uling in MapReduce environments, and despite the extensive
investigation of a large variety of scheduling problems in par-
allel computing systems (see e.g., [13]), less attention has
been paid to MapReduce scheduling problems. In fact, most
of the previous work on scheduling in MapReduce systems
concerns the experimental evaluation of scheduling heuris-
tics, mostly from the viewpoint of finding good trade-offs
between different objectives (see e.g., [14]). From a theoret-
ical viewpoint, only few results on MapReduce scheduling
have appeared so far [11, 4].These are based on simplified ab-
stractions of MapReduce scheduling, closely-related to some
variants of the classical Open Shop and Flow Shop schedul-
ing models, that capture issues such as task dependencies,

2

data locality, shuffle, and task assignment, under the key
objective of minimizing the total weighted completion time
of a set of MapReduce jobs.

In this direction, the theoretical model of Moseley et al. [11]
generalizes a variant of the Flow Shop scheduling model,
referred to as 2-stage Flexible Flow Shop (FFS), which is
known to be strongly NP-hard, even for jobs of a single
Map and Reduce task and a single map and reduce proces-
sor (see in [11]). They consider the cases of both identical
and unrelated processors and the goal is to minimize the
total completion time of the jobs. For identical processors,
they present a 12-approximation algorithm, and a O(1/ε2)-
competitive online algorithm, for any ε ∈ (0, 1), under the
assumption that the processors used by the online algorithm
are 1 + ε times faster than the processors used by the opti-
mal schedule. Since the identical processors setting fails to
capture issues as data locality and to model communication
costs between the Map and the Reduce tasks, Moseley et al.
also consider the case of unrelated processors, which pro-
vides a more expressive theoretical model of scheduling in
MapReduce environments. Nevertheless, they only consider
the very restricted (and practically not so interesting) case
where each job has a single Map and a single Reduce task,
and present a 6-approximation algorithm and a O(1/ε5)-
competitive online algorithm, for any ε ∈ (0, 1), under the
assumption that the processors of the online algorithm are
1 + ε times faster.

A similar model of MapReduce scheduling so as to min-
imize the total completion time was proposed by Chen et
al. [4]. In contrast with the model of [11], they assume that
tasks are preassigned to processors and, in this restricted set-
ting, they present an LP-based 8-approximation algorithm.
Moreover, they deal with the shuffle phase in MapReduce
systems and present a 58-approximation algorithm.
Contribution and Results. We adopt the theoretical
model of [11] and consider MapReduce scheduling on unre-
lated processors. However, departing from [11], we deal with
the general (and practically interesting) case where each job
has any number of Map and Reduce tasks and we succeed
in obtaining a polynomial-time constant approximation al-
gorithm for minimizing the total weighted completion time.
More specifically, we consider a set of MapReduce jobs to be
executed on a set of unrelated processors. Each job consists
of a set of Map tasks, that can be executed only on map pro-
cessors, and a set of Reduce tasks, that can be executed only
on Reduce processors. Each task has a different processing
time for each processor and is associated with a positive
weight, representing its importance. All jobs are available
at time zero. Map or Reduce tasks can run simultaneously
on different processors and, for each job, every Reduce task
can start its execution after the completion of all the job’s
Map tasks. The goal is to find an assignment of the tasks
to processors and schedule them non-preemptively so as to
minimize their total weighted completion time.

In terms of classical scheduling, the model we consider
in this work is a special case of total weighted completion
time minimization on unrelated processors under precedence
constraints. Despite its importance and generality, only few
results are known for this problem. These results concern
only the case of treelike precedence constraints [8]. More
specifically, in [8], Kumar et al. propose a polylogarith-
mic approximation algorithm for the case where the undi-
rected graph underlying the precedence constraints is a for-

est (a.k.a. treelike precedences). Their algorithm is based
on a reduction from total weighted completion time min-
imization to an appropriate collection of makespan mini-
mization problems. Based on ideas of [8], we present a
(32+ε)-approximation algorithm for this problem that oper-
ates in two steps. In the first step, our algorithm computes a
(8 + ε)-approximation schedule for the Map tasks (resp. Re-
duce tasks) by combining a time indexed LP-relaxation of
the problem with a well-known approximation algorithm for
the makespan minimization problem on unrelated proces-
sors [9]. In fact, the makespan minimization algorithm runs
on each time interval of the LP solution and computes an
assignment of the Map (resp. Reduce) tasks to processors.
In the second step, based on an idea from [11], we merge the
two schedules, produced for the Map tasks and the Reduce
tasks, into a single schedule that respects the precedence
constraints. Using techniques from [11], we show that the
merging step increases the approximation ratio by a factor
of at most 4.

On the practical side, the theoretical model of [11] for
MapReduce scheduling on unrelated processors deals with
the most of the important aspects of the problem. So, con-
sidering jobs with any number of Map and Reduce tasks in
this model is particularly important for practical applica-
tions, since the basic idea behind MapReduce computation
is that each job is split into a large number of Map and Re-
duce tasks that can be executed in parallel (see e.g., [3, 6,
1, 2]). On the theoretical side, to the best of our knowledge,
this is the first time that a constant approximation ratio is
obtained for the problem of minimizing the total weighted
completion time on unrelated processors under a nontrivial
class of precedence constraints.
Notation. We consider a set J = {1, 2, . . . , n} of n MapRe-
duce jobs to be executed on a set P = {1, 2, . . . ,m} of m
unrelated processors. Each job is available at time zero, is
associated with a positive weight wj and consists of a setM
of Map tasks and a set R of Reduce tasks. Each task is de-
noted by Tk,j ∈M∪R, where k ∈ N is the task index of job
j ∈ J and is associated with a vector of non-negative pro-
cessing times {pi,k,j}, one for each processor i ∈ Pb, where
b ∈ {M,R}. Let PM and PR be the sets of map and re-
duce processors respectively. Each job has at least one Map
and one Reduce task that can run simultaneously on differ-
ent processors and every Reduce task can start its execution
after the completion of all Map tasks of the same job.

For a given schedule we denote by Cj and Ck,j the com-
pletion times of each job j ∈ J and each task Tk,j ∈M∪R
respectively. Note that, due to the precedence constraints
between Map and Reduce tasks, Cj = maxTk,j∈R{Ck,j}. By
Cmax = maxj∈J {Cj} we denote the makespan of the sched-
ule, i.e., the completion time of the job which finishes last.
Our goal is to schedule non-preemptively all Map tasks on
processors of PM and all Reduce tasks on processors of PR,
with respect to their precedence constraints, so as to min-
imize the total weighted completion time of the schedule,
i.e.,

∑
j∈J wjCj . We refer to this problem as MapReduce

scheduling problem.

2. A CONSTANT APPROXIMATION ALGO-
RITHM

In this section, we present a (32 + ε)-approximation al-
gorithm, for ε ∈ (0, 1), executed in the following two steps:

3

(i) it computes a (8 + ε)-approximate schedule for assigning
and scheduling all Map tasks (resp. Reduce tasks) on pro-
cessors of the set PM (resp. PR) and (ii) it merges the two
schedules in one, with respect to the precedence constraints
between Map and Reduce tasks of each job, increasing the
approximation ratio by a factor of 4.

2.1 Scheduling Map and Reduce Tasks
Next, we propose an algorithm for the problem of mini-

mizing the total weighted completion time of all Map (resp.
Reduce) tasks on processors of the set PM (resp. PR). For
notational convenience, we use a dual variable b ∈ {M,R}
to refer on either Map or Reduce sets of tasks.

We define (0, tmax =
∑
Tk,j∈b maxi∈Pb pi,k,j] to be the

time horizon of potential completion times, where tmax is an
upper bound on the makespan of a feasible schedule. We dis-
cretize the time horizon into intervals (1, 1], (1, (1+δ)], ((1+
ε), (1 + δ)2], . . . , ((1 + δ)L−1, (1 + δ)L], where δ ∈ (0, 1) is
a small constant, and L is the smallest integer such that
(1 + δ)L−1 ≥ tmax. Let I` = ((1 + δ)`−1, (1 + δ)`], for
0 ≤ ` ≤ L, and L = {0, 1, 2, . . . , L}. Note that, the number
of intervals is polynomial in the size of the instance and to
1/δ. For each processor i ∈ Pb, task Tk,j ∈ b and ` ∈ L,
we introduce a variable yi,k,j,` that denotes the fraction of
task Tk,j assigned to processor i in time interval I`. Fur-
thermore, for each task Tk,j ∈ T , we introduce a variable
Ck,j corresponding to its completion time, and a variable
zk,j corresponding to its fractional processing time. For ev-
ery job j ∈ J , we also introduce a dummy task Dj , with
zero processing time on every processor, which has to be
processed after the completion of every other task Tk,j ∈ b.
LP (b) is an interval-indexed linear programming relaxation
of our problem.

LP (b) : minimize
∑

j∈J
wjDj

subject to :
∑

i∈Pb,`∈L
yi,k,j,` = 1, ∀Tk,j ∈ b (1)

zk,j =
∑

i∈Pb

pi,k,j
∑

`∈L
yi,k,j,`, ∀Tk,j ∈ b (2)

CDj ≥ Ck,j + zk,j , ∀j ∈ J , Tk,j ∈ b (3)
∑

i∈Pb

∑

`∈L
(1 + δ)`−1yi,k,j,` ≤ Ck,j ≤

∑

i∈Pb

∑

`∈L
(1 + δ)`yi,k,j,`,

∀Tk,j ∈ b (4)
∑

Tk,j∈b
pi,k,j

∑

t≤`
yi,k,j,t ≤ (1 + δ)`, ∀i ∈ Pb, ` ∈ L (5)

pi,k,j > (1 + δ)` ⇒ yi,k,j,` = 0, ∀i ∈ Pb, Tk,j ∈ b, ` ∈ L (6)

yi,k,j,` ≥ 0, ∀i ∈ Pb, Tk,j ∈ b, ` ∈ L (7)

Our objective is to minimize the sum of weighted com-
pletion times of all jobs. Constraint (1) ensures that each
task is entirely assigned to processors of the set Pb and
constraint (2) defines its fractional processing time. Con-
straint (3) ensures that, for each job j ∈ J , the comple-
tion of each task Tk,j precedes the completion of task Dj .
Constraint (4) adapts a lower and an upper bound on the
completion time of each task. For each ` ∈ L, constraints
(5) and (6) are validity constraints which state that the to-
tal fractional processing time on each processor is at most

(1 + δ)`, and that if it takes time more than (1 + δ)` to pro-
cess a task Tj,k on a processor i ∈ Pb, then Tk,j should not
be scheduled on i, respectively.
Assignment and Scheduling. Let (ȳi,k,j,l, z̄k,j , C̄k,j) be an
optimal (fractional) solution to LP (b). For each 2 ≤ ` ≤ L,
we define the set of tasks S(`) = {Tk,j ∈ b | (1 + δ)`−2/2 ≤
C̄k,j ≤ (1 + δ)`−1/2}, that complete their execution within
the interval I`. By definition, for each task Tk,j ∈ S(`), it
must hold that 2(1 + δ)C̄k,j ≤ (1 + δ)`.

We will assign all jobs of each set S(`) to processors in Pb
according to the following algorithm.

Algorithm Makespan

1: Compute a basic feasible solution (x̄i,k,j) to LP (T ?, b).
2: Assign all tasks having integral values to processors of
Pb as in (x̄i,k,j).

3: Let a graph G = (A ∪ Pb, E), where A = {Tk,j | 0 <
xi,j,k < 1} and E = {{Tk,j , i} | Tk,j ∈ A, i ∈ Pb and 0 <
xi,k,j < 1}. Compute a perfect matching M on G.

4: Assign each Tk,j ∈ A to i ∈ Pb, as indicated by M .
5: for each assigned task Tk,j do
6: Schedule Tk,j as early as possible, non-preemptively,

with processing time pi,k,j on processor i ∈ Pb that is
assigned to. Let Ck,j be the completion time of Tk,j .

Algorithm Makespan has been proposed in a seminal pa-
per by Lenstra et al. [9] and it is based on the so-called
parametric pruning technique in an LP setting. More specif-
ically, if T is an estimation on the optimal makespan of a
schedule of the jobs in S(`), then by pruning away all task-
processor pairs for which pi,k,j > T , we are able to define
a set of variables corresponding only to triples of the set
QT = {(i, k, j)|pi,k,j ≤ T}; note that this pruning process
has been already taken under consideration by constraints
(6) of LP (b). Since T ∈ ∪`′≤`I`′ , using binary search on
∪`′≤`I`′ with T as the search variable, we can find the min-
imum value of T such that the following system of linear
constraints is feasible.

LP (b, T) :
∑

i:(i,k,j)∈QT

xi,k,j = 1 ∀Tk,j ∈ b (8)

∑

Tk,j :(i,k,j)∈QT

xi,k,jpi,k,j ≤ T ∀i ∈ Pb (9)

xi,k,j ≥ 0 ∀(i, k, j) ∈ QT
Each variable xi,k,j denotes the fractional processor as-

signment of each task Tk,j ∈ S(`). Now, if T ? is the mini-
mum value for which LP (b, T) is feasible, then T ? is a lower
bound on the optimal integral makespan.

Similarly as in [9], it can be proved that a basic feasible
solution to LP (b, T) has at most |b| + |Pb| non-zero vari-
ables, from which at least |b| − |Pb|, must be set integrally.
Then, the number of fractional xi,k,j values must be at most
2|Pb|. If we formulate a bipartite graph G = (A ∪ Pb, E),
where A is the set of tasks having fractional xi,k,j values and
E = {{Tk,j , i} | Tk,j ∈ A, i ∈ Pb and 0 < xi,k,j < 1}, then,
according to the latter property, we deduce that G is a con-
nected graph with at most 2|Pb| vertices and at most 2|Pb|
edges. However, this means that G has the special topol-
ogy of a pseudo-forest (a collection of trees with one possi-

4

ble extra edge) which enables the computation of a perfect
matching on it. Hence, by executing steps 2-6 of Algorithm
Makespan, a non-preemptive schedule of tasks in S(`) can
be found.

The following lemma provides a tight upper bound on the
makespan of the schedule computed by Algorithm Makespan.

Lemma 1. Algorithm Makespan is a 2-approximation al-
gorithm for scheduling the tasks of the set S(`) so as to min-
imize their makespan.

In the next lemma, using filtering [10] we modify the yi,k,j,`
values of the solution to LP (b) to find an upper bound on
the value of T ∗.

Lemma 2. Consider a feasible solution to LP (b, T). For
each set of jobs S(`) that complete their execution within the
interval I`, it holds that T ? ≤ 2(1 + δ)`, for δ ∈ (0, 1).

As consequence of filtering in Lemma 2 the completion
time of each task in S(`) is increased by a factor of 4; this
result has already proven to be tight (see Section 2 in [12]).

Algorithm TaskScheduling(b)

1: Compute an optimal solution (ȳi,k,j,l, z̄k,j , C̄k,j) to
LP (b).

2: for each ` ∈ L do
3: compute S(`) = {Tk,j ∈ b | (1 + δ)`−2/2 ≤ C̄k,j ≤

(1 + δ)`−1/2}
4: for each ` such that S(`) 6= ∅ do
5: Schedule all tasks in S(`) by running Algorithm

Makespan.

Running Algorithm TaskScheduling(b), we compute a
schedule for all Map (resp. Reduce) tasks such that:

Theorem 1. TaskScheduling(b) is a (8+ε)-approximation
algorithm, for scheduling a set of Map (Reduce) tasks on a
set of unrelated processors PM (PR), in order to minimize
their total weighted completion time, for ε ∈ (0, 1).

Proof Sketch. Let Ck,j be the completion time of a
task Tk,j ∈ S(`), in the schedule of Algorithm TaskSchedul-
ing(b) and let Cmax(`) be the makespan of the schedule of
Algorithm Makespan on the jobs in S(`). Since, Ck,j ≤
Cmax(`), for all Tk,j ∈ b, it suffices to prove that Ck,j ≤
8(1 + δ)2C̄k,j : we combine Lemma 1 and Lemma 2 with the
definition of the set S(`). Then, as we can select an ε such
that (1 + δ)2 ≤ (1 + ε), the theorem follows. Note that this
ratio is tight.

2.2 Merging Task Schedules
Let σM, σR be two schedules computed by two runs of

Algorithm TaskScheduling(b), for b = M and b = R,
respectively. Let also CσMj = maxTj,k∈M{Ck,j}, CσRj =
maxTj,k∈R{Ck,j} be the completion times of the all Map
and all Reduce tasks of a job j ∈ J within these sched-
ules, respectively. Depending on these completion time val-
ues, we assign each job j ∈ J a width equal to ωj =
max{CσMj , CσRj }. The following algorithm computes a fea-
sible schedule.
Algorithm MRS. In each time instant where a processor
i ∈ Pb becomes available, either it processes the Map task,
assigned to i ∈ PM in σM, with the minimum width, or the

available (w.r.t. its precedence constraints) Reduce task,
assigned to i ∈ PR in σR, with the minimum width.

By an analysis similar to that in [11], we can prove that:

Theorem 2. Algorithm MRS is a (32+ε)-approximation
for the MapReduce scheduling problem, for ε ∈ (0, 1).

Proof Sketch. By execution of Algorithm MRS, the
feasibility of the resulted schedule can be easily verified.
To prove the theorem, it suffices to prove that in such a
schedule, σ, all tasks of a job j ∈ J are completed by time
2 max{CσMj , CσRj }. Let Cσj , be the completion time of a job
j ∈ J in σ. Note that, for each of the Map tasks of j, their
completion time is upper bounded by ωj . On the other hand,
the completion time of each Reduce task is upper bounded
by a quantity equal to r + ωj , where r is the earliest time
when the task is available to be scheduled in σ. However,
r = CσMj ≤ ωj and thus Cσj ≤ 2ωj = 2 max{CσMj , CσRj }.
By applying Theorem 1 and as we can select an ε such that
ε ≤ 4ε, the theorem follows.

3. REFERENCES
[1] F. Afrati, D. Fotakis, and J. Ullman. Enumerating

subgraph instances using MapReduce. IEEE-ICDE:
62-73, 2013.

[2] F. Afrati, A. D. Sarma, S. Salihoglu, and J. Ullman.
Upper and Lower Bounds on the Cost of a
MapReduce Computation. VLDB: 6(4):277-288, 2013.

[3] F. Afrati and J. Ullman. Optimizing multiway joins in
a map-reduce environment. IEEE-TKDE:
23(9):1282-1298, 2011.

[4] F. Chen, M. S. Kodialam, and T. V. Lakshman. Joint
scheduling of processing and shuffle phases in
mapreduce systems. INFOCOM: 1143-1151, 2012.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI: 137-150, 2004.

[6] H. Karloff, S. Suri, and S. Vassilvitskii. A Model of
Computation for MapReduce. SODA: 938-948, 2010.

[7] R. Kumar, B. Moseley, S. Vassilvitskii, and
A. Vattani. Fast greedy algorithms in MapReduce and
streaming. ACM-SPAA: 1-10, 2013.

[8] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy,
and A. Srinivasan. Scheduling on unrelated machines
under tree-like precedence constraints.
Algorithmica: 55(1):205-226, 2009.

[9] J. K. Lenstra, D. B. Shmoys, and É. Tardos.
Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Programming:
46:259-271, 1990.

[10] J. Lin and J. S. Vitter. epsilon-approximations with
minimum packing constraint violation. SODA: pages
771–782, 1992.

[11] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós.
On scheduling in map-reduce and flow-shops.
ACM-SPAA: 289-298, 2011.

[12] J. R. Correa and M. Skutella and J. Verschae. The
Power of Preemption on Unrelated Machines and
Applications to Scheduling Orders. Math. Oper. Res.:
379-398, 2012.

[13] M. Pinedo. Scheduling: theory, algorithms, and
systems. Springer, 2012.

[14] D.-J. Yoo and K. M. Sim. A comparative review of job
scheduling for mapreduce. IEEE-ICCIS: 353-358, 2011.

5

Binary Theta-Joins using MapReduce:
Efficiency Analysis and Improvements

Ioannis K. Koumarelas
Dept. of Informatics
Aristotle University

Thessaloniki, Greece
koumarel@csd.auth.gr

Athanasios Naskos
Dept. of Informatics
Aristotle University

Thessaloniki, Greece
anaskos@csd.auth.gr

Anastasios Gounaris
Dept. of Informatics
Aristotle University

Thessaloniki, Greece
gounaria@csd.auth.gr

ABSTRACT
We deal with binary theta-joins in a MapReduce environ-
ment, and we make two contributions. First, we show that
the best known algorithm to date for this problem can reach
the optimal trade-off between the size of the input a reducer
can receive and the incurred communication cost when the
join selectivity is high. Second, when the join selectivity is
low, we present improvements upon the state-of-the-art with
a view to decreasing the communication cost and the max-
imum load a reducer can receive, taking also into account
the load imbalance across the reducers.

1. INTRODUCTION
Data analysis on voluminous data, such as clickstream

data or data derived from scientific experiments and simula-
tions, has given rise to the establishment of MapReduce as
the most popular framework for large-scale processing. An-
alytical database queries remain a useful tool for big data
analyses; however, such queries are being investigated in the
MapReduce context rather than within a traditional DBMS
environment. Analytical query processing in MapReduce
has attracted a lot of interest, and the relevant work has in-
vestigated several issues, including indexing, data placement
and layouts, optimizations, iterative processing, fair load al-
location and interactive processing to name some of them
[5]. In this work, we focus on improving the efficiency of join
queries executed in MapReduce, for which several proposals
already exist [7, 2, 9]. More specifically, we target binary
theta-joins, where the join condition between two datasets
is arbitrarily complex rather than a simple equation.

Nevertheless, most of the proposals to date tend to be
developed on a best-effort basis, without systematically an-
alyzing the inherent trade-offs. Two recent remedies to that
have been proposed in [1, 8]. [8] introduces the notion of
minimal MapReduce algorithms, which are algorithms ac-
companied by guarantees (up to a small constant) regarding
several aspects, such as memory consumption and commu-
nication cost. The MapReduce rounds may be bounded but

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

they can be more than one. The work in [1] is complemen-
tary and presents a way to compute the lower bounds on
communication cost as a function of the maximum input a
reducer is allowed to receive for specific problems. This al-
lows to define the trade-off between the load on the reducer
side and the replication rate. The replication rate is defined
as the average ratio of output to input key-value pairs on
the map side, and is used as a metric of the communication
cost. Further, the work in [1] examines whether known al-
gorithms for those problems can match the lower bounds,
provided that they consist of a single MapReduce round.

The algorithms 1-Bucket-Theta and M-Bucket in [7] form
the basis of our work. Our first contribution is that we an-
alyze the lower bounds for the binary theta-join problem
and we show that the worst-case behaviour of 1-Bucket-
Theta matches those bounds. However, such behaviour is
expected only when the join selectivity is high. For low
selectivities, and with the help of histograms, the more effi-
cient M-Bucket-I and M-Bucket-O algorithms are presented
in [7], which aim at minimizing the maximum reducer input
and output, respectively. Our second contribution is that
we enhance those algorithms through the clustering of his-
togram buckets. In that way, we can achieve more efficient
partitioning of histogram buckets to reducers. The efficiency
is measured in terms of the replication rate, the maximum
reducer input, and the imbalance across reducers. We show
that we can improve the replication rate (i.e., reduce the
communication cost) and the maximum reducer input (i.e.,
reduce the longest running time and the space requirements
of reducers) with insignificant impact on load imbalance.

The remainder of this extended abstract is structured as
follows. In Sec. 2 we briefly present the 1-Bucket-Theta
and M-Bucket algorithms, which we analyze in Sec. 3 and
enhance in Sec. 4, respectively. In Sec. 5, we conclude and
describe next steps.

2. BACKGROUND
In [7] the problem of performing binary theta joins S ◃▹θ T

on MapReduce is studied. The core of the approach lies in
how the workload is partitioned across reducers. To rep-
resent the workload, a join matrix (JM) is used. In JMs,
each cell corresponds to a pair of tuples, one from each in-
put dataset, to be processed. The JM is split into several
regions, where each region is mapped to a reducer. For each
region, we can compute the amount of tuples that belong to
it, which is the input cost of that region and is directly re-
lated to the computation and memory load of the associated
reducer. For perfect load balancing, we want these regions to

6

Figure 1: Partitioning the JM in 1-Bucket-Theta (left) and
M-Bucket (right).

have equal input cost. In order to accomplish the latter ob-
jective, two main algorithms are presented: 1-Bucket-Theta
and M-Bucket-I (and its variation M-Bucket-O).

2.1 1-Bucket-Theta
1-Bucket-Theta is the most generic algorithm, since it ex-

amines all tuple pairs (as in the Cartesian product), and re-
quires minimal statistical information, namely just the car-
dinalities of the input. The strong point of the algorithm is
the principled way that it partitions the JM, in a way that
all JM cells are covered and, at the same time, the maxi-
mum reducer input is minimized. The algorithm is shown
to be more suitable for high join selectivities (e.g., above
50%). Fig. 1(left) shows an example partitioning across 3
reducers, where there are 6 tuples from S and T , and the
input cost of each reducer is 7 (4 tuples from S and 3 from
T), 7 (4 from S and 3 from T) and 8 (2 from S and 6 from
T), respectively.

2.2 M-Bucket-I
In cases where there are histograms, so that we can safely

reason as to whether a specific combination of tuples can
satisfy the join condition, and the join selectivity is small,
M-Bucket-I outperforms 1-Bucket-Theta. The histograms
are equi-depth ones and are produced in a separate MapRe-
duce phase, as explained in [7]. Then, the JM is constructed,
where each cell corresponds to a pair of histogram buckets
rather than a pair of tuples. As such, the size of a JM need
not grow as the size of the input data increases at the ex-
pense of histogram buckets of higher depth. From the JM
and the join condition, it is straightforward to identify pairs
that do not contribute to the result (depicted as white cells
in Fig. 1(right). During the partitioning step, a heuristic
method is followed, which is not accompanied by guarantees
as in 1-Bucket-Theta but yields better results, since it ben-
efits from the fact that most of the JM cells are not valid
candidate pairs.

The difference between M-Bucket-I and M-Bucket-O is
that the former targets the minimization of the maximum
reducer input, whereas the latter targets the minimization
of the maximum reducer output. Note that estimating the
reducer output based on histograms is prone to significant
errors, even when the histograms are accurate.

3. ON THE OPTIMALITY OF 1-BUCKET-
THETA

First we define the lower bound on the communication
cost of any 1-round MapReduce algorithm for binary theta-

joins. As already mentioned, the communication cost is
measured using the replication rate metric. Let us exam-
ine the steps of the short version of the generic recipe for
deriving such bounds from [1]. Given two relations S and T,
with sizes |S| and |T |, respectively, we have:

• Size (Number) of Inputs and Outputs:

– Inputs: |S|+|T|
– Outputs: |S||T| (accounting for the worst case,

which is the cartesian product)

• Deriving g(q): The upper bound of outputs a reducer
can produce given q inputs, denoted as g(q), occurs
when q is equally divided into input from S and T, i.e.,
q
2

tuples from S and q
2

tuples from T . The maximum
result of applying the theta join on these two quantities

is when we have a cartesian product, thus g(q) = q2

4
.

• Replication Rate r(q): The quantity g(q)
q

equals
q2

4
q

= q
4
, which is monotically increasing in q. There-

fore, the replication rate can be computed using the

formula: r(q) ≥ q|O|
g(q)I

= 4(|S||T |)
q(|S|+|T |) . So, the lower bound

on r, rlb, is 4(|S||T |)
q(|S|+|T |) .

The above formula illustrates the exact trade-off between
parallelism and communication cost in binary theta-joins.
By increasing the degree of parallelism in order to decrease
the input q each reducer receives, the communication cost
increases, since, for the lower bound, q and r are inversely
proportional to each other.

The next step is to find the upper bound on replication
rate of 1-Bucket-Theta. In [7], three partitioning cases are
presented, based on the sizes |S| and |T | and the number of
available reducer processors p. Due to the limited space, we
will examine only the first case in detail.

The first case corresponds to the scenario, where the JM
can be exactly covered by cS × cT squares of side-length√

|S||T |/p. This means that the following conditions hold:

|S| = cS

√
|S||T |/p and |T | = cT

√
|S||T |/p, where cS , cT are

positive integers. For example, if p = 4, then the JM in Fig.
1(left) can be exactly covered by 4 squares of side-length 3.
Then we have:

• Replication rate of 1-Bucket-Theta (r1BT):

r1BT ≤ |S|cT +|T |cS
|S|+|T | =

|S||T |√
|S||T |

p

+
|T ||S|√
|S||T |

p

|S|+|T |
= 2|S||T |

(

√
|S||T |

p
)(|S|+|T |)

• Reducer input: q1BT = 2
√

|S||T |
p

• Combining r1BT and q1BT :

r1BT q1BT ≤ (2|S||T |

(

√
|S||T |

p
)(|S|+|T |)

)(2
√

|S||T |
p

) = 4 |S||T |
|S|+|T |

which implies that r1BT (q1BT) ≤ rlb

So, the upper bound of the first case of 1-Bucket-Theta is
at most as high as the lower bound of the problem, which
means that, for that case, the algorithm is optimal.

7

Following the same reasoning, the other two cases (Theo-
rems 2 and 3 in [7], respectively), which correspond to dif-
ferent formulas for cS and cT , can be examined, for which
we have:

• Case 2: r1BT ≤ 4
q

|T ||S|
|S|+|T | = rlb

• Case 3: r1BT ≤ 8
q

|S||T |
|S|+|T | = 2rlb

Overall, the upper bound of the replication rate is at most
two times the lower bound, and as such is optimal up to a
constant factor. In [3], it is shown that the lower bound can
be met for self-joins, which is special case of binary joins.

4. REDUCING THE REPLICATION RATE
IN M-BUCKET

The partitioner of M-Bucket-I algorithm operates on a join
matrix (JM), where each cell corresponds to a pair of his-
togram buckets. It tries to fit the cells in rectangular regions;
each region is associated with a single reducer. The ratio-
nale of our approach is to permute JM’s rows and columns,
in order to improve the quality of the partitioning phase.

The problem of cell rearrangement can be addressed with
several algorithm families, such as clustering (e.g., hierar-
chical, array-based, and so on), combinatorial optimization
(e.g., bin packing, knapsack) and bandwidth reduction. Here,
we examine the impact of array-based clustering algorithms
and more specifically, we employ the Bond Energy cluster-
ing algorithm (BEA) [6], due to its efficiency [4]. The pur-
pose of BEA is to identify natural clusters that occur in
complex data arrays, such as JMs. This task is accom-
plished by permuting the rows and columns of the JM in
a way that the numerically larger array elements are clus-
tered together. As the JM of our interest comprises a two-
dimensional bitmap array, i.e. the cell values are either 0
or 1 to indicate whether the processing of the corresponding
pairs is meaningful or not, we expect all the non-zero values
to be grouped as close as possible. The intuition is that, if
the JM contains more empty sub-matrices, the mapping of
the remainder sub-matrices to reducers will improve.

Our work adds a step of beforehand analysis to the M-
Bucket-I/O algorithm, just after the histograms are built
and the initial JM is produced. It thus takes place before the
actual execution on a MapReduce platform. The quality of
a JM is assessed with the help of the following three metrics:

1. replication rate (rep), defined as in the Introduction
and [1];

2. maximum reducer input (mri); and

3. input imbalance (imb), defined as the ratio of mri to
the average reducer input, considering only the non-
idle reducers.

Note that the metrics above can be accurately computed
from the JM, without requiring the real execution to be com-
pleted. Thus, if the JM rearrangement is considered as not
beneficial, the execution can switch back to the original JM.
That is, it is straightforward to add a post-processing phase,
in order to guarantee that we choose the best partitioning
between the one based on the original and the one based on
the re-arranged JM. Consequently, our proposal does never
lead to performance degradation; actually it can lead to sig-
nificant improvements according to our experiments.

0 20 40 60 80 100
T

0

20

40

60

80

100

S

0 20 40 60 80 100
T

0

20

40

60

80

100

S

0 20 40 60 80 100
T

0

20

40

60

80

100

S

0 20 40 60 80 100
T

0

20

40

60

80

100

S

0 20 40 60 80 100
T

0

20

40

60

80

100

S

0 20 40 60 80 100
T

0

20

40

60

80

100

S

Figure 2: Example JMs before (left) and after (right) apply-
ing BEA.

As an example, we extracted a sample of 64M tuples
from the Cloud dataset in http://cdiac.ornl.gov/ftp/

ndp026c/ndp026c.pdf. Fig. 2(top) shows the initial and re-
arranged JM for a self-join query that retrieves record pairs,
for which the absolute difference of the sea level is between
0 and 2, or between 22 and 24, or between 50 and 52, or
between 80 and 82 to give an example of a complex range
query. The rearranged JM yields 21% lower rep and 19%
lower mbi at the expense of 4% higher imb. Next, we pro-
ceed to more systematic experiments on synthetic data.

4.1 Experimental Evaluation
We focus on band joins, which is a type of theta-joins

that can significantly benefit from M-Bucket. In band joins,
the condition is in the form of R.A − ε ≤ S.A ≤ R.A + ε.
The experimental setup is as follows. We randomly generate
synthetic JMs so that the produced JMs vary in the following
aspects: join selectivity, number of band conditions, and size
of JMs. Then, we compute the statistics of the resulting
partitioning to reducers both when we cluster the JM and
when we do not. In the first experiment, we assume that the
dimensions of the JM are 100×100. We vary the number of
available reducers from 10 to 40. Also, the numbers of band
conditions examined are 1, 3 and 5. For each band condition,
we examined selectivity values of 1%, 5% and 10%.

Fig. 2 shows two more examples of JM rearrangement.
From the left column of the middle and bottom row, we can
see the typical form of the original synthetic JMs. For each
band condition, there is a diagonal stripe of cells, for which
the join condition holds. The gaps between such stripes are
randomly shifted, so that the JMs are not symmetric; for
each condition the selectivity is set to 1%. As we can ob-
serve, the effect of the BEA algorithm is optically widely
different, but in both cases, there were significant improve-
ments, which we discuss below.

The average impact of BEA on the metrics examined are

8

rep mri imb coverage

Overall 0.846 0.880 1.029 59.26%
Band Selectivity

1% 0.717 0.735 1.028 66.67%
5% 0.920 0.949 1.014 66.67%
10% 0.928 0.996 1.056 44.45%

Number of Band Conditions
1 0.987 0.967 0.964 33.34%
3 0.821 0.835 1.010 44.45%
5 0.810 0.873 1.058 100%

Table 1: Average ratio of the BEA-produced JM metrics to
the original JM metrics.

rep mri imb

Overall 0.634 0.649 1.023
Band Selectivity

1% 0.634 0.649 1.023
5% 0.833 0.875 1.050
10% 0.848 0.900 1.050
Number of Band Conditions
1 0.979 1 0.988
3 0.737 0.733 0.995
5 0.634 0.649 1.023

Table 2: Ratio of the BEA-produced JM metrics to the orig-
inal JM metrics for the maximum rep drop observed.

summarized in Table 1. The rightmost column of the table
shows the percentage of the times that the rearranged JM
has led to improvements in the replication rate. Table 2
refers to the maximum improvements regarding replication
observed. From these two tables, we can draw the following
conclusions. On average, our proposal improves the parti-
tioning in approximately 59% of the times. In those cases,
the average decrease in the replication rate is 15%, but it can
reach 37%. The improvements become more significant as
the number of the band conditions increase and the selectiv-
ity becomes lower. On average, when the band selectivity is
1%, the replication rate drops by 28%, while the maximum
reducer input decreases by 26%. There is a slight increase
in the relative imbalance though. Similarly, we can observe,
that, when the number of band conditions is 5, there are
improvements in all the cases examined.

We also investigated the impact of the number of reducers,
but this was not found to be significant. Finally, note that
we considered only the cases where the replication rate is
strictly less than that with the original JMs in order to com-
pute mri and imb. The average values of these two metrics
are slightly different if all the measurements are considered.

We conducted an additional experiment, where we in-
creased the dimensions of the JM to 1000 × 1000 and we
further decreased the minimum selectivity of each band con-
dition to 0.1%. The main purpose was to verify our hypoth-
esis that our proposal is more suitable for band joins with
multiple conditions, each having a low selectivity. Indeed, in
100% of the cases examined when the selectivity was 0.1%
and the number of band conditions was 3 and 5, there was
a significant decrease in the replication rate (28.1% on av-
erage). The maximum reducer input was also decreased by
the same amount, whereas the imbalance remained similar.
Overall, when the selectivity is low, there is more space for
BEA to yield empty sub-matrices; whereas, when there are
fewer band conditions, the differences from the original JMs
are less significant.

5. CONCLUSIONS AND FURTHER WORK
We investigate the execution of binary theta-joins using

MapReduce. First we analyze the efficiency of the state-of-
the-art and second, we propose the usage of a pre-processing
clustering algorithm in order to help the partitioning of the
map output to reducers. Our proposal was shown to incur
significant reductions in the communication cost and the
maximum input received by each reducer when the theta
clause comprises several conditions, each of low selectivity.
A strong point of our approach is that it is not intrusive, in
the sense that it can be easily incorporated into the current
state-of-the-art proposal in [7], as a pre-processing phase
before the actual execution on a MapReduce platform be-
gins. In addition, it is straightforward to assess whether our
approach is beneficial for a specific setting, and thus our
proposal does not lead to overall performance degradation.

In the future, we plan to focus on more elaborate types of
array rearrangement algorithms. Scalability is also an issue,
since algorithms such as BEA do not scale to matrices with
very large dimensions. Another avenue for further work is to
investigate more sophisticated partitioning algorithms to be
coupled with JM rearrangement. Harder problems include
the investigation of provably optimal techniques for multi-
way theta-joins and efficient histogram construction when
there are multiple attributes participating in the theta-join
condition.

Acknowledgments This research has been co-financed by
the European Union (European Social Fund - ESF) and
Greek national funds through the Operational Program“Ed-
ucation and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) - Research Funding Program:
Thales. Investing in knowledge society through the Euro-
pean Social Fund.

6. REFERENCES
[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D.

Ullman. Upper and lower bounds on the cost of a
map-reduce computation. PVLDB, 6(4):277–288, 2013.

[2] F. N. Afrati and J. D. Ullman. Optimizing multiway
joins in a map-reduce environment. IEEE Trans.
Knowl. Data Eng., 23(9):1282–1298, 2011.

[3] F. N. Afrati and J. D. Ullman. Matching bounds for
the all-pairs mapreduce problem. In IDEAS, pages 3–4,
2013.

[4] S. Climer and W. Zhang. Rearrangement clustering:
Pitfalls, remedies, and applications. Journal of Machine
Learning Research, 7:919–943, 2006.

[5] C. Doulkeridis and K. Nørv̊ag. A survey of large-scale
analytical query processing in mapreduce. The VLDB
Journal, pages 1–26, 2013.

[6] W. T. McCormick, P. J. Schweitzer, and T. W. White.
Problem decomposition and data reorganization by a
clustering technique. Operations Research,
20(5):993–1009, 1972.

[7] A. Okcan and M. Riedewald. Processing theta-joins
using mapreduce. In SIGMOD, pages 949–960, 2011.

[8] Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce
algorithms. In SIGMOD, pages 529–540, 2013.

[9] X. Zhang, L. Chen, and M. Wang. Efficient multi-way
theta-join processing using mapreduce. PVLDB,
5(11):1184–1195, 2012.

9

On the design space of MapReduce ROLLUP aggregates

Duy-Hung Phan
EURECOM

phan@eurecom.fr

Matteo Dell’Amico
EURECOM

dellamic@eurecom.fr

Pietro Michiardi
EURECOM

michiard@eurecom.fr

ABSTRACT
We define and explore the design space of efficient algorithms
to compute ROLLUP aggregates, using the MapReduce pro-
gramming paradigm. Using a modeling approach, we ex-
plain the non-trivial trade-off that exists between parallelism
and communication costs that is inherent to a MapReduce
implementation of ROLLUP. Furthermore, we design a new
family of algorithms that, through a single parameter, allow
to find a “sweet spot” in the parallelism vs. communication
cost trade-off. We complement our work with an experimen-
tal approach, wherein we overcome some limitations of the
model we use. Our results indicate that efficient ROLLUP
aggregates require striking the good balance between paral-
lelism and communication for both one-round and chained
algorithms.

1. INTRODUCTION
Online analytical processing (OLAP) is a fundamental ap-

proach to study multi-dimensional data involving the com-
putation of, for example, aggregates on data that are ac-
cumulated in traditional data warehouses. When operating
on massive amounts of data, it is typical for business in-
telligence and reporting applications, to require data sum-
marization, which is achieved using standard SQL operators
such as GROUP BY, ROLLUP, CUBE, and GROUPING
SETS.

Despite the tremendous amount of work carried out in
the database community to come up with efficient ways of
computing data aggregates, little work has been done to
extend these lines of work to cope with massive scale. In-
deed, the main focus of prior works in this domain has been
on single server systems or small clusters executing a dis-
tributed database, implementing efficient implementations
of CUBE and ROLLUP operators, in line with the expecta-
tions of low-latency access to data summaries [6, 8, 11, 13,
14, 19]. Only recently, the community devoted attention to
solve the problem of computing data aggregates at massive
scales using data intensive, scalable computing engines such

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

as MapReduce [10]. In support of the growing interest in
computing data aggregates on batch-oriented systems, sev-
eral high-level languages built on top of MapReduce, such
as PIG [3] and HIVE [2], support simple implementations
of, for example, the ROLLUP operator.

The endeavor of this work is to take a systematic approach
to study the design space of the ROLLUP operator: besides
being widely used on its own, ROLLUP is also a fundamen-
tal building block used to compute CUBE and GROUPING
SETS [7]. We study the problem of defining the design space
of algorithms to implement ROLLUP through the lenses of
a recent model of MapReduce-like systems [4]. The model
explains the trade-offs that exist between the degree of par-
allelism that is possible to achieve and the communication
costs that are inherently present when using the MapReduce
programming model. In addition, we overcome current lim-
itations of the model we use (which glosses over important
aspects of MapReduce computations) by extending our anal-
ysis with an experimental approach. We present instances
of algorithmic variants of the ROLLUP operator that cover
several points in the design space, implement and evaluate
them using an Hadoop cluster.

In summary, our contributions are the following:

• We study the design space that exists to implement
ROLLUP and show that, while it may appear deceiv-
ingly simple, it is not a straightforward embarrassing
parallel problem. We use modeling to obtain bounds
on parallelism and communication costs.

• We design and implement new ROLLUP algorithms
that can match the bounds we derived, and that swipe
the design space we were able to define.

• We pinpoint the essential role of combiners (an op-
timization allowing pre-aggregation of data, which is
available in real instances of the MapReduce paradigm,
such as Hadoop [1]) for the practical relevance of some
algorithm instances, and proceed with an experimen-
tal evaluation of several variants of ROLLUP imple-
mentations, both in terms of their performance (run-
time) and their efficient use of cluster resources (total
amount of work).

• Finally, our ROLLUP implementations exist in Java
MapReduce and have been integrated in our experi-
mental branch of PIG, which are available in a public
repository.1

1https://bitbucket.org/bigfootproject/rollupmr

10

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information on the model we
use in our work and presents related work. Section 3 illus-
trates a formal problem statement and Section 4 presents
several variants of ROLLUP algorithms. Section 5 outlines
our experimental results to evaluate the performance of the
algorithms we introduce in this work. Finally, Section 6
concludes our work and outlines future research directions.

2. BACKGROUND AND RELATED WORK
We assume the reader to be familiar with the MapReduce

[10] paradigm and its open-source implementation Hadoop
[1, 20]. First, we give a brief summary of the model intro-
duced by Afrati et al. [4], which is the underlying tool we use
throughout our paper. Then, we present related works that
focus on the MapReduce implementation of popular data
analytics algorithms.

The MapReduce model. Afrati et al. [4] recently studied
the MapReduce programming paradigm through the lenses
of an original model that elucidates the trade-off between
parallelism and communication costs of single-round MapRe-
duce jobs. The model defines the design space of a MapRe-
duce algorithm in terms of replication rate and reducer-
key size. The replication rate r is the average number of
〈key, value〉 pairs created from each input in the map phase,
and represents the communication cost of a job. The reducer-
key size q is the upper bound of the size of list of values
associated to a reducer-key. Jobs have higher degrees of
parellelism when q is smaller. For some problems, paral-
lelism comes at the expense of larger communication costs,
which may dominate the overall execution time of a job.

Afrati et al. show how to determine the relation between
r and q. This is done by first bounding the amount of input
a reducer requires to cover its outputs. Once this relation
is established, a simple yet effective “recipe” can be used to
relate the size of the input of a job to the replication rate
and to the bounds on output covering introduced above. As
a consequence, given a problem (e.g., finding the Hamming
distance between input strings), the model can be used to
establish bounds on r and q, which in turn define the design
space that instances of algorithms solving the original prob-
lem may cover.

Related work. Designing efficient MapReduce algorithms
to implement a wide range of operations on data has received
considerable attention recently. Due to space limitations, we
cannot give justice to all works that addressed the design,
analysis and implementation of graph algorithms, clustering
algorithms and many other important problems: here we
shall focus on algorithms to implement SQL-like operators.
For example, the relational JOIN operator is not supported
directly in MapReduce. Hence, attempts to implement effi-
cient JOIN algorithms in MapReduce have flourished in the
literature: Blanas et al. [9] studied Repartition Join, Broad-
cast Join, and Semi-Join. More recent work tackle more
general cases like theta-joins [17] and multi-way-joins [5].

With respect to OLAP data analysis tasks such as CUBE
and ROLLUP, efficient MapReduce algorithms have only
lately received some attention. A first approach to study
CUBE and ROLLUP aggregates has been proposed by Nandi
et al. [16]; this algorithm, called “naive” by the authors, is
called Vanilla in this work. MR-Cube [16] mainly focuses on

algebraic aggregation functions, and deals with data skew; it
implements the CUBE operator by breaking the algorithm
in three phas-es. A first job samples the input data to recog-
nize possible reducer-unfriendly regions; a second job breaks
those regions into sub-regions, and generates corresponding
〈key, value〉 pairs to all regions, to perform partial data ag-
gregation. Finally, a last job reconstructs all sub-regions
results to form the complete output. The MR-Cube opera-
tor naturally implements ROLLUP aggregates. However in
the special case of ROLLUP, the approach has two major
drawbacks: it replicates records in the map phase as in the
naive approach and it performs redundant computation in
the reduce phase.

For the sake of completeness, we note that one key idea
of our work (in-reducer grouping) shares similar traits to
what is implemented in the Oracle database [7]. However,
the architectural differences with respect to a MapReduce
system like Hadoop, and our quest to explore the design
space and trade-offs of ROLLUP aggregates make such work
complementary to ours.

3. PROBLEM STATEMENT
We now define the ROLLUP operation as a generalization

of the SQL ROLLUP clause, introducing it by way of a
running example. We use the same example in Section 4 to
elucidate the details of design choices and, in Section 5, to
benchmark our results.

ROLLUP can be thought of as a hierarchical GROUP BY
at various granularities, where the grouping keys at a coarser
granularities are a subset of the keys at a finer granularity.
More formally, we define the ROLLUP operation on an input
data set, an aggregation function, and a set of n hierarchical
granularities:

• We consider a data set akin to a database table, with
M columns c1, . . . , cM and L rows r1, · · · rL such that
each row ri corresponds to the (ri1, . . . , riM) tuple.

• Given a set of rows R ⊆ {r1, · · · rL}, an aggregation
function f(R) produces our desired result.

• n granularities d1, . . . , dn determine the groupings that
an input data is subject to. Each di is a subset of
{c1, · · · cM}, and granularities are hierarchical in the
sense that di (di+1 for each i ∈ [1, n− 1].

The ROLLUP computation returns the result of applying
f after grouping the input by the set of columns in each
granularity. Hence, the output is a new table with tuples
corresponding to grouping over the finest (dn) up to the
coarsest (d1) granularity, denoting irrelevant columns with
an ALL value [12].

Example. Consider an Internet Service provider which
needs to compute aggregate traffic load in its network, per
day, month, year and in overall. We assume input data to
be a large table with columns (c1, c2, c3, c4) corresponding to
(year, month, day, payload2). A few example records from
this dataset are shown in the following:

(2012, 3, 14, 1)

(2012, 12, 5, 2)

(2012, 12, 30, 3)

(2013, 5, 24, 4)

2In Kilobytes

11

The aggregation function f outputs the sum of values over
the c4 (payload) column. Besides SUM, other typical aggre-
gation functions are MIN, MAX, AVG and COUNT; it is
also possible to consider aggregation functions that evaluate
data in multiple columns, such as for example correlation
between values in different columns.

Input granularities are d1 = ∅, d2 = {year}, d3 = {year,
month}, and d4 = {year,month,day}. The highest granu-
larity, d1 = ∅, groups on no columns and is therefore equiv-
alent to a SQL GROUP BY ALL clause that computes the
overall sum of the payload column; such an overall aggrega-
tion is always computed in SQL implementations, but it is
not required in our more general formulation. We will see
in the following that “global” aggregation is problematic in
MapReduce.

In addition to aggregation on hierarchical time periods
as in this case, ROLLUP aggregation applies naturally to
other cases where data can be organized in tree-shaped tax-
onomies, such as for example country-state-region or unit-
department-employee hierarchies.

If applied on the example, the ROLLUP operation yields
the following result (we use ‘*’ to denote ALL values):

(2012, 3, 14, 1)

(2012, 3, *, 1)

(2012, 12, 5, 2)

(2012, 12, 30, 3)

(2012, 12, *, 5)

(2012, *, *, 6)

(2013, 5, 24, 4)

(2013, 5, *, 4)

(2013, *, *, 4)

(*, *, *, 10)

Rows with ALL values represent the result of aggregation
at coarser granularities: for example, the (2012, *, *, 6)

tuple is the output of aggregating all tuples from year 2012.

Aggregation Functions and Combiners. In MapRe-
duce, it is possible to pre-aggregate values computed in map-
pers by defining combiners. We will see in the following that
combiners are crucial for the performance of algorithms de-
fined in MapReduce. While many useful aggregation func-
tions are subsceptible to being optimized through combin-
ers, not all of them are. Based on the definition by Gray et
al. [12], when an aggregation function is holistic there is no
constant bound on the size of a combiner output; represen-
tative holistic functions are MEDIAN, MODE and RANK.

The algorithms we define are differently subsceptible to
the presence and effectiveness of combiners. When discussing
the merits of each implementation, we also consider the case
where aggregation functions are holistic and hence combin-
ers are of little or no use.

4. THE DESIGN SPACE
We explore the design space of ROLLUP, with empha-

sis on the trade-off between communication cost and paral-
lelism. We first apply a model to obtain theoretical bounds
on replication rate and reducer key size; we then consider
two algorithms (Vanilla and In-Reducer Grouping) that are
at the end-points of the aforementioned trade-off, having re-
spectively maximal parallelism and minimal communication
cost. We follow up by proposing various algorithms that

operate in different, and arguably more desirable, points of
the trade-off space.

4.1 Bounds on Replication and Parallelism
Here we adopt the model by Afrati et al. [4] to find upper

and lower bounds for the replication rate. Note that the
model, unfortunately, does not account for combiners nor
for multi-round MapReduce algorithms.

First, we define the number of all possible inputs and out-
puts to our problem, and a function g(q) that allows to eval-
uate the number of outputs that can be covered with i input
records. To do this, we refer to the definitions in Section 3:

1. Input set: we call Ci the number of different values
that each column ci can take. The total number of
inputs is therefore |I| = ∏M

i=1 Ci.

2. Output set: for each granularity di, we denote the
number of possible grouping keys as Ni =

∏
Ci∈di Ci

and the number of possible values that the aggregation
function can output as Ai.

3 Thus, the total number of
outputs is |O| = ∑n

i=1NiAi.

3. Covering function: let us consider a reducer that
receives q input records. For each granularity di, there
are Ni grouping keys, each one grouping |I|/Ni in-
puts and producing Ai outputs. The number of groups
that the reducer can cover at granularity di is therefore
no more than bqNi/|I|c, and the covering function is

g(q) =
∑n

i=1Ai

⌊
qNi
|I|

⌋
.

Lower Bound on Replication Rate. We consider p re-
ducers, each receiving qi ≤ q inputs and covering g(qi) out-
puts. Since together they must cover all outputs, it must be
the case that

∑p
j=1 g(qj) ≥ |O|. This corresponds to

p∑

j=1

n∑

i=1

Ai

⌊
qjNi

|I|

⌋
≥

n∑

i=1

NiAi. (1)

Since qjNi/|I| ≥ bqjNi/|I|c, we obtain the lower bound
of the replication rate r as:

r =

p∑

i=1

qi
|I| ≥ 1. (2)

Equation 2 seems to imply that ROLLUP aggregates is an
embarassingly parallel problem: the r ≥ 1 bound on repli-
cation rate does not depend on the size qi of reducers. In
Section 4, we show – for the first time – an instance of an
algorithm that matches the lower bound. Instead, known
instances of ROLLUP aggregates have a larger replication
rate, as we shall see next.

Limits on Parallelism. Let us now reformulate Equa-
tion 2, this time requiring only that the output of the coars-
est granularity d1 is covered. We obtain

p∑

j=1

⌊
qjN1

|I|

⌋
≥ N1.

3For the limit case di = ∅, Ni = 1, corresponding to the
single empty grouping key.

12

Clearly, the output cannot be covered (the left side of the
equation would be zero) unless there are reducers receiv-
ing at least qj ≥ |I|/N1 input records. Indeed, the coars-
est granularity imposes hard limits on the parallelism, re-
quiring to broadcast the full input on at most N1 reducers.
This is exacerbated if – as it is the case with the standard
SQL ROLLUP – there is an overall aggregation, resulting
in d1 = ∅, N1 = 1 and therefore qj ≥ |I|. A single reducer
needs to receive all the input : it appears that no parallelism
whatsoever is possible.

As we show in the following, this negative result however
depends on the limitations of the model: by applying com-
biners and/or multiple rounds of MapReduce computation,
it is indeed possible to compute efficient ROLLUP aggre-
gates in parallel.

Maximum Achievable Parallelism. Our model consid-
ers parallelism as determined by the number of reducers
p and the number of input records qj each of them pro-
cesses. However, one may also consider the number of output
records produced by each reducer: in that case, the maxi-
mum parallelism achievable is when each reducer produces
at most a single output value. This can be obtained by
assigning each grouping key in each granularity to a differ-
ent reducer; the aggregation function is then guaranteed to
output only one of the Ai possible values. This, however,
implies a replication rate r = n; an implementation of the
idea is described in the following section.

4.2 Baseline algorithms
Next, we define two baseline algorithms to compute

ROLLUP aggregates: Vanilla, which is discussed in [16],
and In Reducer Grouping, which is our contribution. Then,
we propose a hybrid approach that combines both baseline
techniques.

Vanilla Approach. We describe here an approach that
maximizes parallelism at the detriment of communication
cost; since this is the approach which is currently imple-
mented in Apache Pig [15] we refer to it as Vanilla. Nandi
et al. [16] refer to it as “naive”.

The ROLLUP operator can be considered as the result
multiple GROUP BY operations: each of them is carried
out at a different granularity. Thus, to perform ROLLUP
on n granularities, for each record, the vanilla approach gen-
erates exactly n records corresponding to these n grouping
sets (each grouping sets belongs to one granularity). For
instance, taking as input the (2012, 3, 14, 1) record of
the running example, this approach generates 4 records as
outputs of the map phase:

(2012, 3, 14, 1) (day granularity)

(2012, 3, *, 1) (month granularity)

(2012, *, *, 1) (year granularity)

(*, *, *, 1) (overall granularity)

The Reduce step performs exactly as the reduce step of a
GROUP BY operation, using the first three records (year,
month, day) as keys. By doing this, reducers pull all the
data that is needed to generate each output record (shuffle
step), and compute the aggregate (reduce step). Figure 1
illustrates a walk-through example of the vanilla approach
with just 2 records.

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, 3, *), 1>

<(2012, 12, *), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(2012, 3, *), 1>

<(2012, 12, *), 2>

Reducer 1

Reducer 2

Mappers Shuffle

Figure 1: Example for the vanilla approach.

Parallelism and Communication Cost. The final result of
ROLLUP is computed in a single MapReduce job. As dis-
cussed above, this implementation obtains the maximum
possible degree of parallelism, since it can be parallelized
up to a level where a single reducer is responsible of a single
output value. On the other hand, this algorithm requires
maximal communication costs, since for each input record,
n map output records are generated. In addition, when the
aggregation operation is algebraic [12], redundant compu-
tation is carried out in the reduce phase, since results com-
puted for finer granularities cannot be reused for the coarser
ones.
Impact of Combiners. This approach largely benefits from
combiners whenever they are available, since they can com-
pact the output computed at the coarser granularity (e.g.,
in the example the combiner is likely to compute a single
per-group value at the year and overall granularity). With-
out combiners, a granularity such as overall would result in
shuffling data from every input tuple to a single reducer.

While combiners are very important to limit the amount
of data sent along the network, the large amount of tempo-
rary data generated with this approach is still problematic:
map output tuples need to be buffered in memory, sorted,
and eventually spilled to disk if the amount of generated
data does not fit in memory. This results, as we show in
Section 5, in performance costs that are discernible even
when combiners are present.

In-Reducer Grouping. After analyzing an approach that
maximizes parallelism, we now move to the other end of the
spectrum and design an algorithm that minimizes communi-
cation costs. In contrast to the Vanilla approach, where the
complexity resides on the Map phase and the Reduce phase
behaves as if implementing an ordinary GROUP BY clause,
we propose an In-Reducer Grouping (IRG) approach, where
all the logic of grouping is performed in the Reduce phase.

In-Reducer Grouping makes use of the possibility to de-
fine a partitioner in Hadoop [10, 20]. The mapper selects
the columns of interest (in our example, all columns are
needed, so the map function is simply the identity function).
The keys are the finest granularity dn (day in our example)
but data is partitioned only by the columns of the coarsest
granularity d1. In this way, we can make sure that 1) each
reducer receives enough data to compute the aggregation
function even for the coarsest granularity d1; 2) the inter-
mediate keys are sorted [10, 20], so for every grouping key
of any granularity di, the reducer will process consecutively

13

(2012, 3, 14, 1)

(2012, 12, 5, 2)

Reducer IRGMappers Shuffle

(2012, 12, 30, 3)

(2013, 5, 24, 4)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, 12, 30), 3>

<(2013, 5, 24), 4>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, 12, 30), 3>

<(2013, 5, 24), 4>

<(2012, 3, *), 1>

<(2012, 12, *), 5>

<(2012, *, *), 6>

<(2013, 5, *), 4>

<(2013, *, *), 4>no more input

<(*, *, *), 10>

Figure 2: Example for the IRG approach.

all records pertaining to the given grouping key.
Figure 2 shows an example of the IRG approach. The

mapper is the identity function, producing (year, month,
day) as the keys and payload as the value. The coarsest
granularity d1 is overall, and N1 = 1: hence, all 〈key, value〉
pairs are sent to a single reducer. The reducer groups all
values of the same key, and processes the list of values asso-
ciated to that key, thus computing the sum of all values as
the total payload t. The grouping logic in the reducer also
takes care of sending t to n grouping keys constructed from
the reducer input key. For example, with reference to Fig-
ure 2, the input pair (<2012, 3, 14>, 1) implies that value
t = 1 is sent to grouping keys (2012, 3, 14), (2012, 3,

*), (2012, *, *) and (*, *, *). The aggregators in these
grouping keys accumulate all t values they receive. When
there is no more t value for a grouping key (in our example,
when year or month change, as shown by the dashed lines in
Figure 2), the aggregator outputs the final aggregated value.

The key observation we exploit in the IRG approach is
that a secondary, lexicographic sorting, is fundamental to
minimize state in the reducers. For instance, at month gran-
ularity, when the reducer starts processing pair (<2013, 5,

24>, 4), then we are guaranteed that all grouping keys of
month smaller than (2013, 5) (e.g. (2012, 12)) have al-
ready been processed and should be output without further
delay. This way reducers need not keep track of aggregators
for previous grouping keys: reducers only use n aggregators,
one for each granularity.

To summarize, the IRG approach extensively relies on the
idea of an on-line algorithm: it makes a single pass over its
input, maintaining only the necessary state to accumulate
aggregates (both algebraic and holistic) at different granu-
larities, and produces outputs as the reduce function iterates
over the input.
Parallelism and Communication Cost. Since mappers out-
put one tuple per input record, the replication rate of the
IRG algorithm meets the lower bound of 1, as showed in
Equation 2. On the other hand, this approach has limited
parallelism, since it uses no more reducers than the number
N1 of grouping keys at granularity d1. In particular, when
an overall aggregation is required, IRG can only work on
a single reducer. As a result, IRG is likely to perform less
work and require less resources than the Vanilla approach
described previously, but it cannot benefit from paralleliza-

overall: d1 year: d2 month: d3 day: d4

P=1 P=2 P=3 P=4

Selected

pivot position

Vanilla-

approach

IRG-approach

Figure 3: Pivot position example.

tion in the reduce phase.
Impact of Combiners. Since the IRG algorithm minimizes
communication cost, combiners only perform well if pre-
aggregation at the finest granularity dn is beneficial – i.e., if
the number of rows L in the data set is definitely larger than
the number of grouping keys at the finest granularity, Nn.
As such, the performance of the IRG approach suffers the
least from the absence of combiners, e.g. when aggregation
functions are not algebraic.

If the aggregate function is algebraic, however, the IRG
algorithm is designed to re-use results from finer granulari-
ties in order to build the aggregation function hierarchically :
in our running example, the aggregate of the total payload
processed in a month can be obtained by summing the pay-
load processed in the days of that month, and the aggregate
for a year can likewise be computed by adding up the total
payload for each month. Such an approach saves and reuses
computation in a way that is not possible to obtain with the
Vanilla approach.

Hybrid approach: Vanilla + IRG. We have shown that
Vanilla and IRG are two “extreme” approaches: the first
one maximizes parallelism at the expense of communication
cost, the second one instead minimizes communication cost
but does not provide good parallelism guarantees.

Neither approach is likely to be an optimal choice for such
a tradeoff: in a realistic system, we are likely to have way less
reducers than number of output tuples to generate (there-
fore making the extreme parallelism guarantees produced
by Vanilla excessive); however, in particular when an over-
all aggregate is needed, it is reasonable to require an im-
plementation that does not have the bottleneck of a single
reducer.

In order to benefit at once from an acceptable level of par-
allelism and lower communication overheads, we propose an
hybrid algorithm that fixes a pivot granularity P : all aggre-
gate functions on granularities between dP and dn are com-
puted using the IRG algorithm, while aggregates for gran-
ularities above dP are obtained using the Vanilla approach.
A choice of P = 1 is equivalent to the IRG algorithm, while
P = n corresponds to the Vanilla approach.

Let us consider again our running example, and fix the
pivot position at P = 3, as shown in Figure 3. This choice
implies that aggregates for the overall and year granularities
d1, d2 are computed using the Vanilla approach, while ag-
gregates for the other granularities d3, d4 (month and day)
are obtained using the IRG algorithm. For example, for
the (2012, 3, 14, 1) tuple, the hybrid approach produces
three output records at the mapper:

(2012, 3, 14, 1) (day granularity)

(2012, *, *, 1) (year granularity)

(*, *, *, 1) (overall granularity)

14

Reducer 2

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

Reducer 1Mappers Shuffle

<(2012, 3, 14), 1>

<(2012, 3, *), 1>

<(*, *, *), 3>

<(2012, 12, 5), 2>

<(2012, 12, *), 2>

<(2012, *, *), 3>

Figure 4: Example for the Hybrid Vanilla + IRG
approach.

In this case the map output key space is partitioned by the
month granularity, so that there is 1) one reducer per each
month in the input dataset, that computes aggregates for
granularities up to the month level, and 2) multiple reducers
that compute aggregates for the overall and year granular-
ities. Figure 4 illustrates an example with two reducers.

Some remarks are in order. Assuming a uniform distribu-
tion of the input dataset, the load on reducers of type 1) is
expected to be evenly shared, as an input partition corre-
sponds to an individual month and not the whole dataset.
The load on reducers of type 2) might seem still prohibitive;
however, we note that when combiners are in place they
are going to vastly reduce the amount of data sent to the
reducers responsible of the overall and year aggregate com-
putation. For our example, the reducers of type 2) receive
few input records, because the overall and year aggregates
can be largely computed in the map phase. Furthermore,
we remark that the efficiency of combiners in reducing in-
put data to reducers (and communication costs) is very high
for coarse granularities, and decreases towards finer granu-
larities: this is why the IRG algorithm applies the Vanilla
approach from the pivot position, up to coarse granularities.
Parallelism and Communication Cost. The performance of
the hybrid algorithm depends on the choice of P : the repli-
cation rate (before combiners) is P . The number of reducer
that this approach can use is the total of 1) NP group-
ing keys that are handled with the IRG algorithm, and 2)∑P−1

i=0 Ni grouping keys that are handled with the Vanilla
approach. Ideally, an a priori knowledge of the input data
can be used to guide the choice of the pivot position. For ex-
ample, if the data in our running example is known to span
over tens of years and we know we only have ten reducer
slots available (i.e., at most ten reducer tasks can run con-
currently), a choice of partitioning by year (P = 2) would
be reasonable. Conversely, if the dataset only spans a few
years and hundreds of reducer slots are available, then it
would be better to be more conservative and choose P = 3
or P = 4 to obtain better parallelism at the expense of a
higher communication cost.
Impact of Combiners. The hybrid approach heavily relies
of combiners. Indeed, when combiners are not available, all
input data will be sent to the one reducer in charge of the
overall granularity; in this case, it is then generally better
to choose P = 1 and revert to the IRG algorithm. However,
when the combiners are available, the benefit for the hybrid
approach is considerable, as discussed above.

Reducer 1

Reducer 2

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

Mappers Shuffle

<(2012, 3, 14), 1>

<(2012, 3, *), 1>

<(*, *, *), 3>

<(2012, 12, 5), 2>

<(2012, 12, *), 2>

<(2012, *, *), 3>

Figure 5: Example for the Hybrid IRG + IRG ap-
proach.

4.3 Alternative hybrid algorithms
We now extend the hybrid approach we introduced previ-

ously, and propose two alternatives: a single job involving
two parallel IRG instances, and a chained job involving a
first IRG computation and a final IRG aggregation.

Hybrid approach: IRG + IRG. In the previous section,
we have shown that it is possible to design an algorithm
aiming at striking a good balance between parallelism and
replication rate, using a single parameter, i.e. the pivot
position. In the baseline hybrid approach, parallelism is an
increasing function of the replication rate, so that better par-
allelism is counterbalanced by higher communication costs
in the shuffle phase.

Here, we propose an alternative approach that results in
a constant replication rate of 2: the “trick” is to replace the
Vanilla part of the baseline hybrid algorithm with a second
IRG approach. Using the same running example as before,
for the tuple (2012, 3, 14, 1), and selecting the pivot po-
sition P = 3, the two map output records are:

(2012, 3, 14, 1) (day granularity)

(2012, *, *, 1) (year granularity)

Figure 5 illustrates a running example. In this case, the
map output key space is partitioned by the month granular-
ity, such that there is one reducer per month that uses the
IRG algorithm to compute aggregates; in addition, there is
one reducer receiving all tuples having ALL values taking
care of the year and overall granularities, using again the
IRG approach. As before, the role of combiners is crucial:
the amount of (year, *, *, payload) tuples that are sent
to the single reducer taking care of year and overall aggre-
gates is likely to be very small, because opportunities to
compute partial aggregates in the map phase are higher for
coarser granularities.
Parallelism and Communication Cost. This algorithm has
a constant replication rate of 2. As we show in Section 5,
the choice of the pivot position P is here much less decisive
than for the baseline hybrid approach: this can be explained
by the fact that moving the pivot to finer granularities does
not increase communication costs, as long as the load on the
reducer taking care of the aggregates for coarse granularities
remains low.
Impact of Combiners. Similarly to the baseline hybrid ap-
proach, this algorithm relies heavily on combiners; if com-
biners are not available, then, a simple IRG approach would
be preferable.

15

Chained IRG. It is possible to further decrease the replica-
tion rate and hence the communication costs of computing
ROLLUP aggregates by adopting a multi-round approach
composed of two chained MapReduce jobs. In this case, the
first job pre-aggregates results up to the pivot position P
using the IRG algorithm; the second job uses partial aggre-
gates from the first job to produce – on a single reducer –
the final aggregate result, again using IRG. We note here
that a similar observation, albeit for computing matrix mul-
tiplication, is also discussed in detail in [4].
Parallelism and Communication Cost. The parallelism of
the first MapReduce job is determined by the amount NP of
grouping keys at the pivot position; the second MapReduce
job, has a single reducer. However, the input size of the
second job is likely to be orders of magnitude smaller than
the first one, so that the runtime of the reduce phase of the
second job – unless the pivot position puts too much effort
on the second job – is generally negligible. The fact that the
second reducer operates on a very small amount of input,
results in a replication rate very close to 1.

The main drawback of the chained approach is due to job
scheduling strategies: if jobs are scheduled in a system with
idle resources, as we show in Section 5, the chained IRG algo-
rithm results in the smallest runtime. However, in a loaded
system, the second (and in general very small) MapReduce
job could be scheduled later, resulting in artificiously large
delays between job submission and its execution.
Impact of Combiners. This approach does not rely heavily
on combiners per se. However, it requires the aggregation
function to be algebraic in order to make it possible for the
second MapReduce job to re-use partial results.

5. EXPERIMENTAL EVALUATION
We now proceed with an experimental approach to study

the performance of the algorithms we discussed in this work.
We use two main metrics: runtime – i.e. job execution
time – and total amount of work, i.e. the sum of individual
task execution times. Runtime is relevant on idle systems,
in which job scheduling does not interfere with execution
times; total amount of work is instead an important metric
to study in heavily loaded systems where spare resources
could be assigned to other pending jobs.

5.1 Experimental Setup
Our experimental evaluation is done on a Hadoop cluster

of 20 slave machines (8GB RAM and a 4-core CPU) with 2
map and 1 reduce slot each. The HDFS block size is set to
128MB. All results shown in the following are the average of
5 runs: the standard deviation is smaller than 2.5%, hence
– for the sake of readability – we omit error bars from our
figures.

We compare the five approaches described in Section 4:
baseline algorithms (Vanilla, IRG, Hybrid Vanilla + IRG)
and alternative hybrid approaches (Hybrid IRG + IRG
Chained IRG). We evaluate a single ROLLUP aggregation
job over (overall, year, month, day, hour, minute, second)
that uses the SUM aggregate function which, being algre-
braic, can benefit from combiners. Our input dataset is a
synthetic log-trace representing historical traffic measure-
ments taken by an Internet Service Provider (ISP): each
record in our log has 1) a time-stamp expressed in (year,
month, day, hour, minute, second); and 2) a number repre-
senting the payload (e.g. number of bytes sent or received

Figure 6: Impact of combiners on runtime for the
Vanilla approach.

over the ISP network). The time-stamp is generated uni-
formly at random within a variable number of years (where
not otherwise specified, the default is 40 years). The pay-
load is a uniformly random positive integer. Overall, our
dataset comprises 1.5 billion binary tuples of size 32 bytes
each, packed in a SequenceFile [20].

5.2 Results
This section presents a range of results we obtained in our

experiments. Before delving into a comparative study of all
the approaches outlined above, we first focus on studying
the impact of combiners on the performance of the Vanilla
approach. Then, we move to a detailed analysis of runtime
and amount of work for baseline algorithms (Vanilla, IRG,
and Hybrid), and we conclude with an overview to outline
merits and drawbacks of alternative hybrid approaches.

The role of combiners. Figure 6 illustrates a break-down
of the runtime for computing the ROLLUP aggregate on our
dataset, showing the time a job spend in the various phases
of a MapReduce computation. Clearly, combiners play an
important role for the Vanilla approach: they are beneficial
in the shuffle and reduce phases. When combiners cannot
be used (e.g. because the aggregation function is not alge-
braic), the IRG algorithm outperforms the Vanilla approach.
With combiners enabled, the IRG algorithm is slower (larger
runtimes) than the Vanilla approach: this can be explained
by the lack of parallelism that characterizes IRG, wherein
a single reducer is used as opposed to 20 reducers for the
Vanilla algorithm. Note that, in the following experiments,
combiners are systematically enabled. Finally, Figure 6 con-
firms that the IRG approach moves algorithmic complexity
from the map phase to the reduce phase.

Baseline algorithms. In Figure 7(a) we compare the run-
time of Vanilla, IRG, and the hybrid Vanilla + IRG ap-
proach. In our experiments we study the impact of the pivot
position P , in lights of the “nature” of the input dataset: we
synthetically generate data such that they span 1, 10 and
40 years worth of traffic logs.4

Clearly, IRG (which corresponds to P = 1) is the slow-
est approach in terms of runtime. Indeed, using a single
reducer incurs in prohibitive I/O overheads: the amount of
data shuffled into a single reducer is too large to fit into mem-

4Note that the size – in terms of number of tuples – of the
input data is kept constant, irrespectively of the number of
represented years.

16

IRG (P=1) P=2 P=3 P=4 P=5 P=6 Vanilla (P=7)
0

1000

2000

3000

4000

5000
R

u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

40 years

10 years

1 years

(a) Runtime (b) Amount of work

Figure 7: Comparison of baseline approaches.

ory, therefore spilling and merging operations at the reducer
proceed at disk speeds. Although no redundant computa-
tions are carried out in IRG, I/O costs outweigh the savings
in computations.

A hybrid approach (2 ≤ P ≤ 6) outperforms both IRG
and Vanilla algorithms, with runtime as little as half that of
the Vanilla approach. Communication costs make the run-
time grow slowly as the pivot position moves towards finer
granularities, suggesting that in doubt, it is better to posi-
tion the pivot to the right (increased communication costs)
rather than to the left (lack of parallelism). In our case,
where a maximum of 20 reduce tasks can be scheduled at
any time, our results indicate that P should be chosen such
that NP is larger than the number of available reducers.
As expected, experiments with data from a single year indi-
cate that the pivot position should be placed further to the
right: the hybrid approach with P = 2 essentially performs
as badly as the single-reducer IRG.

Now, we present our results under a different perspec-
tive: we focus on the total amount of work executed by a
ROLLUP aggregate implemented according to our baseline
algorithms. We define the total amount of work for a given
job as the sum of the runtime of each of its (map and reduce)
tasks. Figure 7(b) indicates that the IRG approach con-
sumes the least amount of work. By design, IRG is built to
avoid redundant work: it has minimal replication rate, and
the single reducer can produce ROLLUP aggregates with a
single pass over its input.

As a general remark, that applies to all baseline algo-
rithms, we note that the total amount of work is largely
determined by the map phase of our jobs. The trend is tan-
gible as P moves toward finer granularities: despite com-
munication costs (the shuffle phase, which accounts for the
replication rate) do not increase much with higher values
of P thanks to the key role of combiners, map tasks still
need to materialize data on disk before it can be combined
and shuffled, thus contributing to a large extent to higher
amounts of work.

Alternative Hybrid Approaches. We now give a com-
pact representation of our experimental results for variants
of the Hybrid approach we introduce in this work. Figure 8
offers a comparison, in terms of job runtime, of the Hybrid
Vanilla + IRG approach to the Hybrid IRG + IRG and the
Chained IRG algorithms. For the sake of readability, we
omit from the figure experiments corresponding to P = 1

and P = 7.
Figure 8 shows that the job runtime of the Hybrid Vanilla

+ IRG algorithm is sensitive to the choice of the pivot po-
sition P . Despite the use of combiners, the Vanilla “com-
ponent” of the hybrid algorithm largely determines the job
runtime, as discussed above. The IRG + IRG hybrid algo-
rithm obtains lower job runtime and is less sensitive to the
pivot position, albeit 3 ≤ P ≤ 5 constitutes an ideal range
in which to place the pivot. The best performance in terms
of runtime is achieved by the Chained IRG approach: in
this case, the amount of data shuffled through the network
(aggregated over each individual job of the chain) is smaller
than what can be achieved by a single MapReduce job. We
further observe that placing P towards finer granularities
contributes to small job runtime: once an appropriate level
of parallelism can be achieved in the first job of the chain,
the computation cost of the second job in the chain is negli-
gible, and the total amount of work (not shown here due to
space limitations) is almost constant and extremely close to
the one for IRG.

We can now summarize our findings as follows:

• All the approaches that we examined greatly bene-
fit from the, fortunately common, property that ag-
gregation functions are algebraic and therefore enable
combiners and re-using partial results. If this is not
the case, approaches based on the IRG algorithm are
preferable.

• If total amount of work is the metric to optimize, IRG
is the best solution because it minimizes redundant
work. If low latency is also required, hybrid approaches
offer a good trade-off, provided that the pivot position
P is chosen appropriately.

• Our alternative hybrid approaches are the best per-
forming solutions; both are very resilient to bad choices
of the P pivot position, which can therefore be cho-
sen with a very rough a-priori knowledge of the in-
put dataset. Chained IRG provides the best results
due to its minimal communication costs. However,
chained jobs may suffer from bad scheduling decisions
in a heavily loaded cluster, as the second job in the
chain may “starve” due to large jobs being scheduled
first. The literature on MapReduce scheduling offers
solutions to this problem [18].

17

P=2 P=3 P=4 P=5 P=6
0

500

1000

1500

2000

2500

3000

3500

4000

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Hybrid Vanilla+IRG

Hybrid IRG+IRG

Chained IRG

Figure 8: Comparison between alternative hybrid
approaches.

6. CONCLUSION & FUTURE WORK
In this paper we have studied the problem of the effi-

cient computation of ROLLUP aggregates in MapReduce.
We proposed a modeling approach to untangle the avail-
able design space to address this problem, by focusing on
the trade-off that exists between the achievable parallelism
and communication costs that characterize the MapReduce
programming model. This was helpful in identifying the
limitations of current ROLLUP implementations, that only
cover a small portion of the design space as they concen-
trate solely on parallelism. We presented an algorithm to
meet the lower bounds of the communication costs we de-
rived in our model, and showed that minimum replication
can be achieved at the expenses of parallelism. In addition
we presented several variants of ROLLUP implementations
that share a common trait: a single parameter (the pivot)
allows tuning the parallelism vs. communication trade-off
for finding a reasonable “sweet spot”.

Our work was enriched by an experimental evaluation of
several ROLLUP implementations. The experimental ap-
proach revealed the importance of optimizations currently
available in systems such as Hadoop, which could not be
taken into account with a modeling approach alone. Our
experiments showed, in addition to the performance of each
ROLLUP variant in terms of runtime, that the efficiency of
the new algorithms we designed in this work was superior
to what is available in the current state of the art.

Our plan is to extend our experimental evaluation to con-
sider skewed datasets: we believe that our hybrid algorithms
exhibit the distinguishing feature that the pivot position can
be used not only to gauge parallelism and replication, but
also to mitigate the possible uneven computational load dis-
tribution when data is not uniform. We also consider a
data-dependent pivot, which is an even more refined pivot
than our current schema-dependent one. Furthermore, we
plan to extend our work by designing an automatic mecha-
nism to select an appropriate pivot position, depending on
the nature of the data to process.

Acknowledgments
The authors would like to thank Antonio Barbuzzi for his
valuable comments. This work has been partially supported
by the EU project BigFoot (FP7-ICT-317858).

7. REFERENCES
[1] http://hadoop.apache.org.
[2] http://hive.apache.org.

[3] http://pig.apache.org.

[4] F. N. Afrati et al. Upper and lower bounds on the cost
of a map-reduce computation. In VLDB, 2013.

[5] F. N. Afrati and J. D. Ullman. Optimizing Multiway
Joins in a Map-Reduce Environment. IEEE
Transactions on Knowledge and Data Engineering,
2011.

[6] S. Agarwal et al. On the Computation of
Multidimensional Aggregates. In VLDB, 1996.

[7] S. Bellamkonda et al. Adaptive and Big Data Scale
Parallel Execution in Oracle. In VLDB, 2013.

[8] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. In ACM
SIGMOD, 1999.

[9] S. Blanas et al. A comparison of join algorithms for log
processing in MapReduce. In ACM SIGMOD, 2010.

[10] J. Dean and S. Ghemawat. MapReduce : Simplified
Data Processing on Large Clusters. In ACM OSDI,
2004.

[11] M. Fang et al. Computing Iceberg Queries Efficiently.
In VLDB, 1998.

[12] J. Gray et al. Data Cube : A Relational Aggregation
Operator Generalizing Data Cube : A Relational
Aggregation Operator Generalizing Group-By ,
Cross-Tab , and Sub-Totals. Data Mining and
Knowledge Discovery, 1997.

[13] J. Hah, J. Pei, and G. Dong. Efficient Computation of
Iceberg Cubes with Complex Measures. In ACM
SIGMOD, 2001.

[14] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In ACM
SIGMOD, 1996.

[15] P. Jayachandran. Implementing RollupDimensions
UDF and adding ROLLUP clause in CUBE operator.
PIG-2765 JIRA.

[16] A. Nandi et al. Distributed cube materialization on
holistic measures. In IEEE ICDE, 2011.

[17] A. Okcan and M. Riedewald. Processing Theta-Joins
using MapReduce. In ACM SIGMOD, 2011.

[18] M. Pastorelli et al. HFSP: Size-based scheduling for
hadoop. In IEEE BigData, 2013.

[19] K. A. Ross and D. Srivastava. Fast computation of
sparse datacubes. In VLDB, 1997.

[20] T. White. Hadoop - The Definitive Guide: Storage and
Analysis at Internet Scale. O’Reilly, 2012.

18

Determining the k in k-means with MapReduce

Thibault Debatty
Royal Military Academy, Brussels, Belgium

thibault.debatty@rma.ac.be

Pietro Michiardi
EURECOM, Campus SophiaTech, France

pietro.michiardi@eurecom.fr

Wim Mees
Royal Military Academy, Brussels, Belgium

wim.mees@rma.ac.be

Olivier Thonnard
Symantec Research Labs, Sophia Antipolis, France

olivier_thonnard@symantec.com

Abstract
In this paper we propose a MapReduce implementation of
G-means, a variant of k-means that is able to automatically
determine k, the number of clusters. We show that our im-
plementation scales to very large datasets and very large
values of k, as the computation cost is proportional to nk.
Other techniques that run a clustering algorithm with dif-
ferent values of k and choose the value of k that provides the
“best” results have a computation cost that is proportional
to nk2.

We run experiments that confirm that the processing time
is proportional to k. These experiments also show that, be-
cause G-means adds new centers progressively, if and where
they are needed, it reduces the probability to fall into a lo-
cal minimum, and finally finds better centers than classical
k-means processing.

1. INTRODUCTION
Discovering groups of similar objects in a dataset, also

known as clustering, is one of the most fundamental tech-
niques of data analysis [12]. Clustering algorithms are used
in many fields including machine learning, pattern recogni-
tion, image analysis, information retrieval, market segmen-
tation and bioinformatics.

A lot of different algorithms exist, mainly depending on
their definition of a cluster. Density based algorithms, like
DBSCAN [8] and OPTICS [2] for example, define a cluster
as a high density region in the feature space. Other algo-
rithms assume that the data is generated from a mixture
of statistical distributions. Finally, centroid models, like k-
means, represent each cluster by a single center point. This
algorithm thus implicitly assumes that the points in each
cluster are spherically distributed around the center [9].

The most known algorithm for computing k-means clus-
tering is Lloyd’s algorithm [13], also known as “the k-means
algorithm”. Although, it was published more than 30 year
ago, it is still widely used today as it is at the same time
simple and effective [12]. However, it also has a number of

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

drawbacks:

1. It may converge to a local minimum, producing coun-
terintuitive or even inconsistent results.

2. It is not really efficient, and may converge very slowly.

3. It prefers clusters of approximately similar size, as it
always assigns an object to the nearest center. This
often leads to incorrect borders between clusters.

4. Finally, like a lot of other clustering algorithms, it re-
quires the number of clusters – k – to be specified in
advance, which is considered as one of the most diffi-
cult problems to solve in data clustering [12].

In this paper we tackle this last drawback. We present
and analyze the performance of a MapReduce implementa-
tion of G-means[9], an efficient algorithm to determine k.
We also compare our algorithm to a common MapReduce
implementation of k-means.

More specifically, we first show that a MapReduce imple-
mentation of G-means requires some modifications of the
original algorithm to reduce I/O operations, as these are
very costly in MapReduce, and to reduce the number of
chained MR jobs. We also show that an efficient imple-
mentation that maximizes processing parallelism requires a
hybrid design that takes into account the number of nodes
running the algorithm and the quantity of heap memory
available.

We then study the performance aspects of the proposed
algorithm implementation by modeling the communication
and computational cost. We show that our algorithm is
able determine k and find clusters with a computation cost
proportional to nk. Other techniques that run a clustering
algorithm with different values of k and choose the value of
k that provides the “best” results have a computation cost
that is proportional to nk2.

Finally, we evaluate both solutions experimentally. Our
results confirm that the proposed MR implementation of
G-means has linear complexity with respect to k. The al-
gorithm also takes full advantage of additional computing
nodes, which makes it scalable to very large datasets. More-
over, our experiments show that our implementation clearly
outperforms the classical iterative k-means solution as it re-
duces the probability to fall into a local minimum and pro-
vides better clustering results.

The rest of the paper is organized as follows : In section 2
we present G-means[9] and other existing methods to de-
termine k, as well as other optimizations of k-means. In

19

section 3 we present and justify our MapReduce implemen-
tation of G-means. In section 4 we estimate and compare
the computation and communication costs of the MapRe-
duce implementations of G-means and k-means. In section
5 we present our experimental results, and finally we present
our conclusions.

2. RELATED WORK
When clustering a dataset, the right number of clusters

to use – k – is often a parameter of the algorithm.
Even when analyzing data visually, the correct choice of

k is often ambiguous. It largely depends on the shape and
scale of the distribution of points in the data set and on the
desired clustering resolution of the user.

In addition, arbitrarily increasing k will always reduce the
amount of error in the resulting clustering, to the extreme
case of zero error if each data point is considered its own
cluster.

If an appropriate value of k is not apparent from prior
knowledge of the properties of the data set, it must be cho-
sen somehow. There are several methods for making this
decision. Lots of them rely on cluster evaluation metrics.
They run a clustering algorithm with different values of k,
and choose the value of k that provides the “best” results
according to some criterion.

For example, Dunn’s index (DI) [7] can be used to deter-
mine the number of clusters. The k for which the DI is the
highest can be chosen as the number of clusters.

The elbow method [20] is another possible criterion. It
chooses a number of clusters so that adding another cluster
doesn’t give much better modeling of the data. Therefore,
it computes the percentage of variance explained (the ra-
tio of the between-group variance to the total variance, also
known as an F-test) for different values of k. In the graph of
the percentage of variance explained by the clusters against
the number of clusters, the first clusters will add much in-
formation (explain a lot of variance), but at some point the
marginal gain will drop, giving an angle in the graph. The
number of clusters is chosen at this point, hence the “elbow
criterion”. As it is a visual method, this “elbow” cannot
always be unambiguously identified.

The average silhouette of the data [18] is another useful
criterion for assessing the natural number of clusters. The
silhouette of a point is a measure of how close it is to other
points within its cluster and how loosely it is matched to
points of the neighboring cluster, i.e. the cluster whose av-
erage distance from the point is lowest. A silhouette close to
1 implies the point is in an appropriate cluster, while a sil-
houette close to -1 implies the point is in the wrong cluster.
If there are too many or too few clusters, as it may occur
when a wrong value of k is used with k-means algorithm,
some of the clusters will typically display much narrower
silhouettes than the rest. Thus silhouette plots and aver-
ages may also be used to determine the natural number of
clusters within a dataset.

Sugar and James [19] used information theory to propose
a new index of cluster quality, called the “Jump method”.
The method is based on the notion of “distortion”, which
is a measure of within-cluster dispersion. For each possible
value of k, the method calculates the “jump” of distortion
compared with previous value of k. The Estimated number
of clusters is the value of k with the largest jump.

Tibshirani and al. [21] proposed anoter method based

on dispersion, called the “Gap statistic” for estimating the
number of clusters in a data set. The idea is to compare the
change in within-cluster dispersion to that expected under
an appropriate null distribution as reference. The number
of clusters is then the value for which the observed disper-
sion falls the farthest below the expected dispersion obtained
under a null distribution.

Finally, two other studies presented iterative techniques to
determine the number of clusters when performing k-means
clustering, which do not require to run k-means for every
possible value of k: X-means [17] and G-means [9].

X-means iteratively uses k-means to optimize the position
of centers and increases the number of clusters if needed to
optimize the Bayesian Information Criterion (BIC) or the
Akaike Information Criterion (AIC) measure. The main ad-
vantage of the algorithm is the efficiency of the test used to
select the most promising centers for refinement. This leads
to a fast algorithm that outputs both the number of clus-
ters and their position. Experiments showed this technique
revealed the true number of clusters in the underlying dis-
tribution, and that it was much faster than repeatedly using
k-means for different values of k.

G-means is also an iterative algorithm but it uses Anderson-
Darling test to verify whether a subset of data follows a
Gaussian distribution. G-means runs k-means with increas-
ing values of k in a hierarchical fashion until the test accepts
the hypothesis that the points assigned to each center follow
a Gaussian distribution. Experimental results showed that
the algorithm seems to outperform X-means.

The G-means algorithm starts with a small number of
clusters, and increases the number of centers. At each it-
eration, the algorithm runs k-means to refine the current
centers. The clusters whose data appears not to come from
a Gaussian distribution are then split.

For each cluster X (being a subset of data) of center c,
the algorithm works as follows:

1. Find two new centers c1 and c2.

2. Run k-means to refine c1 and c2.

3. Let v = c1 − c2 be the vector that connects the two
centers. This is the direction that k-means believes is
important for clustering.

4. Let X ′ be the projection of X on v. X ′ is a one-
dimensional representation of the data projected on v.

5. Normalize X ′ so that it has zero mean and variance
equal to 1.

6. Use Anderson-Darling to test X ′:

• If X ′ follows a normal distribution, keep the orig-
inal center, and discard c1 and c2.

• Otherwise, split the cluster in two, use c1 and
c2 as new centers and run the algorithm on each
sub-cluster.

The main advantage of this algorithm is that it simpli-
fies the test for Gaussian fit by projecting the data to one
dimension where the test is simple to apply. Moreover it
only creates new centers where needed, improving cluster-
ing quality.

20

In this paper, we present a MapReduce implementation
of the G-means algorithm. Some key challenges to be ad-
dressed are the various design choices for parallelizing the
algorithm, as these may have a significant impact on final
results quality, but also on communication and computa-
tional cost.

While the choice of k is a critical question, many other op-
timizations have been proposed in the literature to improve
or speed up k-means processing.

A first optimization consists in selecting better initial cen-
ters, which allows the algorithm to converge quicker, reduces
the probability to fall into a local minimum and reduces
the number trials needed. In k-means++ [3], the starting
centers are chosen randomly, but with a probability pro-
portional the distance to the nearest already chosen cen-
ter. Bahmani [4] also proposed a MapReduce version of
k-means++ initialization algorithm. Another common pos-
sibility is to use canopy clustering [15] to compute the initial
centers. Algorithms also exist to avoid local minimums, for
example by swapping points between clusters [11].

Other optimizations deal with nearest neighbor (NN) search.
In k-means, a NN search is required to decide to which clus-
ter a point belongs. It is thus one of the basic operations
of k-means processing, but also of a lot of other clustering
algorithms. One type of efficient NN search algorithm uses
tree-based structures, like the mrkd-tree algorithm proposed
by Pelleg et al. [16]. The algorithm uses a multi-resolution
k-d tree to represent groups of points and efficiently iden-
tify the nearest cluster centers for those points. Vrahatis et
al. [22] proposed a version that uses a windowing technique
based on range trees. A range tree on a set of points in d-
dimensions is a recursively defined multi-level binary search
tree. Each level of the range tree is a binary search tree on
one of the d-dimensions, which allows fast range searches.
Another category of algorithms uses random projection, like
Locality Sensitive Hash used by Buhler [5].

Other algorithms improve the clustering efficiency by first
summarizing a large data set, and then applying the clus-
tering algorithm. Different approaches exist:

• Replace a small tight group of objects (but not the
whole cluster) by a single object [6] or by a coreset
[10];

• Pre-process data to reduce dimensionality, dropping
unnecessary features (dimensions) [1];

• Partition data into overlapping subsets [15] for high
dimensional data.

While all these different optimizations of k-means are defini-
tively valuable, it is outside the scope of this paper to im-
plement and evaluate all of them. However, some of these
optimizations could be easily integrated in the MapReduce
implementation proposed in this paper, and we are consid-
ering them as part of our future work.

3. MAPREDUCE IMPLEMENTATION OF G-
MEANS

Our implementation of G-means for MapReduce is pre-
sented in Algorithm 1.

The first step, PickInitialCenters, is a classical step of
any k-means algorithm. The main difference with respect

Algorithm 1 MapReduce G-means pseudo-code

PickInitialCenters
while Not ClusteringCompleted do

KMeans
KMeansAndFindNewCenters
TestClusters

end while

to classical k-means implementations is that it picks pairs
of centers (c1 and c2). We use a serial implementation, that
picks initial centers at random, but other distributed or more
efficient algorithms can be found in the literature and can
perfectly be used instead.

The algorithm then enters a while loop that will continue
as long as there are clusters that must be split. The first op-
eration of the loop is a classical MapReduce implementation
of k-means with combiners1, to refine to position of current
centers.

The last iteration of k-means is implemented in a sep-
arate MapReduce job called KMeansAndFindNewCenters in
Algorithm 2. It will also, for each cluster, pick the two new
centers (c1 and c2) that will be used at next iteration. This
job is specific to our implementation and is further explained
below.

Finally, the clusters are tested using the MapReduce job
referred to as TestClusters in Algorithm 1. For each point,
the job searches the cluster it belongs to (using the cen-
ters from previous iteration), then projects it on the vector
formed by the two corresponding centers (of current itera-
tion). Finally, for each cluster it tests if the projections form
a normal distribution. This job, also specific to the proposed
implementation, is explained in more details here below.

As can be noticed, our MapReduce implementation of G-
means differs from the sequential version in three main as-
pects.

First, the original G-means algorithm works locally, by
analyzing each cluster separately. It thus requires that each
point is “linked” in some way to the cluster it belongs to
at each iteration of the algorithm. Implementing this in
MapReduce would require a write operation at each itera-
tion, to save this information in the distributed file system.

This membership information can of course be used to
reduce computations at some steps of the algorithm:

• When running k-means, for each point, the algorithm
does not have to compute the distance to each center,
but only to c1 and c2, the 2 children centers of the
cluster the point currently belongs to;

• When testing the clusters, the cluster to which a point
belongs is directly identified, and the algorithm does
not have to compute the distance from this point to
each cluster.

However, binding the points to their cluster would require
a write operation at each iteration, and could at best spare
O(2nk) distance computations. Given the very high cost of
I/O operations in MapReduce, we do not recommend using
this solution. Moreover, as mentioned above, other tech-
niques already exist to optimize nearest neighbor search that
can perfectly be added to our implementation.

1A combiner is a well-known pre-aggregation optimization
available in MapReduce.

21

Next, in the original G-means algorithm, new centers are
picked at the beginning of each iteration. Implementing this
directly in MapReduce would require an additional MapRe-
duce job. To minimize the number of jobs executed at each
iteration and the number of dataset reads, we merge this
operation with the last iteration of k-means. Thus, the
KMeansAndFindNewCenters operation will perform classical
k-means and at the same time find 2 new centers (c1 and
c2) for each cluster, which will be used at next iteration of
G-means.

Finally, while the sequential algorithm analyzes clusters
individually, and thus adds new centers sequentially, the
MapReduce version analyzes all clusters in parallel and will
thus try to double the number of centers at each iteration.
As a result, it may eventually overestimate the value of
k. Future versions of the algorithm will thus add a post-
processing step to merge close centers.

One of the subtleties of the MapReduce version of G-
means, as proposed in Algorithm 1, is that each iteration
has to deal with centers from previous, current and next
iteration:

• KMeans refines the centers of current iteration;

• KMeansAndFindNewCenters picks centers that will be
used at next iteration;

• TestClusters assigns each point to its cluster (a center
from previous iteration), then projects it on the vector
joining the 2 corresponding centers of current iteration.

3.1 KMeans and Find New Centers
KMeansAndFindNewCenters is a MapReduce job with com-

biners that performs two operations at the same time:

1. Run k-means to refine current centers;

2. For each current center, pick two new centers (c1 and
c2) that will possibly be used at next iteration.

In our implementation, the new centers are chosen ran-
domly. More sophisticated algorithms can be used to select
the new points, but they may require an additional MapRe-
duce job.

Algorithm 2 KMeansAndFindNewCenters Mapper

Input: point (text)
Output:
centerid (long) ⇒ coordinates (float[]), 1 (int)
centerid +OFFSET (long)⇒ coordinates (float[]), 1 (int)

procedure Map(key , point)
Find nearest center
Emit(centerid , point)
Emit(centerid + OFFSET , point)

end procedure

The Map step of the job is presented in Algorithm 2. The
coordinates of each point are emitted twice. This doubles
the quantity of data to be shuffled and transmitted over the
network. However, this effect is largely mitigated by the use
of a combiner. The efficiency of the combiner is of course
very dependent of the dataset. There are recent execution

engines (such as SPARK2) that allow to specify ”partition-
preserving”operations. Preserving partitions would help the
combiners to perform more efficiently at next iteration. It
is however outside the scope of this paper to consider such
optimizations.

To make the distinction between coordinates that corre-
spond to new centers to be used at next iteration of the
algorithm and current centers that we want to refine with
k-means, we use an arbitrary high offset value. More pre-
cisely, as the type of center id is a Java Long, we use an
offset value equal to half the largest possible value of a Java
Long. The value of OFFSET is thus 262 (approximatively
4E18). This also limits our algorithm to datasets with at
most 262 centers.

We could also use a text prefix, but although simpler to
interpret, this choice would hurt performance due to the re-
quirement of an additional parsing phase. Moreover, during
the shuffle phase, sorting text keys requires more processing
than simple integer values.

The combiner and reducer test the value of the key. If it is
larger than the predefined offset, they keep only 2 new cen-
ters per cluster. Otherwise they perform classical k-means
reduction and compute the new position of each cluster cen-
ter.

3.2 Test Clusters
The TestClusters procedure is is the last MapReduce

job of our distributed G-means implementation (Algorithm
1). The mapper projects the points of a cluster on the line
joining the two centers (c1 and c2) and the reducer then tests
if these values follow a normal distribution.

Algorithm 3 TestClusters Mapper

Input: point (text)
Output: vectorid (int) ⇒ projection (double)

procedure Setup
Build vectors from center pairs
Read centers from previous iteration

end procedure

procedure Map(key , point)
Find nearest center
Find corresponding vector
Compute projection of point on vector
Emit(vectorid , projection)

end procedure

Algorithm 4 TestClusters Reducer

Input: vectorid (int) ⇒< projection (double) >

procedure Reduce(vectorid , projections)
Read projections to build a vector
Normalize vector (mean 0, stddev 1)
ADtest(vector)
if normal then

Mark cluster as found
end if

end procedure

2http://www.spark-project.org/

22

At the first steps of G-means, when k is low, this algorithm
performs poorly as the parallelism of the reduce phase is
bounded by k.

To achieve higher parallelism, the algorithm adopts an-
other strategy when k is low, called TestFewClusters (Al-
gorithm 5. The test for normality is directly performed by
the mapper, thus on subsets of data. This of course only
delivers correct results if the number of samples for each
subset is sufficient, which we can suppose is verified for low
values of k. Anderson-Darling is a powerful statistical test,
which has proved being reliable even with small samples (as
a rule of thumb, a minimum size of 8 is considered to be
sufficient). In our implementation we use a threshold of 20,
to stay on the safe side. The number of reduce tasks is still
equal to k (which is low), but as their task is only to com-
bine the decisions taken by mappers, this will not limit the
performance of the algorithm.

Algorithm 5 TestFewClusters Mapper

Input: point (text)
Output: vectorid (int) ⇒ A∗2 (double)

procedure Setup
Build vectors from center pairs
Read centers from previous iteration

end procedure

procedure Map(key , point)
Find nearest center
Find corresponding vector
Compute projection of point on vector
Add projection to list vectorid

end procedure

procedure Close
for Each list do

Read projections to build a vector
Normalize vector (mean 0 , stddev 1)
Compute A∗2 = adtest(vector)
Emit(vectorid ⇒ A∗2)

end for
end procedure

Moreover, TestFewClusters limits the size of the vector
of projections to a level that fits into RAM memory: If we
assume that the value of a point in each dimension is stored
as a string of approximatively 15 characters (the number
of significant decimal digits of IEEE 754 double-precision
floating-point format), and each character is encoded using
1 Byte, the number of points in a dataset is O(S

15D
), where

S is the size of the dataset (in Bytes) and D is the number
of dimensions.

For each point, the algorithm will compute a projection,
encoded as a double (8 Bytes). The total memory space
needed to store all projections is thus O(8 S

10D
) and thus

O(S
D

) Bytes, which can be very large. In the worst case sce-
nario, if all points of the dataset belong to the same cluster,
as a result of the TestClusters procedure, the amount of
memory required by a single combiner will be prohibitive.

When TestFewClusters is used, the quantity of memory
required by each mapper to store the projections will be
O(Ss

D
), where Ss is the size of a single split (64MB on a

default Hadoop installation), which is now completely rea-
sonable.

Choosing when to switch from one strategy to the other
is, as often, a matter of compromise.

If the algorithm switches too late (i.e., when k is large),
the algorithm will keep using the TestFewClusters strategy,
even for a large number of clusters. As the test for normality
is performed by the mapper, there is a risk that the number
of points in some clusters is smaller than the threshold. The
mapper is then not able to compute a decision.

If the algorithm switches too early (i.e., when k is small),
the test is performed by the reducers even for a small number
of clusters. There is a risk that the number of projections
received by a single reducer becomes too large and exhausts
the heap: in the worst case, the maximum amount of mem-
ory required by a single reducer will be O(S

D
) Bytes (if the

complete dataset belongs to a single cluster), and in the best
case it will be O(S

kD
) Bytes (if all k clusters have the same

number of points).
In our MapReduce implementation of G-means, at each

iteration the algorithm counts the number of points that
belong to each cluster. By doing so, the algorithm can es-
timate the maximum amount of heap memory that will be
required as the number of points belonging to the biggest
cluster multiplied by the average quantity of heap memory
required per point (that we determined experimentally).

When an algorithm uses almost all heap memory avail-
able, the Java Virtual Machine (JVM) has to regularly trig-
ger the garbage collector to make room for new objects and
variables, which seriously degrades performance. To avoid
this, we use a maximum heap usage coefficient.

The algorithm will thus first use the TestFewClusters

strategy, and switch to the other strategy only when the
following two conditions are met: the number of clusters to
test is larger than the total reduce capacity, and the esti-
mated maximum amount of required heap memory is less
than 66% of the heap memory of the JVM.

As illustration, Figure 1 shows the centers found by suc-
cessive iterations of our final MapReduce G-means algorithm
for a subset of data, consisting of 10 clusters in R2. At each
iteration the algorithm splits clusters in 2, except clusters
that pass the test, and optimizes centers position using k-
means. The algorithm finally finds 14 centers, as shown in
Figure 4.

4. COST MODELIZATION
We now estimate the cost of MapReduce G-means clus-

tering. More precisely, we estimate the number of dataset
reads, the number of computations and the quantity of data
that is shuffled.

Each iteration of G-means consists of three steps: KMeans,
KMeansAndFindNewCenters, and TestClusters.

Each iteration of KMeans requires one dataset read3, O(kn)
distance computations, and shufflesO(n) coordinates in worst
case (if no combiner is used). As the new centers are placed
in an efficient way, where they are really needed, we found
experimentally that only two k-means iterations are suffi-
cient.

3Depending on the underlying execution engine, it may be
possible to avoid subsequent dataset reads. This is the case
for example with SPARK, where you can cache the dataset
in memory and make sure to preserve the data partitioning.

23

0 20 40 60 80

0

20

40

60

80

100

Iteration 1

0 20 40 60 80

0

20

40

60

80

100

Iteration 2

0 20 40 60 80

0

20

40

60

80

100

Iteration 3

Figure 1: Evolution of centers positioned by G-
means in a dataset containing 10 clusters in R2

KMeansAndFindNewCenters consists of a single k-means it-
eration, but the mapper will emit each point a second time
to pick two new centers for each current center. It also re-
quires one dataset read, O(kn) distance computations and,
without combiner, shuffles O(2n) coordinates.
TestClusters requires one dataset read. It computes

O(kn) distances, O(n) projections and performs O(k)
anderson-darling tests. For large values of k (thus for a
large number of clusters), this will be dominated by dis-
tances computation and anderson-darling tests. The step
also shuffles O(n) projections.

If the algorithm starts with a single cluster at iteration 0,
at iteration i it is updating 2i+1 = 2k centers to test 2i = k
possible clusters. At iteration i, the total number of clusters
that have been tested is

1 + 2 + 4 + ...+ 2i =

i∑

j=0

2j = 2i+1 − 1

The number of iterations required to test values of k be-
tween 1 and kreal is theoretically

n = log2 kreal

In practice a few additional iterations are required because
MapReduce G-means tends to overestimate the number of
clusters, and because some clusters are discovered before
others.

The
∑
k for all iterations of G-means is:

n∑

j=0

k =

n∑

j=0

2j = 2n+1 − 1 ' O(2log2 kreal+1 − 1) = O(2kreal)

In total, G-means algorithm requiresO(4 log2 kreal) dataset
reads, computation of O(4n

∑
k) = O(8nkreal) distances

and O(
∑
k) = 2kreal anderson-darling tests.

The algorithm is thus able to find k with a number of
computations that remains proportional to kreal ! The price
to pay is an iterative processing, that requires O(log2 kreal)
iterations, and thus O(log2 kreal) dataset reads.

At the other side, the classical way to find k is to use
a MapReduce implementation of k-means, to let it run for
different values of k, and to use one of the criteria described
above to find the bet value of k. However, this is not efficient.

To compare MapReduce versions of k-means and G-means
in a fair way, we used another implementation, multi-k-
means, that computes the centers for all possible values of
k at each iteration. The mapper step is presented by algo-
rithm 6. The combiner and reducer are classical.

Algorithm 6 Multi-k-means Mapper

Input: point (text)
Output: k centerid (text)⇒ coordinates (float[]), 1 (int)

procedure Map(key , point)
for k = k min; k <= k max; k+ = k step do

Find nearest center
Emit(k centerid ⇒ point)

end for
end procedure

The main drawback is of course that number of distances

24

computed and the quantity of data that is shuffled and trans-
mitted over the network at each iteration of k-means are
much bigger. But the quantity of data to shuffle is largely
reduced by using the combiner. So this drawback is largely
outbalanced by the advantage that all possible values of k
can be tested in a single round, thus vastly reducing the
number of iterations and dataset reads!

To test all values of k between 1 and kmax , the total num-
ber of centers computed by multi-k-means is:

kmax∑

j=1

j =
k(k + 1)

2
' O(k2)

At each iteration, multi-k-means requires 1 dataset read,
O(nk2max) distance computations and shuffles O(nkmax) co-
ordinates if no combiner is used.

Clearly, from a theoretical point of view G-means has a
huge advantage over multi-k-means, as the number of com-
putations remains proportional with kreal instead of k2max . It
does, however needO(log2 kreal) iterations, and thusO(log2 kreal)
dataset reads.

For example, for a dataset containing 100 clusters, G-
means theoretically requires 7 iterations, and thus O(800n)
distance computations, O(200) anderson-darling tests and
28 dataset reads. At the other side, for such a small value,
multi-k-means already requires O(10000n) distance compu-
tations at each iteration!

Moreover, G-means stops processing when k is found,
while multi-k-means has to process all possible values of k
before taking a decision. As G-means adds new centers pro-
gressively, where they are required, it reduces the probability
to get stuck in a local minimum, while this can be the case
for multi-k-means if initial centers are poorly chosen. A pro-
duction version of multi-k-means thus requires multiple runs
with different starting points, or an additional job to select
initial centers, for example using canopy clustering[15], or
an algorithm that avoids local optima [11]. Finally, once
the centers have been computed for different values of k,
multi-k-means requires at least one additional job to find
the correct value of k.

In any way, there is a risk that because of skewed data,
some reducers will have a higher workload, thus reducing the
global efficiency of the algorithm. Handling skewed data in
MapReduce is a whole subject by itself and is left as future
work.

5. EXPERIMENTAL RESULTS
To test the algorithms we propose in this paper, we use a

Hadoop implementation and run tests on a cluster consisting
of 4 nodes. Each node is equipped with 2 quad-core Xeon
processors and 32GB of RAM.

As a first experiment, we want to estimate the quantity of
heap memory required by the reducer of the TestClusters

step of Algorithm 1. Therefore we run the algorithm with
different datasets that consist of a variable number of points.
During the first iteration of the algorithm, all points belong
to a single cluster, and will thus be tested by a single reducer.
We iteratively run the algorithm, and let the amount of heap
memory vary. When the quantity of available heap memory
becomes to small, the job crashes with an error (”Java heap
space”). The results are shown on Figure 2.

Linear regression shows our reducer requires approxima-
tively 64 Bytes (8 doubles) per point. This value can cer-

4 6 8 10 12 14 16

200

400

600

800

Number of points per reducer (·106)

J
V

M
H

ea
p

m
em

o
ry

(M
B

)

Job succeeded

Job failed
64 · x− 42.67

Figure 2: Estimation of the amount of heap memory
required by the reducer of the step TestClusters

tainly be further optimized, but it is not the goal of this
paper to create a production level version of the algorithm.
So for all other tests, the algorithm uses that value of 64
to estimate the quantity of heap memory required by the
reducer of the TestClusters step, and to decide when to
switch from one strategy to the other.

We now turn to the experiments performed in order to
test our G-means algorithm on different synthetic datasets.
We used five datasets of 10M points (in R10) generated us-
ing a Gaussian distribution, and using a variable number of
clusters ranging from 100 up to 1600. Table 1 shows for each
dataset the real number of clusters, the number of clusters
discovered by G-means, as well as the number of iterations
and time required.

Table 1: Results of G-means clustering

d100 d200 d400 d800 d1600

Clusters 100 200 400 800 1600

Discovered 134 305 626 1264 2455

Time (sec) 1286 1667 2291 4208 5593

Iterations 9 10 11 13 13

As expected, the algorithm overestimates the number of
clusters. The proportion of discovered clusters to the real
number of clusters seems to be quite constant (1.5). The al-
gorithm thus requires a post-processing step to merge clus-
ters, the development of which is left as future work.

The number of iterations is also slightly greater than the
theoretical value (1+log2 k). As some centers are discovered
before the last iteration, the algorithm will not create new
centers for them. It may thus require 1 ore more additional
iterations to discover all centers.

Finally, as expected, the execution time scales linearly
with k.

We then compare G-means with a hadoop implementation
of multi-k-means. For each dataset, multi-k-means com-
putes the position of centers for all values of k between one

25

and the real number of clusters in the dataset. Table 2 shows
the average computing time for a single iteration.

Table 2: Average time of a single iteration of multi-
k-means

d50 d100 d141 d200 d400

Clusters 50 100 141 200 400

Time (sec) 237 751 1356 2637 10252

The execution time of both G-means and multi-k-means
are graphed in Figure 3.

We observe now that the execution time of multi-k-means
rises exponentially. Moreover, for a single iteration of multi-
k-means, and for a value of k as low as 100, G-means already
outperforms multi-k-means.

0 500 1,000 1,500

0

0.2

0.4

0.6

0.8

1

·104

k

R
u
n
n
in

g
ti

m
e

(s
ec

)

G-means

multi-k-means

Figure 3: Running time of G-means and multi-k-
means

We also want to evaluate the consistency of the clustering
results provided by both algorithms. The final goal of k-
means clustering is to partition the n data points into k sets
S = S1, S2, ..., Sk so as to minimize the within-cluster sum
of squares (WCSS):

arg min
S

k∑

i=1

∑

xj∈Si

‖xj − µi‖2

where µi is the mean of points in Si. Therefore we use
WCSS as a measure of the quality of clustering.

For different datasets, Table 3 shows the real number of
clusters in the dataset, the number of clusters discovered
by G-means, the average distance between points and their
centers discovered by G-means, and the average distance be-
tween points and centers when using multi-k-means for the
same value of k. A smaller value means the position of the
centers is better. For multi-k-means, we let the algorithm
run 10 iterations, which is enough to find a stable solution.

As can be seen in Table 3, G-means consistently out-
performs multi-k-means, by approximatively 10%. This is

Table 3: Real number of clusters in each dataset,
number of clusters discovered by G-means, and av-
erage distance between points and centers found by
G-means and multi-k-means

d100 d200 d400

kreal 100 200 400

kfound 150 279 639

G-means 3.34 3.33 3.23

multi-k-means 3.71 3.60 3.39

mainly due to the fact G-means progressively adds new cen-
ters, if and where they are needed. This reduces the proba-
bility to fall into a local minimum.

This effect is illustrated on Figure 4. Both plots show a
small dataset consisting of 10 clusters. The upper plot shows
the 14 centers found by G-means. This is more than the real
number of clusters, but the clusters are correctly detected.
The lower plot shows the centers found by multi-k-means
after 10 iterations, for k = 10. Two centers are located in the
penultimate cluster, around (80, 80). Although the multi-k-
means searches the position of the correct number of centers,
it falls into a local minimum and does not detect the correct
clusters, which results in a larger average distance between
point and center.

Finally, to test the scalability of the algorithm, we gener-
ate a dataset consisting of 100M points (in R10) distributed
in 1000 clusters using a Gaussian distribution. We then run
our MR G-means algorithm on 4, 8 and 12 nodes. All tests
completed after 13 iterations of G-means. The respective
running times are shown in Table 4 and on Figure 5.

Table 4: Running time of MR G-means to cluster a
dataset of 100M points

T4 T8 T12

Nodes 4 8 12

Time (min) 798 447 323

We can observe that the running time decreases roughly
linearly with the number of nodes, which shows that our al-
gorithm and Hadoop can take advantage of additional nodes
and thus scale to very large datasets.

6. CONCLUSIONS AND FUTURE WORK
Despite its known drawbacks and alternative techniques,

k-means [14] is still a largely used clustering algorithm. It
also has a lot of variants and optimizations. One of these
variants, G-means, is able to automatically determine k, the
number of clusters. In this paper we proposed a MapReduce
implementation of G-means that is able to estimate k with
a computation cost that is proportional to k.

We ran experiments that confirm that the processing time
scales linearly with k. These experiments also show that, be-
cause G-means adds new centers progressively, if and where
they are needed, it reduces the probability to fall into a local
minimum, and eventually finds better centers than classical
k-means processing.

The algorithm still has some caveats, as it tends to con-
stantly overestimate the number of clusters, but it definitely

26

0 20 40 60 80 100

0

20

40

60

80

100

14 centers found by G-means

0 20 40 60 80 100

0

20

40

60

80

100

10 centers found by multi-k-means

Figure 4: Results of MR G-means and multi-k-
means

4 6 8 10 12

300

400

500

600

700

800

Number of nodes

R
u
n
n
in

g
ti

m
e

(m
in

)

Figure 5: Running time of MR G-means to cluster
a dataset of 100M points

deserves interest when it comes to clustering large datasets
consisting of an unknown number of clusters.

As future work, we plan to explore ways to extend our
MapReduce implementation of G-means by leveraging more
advanced batch execution engine (e.g. SPARK) which can
provide advanced configuration options at run-time in or-
der to save unnecessary disk I/O operations via in-memory
caching and partition-preserving operations. We also plan
to run additional experiments on a larger cluster to evaluate
further the performance and scalability of the algorithm.

Acknowledgement
This work has been partially supported by the EU project
BigFoot (FP7-ICT-317858).

7. REFERENCES
[1] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia

Procopiuc, and Jong Soo Park. Fast algorithms for
projected clustering. SIGMOD Rec., 28(2):61–72, June
1999.

[2] Mihael Ankerst, Markus M. Breunig, Hans-Peter
Kriegel, and Jörg Sander. Optics: ordering points to
identify the clustering structure. SIGMOD Rec.,
28(2):49–60, June 1999.

[3] David Arthur and S Vassilvitskii. k-means++: The
advantages of careful seeding. Proceedings of the
eighteenth annual ACM–SIAM symposium on Discrete
algorithms, 2007.

[4] Bahman Bahmani, Benjamin Moseley, Andrea
Vattani, Ravi Kumar, and Sergei Vassilvitskii.
Scalable k-means++. Proc. VLDB Endow.,
5(7):622–633, March 2012.

[5] Jeremy Buhler. Efficient large-scale sequence
comparison by locality-sensitive hashing.
Bioinformatics, 17(5):419–428, 2001.

[6] Rudi Cilibrasi and Paul M. B. VitÃ ↪anyi. Clustering by
compression. IEEE Transactions on Information
Theory, 51:1523–1545, 2005.

27

[7] J. C. Dunn. A fuzzy relative of the isodata process
and its use in detecting compact well-separated
clusters. Journal of Cybernetics, 3(3):32–57, 1973.

[8] Martin Ester, Hans-Peter Kriegel, Jörg S, and Xiaowei
Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Second
International Conference on Knowledge Discovery and
Data Mining, pages 226–231. AAAI Press, 1996.

[9] Greg Hamerly and Charles Elkan. Learning the k in k
-means. In Neural Information Processing Systems.
MIT Press, 2003.

[10] S. Har-Peled and S. Mazumdar. Coresets for k-means
and k-median clustering and their applications. pages
291–300, 2004.

[11] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A
k-means clustering algorithm. Applied Statistics,
28(1), 1979.

[12] Anil K Jain. Data Clustering : 50 Years Beyond
K-Means. Pattern Recognition Letters, 2009.

[13] Stuart P. Lloyd. Least squares quantization in pcm.
IEEE Transactions on Information Theory,
28:129–137, 1982.

[14] J. MacQueen. Some methods for classification and
analysis of multivariate observations. Proc. 5th
Berkeley Symp. Math. Stat. Probab., Univ. Calif.
1965/66, 1, 281-297 (1967)., 1967.

[15] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar.
Efficient clustering of high-dimensional data sets with
application to reference matching. In Proceedings of
the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’00, pages
169–178, New York, NY, USA, 2000. ACM.

[16] Dan Pelleg and Andrew Moore. Accelerating exact
k-means algorithms with geometric reasoning.
Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining,
1999.

[17] Dan Pelleg and AW Moore. X-means: Extending
K-means with Efficient Estimation of the Number of
Clusters. ICML, 2000.

[18] Peter J. Rousseeuw. Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20(0):53 – 65, 1987.

[19] Catherine A Sugar and Gareth M James. Finding the
number of clusters in a dataset. Journal of the
American Statistical Association, 98(463):750–763,
2003.

[20] RobertL. Thorndike. Who belongs in the family?
Psychometrika, 18(4):267–276, 1953.

[21] Robert Tibshirani, Guenther Walther, and Trevor
Hastie. Estimating the number of clusters in a data
set via the gap statistic. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
63(2):411–423, 2001.

[22] M.N. Vrahatis, B. Boutsinas, P. Alevizos, and
G. Pavlides. The New k-Windows Algorithm for
Improving the k-Means Clustering Algorithm. Journal
of Complexity, 18(1):375–391, March 2002.

28

Tagged Dataflow: a Formal Model for Iterative
Map-Reduce∗

Angelos Charalambidis
University of Athens

a.charalambidis@di.uoa.gr

Nikolaos Papaspyrou
National Technical University

of Athens
nickie@softlab.ntua.gr

Panos Rondogiannis
University of Athens

prondo@di.uoa.gr

ABSTRACT
In this paper, we consider the recent iterative extensions of
the Map-Reduce framework and we argue that they would
greatly benefit from the research work that was conducted in
the area of dataflow computing more than thirty years ago.
In particular, we suggest that the tagged-dataflow model
of computation can be used as the formal framework be-
hind existing and future iterative generalizations of Map-
Reduce. Moreover, we present various applications in which
the tagged model gives elegant solutions with increased par-
allelism. The tagged-dataflow approach for iterative Map-
Reduce creates a number of interesting research challenges
which deserve further investigation, such as the requirement
for a more sophisticated fault tolerance model.

1. INTRODUCTION
The introduction of Map-Reduce [11] has been an impor-

tant step towards the efficient processing of massive data.
The success of the Map-Reduce framework is mainly due
to its simplicity, its declarative nature, its ability to run on
commodity clusters and its effective handling of task failures
that occur during execution. Despite its huge success, Map-
Reduce has often been criticized for a number of different
reasons. For example, it has often been argued that not all
problems can be effectively (and naturally) solved using map
and reduce tasks. Moreover, it has often been stressed that
the framework suffers from a lack of support for iteration,
which is, without doubt, a cornerstone of most interesting
forms of computation.

The realization of the above problems has led to the in-
troduction of various extensions of the framework (see for

∗This research was supported by the project “Handling Un-
certainty in Data Intensive Applications”, co-financed by
the European Union (European Social Fund) and Greek na-
tional funds, through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Program: THALES, Invest-
ing in knowledge society through the European Social Fund.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

example [16, 7, 8]) and to the development of new systems
that try to overcome the shortcomings (such as for exam-
ple [13, 19, 14, 27, 20, 9, 21]). It appears that the creation of
a framework that preserves the advantages of Map-Reduce
and at the same time lifts its shortcomings, is not an easy
task. In particular, it seems that the clear and efficient sup-
port of iteration is far from straightforward. Furthermore,
there does not exist at present a unifying theoretical frame-
work that could form the basis of the iterative extensions
of Map-Reduce. Such a framework would allow the theory
of such systems to be properly developed. In particular, it
would allow for a proper specification and analysis of pro-
posed algorithms, for the development of a corresponding
complexity theory, for the proof of correctness of proposed
algorithms, and so on.

In this paper we argue that such a formal framework was
actually developed more than thirty years ago, in a similar
but somewhat more restricted context. More specifically,
during the 70s and 80s, the dataflow model of computation
was developed [10, 12], many dataflow architectures were
built and several dataflow programming languages were pro-
posed and implemented. The aim of the dataflow paradigm
was to exploit the inherent parallelism that exists in many
applications. The dataflow architectures were specialized
parallel computers and the dataflow programs were designed
to eventually run on such machines. Of course, the Internet
was not fully developed at that time and the idea of paral-
lelism over clusters of workstations did not exist. Moreover,
the distributed processing of massive data was far less im-
portant at that time than it is today. However, the main
ideas behind the dataflow programs of the past and the
distributed Map-Reduce applications of the present, share
many common characteristics. In particular, the effective
handling of iteration was also an important problem in the
dataflow era and was handled by the introduction of the
so-called paradigm of tagged-dataflow [25, 5, 6].

The main contribution of the present paper is therefore to
demonstrate how the ideas from the dataflow research area
can be applied to the new area of iterative Map-Reduce. In
particular, we demonstrate how the tagging schemes of data-
flow computers can be used in order to achieve a more asyn-
chronous form of iteration for the systems of today. The rest
of the paper is organized as follows. Section 2 summarizes
several extensions of Map-Reduce and discusses the way it-
eration is handled in these extensions. Section 3 presents the
basic ideas of the traditional model of tagged-dataflow. Sec-
tion 4 extends the classical tagged-dataflow model so as to
be applicable to the Map-Reduce setting and demonstrates

29

how the new model can be used in order to specify various
applications on massive data that appear to require itera-
tion in their implementation. Finally, Section 5 describes
possible directions for future work.

2. ITERATIVE MAP-REDUCE
Despite its simplicity and usefulness, Map-Reduce [11]

has certain shortcomings that restrict its wider applicability.
First, the framework allows only two types of tasks, namely
the map and reduce tasks; obviously, it is not always possi-
ble (or natural) to model any problem using these two types
of tasks. The flow of the data is also rather rigid since the
output of the map tasks is used as input only to the reduce
tasks. Again, there exist problems whose distributed solu-
tion requires a more involved flow of data: in many applica-
tions the data must be processed iteratively before the final
output is obtained. Finally, Map-Reduce imposes the so-
called blocking property: the reducers start processing data
when the mappers have completely finished their work. This
property is crucial in order to deal with task-failures: when
a task fails, we can restart it from the beginning. Therefore,
the blocking property ensures that the data are not“garbled”
and that the computation proceeds in clear, discrete steps.
However, the blocking property obviously has its disadvan-
tages. During the time that the map tasks are processing,
the reduce tasks are idle waiting for the map computation to
complete and this obviously reduces the amount of potential
parallelism.

2.1 Iteration
A natural generalization of Map-Reduce is to allow the use

of arbitrary tasks. The systems Dryad [16] and Hyracks [7]
generalize Map-Reduce by allowing the use of a set of arbi-
trary operators connected as a directed acyclic graph.

Apart from generalizing the types of tasks, a significant
extension of Map-Reduce is the support of iteration. Many
common data analysis algorithms require some form of iter-
ation in order to be appropriately implemented. For ex-
ample, the PageRank algorithm is a recursive algorithm
that is usually implemented as an iteration until a fixed
point is reached. One can attempt to implement such al-
gorithms in the Map-Reduce framework using ad hoc tech-
niques, but this is neither a natural nor efficient approach.
HaLoop [8] tackles this inadequacy of Map-Reduce by pro-
viding iteration-related constructs that allow iterative algo-
rithms to be expressed more succinctly. A characteristic of
HaLoop (as well as other similar systems) is that iteration is
performed in a synchronized manner, i.e., the next iteration
starts when every task of the previous iteration has com-
pletely finished its work. A shortcoming of this approach is
that tasks that have completed their processing remain idle
until the next iteration starts, and therefore the potential
parallelism is not fully exploited.

There have also been proposals for a more asynchronous
form of iteration. For example, Afrati et al. in [3] perform a
theoretical investigation of the iterative execution of recur-
sive Datalog queries in an extended Map-Reduce environ-
ment. In that work, the task graph is not necessarily acyclic
and the execution of tasks need not be synchronized. In
other words, in the framework of [3] the blocking property
is lifted.

Recapitulating, it appears that in current and future ex-
tensions of Map-Reduce, iteration is a vital component. It

also appears that iteration can either be synchronous or
asynchronous, depending on the objectives for which a par-
ticular system has been built.

2.2 Iterative Stream Processing
The problem of iteration becomes much more challenging

when combined with the processing of stream data or stream
queries. In many applications, the data to be processed are
not always fully available at the time of execution. For ex-
ample, in a social network, the edges and the vertices of the
friends-of-friends graph can be added or removed dynami-
cally. In such cases, the data are often most valuable as soon
as they are produced (i.e., it is not possible for the data to
be delayed and processed later as part of a batch). This
state of affairs leads to the quest for iterative extensions of
Map-Reduce that also take into account the temporal na-
ture of the incoming data. A similar situation occurs when
we would like to process a stream of different queries over
the same data. If we would like to process the queries asyn-
chronously (i.e., start processing a query before the previous
one has completed execution), and if each query involves it-
erative computations, then care must be taken so as that
the data produced during the processing of one query will
not affect the processing of the other ones.

Certain extensions of Map-Reduce have been proposed
that can handle situations such as the above. The system
D-Streams [27] handles streaming input in a fault tolerant
manner. The Naiad system realizes the concept of the differ-
ential dataflow [20] in which operators act upon “difference
input traces” (i.e., the set of changes with respect to the pre-
vious input) in order to produce difference traces of output.
The output then can be constructed by combining all the
difference traces. The difference traces are indexed both by
the version of the input and the iteration number. As a re-
sult the computation of an iterative incremental algorithm
is drastically reduced since the framework can reuse com-
putations done both in previous versions of the input and
in previous iterations. Hadoop Online [9] is an extension of
Map-Reduce that supports pipelined stream queries. In [21]
multiple similar Map-Reduce jobs are combined in order to
be executed as one. The key idea is to add tags in the data,
in order to distinguish between different jobs.

The systems mentioned in this last subsection appear to
be using a common technique in order to handle iteration
in streaming data or queries: they employ some form of
tagging in order to discriminate between the data that be-
long to different iteration levels and different versions of the
input (or different queries). In the next sections we argue
that this tagging mechanism is not just a coincidence, but in-
stead a more general mechanism that can be used in order to
implement arbitrary iteration in a generalized Map-Reduce
framework.

3. TAGGED-DATAFLOW
The dataflow model of computation [10, 12] was devel-

oped more than thirty years ago, as an alternative to the
classical “von-Neumann” computing model. The key moti-
vation was the creation of architectures and programming
languages that would exploit the massive parallelism that is
inherent in many applications. A dataflow program is es-
sentially a directed graph in which vertices correspond to
processing elements and edges correspond to channels. The
data that need to be processed start “flowing” inside the

30

channels; when they reach a node they are being processed
and the data produced are fed to the output channels of the
node. Since various parts of the dataflow graph can be work-
ing concurrently, the parallel nature of the model should
be apparent. Moreover, this processing of data “while in
motion” comes in sharp contrast with the traditional “von-
Neumann” model in which data wait passively in memory
until they are fetched by the central processing unit of the
(sequential) computer in order to be processed.

The dataflow model was extensively studied during the
70s and 80s. Many theoretical results were obtained, many
dataflow programming languages were developed and sev-
eral dataflow machines were built. In the beginning of the
90s, the dataflow research area started to decline. The main
reason was the fact that dataflow hardware never proved
extremely successful and never achieved a performance that
would justify the massive production and use of dataflow
machines. However, the theory and the programming lan-
guages that were developed were quite sophisticated, leaving
much hope for further developments in case the hardware
problems were ever bypassed.

In the initial dataflow model (usually called pipeline data-
flow), channels were assumed to be unbounded FIFO queues,
i.e., the data were assumed to flow in a specific order in-
side the channels. However, it soon became apparent that
a model that would not impose any particular temporal or-
dering of the data would be much more general and useful.
This resulted in the so-called tagged-dataflow model [25, 5,
6]. The basic idea behind tagged-dataflow is that data can
flow inside a network accompanied by tags (i.e., labels). The
use of tags makes dataflow much more asynchronous since
data need not be processed in any particular predetermined
order. Moreover, as we are going to see, the tags can carry
essential information that can be used in order to implement
iterative or even recursive algorithms. A key notion in our
foregoing discussion is that of a dataflow graph:

Definition 1. A dataflow graph (or dataflow network) is a
directed graph G = (V,E), where V is the set of nodes of
the graph and E is the set of edges connecting elements of
V . The set V is partitioned into disjoint subsets VI (input
nodes), VO (output nodes) and VP (processing nodes), subject
to the following restrictions:

• Every input node has no incoming edges and has one
outgoing edge towards a processing node.

• Every output node has no outgoing edges and has one
incoming edge from a processing node.

• Every processing node has incoming edges (at least
one) from input nodes and/or from other processing
nodes and outgoing edges (at least one) to output
nodes and/or other processing nodes.

Intuitively, input nodes provide the input data to the data-
flow graph, processing nodes are performing the processing
of data and output nodes are collecting the output data pro-
duced by the network.

The semantics of dataflow networks can be given with
standard techniques of denotational semantics [23]. Our pre-
sentation below follows the exposition given in [26]. Intu-
itively, edges of our dataflow networks carry tuples of the
form 〈t, d〉 where d is an element of a data domain D and
t is an element of a set of tags T . The set T may be quite

involved; in its simplest form it can be a set of natural num-
bers, or in more demanding cases it can be the set of lists
of naturals numbers, etc. Pairs of the form 〈t, d〉 ∈ T × D
are usually referred in the dataflow literature as tokens. It
is often assumed that for a given tag t, an edge can contain
at most one token 〈t, d〉. In other words, it is a standard
assumption that edges correspond to functions in T → D.
As we are going to see in the next section, this assumption
needs to be extended when considering applications in the
Map-Reduce framework.

Consider now a processing node of our dataflow graph.
A standard assumption in dataflow computing is that pro-
cessing nodes are functions that transform their inputs to
outputs. There have been extensions of dataflow that sup-
port non-functional nodes, for example, non-deterministic
ones [1]. However, such extensions will not be considered
here. It should be noted that determinism is also a key
assumption in Map-Reduce systems (see, for example, [11,
page 109]). Therefore, based on the foregoing discussion, a
processing node f of a dataflow network that has n ≥ 1 in-
puts and m ≥ 1 outputs is a function1 in (T → D)n → (T →
D)m. The input and output nodes are in fact equivalent to
channels, ie., they are functions in T → D.

In the rest of the paper we will refer to the class of dataflow
networks presented above as functional dataflow networks
(since channels are functions). We will present an extension
of this model in the next section.

Example 1. We demonstrate these ideas with the well-
known example of Hamming numbers (first posed as a pro-
gramming problem by Edsger Dijkstra). Recall that Ham-
ming numbers are all numbers of the form 2i · 3j · 5k where
i, j, k are non-negative integers. The problem is to enumer-
ate the Hamming numbers in numeric order and a data-
flow solution of it is depicted in Figure 1. We explain the
nodes that appear in the figure. First consider the nodes
that contain constants (such as 1, 2, etc). One can assume
that these nodes produce constant streams. For example,
the node 5 is nothing more than the constant function in
N → N which assigns to every n ∈ N the constant value
5. The fby node (read as “followed-by”), is a function in
(N → N,N → N) → (N → N). The operation of fby can be
intuitively described as follows: initially, it checks its first
input until a token of the form 〈0, d〉 arrives, and as soon
as it sees such a token, it delivers it to its output channel.
From that point on, fby never consults again its first input
but it continuously checks its second input. Every time a
token of the form 〈t, d〉 arrives in its second input, the node
puts in its output channel the token 〈t + 1, d〉. It can be
easily checked that this operational behavior corresponds to
the following functional definition of fby:

fby(X,Y)(t) =

{
X(0) if t = 0
Y (t− 1) if t > 0

The merge node is also a function in (N → N,N → N) →
(N → N). Given two inputs X,Y ∈ N → N that are in-
creasing functions, merge produces as output an increasing
function that results from merging the two inputs. For the

1Actually, computability reasons dictate that the functions
corresponding to the nodes of our networks have to be addi-
tionally continuous (see [23] for a standard introduction on
this issue and [18] for a corresponding discussion regarding
pipeline dataflow networks).

31

*

*

*

5

3

2

merge

merge

fby1 result

Figure 1: The dataflow representation of Hamming
numbers.

formal (recursive) definition of merge, see [24]. The“*”nodes
simply multiply the data part of the token that arrives in
their input, with the constant that exists in their other in-
put.

One can easily verify that the network just described, pro-
duces the sequence of Hamming numbers.

4. TAGGED-DATAFLOW AND ITERATIVE
MAP-REDUCE

In this section we argue that a mild extension of the
tagged-dataflow model of computation can be used as the
formal framework behind existing and future iterative gen-
eralizations of Map-Reduce. We present various applications
in which the tagged model gives elegant solutions with in-
creased asynchronous parallelism.

It is important to clarify what exactly is being claimed
by the following examples. First, we argue that the imple-
mentations of iterative Map-Reduce systems should support
tags and tag-manipulation operations in the same way that
tagged-dataflow machines of the 80s supported such opera-
tions [15, 6]. The tags can be used to ensure the implemen-
tation of asynchronous iteration in an elegant and effective
way. The main idea is precisely defined in the following
excerpt from [15]:

Each separate (loop) iteration reuses the same
code but with different data. To avoid any con-
fusion of operands from the different iterations,
each data value is tagged with a unique identi-
fier known as the iteration level that indicates its
specific iteration. Data are transmitted along the
arcs in tagged packets known as tokens.

The second thing that is being claimed below is that the
languages used to program iterative Map-Reduce applica-
tions should also support the declaration and manipulation
of tags. In this way the programmer will be free to declare
and use the types of tags that are essential in the specific
application being developed. It is important to stress that
dataflow languages of the 80s and 90s allowed the declaration
of user-defined tags (also called dimensions). For example,
the latest versions of Lucid [24] and its extension GLU [17]
allowed many different dimensions.

4.1 An Extension of Tagged-Dataflow for
Map-Reduce

The basic principles of tagged-dataflow described in the
previous section have been used in the design of many func-
tional dataflow programming languages. In particular, the
interpretation of channels as functions and of processing
nodes as (second-order) functions, clearly emphasizes the
connections between dataflow networks and functional pro-
gramming.

However, there exist applications in which it is not suf-
ficient for channels to be just functions from T to D. For
example, it is conceivable for the same tag to be used in two
different tuples that “flow” inside a channel (i.e., to have
〈t, d1〉 and 〈t, d2〉 appear in the same channel). Moreover,
it is possible in certain cases to have the same tuple 〈t, d〉
appear more than once in a channel. In particular, as we
are soon going to see, in the Map-Reduce framework both
of these cases show-up quite naturally.

We are thus led to a generalization of the tagged-dataflow
model in which channels are multisets over T ×D and pro-
cessing nodes take multisets as inputs and produce multisets
as outputs. More formally, given a nonempty set S let us
denote byM(S) the set of multisets (or bags) of elements of
S. Then, in our extended tagged-dataflow model, a channel
is an element of M(T × D) while a node f of a dataflow
network that has n inputs and m outputs is a function in
[M(T ×D)]n → [M(T ×D)]m. In the following subsections,
we examine three different applications where this extended
tagged model is applicable and useful.

4.2 Streaming Queries
One of the most promising applications of iterative Map-

Reduce is in the execution of Datalog queries [3, 4]. The key
idea here is that the least fixed point of a Datalog program
can be computed in a bottom-up way using a network of join
and dup-elim processes (see [3] for details). For example,
assume that we have an EDB relation edge and also the
following IDB relation:

reach(Y) :- start(Y).

reach(Y) :- edge(X,Y), reach(X).

Assume also that we want to locate all the nodes that are
reachable from an initial vertex a, i.e., we assume that we
also have the fact start(a). Using the techniques of [3], one
can easily construct a simple network that calculates the set
of nodes reachable from a.

Assume however that we want to have multiple queries,
e.g., we want to locate all the vertices reachable from a, b
and c. Moreover, for reasons of efficiency, we want these
queries to be run in parallel as much as possible (which
means for example that the query for b should not wait
for the computation of the query for a to complete before
starting to execute itself). The problem with running the
queries in an overlapped manner is obvious: the output of
the Map-Reduce network will be a set of reach facts, but
with no indication of which fact corresponds to which query.
So, if we want to do some further processing on the nodes
reachable from vertex a, we have no way of knowing which
exactly these nodes are.

In the tagged setting, the support of such streaming queries
is quite straightforward. Each different start query is tagged
with a different natural number. Then, every time one of the
reach rules is used to produce some new fact, the tag that

32

edge join

dup-elim

start

reach

Figure 2: The set of join and dup-elim nodes work-
ing with streaming queries. Queries flow from the
start node tagged with a distinct number.

has been used in the body of the rule is inherited by the fact
that is produced in the head of the rule. In this way, at the
end of the computation a set of tuples 〈t, reach(u)〉 is col-
lected, and one can discriminate the results of the different
queries by examining the tag t.

It is not hard to see how the above example fits the tagged-
model introduced in Subsection 4.1. The dataflow is de-
picted in Figure 2. The channels of our network are ele-
ments of M(N × D); the data domain D is the set of tu-
ples flowing in a particular channel. Notice that we need to
have multisets because the same tuple under the same tag
may appear in a channel more than one times. For exam-
ple, the join processing node may produce many identical
tokens. Consider now the two processing nodes, namely
join and dup-elim. The join node takes as input two tag-
extended relations; each such relation does not contain du-
plicates and is therefore an element2 of P(N × D) (which
is a special case of M(N × D)). The output of the join
is an element of M(N × D)), since the joining of two rela-
tions may create duplicate tuples. Overall, the type of join is
[P(N×D)]2 →M(N×D). Consider now the dup-elim node,
which eliminates duplicates from its input channel. Its type
is M(N×D)→ P(N×D). In fact, the dup-elim is nothing
more than the function which given a multiset returns the
corresponding underlying set.

4.3 Algorithms with Increased Asynchronic-
ity

The transitive closure of an arbitrary relation can be cal-
culated with the technique shown in the previous section,
using a dataflow network that corresponds to an iterative
Map-Reduce system. In this section, we calculate the tran-
sitive closure by recursive doubling, using a set of join and
dup-elim nodes, as suggested in [2, 3]. In the form of pseu-
docode, the algorithm that we use (copied from [3]) is the
following:

1: Q0 := E
2: P0 := {(x, x) | x is a graph node}
3: i := 0
4: repeat
5: i := i+ 1
6: P ′i (x, y) := πx,y(Qi−1(x, z) ./ Pi−1(z, y))
7: Q′i(x, y) := πx,y(Qi−1(x, z) ./ Qi−1(z, y))
8: Pi := P ′i

⋃
Pi−1

9: Qi := Q′i − Pi

10: until Qi = ∅
2By P(A) we denote the power-set of a given set A.

E dup-elim

join

P

Qi−1

Pi−1P ′i ∪Q′i

Figure 3: The set of join and dup-elim nodes that
computes the transitive closure by recursive dou-
bling.

We deviate in the details of the implementation by in-
troducing tags of the form (i, l) which are used to annotate
every row (u, v). A tag conveys two pieces of information:
i is the number of iteration in which a row was produced,
and l is the length of the path. Hashing can be used to de-
termine which node will receive a given tagged row, in the
same way as in [3]; we omit the details here.

Each join node has two inputs, left and right, and two
distinct internal stores, again left and right. The join is
performed as follows:

1. For every tuple (x, z) with tag (i1, l1) in its left in-
put, the node searches its right store for tuples (z, y)
with tag (i2, l2) such that l2 ≤ l1. For every such tu-
ple it emits a tuple (x, y) with tag (i, l) where i =
max{i1, i2}+ 1 and l = l1 + l2. The initial tuple (x, z)
is stored in the left store together with its tag.

2. For every tuple (z, y) with tag (i2, l2) in its right input,
the node searches its left store for tuples (x, z) with tag
(i1, l1) such that l2 ≤ l1. For every such tuple it emits
a tuple (x, y) with tag (i, l) where i = max{i1, i2}+ 1
and l = l1 + l2. The initial tuple (z, y) is stored in its
right store together with its tag.

Each dup-elim node receive tuples (x, y) with tag (i, l) and
performs the following steps:

1. If the tuple already exists with smaller tag (i.e., either
smaller length or same length and smaller iteration
number) then it is ignored. If the tag exists with bigger
tag then the tag is updated to the smaller one and the
tuple continues.

2. If l = 2i then it is fed back both as left and as right
input to the appropriate join nodes, otherwise it is fed
only as right input.

Each tuple (x, y) in the relation E is sent to the corre-
sponding dup-elim node with tag (0, 1).

The left input of a join node corresponds to relation Q
(the paths of size 2i), whereas the right input corresponds
to relation P . We choose to join each tuple of Q with every
tuple of P of strictly smaller length. That join corresponds
to line (6) of the recursive doubling algorithm. Moreover, we
join each tuple of Q with every right tuple of equal length.
That corresponds to line (7). Thus the output of the join
is the union of both steps, but since we have tagged each
tuple with the length of the path we can distinguish the two
relations.

In fact, the dup-elim will pick only the tuples of size 2i

and redirect them to the left input of the join. But since

33

Qi ⊆ Pi+1 those tuples will also be redirected to the right
input of the join. All the other tuples will be redirected
only to the right input as part of P . Suppose now that a
new tuple is generated with iteration number i and the same
tuple already exists in dup-elim store with different tag. If
the tag has a smaller iteration j then the tuple exists in
Pj ⊆ Pi. In that case the new tuple is ignored. If that
tuple is for the relation Q, omitting it corresponds to line
(9) of the algorithm. On the other hand, if it was for the
relation P , this corresponds to line (8). Since the iteration
is not synchronous, it may occur that the new tuple has
smaller tag (smaller length) than the one already stored in
the dup-elim. In that case, the tuple is not ignored since
it precedes in time and the node will emit the tuple as if
it is encountered for the first time. It will also update the
tag with the smaller one, to prevent for other duplicates to
propagate.

Note that the relations Q and P up to iteration i are
accumulated in the left and right stores of join nodes, re-
spectively. Moreover, the relation P is also stored in the
dup-elim nodes.

The dataflow is slightly different of that described in Sub-
section 4.2. In this case the tags are elements of N× N and
the channels are elements of M((N× N)×D). The type of
join node is [P((N×N)×D)]2 →M((N×N)×D). On the
other hand, the type of the dup-elim node is M((N× N)×
D) → [P((N × N) × D)]2. The dataflow graph is depicted
in Figure 3. Note that the dup-elim node differs from the
simple version since it has two output channels, one for each
relation.

Consider the case where the structure of the graph changes,
for example, new edges are added in a timely manner. A sim-
ple setup of the recursive doubling algorithm must restart
the computation each time a change of the graph is detected.
In the aforementioned tagged-dataflow graph a new edge will
trigger the join of certain paths only, based on their tag,
minimizing the redundant computations.

4.4 Recursive Algorithms
To our knowledge, the existing extensions of Map-Reduce

have mainly dealt with iterative algorithms. However, not
all algorithms can be expressed elegantly in an iterative way;
there exist problems whose solution is more naturally ex-
pressed in a recursive manner. In the rest of this subsection
we consider one such problem and at the end of the sub-
section we discuss the possibility of extending the proposed
technique to all recursively defined functions.

The algorithm we present below is a distributed sorting
procedure that is based on the tagged-dataflow approach.
However, we do not claim at present that this is actually
an efficient way to perform sorting in a distributed envi-
ronment nor that this example is fully-compatible with the
nature of Map-Reduce. The algorithm described below is
only intended to demonstrate that the tagging mechanism
can also be used to implement recursive algorithms in a dis-
tributed manner. Intuitively, the tags can be used in order
to keep track of the paths in the recursion tree.

Let us assume that we would like to sort a considerably
large list of data, which is possibly distributed in a number
of nodes over the network. One possibility is to use merge
sort : we split the list into two parts, we sort each one of
them separately and then merge the results. This is clearly
a recursive procedure. The problem is therefore how we can

list split length=1

invsplit merge tag=[] sorted

Figure 4: The mergesort depicted as dataflow.

implement the recursive merge sort in a distributed way,
using tags to coordinate the whole process.

A merge sort function usually has the following form:

msort([]) = []

msort([x]) = [x]

msort(l) = merge(msort(l1), msort(l2))

where (l1, l2) = split(l)

The function split divides a list into two disjoint lists of
half size and returns a tuple consisting of these two parts.
The base cases of the recursion (l == [] and l == [x])
need not be so fine-grained; for example, in a Map-Reduce
context, when a list given to an intermediate step of merge
sort is relatively small, we can sort it locally on a particu-
lar machine instead of continuing to divide it into smaller
lists, which would circulate in the network and impose fur-
ther communication costs. To simplify the presentation, we
assume however that msort is defined as above and that the
recursion reaches down to lists of trivial size.

The key idea behind the distributed implementation of
merge sort is the following. We tag the all values in our list
with two different tags. The first tag is a natural number
(initially equal to 0) which will be used in the merge pro-
cess of the algorithm. The second tag is a list of natural
numbers (initially empty) which indicates the steps of the
splitting procedure that have been applied on a particular el-
ement of the initial list. For example, if during the recursive
execution of msort an element of the initial list was placed
in the component l1, during the first invocation of split,
and in the component l2, during the second invocation of
split, then this element will be tagged by [2, 1].

The distributed algorithm for merge sort is depicted in
Figure 4. It contains two phases.

In the first phase, the algorithm starts by splitting the
initial list into two sublists; this is achieved by the split

node in Figure 4. The elements placed in the first component
l1 by split will have their list tag prefixed by 1, while
those plaved in the second component l2 will be prefixed
by 2. This process of splitting and tagging is continued
until all elements of the initial list have different tags; this
is achieved by the length=1 node, which checks whether the
list of elements corresponding to a given tag contains a single
element and, if not, returns all elements of the list to split.
Every element whose tagging process has been completed,
passes to the second phase of the dataflow network.

In the second phase of the algorithm, the invsplit node
examines each element that arrives to it; if the head of the
element’s tag is 1, invsplit removes the head and sends the
element to its left output; if the head is 2, it removes it and
sends the element to the right output. The merge node sorts

34

all those elements that have the same list tag by changing
the natural number tag so as to reflect the order of each ele-
ment. E.g., if merge receives the element 〈〈0, [2, 1]〉, George〉
and the element 〈〈0, [2, 1]〉, Steve〉, then, since George is al-
phabetically first compared to Steve, the merge node will
output 〈〈0, [2, 1]〉, George〉 and 〈〈1, [2, 1]〉, Steve〉. If in the
next step it receives [〈〈0, [1]〉, Ann〉, 〈〈1, [1]〉, Suzan〉] in the
left input and [〈〈0, [1]〉, George〉, 〈〈1, [1]〉, Steve〉] in the right
input, then it will merge these two ordered sets and produce
[〈〈0, [1]〉, Ann〉, 〈〈1, [1]〉, George〉, 〈〈2, [1]〉, Steve〉, 〈〈3, [1]〉,
Suzan〉]. The process will end when two ordered sets whose
elements are all tagged with the empty list appear as inputs
to merge; in this case, merge will do the final merging of
these two sets, and the sorted file will come to the output.

The above procedure may seem ad hoc at first sight and
one may assume that the distributed tag-based execution
may not be applicable to all forms of recursion. However,
this does not appear to be the case. A purely dataflow tag-
based scheme for implementing first-order recursive func-
tional programs was proposed in [26] and was theoretically
justified in [22]. However, the scheme of [26] is appropriate
for demand-driven execution while the main applications in
the area of Map-Reduce appear to require a data-driven ap-
proach. The mergesort example presented above was ob-
tained by adapting the technique of [26] to run in a data-
driven way. Whether this can be done in general appears to
be an interesting research problem.

5. FUTURE WORK
There exist several aspects of the connection between the

Map-Reduce framework and tagged-dataflow that require
further investigation. In the following, we outline certain
such problems that we feel are particularly interesting and
worthwhile for further study:

• Every functional dataflow network of the form pre-
sented in Section 3 can be shown to compute a function
which is the least fixed point of a system of equations
associated with the network. This result is an easy
generalization of the so-called Kahn principle [18]. The
least fixed point can be computed inductively, based
on standard results of recursion theory (in particular,
Kleene’s fixed point theorem). Therefore, there exists
a way of computing the meaning of functional dataflow
networks or, in other words, we have a formal the-
ory for reasoning about functional dataflow programs.
It would be interesting to examine whether the Kahn
principle also holds for the more general (i.e., multiset-
based) dataflow networks introduced in Subsection 4.1.
If this is the case, then this opens up the possibility
of performing formal proofs of correctness for various
dataflow algorithms (such as the transitive closure al-
gorithm of Section 4).

• At present, not many specialized programming lan-
guages have been proposed that can be used to pro-
gram applications for the processing of massive data.
We feel that this is probably one of the next steps in
the evolution of the area. Such languages would defi-
nitely benefit by adopting the features and philosophy
of the dataflow programming languages of the past.

• Based on the model of tagged-dataflow, one should be
able to define a formal theory of fault tolerance for

dataflow networks. Since fault tolerance is a primary
characteristic of (standard) Map-Reduce, it would be
interesting to see how such a desired property can
be ensured in the more general setting of the tagged-
dataflow model.

We strongly believe that the further investigation of the in-
teractions between dataflow and the novel approaches to dis-
tributed processing that have resulted from Map-Reduce,
will prove very rewarding.

6. REFERENCES
[1] S. Abramsky. A generalized Kahn principle for

abstract asynchronous networks. In M. G. Main,
A. Melton, M. W. Mislove, and D. A. Schmidt,
editors, Mathematical Foundations of Programming
Semantics, volume 442 of Lecture Notes in Computer
Science, pages 1–21. Springer, 1989.

[2] F. N. Afrati, V. R. Borkar, M. J. Carey, N. Polyzotis,
and J. D. Ullman. Cluster computing, recursion and
datalog. In O. de Moor, G. Gottlob, T. Furche, and
A. J. Sellers, editors, Datalog, volume 6702 of Lecture
Notes in Computer Science, pages 120–144. Springer,
2010.

[3] F. N. Afrati, V. R. Borkar, M. J. Carey, N. Polyzotis,
and J. D. Ullman. Map-reduce extensions and
recursive queries. In A. Ailamaki, S. Amer-Yahia,
J. M. Patel, T. Risch, P. Senellart, and J. Stoyanovich,
editors, EDBT, pages 1–8. ACM, 2011.

[4] F. N. Afrati and J. D. Ullman. Transitive closure and
recursive datalog implemented on clusters. In E. A.
Rundensteiner, V. Markl, I. Manolescu,
S. Amer-Yahia, F. Naumann, and I. Ari, editors,
EDBT, pages 132–143. ACM, 2012.

[5] Arvind and D. Culler. The tagged token dataflow
architecture (preliminary version). Technical report,
Laboratory for Computer Science, MIT, Cambridge,
MA, 1983.

[6] Arvind and R. S. Nikhil. Executing a program on the
MIT tagged-token dataflow architecture. IEEE Trans.
Computers, 39(3):300–318, 1990.

[7] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible
foundation for data-intensive computing. In
S. Abiteboul, K. Böhm, C. Koch, and K.-L. Tan,
editors, ICDE, pages 1151–1162. IEEE Computer
Society, 2011.

[8] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient iterative data processing on large
clusters. PVLDB, 3(1):285–296, 2010.

[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. In
NSDI, pages 313–328. USENIX Association, 2010.

[10] A. L. Davis. The architecture and system method of
DDM1: A recursively structured data driven machine.
In E. J. McCluskey, J. F. Wakerly, E. D. Crockett,
T. E. Bredt, D. J. Lu, W. M. van Cleemput, S. S.
Owicki, R. C. Ogus, R. Apte, M. D. Beaurdy, and
J. Losq, editors, ISCA, pages 210–215. ACM, 1978.

[11] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

35

[12] J. B. Dennis and D. Misunas. A preliminary
architecture for a basic data flow processor. In W. K.
King and O. N. Garcia, editors, ISCA, pages 126–132.
ACM, 1974.

[13] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J.
Franklin, S. Shenker, and I. Stoica. Shark: fast data
analysis using coarse-grained distributed memory. In
K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano,
and A. Fuxman, editors, SIGMOD Conference, pages
689–692. ACM, 2012.

[14] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data flows. PVLDB,
5(11):1268–1279, 2012.

[15] J. R. Gurd, C. C. Kirkham, and I. Watson. The
Manchester prototype dataflow computer. Commun.
ACM, 28(1):34–52, 1985.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys, pages 59–72,
2007.

[17] R. Jagannathan, C. Dodd, and I. Agi. GLU: A
high-level system for granular data-parallel
programming. Concurrency - Practice and Experience,
9(1):63–83, 1997.

[18] G. Kahn. The semantics of simple language for parallel
programming. In IFIP Congress, pages 471–475, 1974.

[19] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.

Pregel: a system for large-scale graph processing. In
SPAA, page 48, 2009.

[20] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In CIDR. www.cidrdb.org, 2013.

[21] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. MRShare: Sharing across multiple queries
in mapreduce. PVLDB, 3(1):494–505, 2010.

[22] P. Rondogiannis and W. W. Wadge. First-order
functional languages and intensional logic. J. Funct.
Program., 7(1):73–101, 1997.

[23] R. D. Tennent. Principles of programming languages.
Prentice Hall International Series in Computer
Science. Prentice Hall, 1981.

[24] W. W. Wadge and E. A. Ashcroft. LUCID, the
Dataflow Programming Language. Academic Press
Professional, Inc., San Diego, CA, USA, 1985.

[25] I. Watson and J. R. Gurd. A prototype data flow
computer with token labelling. In Proceedings of the
National Computer Conference, pages 623–628, 1979.

[26] A. A. Yaghi. The Intensional Implementation
Technique for Functional Languages. PhD thesis,
Department of Computer Science, University of
Warwick, Coventry, UK, 1984.

[27] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: fault-tolerant streaming
computation at scale. In M. Kaminsky and M. Dahlin,
editors, SOSP, pages 423–438. ACM, 2013.

36

Processing Regular Path Queries on Giraph

Maurizio Nolé
DIMIE - Università della Basilicata

Via dell’Ateneo Lucano 10
Potenza,Italy

mnole@gmail.com

Carlo Sartiani
DIMIE - Università della Basilicata

Via dell’Ateneo Lucano 10
Potenza,Italy

sartiani@gmail.com

ABSTRACT
In the last few years social networks have reached an ubiq-
uitous diffusion. Facebook, LinkedIn, and Twitter now have
billions of users, that daily interact together and establish
new connections. Users and interactions among them can be
naturally represented as data graphs, whose vertices denote
users and whose edges are labelled with information about
the different interactions.

In this paper we sketch a novel approach for processing
regular path queries on very large graphs. Our approach
exploits Brzozowski’s derivation of regular expressions to al-
low for a vertex-centric, message-passing-based evaluation
of path queries on top of Apache Giraph.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Performance

Keywords
Graph Query Processing, Distributed Computing

1. INTRODUCTION
In the last few years social networks have reached an ubiq-

uitous diffusion. Facebook, LinkedIn, and Twitter now have
billions of users, that daily interact together and establish
new connections. Users and their interactions can be natu-
rally represented as data graphs, whose vertices denote users
and whose edges are labelled with information about the dif-
ferent interactions. The problem of managing, querying, and
mining graph databases, hence, is becoming more and more
important; similar problems emerge in many different appli-
cation fields where data have a graph structure, e.g., traffic
analysis, crime detection, the Semantic Web.

Data graphs have attracted a significant research interest
since the mid 90’s. In particular, several query languages

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

based on regular expressions [8, 9, 6] have been proposed
and a few data graph query processors have been designed
[5, 10].

Today data graphs can be very large and easily exceed 100
millions vertices. To manage this kind of graphs, Google de-
signed a novel class of graph processing systems, based on
the Bulk Synchronous Parallel Model by Valiant [11], where
graphs are automatically partitioned across the nodes of a
computing cluster, and algorithms are expressed through
vertex-centric functions, i.e., functions that are executed by
each vertex in the graph. Systems in this class (e.g., Google
Pregel [7] and Apache Giraph [1]) exhibit very good scala-
bility properties for many graph algorithms, but have not
been designed for querying graphs.

Our Contribution. In this paper we sketch a novel ap-
proach for evaluating path queries on very large graphs. Our
approach exploits Brzozowski’s derivation of regular expres-
sions [4] to allow for a vertex-centric, message-passing-based
evaluation of path queries on top of Giraph (see Section
3.1). In particular, when each vertex receives a query q, it
derives q according to the symbols labelling outgoing edges
and propagates the derivative of q to its neighbours. To
avoid network flooding, only outgoing edges labelled with
symbols in the first set of q are considered.1

2. DATA MODEL AND QUERY LANGUAGE

2.1 Data Model
Following [6], we model a data graph as an edge-labelled

graph, as shown below.

Definition 2.1 (Data Graph) Given a finite alphabet Σ
and a (possibly) infinite value domain D, a data graph G
over Σ and D is a triple G = (V,E, ρ), where:

• V is a finite set of vertices;

• E ⊆ V × Σ × V is a set of labelled, directed edges
(vi, a, vj);

• ρ : V → D is a mapping from vertices to values.

Given a vertex v, we will indicate with in(v) and out(v)
the set of incoming and outgoing edges, respectively. More
formally:

1The first set of a regular expression r is the set of symbols
that appear in the first position of words matching r.

37

1 v1

3v2 7 v3

1 v4 5 v5

2v6 3 v7

a

a

a

d

a

b c

Figure 1: A graph.

• in(v) = {(v′, a, v) ∈ E | v′ ∈ V ∧ a ∈ Σ};
• out(v) = {(v, a, v′) ∈ E | v′ ∈ V ∧ a ∈ Σ}.

We will also indicate with id(v) the unique identifier of
v. We assume that sequences of outgoing (incoming) edges
of a vertex are unordered, as it is often the case in graph
databases.

2.2 Query Language
Many query languages for graph data have been presented

in the past [8, 9, 6]. We focus our attention here on GXPath,
a language recently proposed by Libkin et al. in [6]. GXPath
is based on the idea of using regular expressions to specify
patterns that must be matched by paths in the input graph.
Given a query q, the result of its evaluation over a graph
G is always a set of vertex pairs (v, v′) such that v and
v′ are connected by a path p in G matching the query q.
GXPath extends other path languages like RPQs or NREs
with the introduction of the complement operator, data tests
on the values stored into vertices, as well as counters, which
generalize the Kleene star, and it can be considered as an
adaptation of XPath [2] to data graphs.

Among the various fragments of GXPath, we focus here
on a navigational, path-positive fragment with counting, but
without complement, intersection, and nested conditions, as
described by the following grammar.

α ::= ε | | a | α+ α | α · α | αm,n

Given a graph G = (V,E, ρ), the semantics of our frag-
ment of GXPath can be defined as follows.

JεKG = {(u, u) | u ∈ V }
J KG = {(u, v) | ∃a ∈ Σ.(u, a, v) ∈ E}
JaKG = {(u, v) | (u, a, v) ∈ E}

Jα1 + α2KG = Jα1KG ∪ Jα2KG
Jα1 · α2KG = Jα1KG ◦ Jα2KG

Jαm,nKG = ∪n
i=mJαKiG

where ◦ is the symbol for the concatenation of binary re-
lations and Ri denotes the concatenation of R with itself i
times. Here, ε denotes the empty word, matches any sym-
bol, α1 ·α2 and α1 +α2 are the standard concatenation and
union operators, and αm,n denotes the repetition of α from
m to n times (m ∈ N, n ∈ N ∪ {∗}, m 6 n).

Example 2.2 Consider the graph depicted in Figure 1.
Consider now the following query: a2,3 ·(b+d). This query

returns all vertex pairs (u, v) connected by the following
paths: aab, aaab, aad, aaad. The result of this query is
{(v1, v6), (v1, v5), (v2, v5), (v5, v6)}.

3. PROCESSING PATH QUERIES

3.1 Brzozowski’s derivatives
Brzozowski’s derivatives [3] represent an alternative way

to check if a word w belongs to the language generated by a
given regular expression r. The idea is to iterate over w and
to rewrite r according to the last read symbol, hence com-
puting a derivative; if the derivative generated after the last
symbol of w has been read is ε, then the check is successful.

Brzozowski’s derivatives can be extended to regular path
expressions on data graphs in the following way.

Definition 3.1 (Derivative) α′ is a derivative of α in a
graph G = (V,E) according to a ∈ σ iff

⋃
(u,a,v)∈E{(u, v)} ◦

Jα′KG = JαKG.

Definition 3.2 (Empty expression) ∅ denotes the empty
regular expression, that is, J∅KG =def ∅

Proposition 3.3 (Empty expression properties) ∅ sat-
isfies the following properties:

α+ ∅ = ∅+ α = α
α· ∅ = ∅· α = ∅

Notation 3.4 (m−, ∗ − 1) In the following definitions, we
use m− to denote max(m−1, 0), and assume that ∗−1 = ∗.

Definition 3.5 N(α) is a predicate on regular expressions,
defined as follows:

N(∅) = false N(ε) = true
N(a) = false N() = false
N(α1 + α2) = N(α1) ∨N(α2)
N(α1 · α2) = N(α1) ∧N(α2)
N(αm,n) = N(α)

Definition 3.6 first(α) is a function on regular expres-
sions, defined as follows:

first(∅) = ∅
first(ε) = ∅
first(a) = {a}
first() = Σ
first(α1 + α2) = first(α1) ∪ first(α2)

first(α1 · α2) =

{
first(α1) ∪ first(α2) if N(α1)

first(α1) otherwise

first(αm,n) = first(α)

Definition 3.7 (Derivation) da(α), where α is a regular
path query and a ∈ Σ, is defined in Figure 2.

It is easy to see that da(α) is a derivative of α according
to a in G.

3.2 Evaluation Algorithm
Brzozowski’s derivatives can be used to implement path

query processing on top of Giraph (or similar systems). In
Giraph a computation consists of several supersteps, repre-
senting global synchronization points. Each superstep com-
prises a master computation, performed by a special node
(“the master”) at the beginning of the superstep, and by a

38

da(ε) =def ∅
da(∅) =def ∅

da(b) =def

{
ε if a = b or b =

∅ otherwise

da(α1 + α2) =def da(α1) + da(α2)

da(α1 · α2) =def

{
da(α1)· α2 + da(α2) if N(α1)

da(α1)· α2 otherwise

da(αm,n) =def

∅ if n = 0

da(α) · αm−,n−1 if (not N(α) and n > 0) or (m = 0 and n = ∗)
da(α) · αm−,n−1 + da(αm−,n−1) otherwise

Figure 2: Derivation function.

vertex-centric computation, where each graph vertex pro-
cesses incoming messages from other vertices, sends mes-
sages to other vertices, and executes a given algorithm. Ver-
tices communicate together through messages, that are de-
livered at the beginning of the next superstep; the com-
munication between the master and vertices is performed
through special data structures called aggregators, and is
bidirectional. The computation halts when each vertex de-
cides to halt and no more message is flowing in the network.

In our system each input query q is sent to each vertex
by the master at the beginning of the first superstep; the
master also sends the command derive. If q contains a
subexpression of the form αm,∗, the master transforms it
into αm,|V |

At superstep 0, each vertex v checks for a message by
the master; if the message is a pair (q, derive), then the
vertex is instructed to start the derivation process. If q = ε
or N(q), then v sends the pair (id(v), id(v)) to the master
through the aggregator result; the master will push the
content of result on persistent store at the beginning of the
next superstep. If q 6= ∅ and q 6= ε, v starts the derivation
process by looking at the symbols labelling outgoing edges.
The derivation of q according to a symbol a is performed
only if a ∈ first(q), i.e., a may appear in the first position
of a word generated by q. If da(q) 6= ∅, then v sends to the
target vertex a message (id(v), da(q)).

At each superstep s > 0, the master checks if the new
results have been aggregated in result by graph vertices in
the previous superstep; in that case, the master moves the
result pairs to the persistent store and cleans the aggregator.

At each superstep s > 0, each vertex v checks if there
are incoming messages from other vertices. If v receives
a message m = (id(v0), q′), then it starts analyzing q′ to
understand if it must be derived; in particular, if q′ = ε
or N(q′), v adds the pair (id(v0), id(v)) to result and, if
q′ = ε, it starts processing the next message. If q′ 6= ε, v
starts deriving q′ according to the symbols labelling outgoing
edges, provided that they are in first(q′). If the derivative
is equal to ∅, no message is sent; otherwise, given an edge
(v, a, v′), v sends to v′ the message (id(v0), da(q′)).

The pseudocode of the algorithms for master and vertex
computation is shown in Figures 3 and 4.

3.3 Implementation Issues
We implemented the algorithms described in the previ-

ous section in a very preliminary research prototype called

MasterCompute

/ - - Input: a query q
/ - - Input: aggregators result and command

1 if (superstep == 0)

2 if (q == C[αm,∗]) q = C[αm,|V |]
3 command .aggregate((q, derive))
4 else List resultList = result .getAggrValue()
5 if (resultList 6= {})
6 add resultList to persistent storage
7 result .clean()

Figure 3: Master computation.

Vertigo. While implementing Vertigo, we faced several chal-
lenges. First of all, Brzozowski’s derivation does not behave
well on non-deterministic regular expressions, as it may gen-
erate exponentially larger derivatives;2 this is even more
evident when the regular expression contains a counting
operator. To speed up the derivation process, our deriva-
tion algorithm works modulo associativity and commutativ-
ity of union. In detail, we memoize the derivation process
through a small LRU cache on each Giraph worker, and sys-
tematically simplify derivatives through the following rules:
α+ α→ α, α+ ∅ → α, α· ε→ α, α· ∅ → ∅.

Second, when working on very large graphs and queries
with low selectivity, query results can be quite large. Hence,
their transmission to the master through aggregators can
be quite expensive. To decrease this overhead, result trans-
mission is performed at the end of each superstep by each
worker through a post-superstep computation. Workers per-
form a preliminary duplicate elimination, while the master
just appends result pairs on a file on HDFS; final duplicate
elimination is performed when computation halts.

Finally, the most efficient way to evaluate queries of the
form αm,∗ is to evaluate α and, then, to compute the reflex-
ive and transitive closure of JαKG. This can be performed in
a BSP fashion, but it would be too expensive as it requests
to stop the current graph traversal. Therefore, we prefer to
drop this technique in favour of a more naive one, where ∗

2Intuitively, a regular expression r is non-deterministic (or
1-ambiguous) if there exists at least a word w that can match
r in multiple ways.

39

VertexCompute

/ - - Input: aggregators result and command

/ - - Input: current vertex v
1 if (superstep == 0)
2 MasterMessage m = command .getAggrValue()
3 Query q = m.query
4 if (q == ∅) halt()
5 elseif (q == ε)
6 result .aggregate((id(v), id(v)))
7 halt()
8 elseif (N(q)) result .aggregate((id(v), id(v)))
9 for each (v, a, u) ∈ E : (a ∈ first(q))

10 Query q′ = da(q)
11 if (q′ 6= ∅)
12 if (q′ == q′1 + q′2)
13 if (q′1 6= ∅) send(u, (id(v), q′1))
14 if (q′2 6= ∅) send(u, (id(v), q′2))
15 else send(u, (id(v), q′))
16 halt()
17 elseif (superstep > 0)
18 for each message m = (id(v0), q)
19 if (q == ε)
20 result .aggregate((id(v0), id(v)))
21 skip to next message
22 elseif (N(q)) result .aggregate((id(v0), id(v)))
23 for each (v, a, u) ∈ E : (a ∈ first(q))
24 Query q′ = da(q)
25 if (q′ 6= ∅)
26 if (q′ == q′1 + q′2)
27 if (q′1 6= ∅)
28 send(u, (id(v0), q′1))
29 if (q′2 6= ∅)
30 send(u, (id(v0), q′2))
31 else send(u, (id(v0), q′))
32 halt()

Figure 4: Vertex computation.

is replaced by the number of vertices in the input graph.

4. CONCLUSIONS AND FUTURE WORK
In this paper we sketched a novel algorithm for evaluating

regular path queries on data graphs. This algorithm exploits
Brzozowski’s derivation and can be used in Giraph and any
other similar system. We developed a very preliminary pro-
totype implementation of our algorithm; in early tests on
a single commodity machine this prototype easily processed
queries on 200-million-edge graphs. We are currently testing
our implementation on Pivotal’s AWB cluster.

In a very near future we plan to extend our algorithm to
support a larger fragment of GXPath comprising backward
navigation, branching, and intersection.

5. ACKNOWLEDGMENTS
(Portions of) the research in this paper use results ob-

tained from the Greenplum Analytics Workbench, made avail-
able by Greenplum, a division of GoPivotal Corporation.

6. REFERENCES
[1] Apache giraph, 2013.

http://http://giraph.apache.org.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) 2.0 (Second Edition).
Technical report, World Wide Web Consortium, 2010.
W3C Recommendation.

[3] A. Brüggemann-Klein and D. Wood.
One-unambiguous regular languages. Inf. Comput.,
142(2):182–206, 1998.

[4] J. A. Brzozowski. Derivatives of regular expressions. J.
ACM, 11(4):481–494, 1964.

[5] A. Koschmieder and U. Leser. Regular path queries on
large graphs. In A. Ailamaki and S. Bowers, editors,
SSDBM, volume 7338 of Lecture Notes in Computer
Science, pages 177–194. Springer, 2012.

[6] L. Libkin, W. Martens, and D. Vrgoc. Querying graph
databases with XPath. In W.-C. Tan, G. Guerrini,
B. Catania, and A. Gounaris, editors, ICDT, pages
129–140. ACM, 2013.

[7] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In
A. K. Elmagarmid and D. Agrawal, editors, SIGMOD
Conference, pages 135–146. ACM, 2010.

[8] A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. SIAM J. Comput.,
24(6):1235–1258, 1995.

[9] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A
navigational language for RDF. J. Web Sem.,
8(4):255–270, 2010.

[10] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton:
Online query execution engine for large distributed
graphs. In A. Kementsietsidis and M. A. V. Salles,
editors, ICDE, pages 1289–1292. IEEE Computer
Society, 2012.

[11] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

40

Graph-Parallel Entity Resolution using LSH & IMM

Pankaj Malhotra
TCS Innovation Labs, Delhi
Tata Consultancy Services

Ltd., Sector 63
Noida, Uttar Pradesh, India

malhotra.pankaj@tcs.com

Puneet Agarwal
TCS Innovation Labs, Delhi
Tata Consultancy Services

Ltd., Sector 63
Noida, Uttar Pradesh, India

puneet.a@tcs.com

Gautam Shroff
TCS Innovation Labs, Delhi
Tata Consultancy Services

Ltd., Sector 63
Noida, Uttar Pradesh, India
gautam.shroff@tcs.com

ABSTRACT
In this paper we describe graph-based parallel algorithms for entity
resolution that improve over the map-reduce approach. We com-
pare two approaches to parallelize a Locality Sensitive Hashing
(LSH) accelerated, Iterative Match-Merge (IMM) entity resolution
technique: BCP, where records hashed together are compared at
a single node/reducer, vs an alternative mechanism (RCP) where
comparison load is better distributed across processors especially
in the presence of severely skewed bucket sizes. We analyze the
BCP and RCP approaches analytically as well as empirically using
a large synthetically generated dataset. We generalize the lessons
learned from our experience and submit that the RCP approach is
also applicable in many similar applications that rely on LSH or
related grouping strategies to minimize pair-wise comparisons.

1. MOTIVATION AND INTRODUCTION
The map-reduce (MR) parallel programming paradigm [9] and

its implementations such as Hadoop [24] have become popular
platforms for expressing and exploiting parallelism due to the ease
with which parallelism can be abstracted to a higher-level. How-
ever, it has become increasingly apparent that there are classes of
algorithms for which MR may not be well suited, such as those
involving iterative or recursive computation. Graph-based paral-
lelism via the Pregel programming paradigm [19] and its various
implementations such as Giraph [2], Graphlab [18], or GPS [22]
is an alternative approach that has been shown to perform better in
such scenarios, for example in sparse-matrix multiplications, page-
rank calculation, or shortest-paths in graphs etc.

In this paper we focus on the entity resolution (ER) problem and
submit that graph-based parallelism is better suited for it. We con-
sider the iterative match-merge (IMM) approach to ER [4], accel-
erated by locality-sensitive hashing (LSH) [1] to avoid unnecessary
comparisons. In this context we found that the strategy that is nat-
ural if using MR, i.e., where records hashed to the same bucket
are compared at a single reducer / node, need not be the most effi-
cient approach. Instead, the graph-parallel model offers an alterna-
tive mechanism that is better at distributing the computational load
across processors.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

We introduce the IMM+LSH approach for ER later in this sec-
tion. Next, in Section 2, we discuss how this entity-resolution algo-
rithm should be parallelized, via MR as well as its natural transla-
tion to the graph-parallel model, which we call bucket-centric par-
allelization (BCP). We then describe our alternative technique for
record-centric parallelization (RCP). In Section 3, we analyze the
BCP and RCP approaches analytically as well as empirically using
a large synthetically generated dataset.

We believe the lessons learned from this exercise of parallelizing
ER are more general. The RCP approach appears better suited at
dealing with the skewed work-loads that naturally arise when items
need to be compared efficiently using probabilistic hashing or ex-
ecuting similarity joins. Further, when records containing large at-
tributes (such as documents or images) need to be matched, albeit
even exactly as in standard multi-way joins, our experience here
leads us to suggest mechanisms to avoid unnecessary communi-
cation of large attributes that do not figure in the final matching
result. We present these learnings in Section 5, after describing
related work in Section 4.

1.1 Entity Resolution via LSH and IMM
We assume that information about real-world entities is available

from disparate data sources in the form of records, with each record
(such as a passport, or driving license) belonging to a unique real-
world entity. Two records are said to match if a suitable match func-
tion returns ‘true’ indicating that the records belong to the same en-
tity. Match functions can be implemented in different ways, such
as rules, or even binary classifiers derived via machine learning.
Under certain conditions [4] matching records may be merged to
produce a new record that derives its attributes and values (e.g. via
a union) from the matching input records.

Given a collection of records where each record belongs to a
unique entity, ER seeks to determine disjoint subsets of records
where the records in a subset match under some match function
and form an entity by merging these records. For example, different
records belonging to the same person, such as voter card, passport,
and driving-licence should get merged to form one entity.

The R-Swoosh IMM algorithm as described in [4], performs ER
as follows: Initialise the set I to contain all records and the set I′

to be empty. R-Swoosh iterates over the records in set I, removing
a record r from I and comparing it to records in I′. As soon as a
matching record r′ is found in I′, it is removed from I′, and a new
record obtained by merging r and r′ is added to I. On the other
hand, if no matching record is found in I′, the record r is added to
I′. The procedure continues until the set I is empty and I′ contains
a set of merged records representing the resolved entities.

The time complexity of IMM is quadratic in the number of
records to be resolved, so it makes sense to attempt to pre-group
records so that records in different groups are highly unlikely to

41

Figure 1: Sample Data and Corresponding Graph

match with each other. One way to achieve such grouping is via
LSH [1]. LSH hashes each record to one or more buckets so that
records that do not share a bucket are highy unlikely to match [20].
Therefore, instead of performing IMM on the entire set of records,
only records belonging to the same bucket are considered for IMM.

2. PARALLEL ENTITY RESOLUTION

2.1 Bucket-centric Approach

2.1.1 BCP using Map-Reduce
We use standard LSH via minhashing [5] to create buckets of

potentially similar records. A Match function implementation may
not use all the attributes in records to compare them. In other
words, not all attributes in records may be relevant for the pur-
pose of comparison of records. We use only the words occurring
in the values of the relevant attributes for the purpose of hashing
also. Each such relevant word occurring in any of the records is
mapped to a unique integer. For each record, we consider the set
of integers S corresponding to the set of relevant words it contains.
The minhash for the set S is calculated as the min((sxi + z) mod
Q), ∀xi ∈ S (where s and z are random integers, and Q is a large
prime). Different combinations of s and z determine different hash
functions. For each record, we compute a × b hash values using
a × b minhash functions. Out of these hash-values of a record, a
are concatenated to get a bucket-id, we therefore get a total of b
such bucket-ids for each record. Finally, a bucket consists of the
record-ids of all the records that get hashed to the corresponding
bucket-id.

A natural way to execute the above procedure in parallel using
MR is to generate b key-value pairs [bucket-id, record] for every
record in the map phase [8]. Records mapped to the same bucket-
id are sent to a common reducer where IMM is run for each bucket.
The result of IMM in each bucket is a set of ‘partially’ resolved en-
tities since the possibility remains for records belonging to a single
entity to get mapped to more than one bucket.

Consider the example shown in Figure 1, we have a collection
< of four records: < = {r1, r2, r3, r4} such that all the records
belong to the same entity r1234. The match function applied to any
pair of records in < gives true. Assuming a = 1 and b = 3, each
of the 4 records is hashed to 3 buckets using LSH. Of the buckets
generated by LSH on the records in <, only two buckets b1 and
b2 end up with more than one record being hashed to them. The
singleton buckets, i.e., the buckets having only one record hashed
to them are not shown in the Figure 1. Therefore, bucket to record
mapping becomes {b1, {r1, r2, r4}}, {b2, {r2, r3}}. As a result of
IMM on b1, we get a partial-entity eb1 consisting of {r1, r2, r4}.
Similarly, IMM on b2 gives another partial-entity eb2 consisting of

{r2, r3}. The ‘partial-entities’ eb1 and eb2 belong to the same en-
tity since they contain an overlapping record r2. We consolidate the
partial-entities emerging from all the buckets by computing con-
nected components in a graph of records (similar to [23]), where an
edge exists between two records if they belong to the same partial-
entity, as shall be explained later. If a pair of partial-entities ea and
eb happen to share at least one of the original records ri, they end
up being in the same connected component and all the records in
them get merged.

The above approach using MR has two potential problems: First,
a large number of buckets are singletons, so many reduce keys get
only one record as a value. Such records do not need to be com-
pared with any other record, so sending them to the reducers is
unnecessary and causes significant communication overhead espe-
cially when records are large in size. Secondly, we need to find
connected components after the first MR phase, which is itself an
iterative procedure and is likely to perform better using the Pregel
model.

2.1.2 BCP using Pregel
Consider using MR to generate LSH buckets and discard sin-

gletons, and a graph-parallel approach using the Pregel paradigm
thereafter. A high-level block diagram of how this works is shown
in Figure 2. We perform LSH using MR as earlier except that in-
stead of passing the records themselves we ensure that mappers
only send record-ids, thus significantly reducing communication
costs. In the reduce phase, instead of running IMM we merely
generate the adjacency-list of a graph with two types of vertices, a
record-vertex for each record in the collection and a bucket-vertex
for each bucket obtained through LSH for collection of records,
along with edges between them as follows: A record-vertex has
outgoing edges to all the bucket-vertices corresponding to the buck-
ets it gets hashed to. A bucket-vertex has outgoing edges to all the
record-vertices which are hashed to it.

Note that since reducers know the size of every bucket they are
responsible for, singletons are easily removed at this stage itself,
i.e., no vertices are created for singleton buckets. As a result, only
buckets containing record-ids that need to be compared are passed
on to subsequent stages, eliminating the need to ship record con-
tents for records in singleton buckets.

Note also that edges in the resulting graph are bi-directional, i.e.,
if there is an edge from v to v′ then there is also an edge between
v′ and v. The adjacency-list files created by MR and also files
mapping record-ids to records are inputs to a graph-parallel Pregel-
based platform (such as Apache Giraph [2]), so that record-vertices
are initialised with both record-ids as well as the full content of
each record. Thereafter graph-parallel computations in the Pregel-
model proceed via a number of supersteps as follows:

SS1: Each bucket-vertex is to perform IMM on all records that
are hashed to it. Initially, only the IDs of the records hashed to a
bucket are available at bucket-vertex via its outgoing edge-list. So
in this superstep each record-vertex sends its value (which includes
the record’s content) to the bucket-vertices in its outgoing edge-
list (which is the list of all the non-singleton buckets the record is
hashed to). For example, for the graph in Figure 1, record-vertex
r2 sends its value to b1 and b2.

SS2: Bucket-vertices receive the contents of all the records
hashed to them, after which records at each bucket-vertex are com-
pared using IMM. The result is a set of merged records or partial-
entities at each bucket-vertex.

A bucket-vertex randomly selects one of the records in each
partial-entity (merged record) as a central record for that partial-
entity. Next the bucket-vertex sends a graph-mutation request so

42

Figure 2: Overall flow across Map-reduce and Pregel

as to create a bi-directional edge between vertices corresponding to
the central record and each of the remaining records of the partial-
entity. As a result, all the record-vertices involved in a partial-entity
get connected to each other through the vertex corresponding to the
central record.

For the example in Figure 1, the records r1, r2, and r4 are
merged to give a partial-entity r124 at bucket-vertex b1. Assum-
ing r1 to be the central record, graph-mutation requests are sent by
b1 to create bi-directional edges between r1 and r2, and r1 and r4.
Similarly, at bucket-vertex b2, we get a partial-entity r23 where a
graph-mutation request is sent to create edges between r2 and r3.

SS3cc: As a result of the previous superstep we know that
there is a path connecting records belonging to a single entity even
though they may have been part of different partial-entities resolved
at different buckets. So we now find the connected components in
the part of the graph consisting only of the record-vertices and the
edges between them, ignoring the bucket-vertices and their edges.
Note that it may take more than one superstep to find connected-
components in this graph. Finding connected-components in a
graph using the Pregel model is straightforward, so we omit its de-
tails for brevity.

Finally every record-vertex gets a connected-component id
which corresponds to the entity it is resolved to. For the exam-
ple in Figure 1, we will get one connected-component containing
all the 4 records r1, r2, r3, and r4. It remains a simple matter to
exchange component information between record-vertices to com-
plete the resolution process: Record-vertices mutate the graph to
create entity-vertices corresponding to their component-id along
with edges to these; the platform ensures that only one instance of
each distinct entity-vertex is created, with the result that all records
for that entity are now connected to it. Records send themselves
to their entity-vertex where final merging takes place to produce a
resolved entity.

While the above approach using both MR and Pregel avoids ship-
ping the records mapped to singleton buckets, this approach poten-
tially suffers because of load imbalance: As we shall see in the next
section, LSH naturally results in buckets of widely varying size. As
a result, some bucket-vertices have to perform heavy IMM compu-
tations, which are of quadratic time complexity, whereas others are
lightly loaded. We shall see that even with careful distribution of
bucket-vertices to processors, this still results in significant load-
imbalance, or skew, causing inefficiency.

2.2 Record-centric Approach in Pregel (RCP)
The motivation for record-centric parallelization (RCP) is to

overcome the problems of skew by distributing the IMM compu-
tations for records mapped to the same bucket back to the record-
vertices themselves. The load for large IMM jobs at bucket-vertices

is thus further parallelized. Record-vertices end up with work as-
signed to them from at most b buckets where they are mapped to;
as a result the computations are better balanced even when record-
vertices are randomly distributed across processors. Of course, the
cost for such further re-distribution of load is increased communi-
cation cost. (A detailed cost analysis of both approaches is pre-
sented in the next section.)

RCP comprises of seven supersteps using the graph-parallel
Pregel paradigm as explained below and summarised in Figure 3.
Note however, that this sequence of seven supersteps will run iter-
atively many times until all vertices halt and no further messages
are generated. As before, we assume that the initial LSH phase is
performed using MR to instatiate a graph comprising of all records
but only non-singleton buckets.

SS1: Every bucket-vertex sends messages to the record-vertices
that are hashed to it in order to schedule their comparisons as per
the IMM algorithm: For each pair of record-ids {ri, rj} from the
set of record-ids hashed to the bucket-vertex, a message is sent to
one of the two record-vertices: Say {rj} is sent to ri if i < j,
otherwise the message {ri} is sent to rj . After sending all such
messages, the bucket-vertex votes to halt. Also, a record-vertex
does nothing in this superstep, and votes to halt. (Unless it is a
lone record that is not present in any non-singleton bucket, it will
get woken up via messages in the next step; in general, vertices
perform their work in a superstep and vote to halt, only to be woken
up via messages later.)

If the outgoing edge-list of a bucket-vertex consists of k records
{r1, r2, ..., rk}, then r1 will be sent {r2, ..., rk} messages, r2 will
be sent {r3, ...,rk} messages, and so on. This message-sending
scheme ensures that if a pair of records co-exists in more than one
bucket, then the same record-vertex (the record-vertex with lower
id) will receive the messages from all such buckets. For the graph
in Figure 1, bucket-vertex b1 has {r1, r2, r4} in its neighborhood
and it sends messages to r1: {r2, r4}, and to r2: {r4}. Similarly,
b2 sends a message r3 to r2.

SS2: Before this superstep, every record-vertex is inactive, and
gets activated when it receives IDs of record-vertices that it needs to
be compared with. A record-vertex now sends its value (containing
the full record) to the record-vertices whose IDs were received in
messages.

Note that if two record-ids ri and rj (with i < j) co-occur in
edge-lists of k bucket-vertices, ri will receive k messages (one
from each of the k bucket-vertices), all containing the record-id
rj . The record-vertex ri will send its value to rj only once. For
the graph in Figure 1, record-vertex r1 sends its value to r2 and
r4 based on the messages received from b1. Similarly, r2 sends its
value to r3 and r4, based on the messages received from bucket-
vertices b2 and b1, respectively.

SS3: Now actual comparisons between records takes place via
the match function. A record-vertex r receives messages contain-
ing the values of the record-vertices it has to be compared with.
Note that the message sending scheme in SS2 ensures that even
if a pair of record-ids co-occur in more than one bucket they get
compared only once.

If the value of the record-vertex r matches the value of an in-
coming message r′, a message {r, r′} containing the IDs of the
two matched vertices is sent to r and r′. For the graph in Figure
1, in SS3, record-vertex r2 receives the value of r1, r3 receives the
value of r2, and r4 receives the values of r1 and r2. At vertex r2,
values of r1 and r2 are compared and are found to be matching, and
the message {r1, r2} (containing only the IDs of the two vertices)
is sent by r2 to both r1 and r2. Similarly the message {r2, r3} is
generated at r3, and is sent to both r2 and r3. The messages {r1,

43

Figure 3: RCP: Supersteps SS1 to SS7 for the example in Figure 1. Here, EL stands for outgoing edge-list.

r4} and {r2, r4} are generated at record-vertex r4. The message
{r1, r4} is sent to r1 and r4, and the message {r2, r4} is sent to r2
and r4.

SS4: If a record ri matched with any record rj in the previ-
ous superstep, it will receive a message {ri, rj}. If ri matched m
records in the previous superstep, it receivesmmessages in this su-
perstep: one from each of the m matches. Since ri matches all the
m records, all the m+ 1 records (including ri) belong to the same
entity. The record-vertex consolidates all the pairs of IDs received
as messages into a set containing the m + 1 IDs all belonging to
the same entity. This set of IDs is sent to all the bucket-vertices in
the outgoing edge-list of the record-vertex ri.

For the graph in Figure 1, r1 receives {r1, r2} and {r1, r4}, and
consolidates them to create a message {r1, r2, r4} which is sent to
b1. Record-vertex r2 consolidates {r1, r2}, {r2, r3} and {r2, r4}
to get {r1, r2, r3, r4} which is sent to both b1 and b2. Similarly, r3
sends {r2, r3} to b2, and r4 sends {r1, r2, r4} to b1.

SS5: Similar to the previous superstep, where a record-vertex
consolidates the matching information about itself, a bucket-vertex
consolidates all the sets received as messages and creates new
record-ids as follows: If any two sets si and sj received by
a bucket-vertex have an element (a record-id) in common, i.e.
si ∩ sj 6= ∅, all the record-ids in the two sets belong to the same
entity. A new set sij = si ∪ sj is created, and the sets si and sj
are deleted. This is done iteratively till all the sets remaining are
disjoint.

Now new record-vertex needs to be created for each of the dis-
joint sets, so the bucket-vertex sends a graph-mutation request
to create these new vertices, which we shall call partial-entity-
vertices. Mutation requests are also sent to create bi-directional
edges between the partial-entity-vertex and the bucket-vertex. The
IDs of these vertices are based on the final consolidated sets sij , so
if the same partial-entity-vertex is created by multiple buckets, this
does not lead to duplicate vertices. The bucket-vertices also send a
message to each record-vertex they are connected with, informing
the record-vertices about their corresponding partial-entity-id.

For the graph in Figure 1, bucket-vertex b1 receives 3 messages
{r1, r2, r4}, {r1, r2, r3, r4} and {r1, r2, r4} which are consoli-
dated to get a set {r1, r2, r3, r4}. Bucket-vertex b1 sends a message
to create a partial-entity-vertex with id r1234. Similarly, bucket-
vertex b2 receives 2 messages {r1, r2, r3, r4} and {r2, r3} which

are consolidated to get {r1, r2, r3, r4}, and a message is sent by
b2 to create a new vertex r1234. Here, both the bucket-vertices b1
and b2 ask for the creation of the same vertex since both have com-
puted the same consolidated set: {r1, r2, r3, r4}. Also, b1 sends a
message to create a bi-directional edge between b1 and r1234. Sim-
ilarly, b2 sends a message to create a bi-directional edge between b2
and r1234. Also, b1 and b2 send a message containing the id r1234
to all their record-vertices.

SS6: New partial-entity-vertices get created before start of this
superstep. A record-vertex r receives messages containing the id of
a new partial-entity-vertex r′. The record-vertex r sends its value
(i.e., record content) and its outgoing edge-list as a message of the
form {vi, ei} (where vi is the value of vertex ri and ei its outgo-
ing edge-list) to r′. For the graph in Figure 1, the record-vertices
r1, r2, r3 and r4 send {v1, e1}, {v2, e2}, {v3, e3}, and {v4, e4}
respectively to r1234.

SS7: In this superstep, a partial-entity-vertex r receives mes-
sages of the form {vi, ei}. The value (i.e., content) of r is ini-
tialised by merging all the record content values vis received. The
vertex r also sends messages to create outgoing edges with every
bucket-vertex whose ID is present in the outgoing edge-lists eis re-
ceived. For every bucket-vertex bi, to which a partial-entity-vertex
pi is added, pi needs to be compared with the other records and
partial-entities in bi’s edge-list. So a message is also sent to these
bucket-vertices to activate them before the beginning of next itera-
tion. The partial-entity-vertices are treated like record-vertices for
next iteration of supsersteps SS1 to SS7.

Finally, each partial-entity-vertex r sends graph-mutation re-
quests to delete every vertex ri (corresponding to {vi, ei}) that led
to r’s creation (also for deleting all incoming and outgoing edges of
ri). For the graph in Figure 1, r1234 receives the values of record-
vertices r1, r2, r3, and r4 as messages, and uses them to update
its value. Also, messages are sent to create bi-directional edges be-
tween r1234 and b1, and r1234 and b2. Messages are also sent to
delete r1, r2, r3, and r4, and activate b1 and b2.

Iterations in RCP: In the first iteration of the algorithm, i.e., at
the beginning of SS1, all bucket-vertices are active. In the begin-
ning (i.e., SS1) of each subsequent iteration, only those bucket-
vertices are active that receive messages from SS7 of the previous
iteration. Iterations continue until no more messages are generated.

A bucket-vertex can have both old and new record-ids in its out-

44

going edge-list at the end of any iteration of supersteps SS1 to SS7.
Record-id pairs for a bucket-vertex which have already been com-
pared need not be compared again. To avoid such comparisons, a
set P is maintained for each bucket-vertex which contains the pairs
which have already been compared in previous iterations. For ex-
ample, suppose a bucket b has 4 records {r1, r2, r3, r4} in its out-
going edge-list. After the first iteration of supersteps SS1 to SS7,
suppose r1 and r2 get merged to form a new record r12. Then the
outgoing edge-list of b will be {r12, r3, r4}, and the set P = {{r1,
r2}, {r1, r3}, {r1, r4}, {r2, r4}, {r3, r4}}. So, in the next iteration
only the following record pairs need to be compared: {{r12, r3},
{r12, r4}}. For the graph in Figure 1, buckets b1 and b2 will have
only one record-id {r1234} in their respective outgoing edge-lists.
So, no further comparisons are done and no further messages are
sent, terminating the algorithm.

3. COMPARISON OF BCP AND RCP
Some of the notations used for the analysis in this section have

been presented in Table 1. To compare the parallel execution times
of the two approaches presented in Section 2 we first note that total
execution time comprises of (a) total computation cost (Tn) and (b)
total communication cost (Tc) [10]. In an ideal situation, the par-
allel computation time on p processors should be Tn(p) = Tn/p.
Further, assuming a fully interconnected inter-processor network,
communication between two disjoint pairs of processors can take
place in parallel; if all communication is parallel in this manner
then the parallel communication time on p processors should be
Tc(p) = Tc/p.

Therefore, the ideal parallel execution time T (p) should be the
sum of Tn(p) and Tc(p). However, this is not the case in practice.
First, computation load is often unevenly distributed across proces-
sors; say the most heavily loaded processor having s1 times more
work than the average processor, which we refer to as computation
skew. For example, in case of LSH, commonly used words lead
to high textual similarity between a lot of records, and all these
records may get hashed to the same bucket. So some buckets end
up with a very large number of records. Similarly, communication
need not be evenly balanced either: For example, a source proces-
sor sending a message to all other processors takes p − 1 steps in
spite of the fact that each receiving processor gets only a single
message; the source processor becomes the bottleneck. Communi-
cation skew s2 is similarly defined as the ratio between the heaviest
and average communication time expended by processors. Taking
skew into account, we note that the parallel execution time on p
processors satisfies:

T (p) = (s1Tn + s2Tc)/p (1)

In the context of entity resolution via BCP and RCP, messages
between processors are of two types: a) messages containing only
vertex-ids, b) messages containing an entire record. In our analysis,
we assume that latter dominates and so in our analysis we ignore
messages carrying only ids. Also, we ignore the cost of sending the
values of record-vertices to the entity-vertices in the final merging
process (when values of entity-vertices are updated) in both BCP
and RCP, assuming it to be of the same order in both cases. Further,
assuming uniform distribution of vertices across processors, if a
message has to be sent from one vertex to another, the probability
that the message will be sent to another processor is (p−1)/p. For
large enough p we can assume that the message is almost always
sent to another processor.

We assume that computation cost is directly proportional to the
number of pairs of records to be compared. Therefore, total compu-
tation cost Tn = w.α, assuming α pairs of records were compared,

Parameter Description
n Total number of records
R Cost to send a record to another processor
w Cost of one comparison using Match function
b Number of buckets each record is hashed to
t Total number of pairs across all buckets
u Number of unique pairs of records
f Replication factor (t− u)/t
N Maximum number of records in a bucket
d Maximum number of records in an entity
p Total number of processors

Table 1: Parameters used

and w is the time taken for comparison of a pair of records. Simi-
larly, communication cost is assumed to be directly proportional to
the number of record-carrying messages exchanged between pro-
cessors. Therefore, Tc = R.β, assuming β messages were ex-
changed between various processors, and R is the time taken for
communication of one record between a pair of processors. Using
(1) the parallel execution cost with p processors is as in (2) below,
using which we proceed to compare the BCP and RCP approaches.

T (p) = (s1.w.α+ s2.R.β)/p (2)

3.1 BCP: Parallel Analysis
The BCP approach distributes LSH buckets across processors

and runs IMM within each bucket. If a bucket has x records, in the
best case, IMM performs x − 1 comparisons: This happens when
all the records belong to the same entity and each successive match
operation succeeds. For example, if there are 4 records d1, d2, d3,
and d4 in a bucket, then there will be a minimum of 3 match oper-
ations on (d1, d2), (d12, d3), and (d123, d4). However, according
to [4] the worst case computation cost of IMM on a block with x
records and x′ entities is (x− 1)2 − (x′ − 1)(x′ − 2)/2. This will
be maximum when x′ = 1. Therefore, in the worst case a bucket
with x records will execute (x− 1)2 comparisons.

For the average-case analysis, we assume
(
x
2

)
comparisons in a

bucket of size x, i.e., the number of pairs in the block. So, the total
number of comparisons is just t, the number of pairs of records
across all blocks, i.e., αBCP = t.

The maximum total communication is n.b since every record is
sent to at most b buckets. However, a record need not be sent to a
singleton bucket containing only itself. If k1 is the expected frac-
tion of non-singleton buckets per record, with 0 < k1 6 1, the total
communication cost for BCP is βBCP = k1.n.b. Using the above
in (2) the total computation and communication costs for BCP are
summarized in Table 2.

3.2 RCP: Parallel Analysis
In RCP a bucket with x records schedules

(
x
2

)
comparisons that

are executed at processors holding records, rather than at the pro-
cessors holding the bucket itself. Further, unlike BCP, RCP in-
volves multiple iterations: Nevertheless, RCP will involve at most
d − 1 iterations, if d is the maximum number of records an entity
can have.

For an average-case analysis we assume that if there are xi
records in a bucket in the ith iteration, then xi+1 = dxi/2e. Conse-
quently, if there are ti comparisons in the ith iteration, ti+1 ≈ ti/4.
Therefore, the total number of comparisons across d− 1 iterations
will be [t+ t/4 + t/42 + ...+ t/4(d−2)] = 4

3
t(1− 4−(d−1)).

Further, in RCP, a pair of records is compared only once (see
SS3 in Section 2.2) even though it may occur in multiple buckets,

45

Approach pT(p)
BCP s1.w.t+ s2.k1.R.n.b
RCP s′1.(1 − f).k2.w.t+ s′2.(1− f).k2.R.t

Table 2: Average-case parallel execution times

with replication factor f (see Table 1). Therefore, the total number
of comparisons (in first iteration) is (1 − f)t rather than t. As a
result, αRCP = (1− f).k2.t, where k2 = 4

3
(1− 4−(d−1)).

Further, for each pair of records that need to be compared, one
of the records in the pair is sent to the other’s processor. Therefore,
the number of messages is same as the number of comparisons, so
βRCP = (1−f).k2.t . Using the above in (2) the parallel execution
time for RCP is also summarized in Table 2.

3.3 Skew Analysis and Inferences
Computation skew s1 and communication skew s2 depend on

the distribution of records to the buckets. Let the number of buckets
having x records be f(x). We analyze the case when f(x) follows
a power-law distribution (which is what we observed empirically
as shown in the next section), i.e., f(x) = c/xr , where c and r are
positive constants.

Further,
(
x
2

)
> x, for x > 3; and

(
x
2

)
.f(x) > x.f(x),

for f(x) > 0. Therefore, the total number of pairs t =∑N
x=2

(
x
2

)
.f(x) is much more than nb =

∑N
x=1 xf(x), the total

number of records in all buckets. As a result, we can assume that
t >> n.b. So when the computation and communication skews
for BCP and RCP are comparable, i.e., s1 = s′1, and s2 = s′2, and
the replication factor f is small, we observe from Table 2 that the
computation cost of both approaches is of the same order, whereas
the communication cost of BCP (s2.k1.R.n.b) is clearly lower than
that of RCP (s′2.k2.R.t). As a results, it appears that BCP will per-
form much better than RCP.

However, in most of the situations, computation skew s1 of BCP,
will be so high that it will become the dominant component of the
parallel execution cost. To explain this, let us compare the effect of
a large bucket in the two approaches. In BCP, a large bucket with
size x, will result in

(
x
2

)
computations at the processor responsible

for this bucket; this processor can become slow and can increase
the parallel execution cost. However, in RCP, a large bucket results
in less computation skew, since the

(
x
2

)
comparisons are distributed

to x − 1 record-vertices that, on the average, will reside on differ-
ent processors for large enough p. Thus the computation load gets
distributed.

Further, even though the large bucket causes
(
x
2

)
messages to

schedule comparisons across processors in case of RCP, these mes-
sages only contain the IDs of the record-vertices and as we have
assumed earlier, this cost is small enough to be ignored. With this
assumption, the number of record-bearing communications arising
from a bucket of size x are those where the records send themselves
to each other, i.e., at most x− 1 messages for one of the records in
the bucket and x/2 on the average. This is comparable to the com-
munications required in BCP where x records need to be received
at the bucket of size x. Therefore, the communication skews in
both BCP and RCP are comparable whereas the computation skew
caused by the largest bucket in case of RCP is likely to be less than
the computation skew caused in case of BCP. In the next section we
demonstrate this empirically with realistic data.

3.4 Empirical Comparison of BCP and RCP
We generated synthetic data of 1.2 million ‘residents’ (n =

1.2M) as follows: We began with 100,000 seed records, where a

Figure 4: Average-case Computation Load for BCP

Figure 5: Average-Case Communication Load for BCP

seed record has all the information about an entity. For each such
entity, a maximum of 5 records (d = 5) are created corresponding
to the following 5 domains: ‘Election Card’, ‘Income-Tax Card’,
‘Driving-Licence’, ‘Bank Account Details’, and ‘Phone Connec-
tions’. An entity can have a maximum of one record per domain.
We control the creation of a record of a particular type for an en-
tity using a random-number generator. To create a record from
the seed record, values of some of the attributes of the person are
omitted. For example, e-mail id of a person may be present in 2
of his records and absent in others. The values of the attributes
of an entity across records are varied by using different methods.
For example, the address of the different records for the same en-
tity need not be same. Variation in values of attributes for different
records for an entity are inserted by introducing typographical er-
rors, swapping the first and last name, or omitting the middle name.
To add further ambiguity after creation of the records for an entity,
additional records which share considerable textual similarity with
each other are generated for related entities, such as parent, child,
spouse, neighbour, etc.

We applied 90 hash functions on each record and used a = 3
and b = 30 in the LSH formulation (refer Section 2.1.1). We get≈
17.29M buckets, 59.34% of the buckets (10.26M) were singletons,
99.89% (17.27M) of the buckets had 6 30 records, 0.02% (696)
buckets had > 100 records, and 0.00092% (163) buckets had >
1, 000 records. (With this generated data, the value of r in power
law distribution of records to buckets, i.e., f(x) as defined earlier
in Section 3.3 was found to be ≈ 2.8.) The distribution of f(x) vs
x is shown in Figure 7. The 163 (0.00092%) large buckets are the
bottlenecks in terms of the execution-time taken by the processors
which have them. The size of the largest and second largest buckets
are 17, 668 and 9, 662, respectively.

To estimate the values of skew factors, s1, s2, s′1, and s′2, we
assume the number of processors p = 160 (corresponding to our

46

Figure 6: Average-Case Computation Load for RCP

Approach Comparisons (millions) Communications (millions)
Max. Avg. s1 Max. Avg. s2

BCP 158.039 6.864 23.02 0.171 0.154 1.11
RCP 7.629 6.864 1.11 7.612 6.864 1.11

Table 3: Skew factors for BCP and RCP (average-case)

physical cluster of five 4 CPU nodes with 4 cores and two virtual
processors per core). The records and buckets (1.2M+17.29M ver-
tices) were randomly distributed to these 160 processors. Assum-
ing w = R = 1, the computation and communication loads per
processor are shown in Figures 4, 5, and 6.

The skew factors as estimated from the above distributions are
shown in the Table 3: It can be observed that the computation skew
s2 in BCP is 23.02, whereas the communication skew of BCP s1
and the computation and communication skews s′1 and s′2 are al-
most the same (= 1.11). Based on the formulations in Table 2,
it is clear that assuming w = R = 1, replication factor f = 0,
d = 5 so that k2 = 4

3
(1− 4−(d−1)) ≈ 4

3
, k1 = 1, the parallel

execution-time of BCP,

p.T b(p) = s1.w.t+ s2.k1.R.n.b

= 23.02× t+ 1.11× n.b
> 23.02× t

will be much larger than that of RCP,

p.T r(p) = s′1.(1− f).k2.w.t+ s′2.(1− f).k2.R.t

= 2× 1.11× 4

3
t

= 2.96× t
since s1 is much higher than both s′1 and s′2.

It may appear surprising that computation skew in BCP is so
much higher that communication skew; after all the number of
pairs at a bucket (which determines computation cost) is at most

Figure 7: Number of Buckets (f(x)) vs. Number of Records (x)

the square of the bucket’s size (which determines communication
cost). Computation skew, on the other hand, is much worse than
the square of communication skew.

However, consider the following example taken from our syn-
thetic data: Suppose we have 100 processors, and 150 buckets have
size > 1000. Assuming uniform distribution, each processor gets
0.16M (16M total buckets / 100 processors). Suppose the sizes of
the largest buckets b1 and b2 at processors P1 and P2 be 18, 000
and 300 respectively. There are 0.16M - 1 other buckets each at
P1 and P2. Assuming uniform distribution of load on these two
processors based on the 0.16M - 1 buckets (not considering the
two buckets b1 and b2), the ratio of execution-times on P1 and P2

would be close to 1. Suppose the execution-time of these 0.16M
- 1 buckets (all buckets except b1 in case of P1 and b2 in case
of P2) is T on both the processors. Then the execution-time T1

on processor P1 is T +
(
18,000

2

)
= T + 161, 991, 000, and T2 on

processor P2 is T +
(
300
2

)
= T + 44, 850. To compute T , sup-

pose the 60% of the singleton buckets get uniformly distributed.
So, 96k (60% of 0.16M) of the buckets at P1 and P2 each have
no contribution to T . Suppose the remaining 64k buckets get 30
records each (which gives an approximate upper bound on T as-
suming 99.9% of the buckets have less than 30 records). Then,
T = 64, 000×

(
30
2

)
, i.e., 27, 840, 000, so that T1 = 189, 831, 000

and T2 = 27, 884, 850. So the computation skew T1
T2
≈ 6.8. Em-

pirically, even with uniform distribution of buckets across proces-
sors, we still find sb1 ≈ 20.

Thus, even if the distribution of 150 large-sized buckets is uni-
form across the 100 processors, still any processor getting two
large-sized buckets results in significant computation skew for
BCP. On the other hand, since RCP distributes computations by
records, with the number of computations at a record directly pro-
portional to the sum of its bucket sizes (rather than the square of
bucket size as in BCP), the resulting computation skew is relatively
small.

4. RELATED WORK
Parallel entity resolution (ER) using three distributed computing

paradigms has been described in [23]: distributed key-value stores,
MR, and bulk synchronous parallellism. Their strategy is to per-
form pair-wise comparisons followed by connected components.
The bulk synchronous parallel (BSP) algorithm in [23] is related
to the graph-parallel model. However, they do not use any accel-
eration strategy (such as LSH) to group candidate pairs; neither do
they deal with the issue of load-imbalance (skew).

Other parallel implementations for entity resolution have been
proposed in [3, 11, 7, 13], but none of these address the issue
of skew. The D-Swoosh family of algorithms in [3] implements
R-Swoosh based IMM [4] by distributing the task of comparing
records to multiple processors by using scope and responsibility
functions, where the scope function decides the processors where a
record will be sent to, and the responsibility function decides which
processor will compare a given pair of records. In one particular
domain-dependent strategy called Groups, records are assigned to
groups, and two records are compared only when they belong to the
same group. This is similar to the idea of buckets in the context of
BCP algorithm. However, in Groups-based D-Swoosh, each group
is assigned to one processor, whereas in BCP, multiple buckets end
up being assigned to the same processor.

The Dedoop tool described in [14] borrowing ideas from another
work by the same authors in [15], is a MR-based entity resolution
tool that includes different blocking techniques, provides strategies
to achieve balanced workloads, and also provides redundant-free

47

comparisons when multiple blocking keys are used. Load balanc-
ing in Dedoop is achieved through an additional MR step before
the actual matching job to analyze the input data and create a block
distribution matrix (BDM). This BDM is then used by, for exam-
ple, the BlockSplit strategy to split the match tasks for large-sized
blocks into smaller match tasks for sub-blocks, ensuring all com-
parisons for the large-sized block gets done. Dedoop considers
only pair-wise comparisons and does not perform IMM for which
their load-balancing strategy may not work. Similar to our RCP
approach, where a pair of records co-occurring in multiple buck-
ets is compared only once, Dedoop also has provision for avoiding
redundant comparisons when multiple blocking keys are used by
comparing record-pairs only for their smallest common blocking
key.

The stragglers problem in the context of MR, in general, has
been discussed in [17, 21, 16]. The basic idea to avoid load imbal-
ance, due to large number of values for a particular reduce-key, is to
somehow split the keys with large loads into multiple sub-keys that
can then be assigned to different reducers. Using such solutions in
the context of Iterative Match-Merge for the values (records) at a
reduce-key is not straight-forward and can be a direction for future
research.

In [17], it is shown that when the distribution f(x) of the number
of reduce-keys receiving x values follows a Zipf distribution, i.e
f(x) ∝ 1

x
, and each reduce task performs O(x) work, then the

maximum speedup is around 14. This suggests that the situation
will be worse in our case when the amount of work done for the task
with x elements is O(x2), thereby justifying our RCP approach
further.

Various grouping techniques such as sorted-neighborhood index-
ing and Q-gram-based indexing have been proposed to reduce the
set of candidate pairs, as surveyed in [6]. Locality Sensitive Hash-
ing (LSH) for entity resolution has been discussed in [12].

5. CONCLUSIONS AND LEARNINGS
We set out to develop a parallel implementation of entity res-

olution so as to handle with cases involving billions of records
and hundreds of millions of entities. The bucket-parallel approach,
which is natural using MR, results in significant skew. The record-
parallel approach emerged as a natural alternative and turned out to
have better load-balancing properties especially in the presence of
severe skew, which arises naturally in hashing where some buckets
corresponding, say, to very common names, end up with a large
number of records.

Many problems involving evaluating pair-wise similarity of large
collections of objects can be efficiently accelerated using proba-
bilistic hashing techniques such as LSH, in much the same manner
as we have accelerated IMM-based entity resolution. Clustering
using canopies, similarity joins, feature-based object search as well
as duplicate-detection in object databases (such as for biometric
applications) are some such examples. In all such cases parallel
implementation can be done bucket-wise or record-wise, and the
advantages of the record-parallel approach can be derived when-
ever hashing is expected to result in skew due to some features
being much more heavily shared across objects than others.

Last but not least, note that even in the BCP approach, we avoid
sending records to singleton buckets; i.e., we first form buckets
using just record-ids and then send the more voluminous actual
records only to non-singleton buckets. Since we find that over 60%
buckets are singletons in our sample data, this optimisation is fruit-
ful even though it costs an additional communication step. Upon
reflection we realised that other scenarios present a similar oppor-
tunity for optimisation: Consider a multi-way join implemented in

MR, but where some attributes are large objects such as images or
videos. Even for normal joins (on say, object-id, i.e., not similarity
joins), traditional MR implementations would ship entire records
to reducers, including those that never match with others and are
therefore absent in the final result. In such cases, eliminating sin-
gletons via an initial phase is an important optimisation that applies
both for MR as well as graph-based parallelization.

6. ACKNOWLEDGEMENT
The authors would like to thank Jeffrey D. Ullman for suggesting

that while the RCP approach may have some advantages, the BCP
approach would have lower communication costs; so a thorough
analysis is in fact required.

7. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In
Foundations of Computer Science, 2006. FOCS ’06. 47th
Annual IEEE Symposium on, pages 459–468, 2006.

[2] C. Avery. Giraph: Large-scale graph processing
infrastructure on hadoop. Proceedings of the Hadoop
Summit. Santa Clara, 2011.

[3] O. Benjelloun, H. Garcia-Molina, H. Gong, H. Kawai,
T. Larson, D. Menestrina, and S. Thavisomboon. D-swoosh:
A family of algorithms for generic, distributed entity
resolution. In Distributed Computing Systems, 2007. ICDCS
’07. 27th International Conference on, pages 37–37, 2007.

[4] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. Whang, and J. Widom. Swoosh: a generic approach to
entity resolution. The VLDB Journal, 18(1):255–276, 2009.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations.
Journal of Computer and System Sciences, 60(3):630–659,
2000.

[6] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. Knowledge and Data
Engineering, IEEE Transactions on, 24(9):1537–1555, 2012.

[7] P. Christen, T. Churches, and M. Hegland. Febrl âĂŞ a
parallel open source data linkage system. In H. Dai,
R. Srikant, and C. Zhang, editors, Advances in Knowledge
Discovery and Data Mining, volume 3056 of Lecture Notes
in Computer Science, pages 638–647. Springer Berlin
Heidelberg, 2004.

[8] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: Scalable online collaborative filtering. In
Proceedings of the 16th International Conference on World
Wide Web, WWW ’07, pages 271–280, New York, NY, USA,
2007. ACM.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51:107–113,
Jan. 2008.

[10] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K.
Salmon, and D. W. Walker. Solving Problems on Concurrent
Processors. Vol. 1: General Techniques and Regular
Problems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1988.

[11] H.-s. Kim and D. Lee. Parallel linkage. In Proceedings of the
Sixteenth ACM Conference on Conference on Information
and Knowledge Management, CIKM ’07, pages 283–292,
New York, NY, USA, 2007. ACM.

[12] H.-s. Kim and D. Lee. Harra: Fast iterative hashed record
linkage for large-scale data collections. In Proceedings of the

48

13th International Conference on Extending Database
Technology, EDBT ’10, pages 525–536, New York, NY,
USA, 2010. ACM.

[13] L. Kolb, H. Köpcke, A. Thor, and E. Rahm. Learning-based
entity resolution with mapreduce. In Proceedings of the
Third International Workshop on Cloud Data Management,
CloudDB ’11, pages 1–6, New York, NY, USA, 2011. ACM.

[14] L. Kolb, A. Thor, and E. Rahm. Dedoop: efficient
deduplication with hadoop. Proceedings of the VLDB
Endowment, 5(12):1878–1881, 2012.

[15] L. Kolb, A. Thor, and E. Rahm. Load balancing for
mapreduce-based entity resolution. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on, pages
618–629, 2012.

[16] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A study of
skew in mapreduce applications. Open Cirrus Summit, 2011.

[17] J. Lin. The curse of zipf and limits to parallelization: A look
at the stragglers problem in mapreduce. Proceedings of 7th
Workshop on Large-Scale Distributed Systems for
Information Retrieval, pages 57 – 62, 2009.

[18] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed graphlab: A framework for
machine learning and data mining in the cloud. Proc. VLDB

Endow., 5(8):716–727, Apr. 2012.
[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 135–146, New York, NY, USA,
2010. ACM.

[20] A. Rajaraman and J. Ullman. Mining of Massive Datasets.
April 2010.

[21] S. R. Ramakrishnan, G. Swart, and A. Urmanov. Balancing
reducer skew in mapreduce workloads using progressive
sampling. In Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC ’12, pages 16:1–16:14, New York,
NY, USA, 2012. ACM.

[22] S. Salihoglu and J. Widom. Gps: A graph processing system.
Technical Report, Stanford University, 2013.

[23] C. Sidló, A. Garzó, A. Molnár, and A. Benczúr.
Infrastructures and bounds for distributed entity resolution.
In 9th International Workshop on Quality in Databases,
2011.

[24] T. White. Hadoop: The Definitive Guide: The Definitive
Guide. O’Reilly Media, 2009.

49

Modular Data Clustering - Algorithm Design beyond
MapReduce

Martin Hahmann, Dirk Habich, Wolfgang Lehner

Technische Universität Dresden
Department of Computer Science

Database Technology Group
01062 Dresden

{martin.hahmann; dirk.habich; wolfgang.lehner} @tu-dresden.de

ABSTRACT
In the context of Big Data, flexible and adjustable data analytics
become more and more important, whereas an efficient, scalable
and fault-tolerant execution is required as well. To fulfill the flex-
ibility as well as the execution requirements, the specification of
the analysis methods have to be in an appropriate and easy ad-
justable manner. The MapReduce approach has demonstrated that
such flexible specification as well as scalable execution is possi-
ble and applicable. However, the MapReduce programming model
is too generic and complicates the specification from a data anal-
ysis point of view. Therefore, we propose a novel programming
approach using well-defined modular building blocks for a specific
and highly utilized data analysis domain named data clustering in
this paper. Our approach offers many advantages: (i) a unified and
specific instruction set for data clustering which eases understand-
ing and algorithm adaptation in an abstract way, and (ii) enables
an efficient and scalable execution of all data clustering algorithms
based on an efficient mapping of the unified instruction set to a
specific target environment is possible.

1. INTRODUCTION
In order to efficiently process and analyze massive data, highly

scalable parallel data processing platforms have been developed
[16]. In this area, MapReduce [7] is a well-establish programming
and execution framework. A MapReduce cluster is able to scale to
thousands of commodity computer nodes in a fault-tolerant man-
ner. Furthermore, the programmers can parallelize their applica-
tions in an easy way by implementing map and reduce functions to
transform and aggregate data, whereas the underlying data struc-
ture consists of (key,value) pairs. As shown in different application
domains, many algorithms fit perfectly into the MapReduce model,
such as word counting in information retrieval or equi-join queries
in databases.

Generally, the success of MapReduce is based on the simple and
flexible programming model with the ability to execute the applica-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

tion in a highly parallel and fault-tolerant fashion [7, 16]. Neverthe-
less, the MapReduce model has several shortcomings. For exam-
ple, one drawback of MapReduce is the missing support for itera-
tive computations. However, many data analysis techniques require
those iterative computations, therefore Bu et al. [4] have proposed
an extension to MapReduce. A second drawback is that MapRe-
duce itself does not support any high-level language like SQL in
database systems. Users always have to code their operations in
map and reduce functions, whereas they have to consider the (key,
value) data structure. Mapping of individual data structures to (key,
value) pairs is not always trivial [2]. To overcome this issue, a vari-
ety of projects aim at providing higher-level interfaces. An example
is Jagl1 as a declarative query interface with rich data processing
features such as transformation, filtering, join processing, grouping
and aggregation. The Jaql scripts are automatically compiled and
executed as MapReduce jobs.

However, the available higher-level interfaces focus on data trans-
formation and processing tasks. To support deeper analytics as nec-
essary for Big Data, Das et al. [6] integrate the statistical analysis
system R2 in the MapReduce system Hadoop. This integration is
done on the language level by combining Jaql with R scripts as
well as on the execution level using a R-Jaql bridge between R and
Hadoop. The advantage of this approach is the efficient utilization
of the rich functionalities of R for analytical task. From a usabil-
ity point of view, this integration fits perfectly, because users can
immediately start deep analytics on their data using standard func-
tions. The disadvantage of this approach is availability of two dif-
ferent runtime infrastructures which have to interact to determine a
result. Furthermore, this language approach of Jaql combined with
R is not well suited for the specification of new analysis methods
in a MapReduce style, so that these methods are finally scalable on
a highly parallel platform.

To tackle the flexible specification or engineering of analytical
methods for large scale analytics, we propose an alternative ap-
proach with regard to modular algorithm design inspired by MapRe-
duce. We illustrate our approach using algorithms from data min-
ing, in particular from the data clustering domain. Fundamentally,
data clustering is a highly applicable analysis method that is used
to reduce the amount of data or to gain understanding and acquire
novel, previously unknown knowledge. The task of data clustering
is to partition a set of objects into groups—so called clusters—in a
way that similar objects are put in the same cluster, while dissimilar
objects are located in different clusters. To determine such cluster-

1https://code.google.com/p/jaql/
2http://www.r-project.org

50

ing result, a large algorithmic landscape has been established. To
get an idea of this landscape, in terms of size, we looked through
the proceedings of the SIGKDD and ICDM data-mining confer-
ence from 2005 and 2012 and counted more than 120 papers in-
troducing new algorithms or variants resp. optimization of existing
techniques. This multitude of algorithms exists because it is impos-
sible to design an algorithm that automatically produces optimal
results for any data set or application, thus a lot of techniques are
highly specialized and custom-made for specific scenarios or types
of data sets.

Our Contribution
In this paper, we present our modular language approach for the
description and specification of clustering algorithms. Our design
principles are (i) to establish a unified view on clustering algorithms
using a compact set of instructions and (ii) to hide details of paral-
lel execution on the programming level as successfully practiced by
MapReduce. Both design principles enable users to focus only on
the clustering analytical part, without considering the efficient ex-
ecution on a scalable data processing platform. Generally, our ap-
proach is based on a mathematical formulation and utilizes a matrix
concept for the unified representation of all data aspects. As a re-
sult, clustering specific operations are expressed as functions over
matrices. From a language perspective, this eases understanding
and engineering of clustering algorithms and allows their compari-
son. Furthermore, our modular approach offers an efficient way to
adapt clustering algorithms. From a execution perspective, several
different execution and optimization strategies are possible.

Outline
In Section 2, we review essentials of data clustering by decom-
posing clustering algorithms into conceptual components. These
conceptual components are concretized in Section 3 and 4 with a
data model, building blocks in the form of matrix functions and
control-flow structures. In Section 5, we demonstrate how clus-
tering algorithms are transcribed using our approach. For this, we
choose algorithms from different clustering classes to emphasize
the wide-range applicability of our approach. The contributions of
our approach and its potentials are described in detail in Section
6. The future development of our concepts is described in Section
7, before we review existing related work in Section 8. The paper
closes with a short summary in Section 9.

2. ESSENTIALS OF DATA CLUSTERING
To reach our goal of a unified and specific instruction set for

clustering algorithms, we first need to decompose the correspond-
ing algorithms into their conceptual components. This decompo-
sition concentrates only on the core clustering procedure and does
not consider pre- and post-processing tasks like feature selection,
data cleansing and so on. As starting point, we assume the a general
definition of data clustering [12]: "Data clustering is the partition-
ing of a set of points into groups—so called clusters—in a way that
similar points are put in the same cluster, while dissimilar points
are located in different clusters."

From this definition, we can derive certain fundamental tasks
that have to be performed in order to generate a clustering. The
first fundamental task an algorithm needs to fulfill, is to measure
the similarity of points. This is a prerequisite for the second task,
which is to explicitly choose the points that are similar and should
be grouped together. The actual grouping of points, forms the third
and final task that must be executed in order to create a clustering.

2.1 Basic Elements

The three identified tasks, which are observable in all clustering
algorithms, are independent and have to be executed in sequence.
As result of this abstract consideration, we define the phases of
a clustering algorithm, that form the frame for our algorithm rep-
resentation. This general frame needs to be fitted with additional
building blocks to complete the description of an algorithm. In the
following, we introduce each phase and investigate its basic ele-
ments, in order to find these blocks.

Evaluation Phase
During this first phase, the similarity between all points or between
all points and some set of references is measured. For the deter-
mination of similarity between two objects, a dedicated function is
necessary. In data clustering, there are two general approaches: (i)
similarity functions and (ii) distance functions [12]. While the for-
mer express the degree of equality, the latter point out the amount
of disagreement between objects. As both options are analogous,
we assume that similarity is expressed through distances, without
losing generality. Based on this, distance measure becomes the first
basic element of the evaluation phase.

A distance measure takes at least two values as input and outputs
one value. Obviously, in data clustering one input are the points
which are to be clustered. The second input offers some kind of
variability. On the one hand, there exist algorithms like DBSCAN
[8] that calculate all point-to-point distances and thus use points
also as second input. On the other hand, approaches like k-means
[10] employ a special set of representatives/centroids as second in-
put for distance computation. To combine both alternatives, we
introduce the term references for the second input of the distance
measure. The references can be (i) equal to points, (ii) a subset of
points or (iii) a set of objects that are not part of points but share its
feature-space. Following this, we add these two inputs to the set of
basic elements for the evaluation phase.

The output of the distance measure consists of distances which
is the next basic element. With this, we identified the four basic
elements of the evaluation phase points, references, distances, and
distance measure that allow a more specific definition of its task.
In essence, during evaluation the distance measure is used to cre-
ate a relation between points and references that represents their
similarity and is explicitly expressed in the form of distances. It is
important to mention that the distance itself is not the only result of
evaluation, but the relation-triple point-distance-reference.

Selection Phase
In this phase, the points that are eligible to be grouped together
are selected according to the algorithms specification. For this, the
point-distance-reference triples generated by evaluation are taken
as an input. Referring to our initial clustering definition, the goal
is that only points which are similar should overcome the selection
process in order to be clustered together. Therefore, it is necessary
to define the constraints to acquire the status "similar" and to test all
points whether they fulfill these or not. For this, we propose filters,
which represent the basic element of this phase. Utilizing a set of
filters, the selection phase tests each point-distance-reference triple
coming from evaluation and only passes on those that comply.

Association Phase
During this phase, the previously chosen points are associated with
a cluster. The input of the association phase is a set of point-
distance-reference triples that passed the selection phase and have
to be grouped together to create a clustering. This clustering forms
the output of this phase and qualifies as basic element. Like the

51

Phase Input Processing Output
Evaluation Points, References Distance Measure Point-Distance-Reference

Triples
Selection Point-Distance-Reference Filters Point-Distance-Reference

Triples Triples
Association Point-Distance-Reference Association Function Adjacencies

Triples (Point-Reference Tuples)
Optimization - - -

Figure 1: Overview Clustering Algorithm Phases and Basic Elements.

similarities from evaluation, a clustering is made up of relations
i.e. the affiliation between points and clusters. That means dur-
ing the association phase point-distance-reference triples have to
be transformed into point-cluster tuples. To perform this task, we
define an association function as basic element.

For some algorithms, this is already enough to create a clustering
e.g., the association function of k-means effectively takes a point-
distance-reference triple, removes the distance and adopts the ref-
erence as cluster. But not all clustering techniques work in that
way. For example, DBSCAN [8] first associates a core-object with
its neighborhood–by creating point-reference tuples–before the the
actual clusters are formed on the basis of overlapping neighbor-
hoods. Additionally, the direct creation of point-cluster tuples in
DBSCAN is prevented by the fact that clusters are not known in
advance. This issue necessitates a stopover between association
function and clustering, which forms our next basic element: ad-
jacencies. With it, we describe the association phase as follows:
incoming point-distance-reference triples are transformed by the
association function into adjacencies from which the clustering is
derived. The transition from adjacencies to clustering is a part that
can be done in a variety of ways, which is why we do not appoint
basic elements for it on this conceptual level. Doing so would result
in a substantial set of basic elements, that would be contradictory
to our goal of finding only fundamental components. However, we
solve this problem in a later section.

Optimization Phase
This fourth phase originates from analyzing existing algorithms
that often feature parameter adjustments and target function maxi-
mization leading to multiple iterations of the first three phases. As
the name optimization implies, this phase is mainly concerned with
improving the result generated by the preceding phases. Therefore,
we assume that it is optional in contrast to the other three phases,
that are mandatory for each clustering algorithm. The problem of
variety we explained in the association phase, holds for this phase
as a whole. As optimization can involve tasks like parameter adjust-
ment, updates to points or references, iteration etc. the derivation
of a minimal set of basic elements is not feasible at the moment.
As stated before, we will solve this problem in a later section by
moving to a different level of abstraction.

2.2 Summary
Figure 1 summarizes our conceptual decomposition of cluster-

ing algorithms. We identified three core phases which have to be
executed and one additional phase for several optimizations. Fur-
thermore, we defined the basic elements for each phase. In the fol-
lowing sections, we concretize our approach and iron out the flaws
still existing at this point.

3. DATA MODEL

To realize our concept of a unified and clustering-specific in-
struction set, we have to define a data model for our presented input
and output elements: points, references, point-distance-reference
triples (distances), adjacencies and clustering at first. In our ap-
proach, we propose to use matrices as a unified formal representa-
tion for all input and output basic elements.

Points P and References R
When it comes to the formal definition of a dataset for clustering,
existing literature generally uses multi-dimensional vectors to rep-
resent the location of data points inside a feature-space. Following
this procedure, we define our basic element points as a set P of
f -dimensional vectors #�p = {p0, . . . , pf} where (0 ≤ j ≤ f) and
with n = |P |. This set can be easily converted into a matrix P by
interpreting each vector #�pi as a row pi,∗ of said matrix, thus giving
P the dimensions of n rows and f columns. We stated earlier, that
the set of references can either be a subset of P or just be located in
the same feature space. This allows us to define it similar to P , as
set of vectorsR, containing #�r = {r0, . . . , pf}where (0 ≤ j ≤ f)
and k = |R|, which forms a matrix Rk×f .

Distances D, Adjacencies A, Clustering C
While P and R basically express the values of features per point,
the remaining actors are instantiations of relations between ob-
jects e.g. point-distance-reference triples from evaluation or point-
cluster tuples from clustering. For the formal description of these
actors, matrices are especially convenient as the objects involved in
the relation correspond to a row and column pair which addresses
the matrix element holding the value of the actual relation. As an
illustration, we define the basic element distances as a matrix D
with n rows and k columns, where n = |P | and k = |R|. Each
element dij of D relates to a point/row pi,∗ of P and a reference
rj,∗ of R. Thus, dij contains the distance between pi,∗ and rj,∗.
Besides triples, this description can be translated smoothly to tu-
ples like point-cluster from clustering. Such a tuple point-cluster
expresses an existing relation in a binary fashion i.e. a relation be-
tween a point and a cluster only exists, if the corresponding tuple
exists. This can be described with a binary matrix, where a value of
1 at position (i, j) indicates an existing relation between the objects
referenced by i and j, while 0 states the opposite. Accordingly, we
define adjacencies as binary matrix A having the same dimensions
as D. To complete our description, we also define clustering as
binary matrix C with n rows and a number of columns determined
by the number of clusters found.

Notation
Fundamentally, the notation for our reduced instruction set cor-
responds to a pseudocode notation. Matrices are denoted with a
single capital letter e.g. D for the distances. Additional designa-
tion is done in the sub- and superscript of the letter. To distinguish
different matrix versions we use the superscript: DI and DII are

52

versions of D after 1 resp. 2 function applications, while Dx and
Dx+1 designate the versions of D that are in effect for the current
resp. next iteration of the algorithm. With the subscript, matri-
ces can be described in more detail e.g. DR denotes the distances
between all references R.

4. BUILDING BLOCKS
So far, we defined the matrix as unified data model for our re-

duced instruction set in the previous section. Next, we have to find
a fitting formal representation for the remaining basic elements like
distance measure, filters and association function as well as a nec-
essary set of control flow structures.

4.1 Functions
We describe the remaining basic elements as functions over ma-

trices. Whereas, we use infix notation for elementary matrix func-
tions: addition, subtraction, multiplication and entry wise multipli-
cation, while prefix notation is used for all other functions.

A ◦B → C . infix example: entry wise product
function(A)→ AI . prefix example: single input function
function(A,B)→ CI . prefix example: double input
function

In the next step, we formally define the functions for the pro-
posed basic elements distance measure, filters and association func-
tion.

Distance Function
We start with the distance measure dist, which takes a pair of rows
(pi,∗, rj,∗) from P andR and assigns a scalar value to it, that repre-
sents the distance between the corresponding objects. The abstract
function dist can be defined as:

dist : Mn×f ×Mk×f → Mn×k

(P,R) 7→ D

dij = f(pi,∗, rj,∗)

Filter Functions
The task of a filter is to check whether a matrix or one of its ele-
ments fulfills certain conditions and to pass them on or sort them
out accordingly. Thus a filter resembles an if-then statement. De-
scribing this behavior by using mathematical functions requires the
breakdown of the task and the establishment of some conventions.
The defining part of each filter is its condition, which can be de-
scribed in mathematical terms as function with the co-domain 0, 1,
representing the results false and true. A simple threshold condi-
tion, that is satisfied by all numbers smaller 10 could be defined
as:

threshold : R→ {0, 1} , X 7→ XI

xI =

{
1, if x < 10

0, otherwise.

Adopting this notation for each condition would be pretty ex-
tensive, so we settle for a minimized version and only denote the
condition leading to true resp 1 as the function name. Thus, nota-
tion of the preceding definition is reduced to 〈x < 10〉.

With this convention, we have to look into the ’then’ part of a
filter. While elements that fulfill the provided condition are left

untouched, those who fail have to be sorted out or rather deleted.
Actual deletion of elements or matrices cannot be modeled as math-
ematic function, therefore we need a workaround for this issue. Let
us regard k-means as an example, where the minimal point-cluster
distance is evaluated. Assume a row d2,∗ = (d21, d22, d23, d24),
fromD whose components show the distances between point p2,ast
and the four centroids of R. The filter necessary for k-means re-
quires to sort out all components that are not minimal. Without the
capability for removal, it is necessary to define a neutral element
to which all inputs that fail the condition are mapped. For our sce-
nario, we state this neutral element as 0, which allows us to define
the minimum filter as:

minFilter : M1×k → M1×k

(D, 〈x = min(D)〉) 7→ DI

dIij = 〈x = min(D)〉 (dij) · dij
Assuming d23 as minimum of d2,∗, the filtered row becomes

dIi,∗ = (0, 0, d23, 0). Using this approach, the subsequent func-
tions in a clustering algorithms have to be aware of 0 as neutral
element. Our filter description is a composite of a variable condi-
tion and a fixed function that maps to the neutral element. In the
context of clustering algorithms, filters cannot exist without condi-
tions. However, conditions can exist by themselves and are neces-
sary to describe branching and conditional execution of functions.
Thus, standalone conditions are a way to realize control flow. The
following pseudocode shows the notation for both cases:

filter(M, 〈cond〉) . input for filter
if cond then function . standalone use

In both applications, the condition itself is denoted as boolean
expression 〈cond〉, which is sufficient for its utilization as part of
a filter. In standalone use a condition affects the control flow i.e.
some actions are performed only if the condition is met. To illus-
trate this, we embed 〈cond〉 in an if-then block, where the then part
contains the action to be executed.

Association Function
By executing filters, a modified version of the input is created. For
the selection phase, this is the modified distance matrix DI , which
is passed on to the association-function. The goal of this function
is the transformation of distances into adjacencies i.e. the point-
distance-reference triples that made it past the selection phase, must
be converted into point-reference tuples. Basically DI is converted
into a binary matrix, where a value of 1 represents an existing ad-
jacency. Due to the filtering, non-existent adjacencies have already
been mapped to 0 which leaves the task of mapping every non-zero
value to 1. Based on this, we define the binary association function
assoc as

assoc : Mm×n → Mm×n

DI 7→ A

aij = sgn(dIij)

where sgn() is the sign function. This function is quite conve-
nient as it keeps the neutral element 0 and maps all positive values
to 1. Although sgn() can yield −1 for negative inputs, this does
not need to be considered in our setting as distances are always
positive.

53

4.2 Control-Flow Structures
Until now we have not discussed one basic element which is cru-

cial for almost every clustering algorithm but whose necessity is not
evident. This additional basic element is the loop, which is a part
of the control flow that we have not considered so far, with stan-
dalone conditions being the exception. The incorporation of loops
in our scenario is tricky as they cannot be mathematically mod-
eled, thus they are defined outside the mathematical domain. To
describe clustering algorithms, we basically need two loop types: a
for-each loop for element-wise traversal of datasets or clusterings
and a repeat-until loop for conditioned iterations. These two loops
are denoted with the following pseudocode:

for each element of M do
〈body〉

end for→MI

repeat with A
〈body〉

until cond output→ B

At the top, we find the block for the for-each loop, which is gen-
erally used to traverse datasets or clusterings by element. The open-
ing statement of the loop specifies the traversed matrix M and the
element/granularity of traversal: row, column or component. In our
scenario, element-wise traversal is done by splitting up the source
matrix into element-matrices—rows, columns or components at the
beginning of the loop. After the split, the elements are processed in-
dividually according to the instructions of the 〈body〉. As we want
a single matrix as output again, the processed elements have to be
re-assembled at the end of the loop e.g. row-matrices are appended.
This re-assembly is implicitly assumed and not specifically noted
in pseudocode. The loop output is denoted with the assignment
after end for.

In addition to the described functionality, we use for-each loops
for the actual removal of rows and columns from matrices. This is
sometimes necessary when clustering algorithms delete references
or clusters during optimization. With filters, we introduced map-
ping to the neutral element 0 as a means to tackle deletion. This
works well and is also necessary for the clear definition of func-
tions. However, the handling of whole rows and columns of zeros
can become challenging e.g. it can lead to empty clusters in C
or cause problems during the selection phase. Some of this issues
could be tackled by introducing constraints to each function to ig-
nore all-zero rows/columns. But this would be complex and not
an overall solution. Our described for-each loop offers an elegant
way to solve this problem. By inserting an appropriate condition
before matrix reassembly at the end of the loop we prevent zero
element-matrices from entering the output matrix. Since loops are
outside the mathematic formalism anyway, adding row/column re-
moval here provides us with a convenient tool without compromis-
ing the formal description of the remaining building blocks.

The repeat-until loop is used to represent conditioned loops. This
kind of loops is normally used to control algorithm iterations, often
during minimization/maximization of target functions like the sum
of squared errors in k-means [10]. The stopping condition for the
loop is always specified after the closing until statement. A repeat-
until loop has one or more input matrices—denoted in the opening
statement—which are continuously processed from iteration to it-
eration and an output matrix, obtained when the loop finishes. This
output matrix can be either a processed version of the input or an
assembly of element-matrices generated during the loop. The par-
ticular output type can be derived from the 〈body〉 of the loop.

4.3 Summary
In Section 2, we introduced the core of a clustering as a sequence

of the phases evaluation, selection and association that acts as a
general frame. Now that we finished the description of our building
blocks and defined their syntax, we are able to concretize these
phases and flesh out the mandatory algorithm core:

• evaluation - This phase requires at least 4 building blocks:
one function playing the role of distance measure and three
matrices acting as points, references and distances.

• selection - This phase consists of at least one filter or condi-
tion.

• association - For this phase 3 building blocks are mandatory:
two matrices acting as adjacencies resp. clustering and the
association function.

Beyond this essential structure, arbitrary clustering functionality
can be added to each of these phases—including optimization—
by utilizing the existing building blocks. We move on to the next
section, where we demonstrate how clustering algorithms are tran-
scribed using our proposed approach.

5. TRANSCRIPTION OF ALGORITHMS
This section demonstrates how clustering algorithms are tran-

scribed using our approach, whereas we utilize two prominent clus-
tering algorithms k-means[10] and DBSCAN[8]. While k-means is
a representative of the clustering partitioning alorithm class, DB-
SCAN is from a completely different classed named density-based
clustering.

5.1 k-means
Our representation of k-means is shown in Algorithm 1 and be-

gins with the evaluation phase in which four building blocks take
part. Three of these are actors: two matrices P and R that contain
the points of the dataset and the k initial centroids as rows, as well
as the distance matrix D. The fourth is the distance measure used
to generate D from P and R. For k-means, this role is taken by the
euclidean distance, denoted by the function L2 which we define for
our matrix setting as:

L2 : Mn×f ×Mk×f →Mn×k

(P,R) 7→D with dij =

√√√√
f∑

l=1

(pil − rjl)2

where pi,∗ and rj,∗ are rows of their respective matrices. The
resulting matrix D provides the input for the following selection
phase, which starts with a for-each loop for row-wise traversal of
D (6). Due to the evaluation phase, each row di,∗ contains all
distances between point pi,∗ and R that we need for the selection.
The following filter function selects the minimum element dij from
each row, which reflects the target function of k-means. At the
end of the loop, the processed rows are assembled into the filtered
matrix DI , that is passed on to the association phase. There, our
assoc function is deployed to generate the binary adjacency matrix
A. Due to the character of k-means, A basically contains the final
cluster assignments. As centroids resp. references represent the
clusters, A is simply adopted as C (12).

With the core phases finished and a clustering result generated,
k-means enters its optimization phase which updates the centroids
(references) for the next iteration. Each centroid is recalculated

54

Algorithm 1 k-means
1: repeat with Rx

2: phase EVALUATION
3: dist.L2(P,R

x)→ D
4: end phase
5: phase SELECTION
6: for each di,∗ of D do
7: filter(di,∗, 〈x = min(di,∗)〉)
8: end for→DI

9: end phase
10: phase ASSOCIATION
11: assoc(DI)→ A
12: A→ C
13: end phase
14: phase OPTIMIZATION
15: updt(CT , P)→ Rx+1

16: end phase
17: until Rx = Rx+1 output→ C

as the arithmetic average of all points that were assigned to it in
the current iteration. In our matrix-based setting, we realize this
by using the matrix-multiplication as a template with C and P as
input. The first input is matrix C that contains the point-cluster
assignments and has the dimensions n×k with k being the number
of references/centroids. The second input P has the dimension n×
f with n being the number of points and f being the number of
features of the dataset. By multiplying C with P we want to create
an updated version of R having the dimension of k × f . For this,
the number of columns of C has to match the number of rows in
P , which is not the case as k 6= p. Therefore, we transpose C to
CT which leads to the required column-row-match and results in a
k× f matrix Rx+1 that contains the updated centroids for the next
iteration. The function used for calculation of the update is defined
as:

updt : Mk×n ×Mn×f → Mk×f (1)

(CT , P) 7→ Rx+1 (2)

rij =

∑n
l=1 cil · plj∑n

l=1 cil
(3)

with ci,∗ being a row of CT and p∗,j being a column of P . Ba-
sically, this function uses each cluster represented by a binary row
of CT to select those values from the feature represented by p∗,j
that belong to its members. This selection is summed up and nor-
malized with the number of cluster members obtained by summing
up all elements of binary ci,∗.

The whole algorithm is surrounded by a repeat-until loop that de-
scribes the iteration of k-means using the updated references/centroids
ofRx+1. The stopping criterion, shown after until (17) is evaluated
before a new iteration is started. For our depiction we chooseRx =
Rx+1 as stopping condition and quit the algorithm if the refer-
ences/centroids no longer change, which indicates stabilized clus-
ters. Of course other stopping conditions can be used e.g. reaching
a fixed number of iterations.

5.2 DBSCAN
DBSCAN [8] is a density-based clustering algorithm that de-

fines clusters as dense regions separated by regions of lower den-
sity. The algorithm uses two parameters ε and minPts to define
a density threshold. With ε a neighborhood is defined around each
point p. If this neighborhood contains at least minPts additional

points, p is considered as member of a dense area i.e. a cluster
and is named core-object. Sets of core-objects with overlapping
ε-neighborhoods are merged in order to create clusters. This is
done recursively i.e. if p is a core-object each member of its ε-
neighborhood is checked for the density condition.

Algorithm 2 DBSCAN
1: phase EVALUATION
2: dist.L2(P,R

x)→ D
3: end phase
4: phase SELECTION
5: for each di,∗ of D do
6: filter(di,∗, 〈x < ε〉)
7: sgn(dIi,∗)

8: filter(dIi,∗,
〈∑n

j=0 x ≤ minPts
〉
)

9: end for→DI

10: end phase
11: phase ASSOCIATION
12: assoc(DI)→ A
13: merge(A)→ C
14: distinct(C)→ Cdistinct

15: end phase

The fully transcribed version of DBSCAN using our approach
is shown in Algorithm 2. Although the evaluation phase may look
the same as with the previously described algorithms, DBSCAN
is different as it calculates the distances between all points, which
means P and R are actually identical. The selection phase uses a
for-each loop for row-wise traversal and contains three steps. First,
a filter is employed to remove all distances that are bigger than the
ε-neighborhood. Next sgn() is applied in preparation of the fol-
lowing filter, that tests if the neighborhood contains the necessary
number of objects by checking the sum of components of the binary
row-matrix. With the selection phase done, association starts with
the known application of assoc() (12). After that, we face a chal-
lenge as assoc() effectively creates a cluster for each core-object
and its ε-neighborhood.

Now, to determine the final clusters, overlapping ε-neighbor-
hoods have to be merged. Utilizing recursion as proposed in [8]
is not a valid approach in our matrix based setting. Therefore, we
use a repeat-until loop to connect overlapping ε-neighborhoods as
specified in Algorithm 3. For this, the adjacencies–labeled here as
Mx–are multiplied with itself and the result is transformed into the
binary Mx+1, which is the input for the next loop. With this, in-
direct/transitive cluster assignments are resolved. The loop ends if
Mx+1 does not change anymore, which means that all direct adja-
cencies have been found and the resulting clusteringC is delivered.

Algorithm 3 Transitive Merging Function: merge(Mx)

1: repeat with Mx

2: Mx ·Mx →MI

3: sgn(MI)→Mx+1

4: until Mx =Mx+1 output→Mx+1

Example matrices for this association are shown in Figure 2,
where the first three columns of Mx show the indirect cluster as-
signment of p1, p2 and p3. The matrix A = Mx is the result the
selection phase and therefore, the input of the association function.
Although the points p1,p2 and p3 form a cluster, the adjacency of
p1 and p3 is indirect via p2. After multiplication, all adjacencies
are explicit in Mx+1. While this solves the problem of merg-

55

A =Mx

1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

→

MI

2 2 1 0 0 0
2 3 2 0 0 0
1 2 2 0 0 0
0 0 0 2 0 2
0 0 0 0 1 0
0 0 0 2 0 2

→

Mx+1

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

Figure 2: DBSCAN association.

ing overlapping ε-neighborhoods into clusters, it leads to duplicate
columns/clusters. Complete explicit adjacencies mean that each
member of a cluster is associated with each remaining member i.e.
a cluster with 4 members manifests in 4 identical rows in C.

To get rid of the duplicates, we apply a duplicate elimination
function distinct (14) on the output association matrix. The algo-
rithm of this function is depicted in Algorithm 4. The function
takes Mx as input and starts by aggregating it into a row matrix of
cluster sizes Hselect. Then, a maximum filter is deployed to select
the biggest cluster and sgn() is applied to make the resulting row-
matrixHI

select binary. This is only done to implement a processing
sequence for the rows of Mx. Multiplication of HII

select with Mx

extracts a particular row matrix from Mx. This row matrix be-
comes the first row mi,∗ of Mdistinct. Example matrices for this
are shown in Figure 3. After getting the first row, we have to get
rid of all its duplicates in Mx. For this we apply sgn() to mi,∗ and
create binary (mi,∗)

I , whose transpose is multiplied with mi,∗ to
get a square filter matrix Hfilter . By subtracting it from Mx, the
processed row and its duplicates are set to zero, effectively remov-
ing them from further processing in the loop. The resulting Mx+1

enters the next iteration, where another unique row is extracted.
The loop ends when Mx+1 becomes a zero matrix, which means
all unique rows have been extracted. Examples of Hfilter , Mx+1

and final Mdistinct can be found in Figure 3, where the example
output of the association phase in Figure 2 is continued.

Algorithm 4 Distinct Function: distinct(Mx)
1: repeat with Mx

2: agg(Mx)→ Hselect

3: filter(Hselect, 〈x = max(Hselect)〉)→ HI
select

4: sgn(HI
select)→ HII

select

5: HII
select ·Mx → mi,∗ of Mdistinct

6: sgn(mi,∗)→ mI
i,∗

7: (mI
i,∗)

T ·mi,∗ → Hfilter

8: Mx −Hfilter →Mx+1

9: until
∑
Mx+1 = 0 output→Mdistinct

10: output MT
distinct

At the end of the distinct function, the result is transposed as we
want clusters to be represented in columns. Afterwards, DBSCAN
finishes as it has no optimization phase or global loop.

5.3 Summary
Due to the large number of approaches to clustering, we can-

not transcribe each method or even a representative of each larger

C =Mx

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

(a)

Hselect

3 3 3 2 1 2
(b)

HII
select

1 0 0 0 0 0
(c)

Hfilter

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(d)

Mx+1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

(e)

Mdistinct

1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0

(f)

Figure 3: Duplicate Elimination.

family of algorithms in this paper. However, we are sure that our
approach is general enough to cope with this variety. Often it seems
that a particular algorithm cannot be transcribed at first, but after re-
considering a way can be found to adapt to our setting. Sometimes,
little modification are enough, but in other cases the problem must
be rethought thoroughly to find an equivalent building block repre-
sentation. Examples include but are not limited to:

• Graph-clustering, where graphs must be transformed into a
matrix for adaptation.

• Evolutionary approaches e.g. artificial immune systems [18],
model centroids or proto-clusters as a population of cells that
is influenced by a fitness function. This can be modeled in
our approach by modifying references/clusters between iter-
ations. Creation, deletion, re-calculation as well as splitting
and merging, can be reproduced with modified matrix multi-
plications, filters and custom mathematical functions.

• Spectral clustering approaches, work with the eigenvalues of
a similarity matrix. Although it seems that this resembles our
distances D, this is not the case. As partitioning is based on
the correspondence between eigenvalues, this measure must
be considered during evaluation. In this case the initial simi-
larity matrix must be seen as an additional input.

This should only point our the versatility of our approach. We are
pretty sure that there are still a lot of further clustering approaches,
that we did not consider in detail. But we are also sure that we could
describe them with our approach after giving them some thought.
To summarize our approach offers the following advantages:

1. Easy adaptation and specification of clustering algorithms in
an abstract and implementation-independent way. In general,
our approach is designed for the data scientist.

2. The comparison of algorithms and the easy identification of
common functionalities.

56

Figure 4: Similarities of DBSCAN and AGNES.

6. CONTRIBUTIONS
Besides providing a way to specify clustering algorithms, our

building blocks approach offers several novel application possibil-
ities. Due to the use of consistent components, we can evaluate the
similarity between algorithms to a certain degree. During the tran-
scription of our example algorithms, we uncovered the existence of
several description blocks that are used by multiple algorithms e.g.
removal of duplicates and resolution of transitivity. Fig. 4 shows
a comparison of the already described DBSCAN and AGNES[12,
13] as an example from a further hierarchical clustering algorithm
class, where identical building blocks are highlighted in blue. It is
easy to see, that both methods are very similar. Evaluation phases
are identical, while the association phases show only minor differ-
ences in two lines that are necessary because each C generated by
AGNES is also considered a hierarchy level. The main differences
between both methods are located in the selection phase and dur-
ing optimization. While this allows the easy identification of an
algorithms characteristic parts, it can also be used to classify al-
gorithms. Families of algorithms that share certain traits could be
identified on the basis of commonalities. In order too find common
patterns, frequent itemset mining could be applied to a repository
of algorithms. For this, each building block is considered as an item
and each phase resp. algorithm as transaction.

Each of our phases and building blocks encapsulates a defined
functionality. Furthermore, we observed that certain blocks can be
used in different algorithms. Therefore, we do not limit our concept
to the description/translation of existing methods but also use it for
the creation of new ones. The modular character of our approach
enables algorithm creation in a novel and easy way. Basically, there
are three levels of modularity that can be used to build new algo-
rithms and are depicted in Fig. 5.

1st Level: Phase-Swap Phases realize the basic tasks neces-
sary for clustering in an algorithm-specific way. Although phases
are implemented individually, they share a defined interface. This
means, evaluation always produces a distance matrix D, selection
always uses D and creates DI , and association always creates C
from DI . With this, phases become interchangeable and form the
largest modules of our approach. The optimization phase is more
individual, but can still be swapped if only the mandatory elements
P,R,D,D’,A,C are accessed. All this allows users to easily create
new algorithms by recombining phases of available stock algo-
rithms.

2nd Level: Custom Phase This level works on the finer gran-
ularity of building blocks and enables intermediate users to cre-
ate new evaluation, selection, association, and optimization phases
from scratch. For this, existing blocks from a repository are com-
bined and fitted into our introduced phase-templates. Examples for
such blocks are updt() and distinct() from our example algorithms
section. Newly created phases can be added to the existing reposi-
tory and thus provide new options for level 1.

3rd Level: Custom Block On this level, experienced user can
freely define new building blocks e.g a new distance function or a
scenario specific variant of assoc(). In addition, block sequences
or subroutines that occur very often, can be integrated as higher-
order building blocks to ease description. Like before, new building
blocks are added to a repository, where they are available for other
users. The creation of new building blocks also makes the previous
levels more versatile.

The first and second level implement creation exclusively by
combination of modules/blocks from a repository. This makes it
possible to realize this task with interactive interfaces instead of
IDE’s normally used for software development. In Fig. 6, we
depict a prototypical interface for modular algorithm design that
shows k-means by using our building blocks as basis for the visual
elements. Each phase is marked by a different color: blue for eval-
uation, green for selection and so on. This prototype was designed
for smart devices, and allows users to swap phases by swiping and
switch building blocks by touching. If one of these actions is per-
formed, the system provides a list of alternatives, available in the
repository, from which the user can choose.

7. FUTURE WORK
Looking back at our motivation, we argued that the ever increas-

ing diversity of clustering algorithms is necessary to cope with the
individual characteristics of various data sets. Because, this diver-
sity complicates the application of clustering in the context of Big
Data, a building block approach would be desirable and was pro-
posed in this paper. Aside from supporting the specification, our
approach facilitates the adaptation of core clustering principles for
specific applications.

Generally, our modular approach consists of a few functions like
assoc, merge, updt and filter over a single data structure of type
matrix. Our next research step focuses on a general mapping of
these functions to a MapReduce infrastructure. In this step, the

57

Figure 5: Levels of modular algorithm design.

Figure 6: Prototype UI for modular algorithm design.

following challenges arise:

• As described in Section 4, the repeat-until loops are integral
part of our building blocks. Therefore, we require a MapRe-
duce infrastructure with support for iterative computations as
proposed in [4].

• The most challenging issue is the mapping of our matrices
to (key, value) pairs in MapReduce. This mapping has to
be done, so that an efficient and scalable partitioning is pos-
sible in order to parallelize necessary function evaluations.
In [14], we investigated this aspect in MapReduce and pre-
sented several approaches, whereas there exists no best fitting
approach for all cases. The best-fitting approach depends
on several properties like matrix size or number of available
nodes.

• Aside from mapping of our matrix construct, we also have
to specify physical operators for our limited set of logical
functions.

As a result of this work, we are able to transform any arbitrary
clustering algorithm specified in our building blocks into an effi-
cient and scalable execution form. Furthermore, we can optimize

the transformation by the utilization of different mapping strategies
of matrices to (key, value) pairs as well as selection of the best-
fitting physical operator for a logical building block function. For
this optimization, we have to define various optimization strategies
depending e.g., on matrix sizes or sequence of logical functions.
Furthermore, our iterations can be integrated in the optimization,
since our loops iterate either row- or column-wise over the ma-
trix. In this way, we establish a similar approach as conducted in
database systems for over 30 years with SQL as logical interface
and for each logical operator different physical operators exist. The
transformation between the logical and physical layer is done using
an optimizer component, which is responsible for efficient transfor-
mation using roles and a cost-model. In our next research step, we
want to establish such an approach for data clustering algorithms
in highly scalable parallel data processing platforms.

A second major approach to execution is direct integration into
the database. Already, approaches like SciDB [5] consider matri-
ces as first-order citizens in database management systems. This
way of integration is especially compelling as it allows a tight cou-
pling of data management and data analysis in the scope of a single
platform. Besides the deployment to different software systems,
also hardware specifics can be considered. By developing platform-
specific compilers for e.g. NUMA or GPU-centric systems, users
could create optimized versions of their algorithm libraries in an
on-demand fashion. In this case, a lot of related research is and has
been done in different domains, that can be used in our future work.
For example, efficient large matrix computation has a long tradition
as area of research in high performance computing [11, 15]. Fur-
thermore, graphic cards and CUDA are strongly geared to matrix
processing [1, 9, 17] and seem to be an ideal target architecture our
approach. In this domain, dense [1, 19] as well as sparse [3] matrix
operations are well-investigated.

8. RELATED WORK
On the one hand, our work is motivated by SciDB [5], which

only considers the storage and the processing of a natural nested
multi-dimensional array data model. One the other hand, our ap-
proach originates from the ongoing key-value hype of MapReduce
[7], because from our point of view the key-value model is not ap-
propriate for the data clustering domain. As shown in [20, 2], Map-
Reduce and an enhanced paradigm based on a key-value data model
can be used for the k-means clustering algorithm. However, the im-
plementation of essential clustering functionality is complicated by
the restricted data model. Several approaches are proposed to map
the necessary matrix data to a key-value model. One possibility is
to encrypt row and column information in the key forming a super-
key. Nevertheless, a pure matrix model as proposed in our approach
is more direct and eases the specification of clustering algorithms.

58

In a derived implementation out of our modular algorithm speci-
fication, we are able to use the key-value data model for scalable
execution.

In the context of highly scalable parallel data processing plat-
forms, the Mahout3 project has to be considered, which directly
implements various machine-learning algorithms in Hadoop. The
implementations currently neither exploit high-level data process-
ing languages built on top of Hadoop nor do they make use of
any statistical software. With more and more analysis methods are
added, leveraging existing functionality adds to the stability and
simplicity of the implementation. Instead of implementing and op-
timizing each single analysis method separately, our approach in-
troduces a novel abstraction layer on top to specify methods in an
implementation-independent way using building blocks. The build-
ing blocks have to be mapped to the execution unit, e.g. Hadoop
once and each algorithm can directly benefit. The mapping of our
building blocks is our next step as described in the previous section.

9. SUMMARY AND CONCLUSION
In this paper, we proposed our modular building blocks approach

as a unified construction kit for clustering algorithms. We decom-
posed clustering methods and derived the core of every algorithm in
the form of the three phases: evaluation, selection and association.
In addition with the optional optimization phase, this provides a
general frame for algorithm description. To fill this frame, we iden-
tified the basic elements of each phase and transformed them into a
set of building blocks. In our data model, all necessary objects for
clustering i.e. points, references, distances, adjacencies and clus-
tering are formally represented as matrices. Matrices are the exclu-
sive and universally valid way for data modeling in our approach
and naturally match the concept of clustering. Based on this, all
necessary operations like distance measurement, filtering and as-
sociation are modeled as mathematical functions on matrices. To
complete our set of building blocks, we introduced conditions and
loops to represent the control-flow of a clustering algorithm.

All this was put to use during the transcription of k-means and
DBSCAN which are well-known members of the two major classes
of clustering algorithms. Our transcription proved that different
methods can be easily represent with our unified description. Fur-
thermore, our approach allows the comparison of algorithms and
the easy identification of common functionalities. Besides this ben-
efits for understanding, adaptation and construction of clustering
algorithms, our descriptions can be used as a starting point for
platform-specific implementation. From our point of view, this of-
fers considerable potential for the efficient execution of any clus-
tering algorithm.

10. REFERENCES
[1] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S.

Quintana-Ortí, and G. Quintana-Ortí. Exploiting the
capabilities of modern gpus for dense matrix computations.
Concurrency and Computation: Practice and Experience,
21(18):2457–2477, 2009.

[2] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/pacts: a programming model and
execution framework for web-scale analytical processing. In
SoCC, pages 119–130, 2010.

[3] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In
Proceedings of the ACM/IEEE Conference on High

3http://mahout.apache.org

Performance Computing, SC 2009, November 14-20, 2009,
Portland, Oregon, USA, 2009.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop:
Efficient iterative data processing on large clusters. PVLDB,
3(1):285–296, 2010.

[5] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers,
R. Simakov, E. Soroush, P. Velikhov, D. L. Wang,
M. Balazinska, J. Becla, D. J. DeWitt, B. Heath, D. Maier,
S. Madden, J. M. Patel, M. Stonebraker, and S. B. Zdonik. A
demonstration of scidb: A science-oriented dbms. PVLDB,
2(2):1534–1537, 2009.

[6] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and
J. McPherson. Ricardo: integrating r and hadoop. In
SIGMOD Conference, pages 987–998, 2010.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
Jan. 2008.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. pages 226–231, 1996.

[9] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding
the efficiency of gpu algorithms for matrix-matrix
multiplication. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware 2004, Grenoble, France, August 29-30, 2004,
pages 133–137, 2004.

[10] E. W. Forgy. Cluster analysis of multivariate data: Efficiency
versus interpretability of classification. Biometrics, 21, 1965.

[11] K. Goto and R. A. v. d. Geijn. Anatomy of high-performance
matrix multiplication. ACM Trans. Math. Softw.,
34(3):12:1–12:25, May 2008.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Comput. Surv., 31(3):264–323, 1999.

[13] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data:
An Introduction to Cluster Analysis. John Wiley, 1990.

[14] T. Kiefer, P. B. Volk, and W. Lehner. Pairwise element
computation with mapreduce. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 826–833, 2010.

[15] M. Krishnan and J. Nieplocha. Memory efficient parallel
matrix multiplication operation for irregular problems. In
Conf. Computing Frontiers, pages 229–240, 2006.

[16] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon.
Parallel data processing with mapreduce: a survey. SIGMOD
Record, 40(4):11–20, 2011.

[17] S. Ohshima, K. Kise, T. Katagiri, and T. Yuba. Parallel
processing of matrix multiplication in a cpu and gpu
heterogeneous environment. In High Performance
Computing for Computational Science, pages 305–318,
2006.

[18] J. Timmis, M. Neal, and J. Hunt. An artificial immune system
for data analysis. Biosystems, 55(1âĂŞ3):143 – 150, 2000.

[19] V. Volkov and J. W. Demmel. Benchmarking gpus to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, pages 31:1–31:11,
2008.

[20] W. Zhao, H. Ma, and Q. He. Parallel k-means clustering
based on mapreduce. In Proceedings of the 1st International
Conference on Cloud Computing, pages 674–679, 2009.

59

Bidirectional Transformations (BX)

Soichiro Hidaka (National Institute of Informatics, Japan)
James Terwilliger (Microsoft, USA)

60

Preface to the Third International Workshop on
Bidirectional Transformations

Soichiro Hidaka
National Institute of Informatics, Japan

hidaka@nii.ac.jp

James F. Terwilliger
Microsoft Research

james.terwilliger@microsoft.com

ABSTRACT
This workshop is the third in a series promoting cross-
collaboration between computer science disciplines on the
topic of bidirectional transformations. The workshop had
a 53% acceptance rate from submissions from four different
disciplines. In this brief preface, we outline a definition for
what makes a bidirectional transformation, and describe a
history of the workshop and its associated meeting series.

Keywords
Bidirectional Transformations, Cross-Disciplinary

1. INTRODUCTION
The workshop series on Bidirectional Transformations

(BX) is dedicated to bringing researchers together from
different disciplines of computer science working on BX-
related projects. There are at least four disciplines actively
or historically working on such projects:

1. Databases, whose history of work on updateable views
[2, 4] often serves as the semantic backbone for other
work both within and without the field, and whose
work on data exchange represents an opportunity to
apply such theory to new applications [1].

2. Programming languages, whose work on lenses [5] often
form the formal basis for new work.

3. Graph transformations, whose work on triple graph
grammars [8] serves as a way to grow transformations
from simple rules.

4. Software engineering, whose work stems from a need
to manage significant numbers of software artifacts in
practical settings.

We accepted 9 out of 17 submissions. Each of the four sub-
disciplines was represented by at least one submitted paper.

Previous workshops were held with the European Joint
Conferences on Theory and Practice of Software (ETAPS),

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

a federation of smaller conferences tailored to several disci-
plines of computer science but not a database audience. As
the intent of the workshop series is to rotate through venues
to promote communication across disciplines, the steering
committee made the decision to hold this year’s instance in
association with a database conference for the first time.

The next BX workshop will likely be held with the Soft-
ware Technologies: Applications and Foundations (STAF)
federation of conferences. Among the many conferences
associated with STAF is the International Conference on
Model Transformations (ICMT). ICMT had often been a
frequent venue for papers on BX, especially prior to the
start of the workshop series, so associating with STAF next
year will a good fit for the workshop and a way for the BX
workshop to return home for a year, after a fashion.

2. WHAT IS BX?
Bidirectional transformations are a mechanism to main-

tain consistency between two (or more) related sources of
information [3]. One can think of a bidirectional transfor-
mation as a pair of transformations in opposite directions.
Suppose one is given two sets S and T of artifacts such as
strings, trees, or tables. For a given source artifact s ∈ S,
the forward transformation f : S → T produces a target
artifact t ∈ T , while a backward transformation g : T → S
produces a source from a target. To achieve consistency us-
ing the bidirectional transformations, f and g are required
to satisfy certain round-tripping properties.

The obvious case is when g = f−1. However, this case is
often considered to be too restrictive. In particular, f is not
allowed to lose information. To overcome this restriction, g
is allowed to access the original source artifact, making the
function binary, i.e., g : S × T → S. This round-tripping
property, or well-behavedness, can be characterized as fol-
lows, giving names get and put to the forward and backward
transformations [5]:

∀s ∈ S. put (get s, s) = s (GetPut)

∀s ∈ S,∀t ∈ T. get (put (t, s)) = t (PutGet)

GetPut says that you can come back to the original source
if there is no change on the target, while PutGet says that
all information in the target are propagated to the source
(therefore the get can always recover the updated target).

It is worth noting that the above formulation corresponds
to the properties for the view update problem [2]. The view
update problem is, given a database state s ∈ S and a query
f : S → T and an update u : T → T on the view f(s),
translating u to the update Tu : S → S on the database.

61

Then one can formulate the desirable properties as:

∀s ∈ S. uf(s) = f(s)⇒ Tu(s) = s (Acceptability)

uf = fTu. (Consistency)

Acceptability says if there is no update on the view, then
there will be no update on the database, corresponding
to GetPut. On the other hand, Consistency says the up-
dated view uf(s) can be reconstructed by regenerating a
view from the database on which the translated update Tu

has been applied. Therefore it corresponds to PutGet.
The scheme above is asymmetric in that put was binary

while get remained unary. In graph transformation and its
application to software engineering, we often see a symmet-
ric scheme where the old target is used in the forward trans-
formation. Consistency is no longer represented by a func-
tion, but by a relation R ⊂ S × T . (s, t) ∈ R if and only if
s ∈ S and t ∈ T are consistent. If the forward and backward
transformation are denoted by

−→
T and

←−
T respectively, then

well-behavedness is expressed by:

(s, t) ∈ R⇒ −→T (s, t) = t ∧←−T (s, t) = s (Hippocraticness)

(s,
−→
T (s, t)) ∈ R ∧ (

←−
T (s, t), t) ∈ R. (Correctness)

Hippocraticness says that if the forward transformation is
applied to an already consistent pair of source and target,

the same artifact (original target for
−→
T , or original source

for
←−
T) is obtained, so it corresponds to GetPut in the asym-

metric setting. On the other hand, Correctness says that the
result of the transformations are always consistent. It cor-
responds to PutGet in the sense that for updated target t,
source s that satisfies get s = t is always obtained.

Different approaches and implementations often refer to
different notions of correctness properties, and community-
wide efforts have been made to share the notions with ex-
amples, some of which also appear in this volume.

3. HISTORY AND CONTEXT
Since 2008, researchers from the four disciplines referenced

in Section 1 have been meeting periodically with the inten-
tion of opening up communication between those fields and
potentially establishing a common research agenda.

Shonan: December, 2008
The first meeting was in Shonan near Tokyo in 2008 [3] and
served primarily as an introduction. At that time, most of
the participants had little-to-no exposure to the research go-
ing on in other disciplines. Most of the meeting was spent
with participants introducing their own work, or relevant re-
search with which they are familiar. By the end of the week,
the participants collectively decided that there was signifi-
cant overlap between that work, enough to merit further
discussion. They decided that such work should be citing
each other more, and there could be some interesting collab-
oration and unification to be done. Work began to arrange
another meeting to follow up on possible collaborations.

Dagstuhl: January, 2011
A second meeting occurred in early 2011 at Dagstuhl [6].
The meeting began with representatives from each disci-
pline giving short-form tutorials of 2–3 hours on the tools
from that discipline to bring people up to speed quickly.
The tutorials presented not only the bidirectional problems

intrinsic to that discipline and the primary tools in its solu-
tion space, but also that discipline’s requirements for formal
properties of BX. There was ample time for new participants
to present their own work. Finally, there was space in the
schedule left open for group work and discussion.

The primary work product of the Dagstuhl meeting was
the establishment of the BX workshop series itself, whose
first instance was the following year in Tallinn, Estonia.

Banff: December, 2013
Most recently, another meeting was held in late 2013 in
Banff, Canada (summary publication forthcoming). The
meeting contained some short discipline-specific tutorials
again, but most of the time was dedicated to working group
and breakout sessions. These sessions covered a number
of topics, but two of the most populated and productive
focused on how to benchmark BX tools and how to put
together a repository of examples. Both of those discussions
yielded work that is published in this workshop proceedings.

What has become clear over the course of the meetings is
that it is difficult in any collaboration to get past the point
where people primarily talk about their own work. Defining
a metric of success for this sequence of meetings — and this
workshop series as well, for that matter — is difficult, but al-
most certainly must include an increase in cross-disciplinary
citation rates. It is not necessarily the case that we will
eventually arrive at a central, unified research agenda, but
at the very least we hope to see far more opportunities for
collaborative research and publications (e.g., [7, 9]).

Another meeting is being planned at the time of this pub-
lication. It will likely happen sometime in 2015 or 2016.
Most of the details are still in development.

4. REFERENCES
[1] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.

Relational and XML Data Exchange. Morgan and
Claypool Publishers, 2010.

[2] Bancilhon, F. and Spyratos, N.: Update Semantics of
Relational Views, ACM Transactions on Database
Systems, December 1981, 6(4).

[3] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A.
Schürr, and J. F. Terwilliger. Bidirectional
Transformations: A Cross-Discipline Perspective.
ICMT 2009.

[4] U. Dayal and P. Bernstein. On the Correct Translation
of Update Operations on Relational Views. ACM
Transactions on Database Systems, September 1982,
8(3).

[5] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bi-directional
tree transformations: a linguistic approach to the view
update problem. POPL 2005, 233–246.

[6] Z. Hu, A. Schürr, P. Stevens, and J. F. Terwilliger.
Dagstuhl seminar on bidirectional transformations
(BX). SIGMOD Record 40(1), (2011).

[7] M. Johnson, J. Pérez, and J. F. Terwilliger. What Can
Programming Languages Say About Data Exchange?
EDBT 2014.

[8] A. Schürr. Specification of graph translators with triple
graph grammars. WG ’94 , pages 151–163. June 1995.

[9] J. F. Terwilliger, A. Cleve, and C. Curino. How Clean
Is Your Sandbox? ICMT 2012.

62

Implementing a Bidirectional Model Transformation
Language as an Internal DSL in Scala

Arif Wider
Humboldt-Universität zu Berlin

Unter den Linden 6
Berlin, Germany

wider@informatik.hu-berlin.de

Beuth Hochschule für Technik Berlin
Luxemburger Strasse 10

Berlin, Germany
awider@beuth-hochschule.de

ABSTRACT
Despite advantages in terms of comprehensibility, verifica-
tion, and maintainability, bidirectional transformation (bx)
languages lack wide-spread adoption. Possible reasons are
that tool support for bx languages is sometimes weak or out-
dated, that many bx languages are hard to integrate with ex-
isting software technologies, or that bx languages often can-
not be mixed with unidirectional transformation languages
and general-purpose programming languages.
We present an approach to implement existing bx languages
as internal domain-specific languages (iDSLs) in the Scala
programming language and demonstrate the approach by
implementing state-based tree lenses as a statically typed
iDSL in Scala. We show that this approach allows for rich
tool-support based on static analysis and for achieving tech-
nological integration with the Java platform in general and
with the Eclipse Modeling Framework (EMF) in particular.
At the same time, the iDSL is independent from DSL-specific
tool-support and can be mixed with Scala, Java, or unidi-
rectional transformation languages.

1. INTRODUCTION
Most bidirectional transformation (bx) languages are ex-

ternal domain-specific languages (DSLs), i.e., they come with
their own tools – e.g., for parsing, editing, or verification –
which were specially developed for them. Creating good tool-
ing for a bx language takes a lot of effort. Furthermore, the
tooling has to be maintained, e.g., in order to stay compati-
ble with other software development tools. For bx languages,
this is especially a problem, because they have (so far) only
a limited user base, and thus, it is hard to justify (or fi-
nance) putting lots of efforts into their tooling. However,
if the tooling is not good or kept up-to-date, bx users will
fall back to use better supported unidirectional transforma-
tion languages or even general-purpose languages (GPLs)
like Java for implementing their synchronizations (despite
disadvantages concerning verification, comprehensibility, or
maintenance).

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

An alternative approach are internal DSLs (iDSLs): An iDSL
is basically a library, written in a host language which is usu-
ally a GPL. However, in host languages that provide pow-
erful abstraction concepts and/or a flexible syntax, one can
create libraries whose look and feel get close to that of an
external DSL. The main advantage of an iDSL is that, natu-
rally, the tooling of the host language can be reused without
modification. Of course, the tool support of an external DSL
is potentially more powerful, as it can be tailored to the DSL.
E.g., error messages of iDSLs are often hard to understand.
However, good generic tool support especially of statically-
typed GPLs (e.g., debugging, static analysis, etc.) can go a
long way for using an iDSL comfortably.
In this paper, we show how an existing bx language – state-
based tree-lenses as presented by Foster, Pierce, et al. in [3] –
can be implemented as an iDSL in Scala. We show how this
way, tree lenses (a combinator-based, asymmetric bx lan-
guage) can be adapted to work in an object-oriented con-
text and how they can be integrated with existing Java-
based technologies like EMF. Our approach mainly relies
on the pre-assumption that models are graphs which al-
ways have a spanning containment tree; an assumption that
is true for many modeling technologies in general, and for
EMF in particular. The technological integration mainly
relies on Scala being a JVM-language that supports both
object-oriented and functional programming. Thus, Scala
is well-suited for integrating functional programming tech-
niques with object-oriented concepts and with Java-based
technologies. Lenses defined with our iDSL can directly pro-
cess the Java-instances that represent an EMF model at run-
time. Furthermore, we use the Scala compiler to perform ex-
tensive static type-analysis using the type information pro-
vided by the Java classes which are generated from an EMF
metamodel. This way, the corresponding error highlighting,
syntax checks, and code completion features can be provided
by any Scala IDE plug-in and no further tooling is needed.
The paper is structured as follows: The next section in-
troduces Scala concepts which are important for our iDSL.
Sec. 3 presents the data model that our iDSL uses and Sec. 4
explains how we convert models accordingly. Sec. 5 shows
how we achieve type-safety and Sec. 6 demonstrates the
iDSL with an example. Related work concludes the paper.

2. IMPORTANT SCALA CONCEPTS
Scala programs are compiled to regular JVM bytecode.

Therefore, one can access Java code from a Scala program
and vice versa. Also, Scala’s syntax is intentionally close to
that of Java. Notable exceptions are that (1) type anno-

63

tations follow identifiers, separated by a colon, (2) type pa-
rameters are enclosed in square brackets, and (3) line-ending
semicolons as well as dots and parentheses for method invo-
cation are often optional. Furthermore, because Scala sup-
ports type-inference, type annotations can often be omitted
as shown in the following listing:

val x:Int = "1234".length(); is similar to val x = "1234" length

An important concept that we make extensive use of in
our iDSL are implicit conversions: When marking a function
as implicit, the Scala compiler will automatically insert calls
to that function if this can solve a compile-error:

class RichString(str: String){ // a class that wraps a string
def mylength = str.length //...and provides additional methods

}
implicit def string2richString(str:String) = new RichString(str)
//because of the above implicit conversion this code compiles:
val x = "1234".mylength // ...as it is implicitly augmented to:
val x = string2richString("1234").mylength

The other Scala concept that we make extensive use of,
are type members: In Scala, a class can have types as mem-
bers, too. The following listing shows a class with a (1) type
parameter T – which must be a subtype (denoted by <:) of
type AnyVal, i.e., a primitive or value type like Boolean, Int,
etc. – and (2) a type member ElementType.

class ValueList[T <: AnyVal](lst: List[T]) {
type ElementType = T

}

Here, type member ElementType holds the type with which
the class is parameterized. It can either be accessed via an in-
stance, e.g., myvaluelist.ElementType, or via a parameter-
ized type, e.g., ValueList[Int]#ElementType. Now, because
type members can have type parameters themselves, one can
define type functions which are evaluated at compile-time.
As type members can also be abstract, they can be declared
in supertypes and implemented in subtypes. The declaration
of an abstract type function equivalent to def f(x: Dom): Cod

would be type F[X <: Dom] <: Cod.

3. A DATA MODEL FOR LENSES IN SCALA
For implementing tree lenses in Scala, we need to adapt

the data model of the original state-based tree lenses – edge-
labeled trees – in order to successfully apply the lens combi-
nator concept to an object-oriented, JVM-based setting: An
object is a triple of a unique identity by which it can be ref-
erenced, a state, and a class that defines valid operations on
that object. The state of an object consists of the values of
a fixed number of fields. In a Java-based context, fields have
a unique name and a static type. Fields containing multiple
values can be expressed as a homogeneously typed collec-
tion, e.g., an indexed list or a key-value map. In contrast,
figure 1 shows how data is represented in the edge-labeled
tree data model of the original tree lenses.

Figure 1: An address book as an edge-labeled tree

In the edge-labeled tree, labels are used to access the chil-
dren of a tree node. The counterparts in objects are either
field names or the index (or key) by which one can access a

specific element in a collection. Now, whereas in the edge-
labeled tree data is stored as labels – e.g., the phone num-
ber in the example – we cannot save data as a field name
in Java or Scala. This reveals one of the main differences
between the original data model and the needed one: With
the edge-labeled tree, we have no meta-layer but only an in-
stance layer, i.e., both meta-information (e.g., description of
the contents of a field) and value information is mixed (both
”phone” and ”3334444” are labels). So, what is always a label
in the edge-labeled tree, is in object-oriented terms some-
times meta-information and sometimes value-information.
This means, we need both lenses that work on the meta-
level and lenses that work on the instance/value level.
Another difference is that objects can reference other ob-
jects which are not considered their children, i.e., they can
have non-containment references, and thus, object struc-
tures (and models) are graphs. However, if we look at Java-
based application frameworks like EMF, it is characteristic
that a spanning containment tree is enforced, i.e., object
structures must have an explicitly marked root-object and
objects can have at most one container. This constraint has
been shown to be very useful, e.g., for fast graph traversal
and persistency management. Thus, in practice, many object
structures are graphs with an underlying spanning contain-
ment tree. We rely on this constraint to pragmatically apply
tree lenses to an object-oriented context.
Finally, the children of a tree node in an edge-labeled tree
are unordered and can be non-unique. Now, as we defined
field names or collection indices/keys, respectively, as the
counterparts to labels for accessing child elements, children
are unique: indices or keys are unique by definition and field
names in Java/Scala are also required to be unique in one
class. Concerning order the situation is more diverse: in-
dices are obviously ordered but class fields and dictionary
keys are generally considered unordered. However, EMF for
instance, represents children of a tree node as an ordered
list for XML persistence reasons. Furthermore, the fields of
Scala case classes coincide with the parameter list of the
class’ constructor which is ordered. Thus, for uniformity, we
define the ’labels’ to access the children of a tree node as
an ordered list without duplicates. Note that the uniqueness
constraint only applies to the labels to access the children,
thus, there can be duplicate elements in a list as the indices
are unique. Furthermore, we do not represent tree leafs using
empty child lists, but by special value tree node types. We
call this data model, which we designed as a pragmatic adap-
tation of an edge-labeled tree for an object-oriented context,
an object tree:

Definition 1. An object tree T = 〈 t, id, [v | l] 〉 is a triple
of a type-annotation t, a unique identity id, and either a
single value v or an ordered list l referring to either a fixed
number of subtrees (the fields) or an arbitrary number of
subtrees of the same type (the elements of a collection). Sin-
gle value tree nodes can represent a non-containment refer-
ence by holding the id of another tree node.

We implemented this data model as a Scala class type
hierarchy with an abstract root type Term (any tree node)
and several subtypes, e.g., for list terms, tuple terms, con-
structor terms, value terms, and reference terms. Together
with type annotations, this allows us to express type con-
straints on the data that a lens can handle. Comparing this
data model with the one of tree lenses, type-annotations and
object-ids were added, and order of subterms now matters.

64

Edge-labels are replaced by indices which – in the case of a
constructor term – can be mapped to field names (using the
type annotation). This data model allows us to implement
most of the original tree lenses with similar semantics for
model transformations but also allows for defining special
lenses for an object-oriented setting.

4. IMPLICIT CONVERSION BETWEEN
MODELS AND TYPED TERM TREES

In the following three subsections, we show (1) how to con-
vert a domain object (i.e., a model element) to a typed term,
(2) how to convert a model to a tree with cross-references,
and (3) how to ensure referential integrity in this conversion.

4.1 Converting Domain Objects to Typed Terms
In order to be able to implement a set of pre-defined lenses

(i.e., a lens library / lens language) independently from spe-
cific domain classes, lenses need to be defined against general
term types. However, to apply these lenses directly on do-
main objects, domain objects have to be converted to terms.
We use Scala’s implicit conversions for transparently con-
verting domain objects to terms and vice versa. We want
to preserve static type-safety throughout the whole trans-
formation process. Therefore, we have to keep track of the
types of all of a term’s subterms. This cannot be achieved
by annotating terms with a corresponding class type, be-
cause in the transformation process intermediate structures
can emerge that do not correspond to any source or target
domain class (e.g., when splitting up a source domain ob-
ject, the results of this splitting need to get a type, before
putting them together to a target domain object).
Because Scala’s type system – and other common type sys-
tems – only provide either a heterogeneously typed tuple
construct with a fixed arity (e.g., Tuple3[A,B,C]) or a ho-
mogeneously typed collection (e.g., List[A]), we use hetero-
geneously typed lists (HLists), as introduced for Haskell by
Kiselyov et al. [6], as the underlying data structure. HLists
are based on type-parameterized, nested Cons-cells. This
way, heterogeneously typed list instances can be defined with
static type-safety. However, in code both nested type anno-
tations and nested list instantiations are verbose and error-
prone. Therefore, some Scala implementations of HList1 de-
fine a typelist type (TList) correspondingly and define a
type-level prepend operator ::. This way, using a TList as
the type parameter of HList allows for concisely defining
a list instance that contains objects of type A, B, and C
as HList[A :: B :: C :: TNil](a,b,c). Together with a type-
inferring instance-level prepend operator ::, we can simply
write val x = 123::"str"::HNil and the type of x will au-
tomatically be inferred as HList[Int::String::TNil].
Based on such an HList Sclala implementation, we defined a
heterogeneous term type TupleTerm which wraps an HList
and thus can contain subterms of different types. A construc-
tor term is a specialization of a tuple term that additionally
contains a constructor tag, i.e., a class type. Consequently,
class CtorTerm has two type parameters: the corresponding
class type C, and TL, the typelist of its inner HList. Do-
main objects can now be converted back and forth implic-
itly as long as pairs of appropriate implicit conversions are
provided. The effect is that a domain object can be passed

1
e.g., J. Nordenberg’s: http://jnordenberg.blogspot.com/2009/09/

type-lists-and-heterogeneously-typed.html

to any function that expects a term (and vice versa), with-
out having to trigger the conversion explicitly. The implicit
conversion definitions can be generated automatically by an-
alyzing the involved EMF metamodels. We provide a Scala
script as well as an IDE plug-in together with our iDSL that
generates implicit conversions from a given metamodel.
The following listing shows the definition of such an HList-
wrapping constructor term type as well as (simplified) def-
initions of the two implicit conversion functions that are
needed to implicitly convert a ContactInfo domain object
containing a number and a string to a correspondingly type-
parameterized CtorTerm object and vice versa.

class CtorTerm[C, TL <: TList](c: Class[C], subterms: HList[TL])
// domain class ContactInfo and its two implicit conversions:
class ContactInfo(phone: Int, url: String)
implicit def ci2term(ci: ContactInfo): // ContactInfo to Term
CtorTerm[ContactInfo,ValueTerm[Int]::ValueTerm[String]::TNil]
= CtorTerm(classOf[ContactInfo], ci.phone :: ci.url :: HNil)

implicit def term2ci(t: CtorTerm[ContactInfo, ValueTerm[Int] ::
ValueTerm[String]::TNil])=new ContactInfo(t.nth(_0),t.nth(_1))

Fig. 2 visualizes how – at runtime – a ContactInfo object
(from the example in Fig. 1) is converted to a corresponding
constructor term object (omitting that values are actually
converted to value terms, too).

Figure 2: Converting between objects and terms

4.2 From Models to Trees with References
Besides the containment tree, an EMF model can contain

non-containment references which have to be represented
in a corresponding term tree. Therefore, for converting be-
tween models and term trees, we traverse the containment
hierarchy of the model, create a constructor term for every
model element, and keep a trace of every conversion. Then,
whenever during traversal we encounter a non-containment
reference (which can be easily checked in EMF models), we
create an unresolved reference term that holds, for now, a
reference to the model element that the non-containment
reference is pointing to (not the corresponding constructor
term). We then add the reference term to a list of unresolved
reference terms, and after traversal, we iterate over the list
and – using the implicit conversion traces we recorded – we
look up which constructor term has been created from which
model element, and set the reference in each reference term
accordingly. We refer to this process as resolving references.
In the other direction however, i.e., when creating models
from term trees with non-containment references, resolving
references is more tricky: When creating domain objects, we
cannot pass a reference term which later gets resolved. We
solve this as follows: Whenever a non-containment reference
is expected, we call a helper function that defers setting the
reference and returns null instead. To this function, we pass
the referenced constructor term and a pointer to the setter
method of the non-containment reference attribute of the
created domain object. The null-returning helper function
creates a deferred reference object which holds the refer-
enced term and the setter method, and adds it to a list of
deferred references. After tree traversal, when all domain
objects have been created, we resolve references by iterating
this list of deferred references and again use traces to find
out what domain object has been created from what con-

65

x

R

y x

R

y x

R

y x

R

x

R

x

R

z

R

y z

R

y z

R

y z

R

z

R

z

R

Source
Domain
Objects

Target
Domain
Objects

C-Side
Constructor

Terms

A-Side
Constructor

Terms

C-Side
Tuple
Terms

A-Side
Tuple
Terms

RmvCtor Lens AddCtor Lens
Wrapped Filter(x)

Tuple Lens

impl. conversion trace

vertical delta trace

containment reference

non-containment reference

transformation

implicit conversion

Legend:

x x

x z

term containment

domain object

ctor/tuple term

reference term untraced change

wrong
 reference!

x -> z

corrected
reference

Figure 3: Implicit model to term tree conversion & reference handling with vertical traces

structor term, and use the saved setter methods to replace
the nulls in the domain objects with the correct references.

4.3 Referential Integrity with Vertical Traces
The strategy to convert between models and term trees

with references that we presented so far works well as long
as in the forward (abstracting) direction of a lens either
no references are abstracted away or as long as they are
discarded together with the referenced model elements. If
however, the get function of a lens discards a reference but
keeps the referenced element, this element might be changed
on the abstract view side (A-side) which leads to referential
corruption when propagating the change back to the con-
crete source side (C-side): normally, the put function of an
element-discarding lens (e.g., filter) restores the discarded
elements by looking them up in the original C-side tree, so
it will restore the original references from the concrete source
model which might refer to elements that have changed or
have been deleted. This problem can be solved when we keep
track of what happened to updated model elements on the
source side, i.e., when we have a trace of a model element
before it is passed to get and after it is returned from put. Be-
cause we implement state-based lenses (and not delta-based
lenses [2]), we have no vertical A-side traces which we could
translate to such vertical C-side traces.
However, because the asymmetric state-based lens frame-
work defines an incremental binary put function which also
takes the original C-side model as an additional input, we
can create at least C-side vertical traces in the put func-
tion of a lens: we just have to connect the original C-side
model element that is passed as an argument to put with

the updated source side element that is created by put, be-
fore returning it. However, we only have to keep vertical
traces of constructor terms, because only their correspond-
ing model elements can actually be referenced. We do not
need to keep traces of what happened to potential intermedi-
ate structures which have no corresponding model elements.
Therefore, we use the following approach: we wrap every lens
that translates between constructor terms into a bracket of
two semantically transparent helper lenses: the C-side helper
lens RmvCtor removes the constructor tag of a constructor
term (i.e., yielding a tuple term) in the get direction (and
re-establishes it in the put direction) and takes care of the
vertical traces, whereas the A-side helper lens AddCtor adds
a constructor tag in get direction (and removes it in the
put direction). This way, the wrapped lens does not need
to know anything about constructor terms and can simply
translate between tuple terms and therefore focus on en-
coding the transformation logic. Furthermore, by wrapping
a lens, we mark it as ’finished’, i.e., we separate detailed
transformation of intermediate structures from ’translation
rules’ between model elements. This also helps when mixing
our bx iDSL with other ways to describe transformations,
e.g., with our rule-based unidirectional iDSL [4].
Fig. 3 shows how a model (i.e., a graph of domain objects;
the containment tree root is marked with R) is implicitly
converted to a tree of terms, and how a non-containment
reference becomes a reference term. This tree of terms then
goes through the forward transformation get of a wrapped
filter lens (parameterized to filter away every child except x).
The term tree directly before and after filter consists of tu-
ple terms, whereas before RmvCtor and after AddCtor, the

66

term tree consists of constructor terms. However, apart from
adding or removing constructor tags, the two helper lenses
are semantically transparent as they do not change the struc-
ture of the tree. As can be seen, the filter lens filters away
child y which contains a non-containment reference to x.
However, after the resulting term tree is implicitly converted
back to a graph of target domain objects, x is replaced by
z on the A-side, and (because of the state-based lens frame-
work) we have no trace of this change. Therefore, the back-
ward transformation put of filter simply restores the part
of the tree that was filtered away with terms of the original
C-side tree including the discarded non-containment refer-
ence term that points to x. Thus, the restored reference term
references term x which does not exist anymore so that refer-
ential integrity is violated. However now, because RmvCtor
creates vertical C-side traces (finely dotted), we can resolve
wrong references after the tree has passed RmvCtor ’s put
function by looking up what has become of the referenced
term and correct wrong reference terms before the tree is
converted back to a source model with correct references.

5. A TYPE-SAFE LENS LANGUAGE
Now that we have term types that preserve the static type

information of their domain class counterparts, and can con-
vert between models and term trees, we can start to imple-
ment a reusable library of pre-defined lenses which are de-
fined against those term types. The goal of this approach is
the following: In spite of the lens library being defined inde-
pendently from actual domain classes, we want to use static
type information to check at compile-time whether a lens
(that may be composed out of many small lenses) conforms
to the structures it is meant to synchronize, i.e., whether the
input/output types of the lens functions match types in the
source and target metamodel.

5.1 Type-Parameterized Lenses
With a lens that is not parameterized with an edge la-

bel – like the hoist lens which always performs the same
structural modification: lifting a single child out of a tuple
term – the two types C and A, between which a lens trans-
lates, only depend on each other: hoist’s C is always a term
with one single edge at the root (this is the C-side contraint
of the hoist lens) and A is always the type of the single
child that this edge refers to. Thus, the typelist of term
type C is a list of length 1 with type A as the only compo-
nent at position 0, written as A::TNil. Type C can be de-
scribed as TupleTerm[A::TNil]. Thus, the type of the hoist
lens is Lens[TupleTerm[A::TNil], A] extending the generic
lens type Lens[C <: Term, A <: Term]. So the only free type-
variable of hoist is A. The following listing shows the com-
plete Scala definition of a type-safe hoist lens. Now, when
class Hoist is type-parameterized with a specific term type,
calls to Hoist’s lens functions are statically type-checked.

class Hoist[A <: Term]() extends Lens[TupleTerm[A::TNil], A] {
type C = TupleTerm[A::TNil] // constrains terms to this shape
def get(c: C): A = c.subterms.head //simply returns only child
def put(a: A, c: C): C = this.create(a)//oblivious: put=create
def create(a: A) = TupleTerm(a::HNil) // adds edge ’_0 -> a’

}

As the tree lenses that we are implementing primarily use
edge labels (or sets of them) as parameters, and as edge
labels in our term data model are translated to indices, we
need to encode indices, i.e., natural numbers, as Scala types.

Such type-level numbers can be implemented as Peano num-
bers, i.e., as recursively nested successors of a bottom type
which in this case obviously represents the number 0. In a
Scala implementation of such type-level numbers, we can de-
fine a supertype Nat, from which all number types have to
inherit, together with type-level number literals like type _1,
type _2 etc. and corresponding instance-level literals that al-
low for type-inference. With these number types and num-
ber literals, we can define type-safe methods of HList, e.g.,
a type-safe indexed accessor called nth by defining a type
function Nth[N <: Nat] <: Term of TList. This type function
is used by HList’s nth-method to determine the result type
of accessing the nth element of the list. Now, our tuple term
class exposes the type function Nth of its typelist and the
nth method of its inner heterogeneous list of subterms.
With this framework of implicit conversions, term types,
number types, and type-safe operations on HLists, we can
define more interesting, parameterized lenses. As an exam-
ple, we define an atomic filter lens that is parameterized
with a single index. To distinguish it from the original tree
lens which takes a set of labels, we call our variation Fil-

terN as it takes a single index n. In the get direction, all
direct children except the specified one are filtered away, so
FilterN.get returns a tuple term with a single child. The
following listing shows the complete definition of FilterN

and shows how the focus lens can be defined by sequentially
composing FilterN with the Hoist lens we defined earlier.

1 class FilterN[N <: Nat, C <: Term](n:N, d:C)
2 extends Lens[C, TupleTerm[C#Nth[N]::TNil]]{
3 type A = TupleTerm[C#Nth[N]::TNil]
4 def get(c: C): A = TupleTerm(c.nth(n) :: HNil)
5 def put(a: A, c: C): C = c.replace(n, a.nth(_0))
6 def create(a: A) = d.replace(n, a.nth(_0)) // using default d
7 }
8 // composing a focus lens using the sequential composition lens:
9 def Focus[N <: Nat, C <: Term](n: N, d: C)

10 = Comp(FilterN(n, d), Hoist[C#Nth[N]]())

FilterN has two type parameters: the number type N for
the specified index, and type C of the concrete term. Type A
does not need to be specified because in this lens, A is deter-
mined by C: A is a tuple term with C’s nth subterm type as
the type of the only child. This type is expressed by the help
of the Nth type function we introduced previously. Thus, the
type of FilterN is Lens[C, TupleTerm[C#Nth[N]::TNil]]

(line 2). FilterN expects two instance-level parameter: in-
dex parameter n and a default C-side term d. From these
instance-level parameters, the type-parameters can be in-
ferred. Now, when composing the focus lens (line 9), note
that the inferred type A of FilterN has to match type C of
Hoist in order to satisfy the typing constraint of the Comp

lens. This way, also lens composition is completely type-safe.
However, here the type parameter A of Hoist still has to be
specified explicitly in the composition (line 10) which is a
problem when composing more complex lenses.

5.2 Type-Inferring Lens Combinators
Sometimes explicit type parameterization can be avoided

by inferring the type from a passed default term. However,
often we cannot use domain objects to infer the type from:
with lenses that process intermediate terms which have no
corresponding domain class, the term type still needs to be
specified explicitly which is tedious and error-prone. Imag-
ine a lens that extracts several pieces of information from
a source model, and then subsequent lenses rearrange these
pieces so that their structure finally matches types of the

67

target domain. The subsequent lenses need to be parame-
terized explicitly with the potentially complicated term type
which is the output of the first information-extracting lens.
To help with this issue, we provide type-inferring lens combi-
nators in our lens iDSL: Most importantly, a type-inferring
operator for sequential composition allows for only type-
parameterizing the first lens in a chain of lenses explicitly,
and let the rest of the chain be parameterized automati-
cally by type inference. We implemented this operator as
a right-binding instance- and class-method named &:. This
way, in a composed lens l = lens1 &: lens2 &: lens3, only
lens lens1 needs to be type-parameterized explicitly: the
statement is desugared to l = lens3.&:(lens2.&:(lens1)),
where each call of the &:-method infers type A of the passed
lens and creates a correctly typed sequential composition.
Furthermore, in order to make the still needed explicit typ-
ing of the first lens more comfortable, we provide an operator
$[T] that is parameterized with a domain type, and infers
the (possibly complicated) type of the corresponding con-
structor term by injecting an appropriate implicit conversion
function and inspecting its signature (all at compile-time).
This way, one does rarely need to deal with typelists and
term types when composing lenses with our iDSL. For also
reducing explicit type-parameterizing in parallel lens com-
position, we provide lens lists: Similarly to HLists, there
is a end-of-list type called LLNil (lens-list-nil) and a type-
inferring prepend operator ::, so that a lens list can be speci-
fied as llist = lens1 :: lens2 :: lens3 :: LLNil. The result-
ing lens list maintains types C and A of each lens and can
then be used, for instance, to parameterize the WMap lens
combinator which results in a lens that applies a different
lens to each subterm of a given tuple term. The WMap lens
can infer the types of the lens list and therefore also does
not need to be type-parameterized explicitly.

5.3 Special Lenses for Typed Terms
So far we only presented lenses that were already defined

in the original tree lens library (except the two semantically
transparent wrapper lenses). Because models which have a
containment hierarchy can be converted to term trees with
reference terms, these existing tree lenses can be used for de-
scribing model transformations. However, because of the dif-
ferent data model of our Scala-based lenses, a few new lenses
can be defined. E.g., an important difference from the edge-
labeled tree data model of the original state-based tree lenses
is that our tree nodes have a type annotation. Therefore, we
can describe lenses where this type-annotation determines
the behaviour. For instance, we can define a filter lens that,
instead of a label (i.e., an index), is parameterized with a
type. Such a FilterByType lens can, for instance, filter for
all Integer fields of a model element. Of course, in contrast
to filtering for an index which is by definition unique, the
same type-annotation can occur multiple times in one term.
Therefore, type C of this lens is a heterogeneously typed
tuple term and type A is a homogeneously typed list term;
thus, the lens type is Lens[TupleTerm[TL], ListTerm[T]].
The semantics of this lens is actually not different from that
of the original tree filter lens because the type-annotation is
simply an alternative choice of what a label in the original
data model can be translated to in our data model.

6. FAMILY2PERSONS BIDIRECTIONALLY
In this section we demonstrate the usage of our iDSL by

Persons

+adults: List<Person>
+juveniles: List<Person>

Person

+firstName: String
+lastName: String

2adults 1..* juveniles

Male

Female

Family

+lastName: String
+father: Member
+mother: Member
+sons: List<Member>
+daughters: List<Member>

Member

+firstName: String
+familyFather: Family
+familyMother: Family
+familySon: Family
+familyDaughter: Family

father

mother

1..*

sons

1..*

daughters

familyFather

familyMother

familySon

familyDaughter

{ forall x,y ϵ adults U juveniles

| x.lastName == y.lastName }

Figure 4: Family2Persons metamodels (bx-version)

presenting a bx version of the Families2Persons2 example.
The modified metamodels are shown in Fig. 4. The Fam-
ily metamodel stays largely untouched: A family object (the
root) contains a last name, two member fields (father and
mother), and two list-of-member fields (sons and daughters).
A Member object contains the member’s first name and
four back-references (i.e., non-containment references) to the
family the member belongs to. Note that of those four back-
references, three are always null-references, and only that
reference which matches the role of the member in the fam-
ily is set. In the unidirectional version of the example, it is
checked which reference is not null to determine the gender
of a member. In the Persons metamodel, we added a Per-
sons class which is the root of the containment hierarchy and
contains two lists of persons: adults and juveniles. Without
the Persons class, the Persons metamodel would not fulfill
our requirement that every model must have a containment
root object. The distinction between adults and juveniles
allows us to implement the example in a state-based fash-
ion (i.e., without horizontal inter-model traces) and with-
out having to deal with heuristics-based name matching etc.
which would distract from the actual synchronization logic.
Also, in the Person class, first name and last name are two
separate fields instead of one full name field to avoid clut-
tering the example with string analysis specifics.
Furthermore, and importantly, we added an equality con-
straint that says that every person in a Persons object has
to have the same last name. This constraint is restrictive
and might seem to render the synchronization example triv-
ial but it cannot be avoided when trying to stay close to
the original unidirectional example, i.e., when describing
the transformation in the direction from Family to Persons:
In asymmetric lenses the forward direction is the abstract-
ing one; thus, a persons model cannot contain multiple last
names because otherwise it would not be fully determined by
a C-side family model and therefore no abstraction3. How-
ever, one can change all last names in a persons model and
propagate this change back to the family model. Also adding
and deleting children is a supported A-side modification.
In order to show how a composed family2persons lens works,

2
http://wiki.eclipse.org/ATL/Tutorials - Create a simple ATL

transformation
3
one could imagine a persons model as the result of a last-name-query

to a bigger persons database to render the bx version more useful

68

we demonstrate how a term that represents a family model
is stepwise rewritten so that it finally has a structure that
matches a persons model. Because list handling is a bit in-
volved, we omit the children lists in this demonstration, and
suppose that a family only has a father and a mother, i.e.,
a family term only consists of three subterms: a value term
of type String for the last name and two constructor terms
of type Member. Correspondingly, suppose for now that a
persons term only consists of two subterms: a constructor
term of type Male and a constructor term of type Female.
In the following sequence of term rewritings, we denote a
tuple term by (subterm1,subterm2,...) with an optional con-
structor prefix, and a string value term by ‘value’. We denote
a null-valued non-containment reference term by ∅, and a
non-null non-containment reference term by 7→. Next to the
current term structure, we show the (parameterized) lens
whose forward transformation get (denoted by ↗) is ap-
plied to yield the next term in the rewriting sequence, i.e.,
the term rewriting rule that is applied to that term. Re-
member that the WMap lens is parameterized with as many
lenses as the number of subterms of the tuple term it is
applied to, and then applies each lens to one subterm. For
brevity, we start the term rewriting with all constructor tags
already removed.

(‘Simpson’, (‘Homer’, 7→,∅,∅,∅), (‘Marge’,∅, 7→,∅,∅))
(↗WMap(Id, Focus(0), Focus(0)))

(‘Simpson’, ‘Homer’, ‘Marge’) (↗Duplicate(0))

(‘Simpson’, ‘Simpson’, ‘Homer’, ‘Marge’) (↗Split(2))

((‘Simpson’, ‘Simpson’), (‘Homer’, ‘Marge’))
(↗Reverse)

((‘Homer’, ‘Marge’), (‘Simpson’, ‘Simpson’)) (↗Zip)

((‘Homer’, ‘Simpson’), (‘Marge’, ‘Simpson’))
(↗WMap(AddCtor(Male),AddCtor(Female)))

(Male(‘Homer’, ‘Simpson’), F emale(‘Marge’, ‘Simpson’))
(↗AddCtor(Persons))

Next, we show how a complete family2persons lens can
be constructed, including all list handling and constructor
handling. First, we use an idealized syntax of our lens DSL
and denote sequential lens composition with &.

adultName = RmvCtor(Member) & Focus(0)

childNames = ListMap(Split(1) & Reverse) & Factor-
ize & Focus(1) & ListMap(Hoist)

distribute = Split(1) & TupleDistribute & WMap(Id,
Id, Distribute, Distribute)

reverse = Wmap(Reverse, Reverse, ListMap(Reverse),
ListMap(Reverse))

addCtors = Wmap(AddCtor(Male), AddCtor(Female),
ListMap(AddCtor(Male), ListMap(AddCtor(Female))

sort = Split(2) & Map(SupertypeListConcat(Person,
Male, Female))

families2persons = WMap(Id, adultName, adultName, child-
Names, childNames) & distribute & reverse & addCtors &
sort & AddCtor(Persons)

The presented composition contains a few lenses which
were not defined in the original tree lenses. E.g., the Dis-
tribute and Factorize lenses mimic the application of the
distributive property from basic algebra. Because they du-

plicate values (in either the one or the other direction), they
rely on equality constraints in the involved metamodels. Su-
pertypeListConcat is a special lens that works with type-
annotations: it concatenates two lists of different types to
one list of a common supertype. In the backwards direction,
it splits a list depending on the specific subtypes of the el-
ments. The type of SupertypeListConcat is Lens[TupleTerm[
ListTerm[SUB1],ListTerm[SUB2],ListTerm[SUP]], where
SUP <: Term, SUB1 <: SUP, and SUB2 <: SUP.
Now, let us see how the lens construction looks in our Scala
iDSL. The following listing shows a very similar lens def-
inition as the one before (only decomposed slightly differ-
ently). Obviously, type annotations make the description in
our iDSL more noisy than the clean description in the ide-
alized syntax before4. We could easily achieve a similarly
clean iDSL syntax in Scala, however, not while at the same
time getting automatic (and extensive) static type-checking.
Now, as one can imagine, when constructing a lens as com-
plex as this one (or even much more complex), automatic
static type-checking can be tremendously helpful, as there
are plenty of possibilities to make mistakes when compos-
ing many small lens combinators. Because we keep track of
most types, most of such mistakes are detected automati-
cally at compile-time and highlighted with standard Scala
tooling. Note that in our iDSL we provide the language
construct wrap(...) as[SourceType, TargetType] to wrap
a tuple lens in between a RmvCtor and AddCtor lens (to be
precise: if type A is a value term, only RmvCtor is used).

1 // constructing a type-safe families2persons lens:
2 val adultName = wrap(Focus(_0, Member(""))) as[Member,String]
3

4 val childNames = wrap(ListMap(Split(_1, $[Member]) &: Reverse)
5 &: Factorize &: Focus(_1,Term(Term(NullRef::NullRef::NullRef::
6 NullRef::HNil)::List("")::HNil)) as[List[Member],List[String]]
7

8 val distribute1 = Split(_1, $[Family]) &: TupleDistribute
9

10 val distribute2 = WMap(Id[String]::Id[String]::
11 Distribute[String,String])::Distribute[String,String])::LLNil)
12

13 val strrev = Reverse[String::String::TNil]
14

15 val reverse = WMap(strrev :: strrev :: ListMap(strrev) ::
16 ListMap(strrev) :: LLNil)
17

18 val addCtors = WMap(AddCtor($[Male])) :: AddCtor($[Female]) ::
19 ListMap(AddCtor($[Male))::ListMap(AddCtor($[Female))::LLNil)
20 &: Split(_2)
21

22 val sort = Map(SupertypeListConcat($[Person],$[Male],$[Female]))
23

24 val extractNames = WMap(Id[String] :: adultName :: adultName ::
25 childNames :: childNames :: LLNil)
26

27 val rearrange = extractNames &: distribute1 &: distribute2 &:
28 addCtors &: sort
29

30 val families2persons = wrap(rearrange) as[Family,Persons]

The above is valid Scala code and fully type-checked. Note
that, by using type-inferring operators, only a few lenses
need to be typed explicitly. The final lens can directly be
used to synchronize family and persons models which will be
automatically converted to (and from) corresponding term
trees. The availability of all required (possibly generated)
implicit conversions is checked automatically at compile-
time when wrapping the lens.
4
Also, the need to provide a default term for the unary create function

is sometimes distracting (e.g., in line 5-6 for the focus lens). If we did
not allow for initialization from the abstract side – i.e., define a lens
only as a tuple of get and put – lens descriptions would look cleaner.

69

7. RELATED WORK & CONCLUSIONS
To the best of our knowledge, we are the first to present

a bx language for model transformations as an iDSL in a
statically typed JVM-language. Originally, our approach to
embed a compositional, term-rewriting-based language as an
iDSL in Scala was inspired by the work of Sloane [9], who im-
plemented the unidirectional term-rewriting language Strat-
ego as an iDSL in Scala. However, this iDSL allows for little
static verification because Scala’s type system is not used
to the same extent as in our approach. Cuadrado et al. pre-
sented RubyTL [1], a unidirectional transformation language
implemented as an iDSL in Ruby. However, because Ruby is
dynamically typed and is no JVM-language, possibilities for
static verification are very limited. Therefore, we presented a
similar, ATL-inspired transformation language implemented
in Scala that allows for more EMF-integration, tool-support,
and static verification [4]. We think that for bx, static veri-
fication and tool-support are even more important. Regard-
ing statically type-checked bx, Pacheco & Cunha presented
a tree lenses iDSL in Haskell [7]. However, besides providing
no JVM-integration this way, their work also does not aim
for adapting tree lenses to model transformations.
Regarding bx languages for model transformations, there are
many promising approaches but, as far as we know, none has
been implemented as an iDSL, yet. They can be roughly di-
vided into asymmetric, symmetric, and bijective approaches.
For the asymmetric case, GRoundTram, developed by Hi-
daka et al. [5], is one of the most mature bx tools which pro-
vides a graph-query language called UnQL+ for specifying
asymmetric bx. Such a query language is a clear advantage
over our lens iDSL in terms of usability, because it allows
for defining graph-traversals relatively comfortably (which is
cumbersome with our root-oriented combinator approach).
This is partly due to the fact that GRoundTram is from the
ground up graph-based – and not as our approach essentially
tree-based – but also partly because it provides less static
type analysis which makes graph traversals easier. There
are attempts to integrate GRoundTram with EMF and with
ATL, but until now both is limited and not seamless.
For the symmetric case, there are the QVT standard, with
its QVT-Relations bx language, and Triple Graph Gram-
mars (TGG) by Schürr et al. [8]. Both are rule-based ap-
proaches. However, QVT-R has semantic issues concern-
ing non-bijective bx [10] which might be the reason why
there is no QVT-R tool anymore which is actively developed.
TGGs have a solid semantic foundation. However, TGG-
based tools that support bx and integrate seamless with
EMF only emerged recently. Because TGGs are also graph-
based, they do not require an underlying spanning contain-
ment tree, and are in general more expressive concerning
changes of non-containment references. Furthermore, there
are delta-based lenses [2] which can be either symmetric
or asymmetric. Because delta-based lenses separate update-
alignment from update-propagation, they can synchronize
graph-based models as long as a correct alignment (i.e., ver-
tical traces) of the involved models can be provided.
Many of the aforementioned bx approaches are more power-
ful or allow for synchronizations to be described more com-
fortably. However, because none of these approaches is im-
plemented as an iDSL in a JVM-based GPL, none of them
is as tool-independent as our approach: transformation de-
scription with intelliSense-like code-completion, transforma-
tion execution, debugging, and technological integration can

all be provided by any of several available Scala IDE plug-
ins. Therefore, one does not rely on the ongoing development
and maintenance of bx tooling. All that is needed, is to in-
stall a Scala tool-set and import the iDSL library in an exist-
ing EMF- or Java-based project. Furthermore, as far as we
know, with none of the presented approaches, it is possible to
mix bx both with unidirectional transformations (e.g., using
our iDSL from [4]) and with GPL-coded transformations.
In practice, this can be an important advantage concerning
developer acceptance because it allows for gradual migra-
tion from unidirectional transformation descriptions to bx:
Developers who do not immediately see how to solve a syn-
chronization task using a special transformation language
can first use Java or Scala as a GPL and can later gradually
migrate to a bx implementation for reducing the long-term
maintenance overhead of pairs of unidirectional transforma-
tions or GPL-coded synchronizations.
However, because the advantages of our approach mainly
stem from the Scala-based iDSL approach, we rather want to
promote the general approach of implementing bx languages
as iDSLs in Scala than the specific state-based tree-lens iDSL
that we presented. Its implementation allowed us to demon-
strate how much expressiveness and static analysis can be
achieved by implementing a bx language in Scala. Scala’s
type system is capable of unrestricted compile-time recur-
sion which allowed for extensive static guarantees even for
complicated lenses. Therefore, it would be highly interesting
to apply the approach to other bx languages, e.g., GRound-
Tram, delta-based lenses, or TGGs. Concerning the latter,
we already showed that the implicit conversion mechanism
is particularly suited for implementing rule-based iDSLs [4].

Acknowledgements
We like to thank the anonymous reviewers for comments on
a preliminary version of this paper. This work was supported
by the BMBF, FHprofUnt grant 17075A10 (MOSES).

8. REFERENCES
[1] J. Cuadrado, J. Molina, and M. Tortosa. RubyTL: A Practi-

cal, Extensible Transformation Language. In MDA - Founda-
tions and Applications, pages 158–172. Springer, 2006.

[2] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to Delta-
Based Bidirectional Model Transformations: the Asymmet-
ric Case. Journal of Object Technology, 10:6: 1–25, 2011.

[3] J. N. Foster, M. Greenwald, J. Moore, B. Pierce, and
A. Schmitt. Combinators for Bidirectional Tree Transforma-
tions: A Linguistic Approach to the View-Update Problem.
ACM Trans. Program. Lang. Syst., 29(3), 2007.

[4] L. George, A. Wider, and M. Scheidgen. Type-Safe Model
Transformation Languages as Internal DSLs in Scala. In
Int’l Conf. on Model Transformation (ICMT’12), Prague,
volume 7307 of LNCS, pages 160–175. Springer, 2012.

[5] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano.
GRoundTram: An Integrated Framework for Developing
Well-behaved Bidirectional Model Transformations. In Int’l
Conf. on Automated Software Engineering (ASE 2011),
Oread, Kansas, USA, pages 480–483. IEEE, 2011.

[6] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly Typed
Heterogeneous Collections. In Haskell ’04: ACM SIGPLAN
Workshop on Haskell, pages 96–107. ACM, 2004.

[7] H. Pacheco and A. Cunha. Generic Point-Free Lenses. In
10th Int’l Conf. on Mathematics of Program Construction
(MPC’10), LNCS 6120, pages 331–352. Springer, 2010.

[8] A. Schürr and F. Klar. 15 Years of Triple Graph
Grammars. In ICGT, pages 411–425, 2008.

[9] A. M. Sloane. Experiences with Domain-Specific Language
Embedding in Scala. In Int’l Workshop on Domain-Specific
Program Development, 2008.

[10] P. Stevens. Bidirectional Model Transformations in QVT:
Semantic Issues and Open Questions. Software and
Systems Modeling, 9(1):7–20, 2010.

70

Towards a Framework for Multidirectional Model
Transformations

Nuno Macedo
HASLab

INESC TEC & Universidade
do Minho, Braga, Portugal

nfmmacedo@di.uminho.pt

Alcino Cunha
HASLab

INESC TEC & Universidade
do Minho, Braga, Portugal
alcino@di.uminho.pt

Hugo Pacheco
National Institute of

Informatics
Tokyo, Japan

hpacheco@nii.ac.jp

ABSTRACT
The Query/View/Transformation Relations (QVT-R) stan-
dard for bidirectional model transformation is notorious for
its underspecified semantics. When restricted to transforma-
tions between pairs of models, most of the ambiguities and
omissions have been addressed in recent work. Neverthe-
less, the application of the QVT-R language is not restricted
to that scenario, and similar issues remain unexplored for
the multidirectional case (maintaining consistency between
more than two models), that has been overlooked so far.

In this paper we first discuss ambiguities and omissions in
the QVT-R standard concerning the mutidirectional trans-
formation scenario, and then propose a simple extension
and formalization of the checking and enforcement semantics
that clarifies some of them. We also discuss how such pro-
posal could be implemented in our Echo bidirectional model
transformation tool. Ours is just a small step towards mak-
ing QVT-R a viable language for bidirectional transforma-
tion in realistic applications, and a considerable amount of
basic research is still needed to fully accomplish that goal.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

1. INTRODUCTION
In model-driven engineering (MDE), models are the main

development artifact. Typically, multiple models may co-
exist in the same environment, to represent different views
of the overall system or similar components at different lev-
els of abstraction, and all these models must ideally be kept
consistent with each other. In the past years, extensive work
on bidirectional model transformations [3] has been devoted
to the particular purpose of maintaining the consistency of
two models. One of the most popular approaches in MDE is
the OMG’s QVT standard [9], and in particular the QVT-R
language, that proposes describing a bidirectional transfor-
mation as a declarative relation between two meta-models.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

name : String
Feature

name : String
mandatory: bool

Feature

Figure 1: Configuration (CF) and feature model (FM).

The standard prescribes two modes to interpret a QVT-
R specification: checkonly mode tests the consistency be-
tween particular models and enforce mode runs a transfor-
mation in a particular direction to repair inconsistent mod-
els. Thus, a QVT-R transformation between two meta-
models can be understood in the abstract framework of
constraint maintainers [8]: a specification denotes a con-
sistency relation R ⊆ A × B , from which a forward trans-

formation
−→
R : A × B → B and a backward transformation←−

R : A× B → A, that modify one of the elements to restore
consistency, are inferred. In this paper we will be dealing
with multiple target models, so these will instead be denoted

by
−→
R A :B → A and

−→
R B :A→ B , the subscript identifier de-

noting the direction of the transformation and the fact that
it retrieves information from the original target models.

Acceptance and development of effective tool support for
the QVT-R standard has been slow, possibly due to am-
biguities in its checking and enforcement semantics. For
the bidirectional scenario (maintaing consistency between
two models), most of the issues have been clarified in recent
work [10, 1] and implementations with precise semantics al-
ready exist, namely our own Echo tool [6]. Nonetheless, the
bidirectional scenario is not sufficient to tackle some appli-
cations. An arbitrary number of models may coexist in the
same model-driven environment, and their complex interre-
lationship may not be decomposable into a set of bidirec-
tional relationships to be maintained separately.

As an example, consider the problem of keeping the con-
sistency between a feature model and a set of valid configura-
tions. For the sake of simplicity, assume that feature models
FM consist of named features, that may or not be mandatory,
and configurations CF are simply a set of selected features;
the respective meta-models are depicted in Figure 1.

The relationship F ⊆ FM × CFk between a feature model
and k configurations can be decomposed into two parts F =
MF ∩ OF : relation MF ⊆ FM× CFk expresses that manda-
tory features match exactly the set of features appearing in
every CF; and relation OF ⊆ FM× CFk expresses that the FM
contains at least the union of all selected features. Note that
due to the intention of having features present in all CFs set

71

as mandatory in the FM, relation MF cannot be decomposed
into k bidirectional relations between the FM and each CF.

This kind of multidirectional scenario is already informally
foreseen in the QVT-R standard, that admits an arbitrary
number of domains in a QVT-R relation. However, the pro-
posed checking semantics are too inflexible and only able to
represent a restricted subset of consistency relations. For in-
stance, none of the above relations can be specified using the
standard checking semantics. Moreover, the standard hints
at an enforcement semantics with very limited applicability.
Namely, from a consistency relation such as F , the standard
only prescribes the derivation of two transformations:

• −→F FM :CFk → FM, for propagating updates to the config-
urations back to the feature model;

•
−→
F i

CF : FM× CFk−1 → CF for any i ∈ 0..k, for propagat-
ing updates to the feature model and the remaining
configurations into a specific target configuration.

In the multidirectional scenario this is a very restrictive view
of the enforcement semantics, as the user may wish to restore
consistency in many ways depending on the context, leading
to different update propagation transformations. Consider,
e.g., the following interesting and alternative instantiations:

• −→F CFk : FM → CFk . This would allow updates to the
feature model to be propagated to more than one con-
figuration. For example, if a feature is changed to
mandatory it must be selected in all configurations;
this simple update could not be handled by the stan-
dard transformations, since full consistency could not
be restored by a single update translation.

•
−→
F i

FM×CFk−1 : CF → FM × CFk−1 for any i ∈ 0..k. This
would provide more flexibility in the propagation of
updates to a configuration, as all the remaining arti-
facts are allowed to change. For example, if name of a
feature is changed, the natural way to recover consis-
tency is to change the name of that feature in all the
remaining configurations and in the feature model.

The main goal of this paper is to start shedding some light
on this currently unexplored multidirectional scenario. In
particular, we explore the applicability of QVT-R for spec-
ifying multidirectional model transformations and discuss
some semantic issues that arise in this setting. To over-
come its current limitations, we propose a simple extension
that enables the specification of interesting multidirectional
transformations, and discuss how to infer different kinds of
consistency-restoring transformations from the same multi-
directional specification. Finally, we show how Echo [7], a
tool supporting QVT-R bidirectional transformations, could
be easily adapted to accommodate such extensions.

2. QVT-R CHECKING SEMANTICS
Typical model transformation languages (like QVT-R [9]

and ATL [5]) provide mechanisms that allow reasoning about
transformations in a structured way, rather than simply
specifying arbitrary constraints over the models in some gen-
eral constraint language (like OCL). As evidence, both these
languages rely on domain patterns, controlling the elements
over which a transformation is applied, while QVT-R sup-
ports additional pre- and post-conditions. A QVT-R pro-
gram is defined as a set of relations in the following syntax.

[top] relation R {
[variable declarations]
domain m1 a1 : A1 { π1 }
. . .
domain mn an : An { πn }
[when { ψ }] [where { φ }] }

In this notation, πi denotes a domain pattern over an ele-
ment ai of model mi (for i ∈ 1..n), and ψ and φ are arbi-
trary pre- and post-conditions. According to the standard,
testing the consistency specified by top relations consists of
running n directional tests (denoted by the subscript meta-
model identifier), each validating one of the models, as:

R (m1 : M1, ...,mn : Mn) ≡ ∧i∈1..n RMi (m1, ...,mn)

For each of these RMi relations, the idea is that if ψ holds,
then for all aj elements such that πj holds, for j 6= i, there
must exist an element ai such that πi and φ hold. For a
non-top relation, its constraints must hold only when called
by other relations. In the bidirectional case, we end up with:

RM1 (m1 : M1,m2 : M2) ≡
∀ xs | ψM1 ∧ πM2 ⇒ (∃ ys | πM1 ∧ φM1)
where xs = fv(ψ ∧ πM2), ys = (fv(πM1 ∧ φ))− xs

RM2 (m1 : M1,m2 : M2) ≡
∀ xs | ψM2 ∧ πM1 ⇒ (∃ ys | πM2 ∧ φM2)
where xs = fv(ψ ∧ πM1), ys = (fv(πM2 ∧ φ))− xs

This checking semantics has a close correspondence to the
enforcement semantics: roughly, we just need to replace ex-
istential quantifiers for generation procedures [9]. Relations
may call other relations in their pre- and post-conditions,
which are also run in the appropriate direction (hence the
identifier on ψ and φ denoting the required direction).

2.1 Issues with the Multidirectional Scenario
Back to our running example from Section 1, consider

that we have a pair of configurations (k = 2). How can the
MF consistency relation be specified in QVT-R? As a first
attempt, let us consider the following specification.

top relation MF { n : String;
domain cf1 s1 : Feature { name = n }
domain cf2 s2 : Feature { name = n }
domain fm f : Feature { name = n,

mandatory = true } }

The free variable n relates selected features in each configu-
ration with mandatory features in the feature model, result-
ing the consistency relation:

MF (cf 1 : CF1, cf 2 : CF2, fm : FM) ≡
MF FM (cf 1, cf 2, fm) ∧
MF CF1 (cf 1, cf 2, fm) ∧MF CF2 (cf 1, cf 2, fm)

Each of these directional tests is then concretized as:

MF FM (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, s1 : Featurecf 1 , s2 : Featurecf 2 |

n = s1.name ∧ n = s2.name⇒
(∃ f : Featurefm | n = f .name ∧ f ∈ mandatory)

MF CF1 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, f : Featurefm , s2 : Featurecf 2 |

n = s1.name ∧ n = f .name ∧ f ∈ mandatory⇒
(∃ s1 : Featurecf 1 | n = s1.name)

MF CF2 (cf 1 : CF, cf 2 : CF, fm : FM) ≡ ...

72

But let us concretely analyze the meaning of these pred-
icates. MF FM expresses part of the intended behavior — if
the two configurations have the same selected feature then
such feature is mandatory. It can be rephrased as:

MF FM (cf 1 : CF, cf 2 : CF, fm : FM) ≡
Featurecf 1 .name ∩ Featurecf 2 .name ⊆

(Featurefm ∩ mandatory).name

However, the reverse implication

MF CF1×CF2 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
(Featurefm ∩ mandatory).name ⊆
Featurecf 1 .name ∩ Featurecf 2 .name

is not entailed by MF CF1 and MF CF2 . Looking at MF CF1 , the
selection of the s1 feature depends both on f and s2, thus, if
there are no selected features in cf2, MF CF1 will be trivially
true due to the empty range in the universal quantification.
This problem persists whatever the domain patterns (and
pre- or post-conditions), and the intended specification for
MF cannot be realized by any QVT-R relation (with the
standard semantics) between features in the three models.

This problem could be easily solved if we could control
the extent of the universal quantifications in the semantics
of MF CF1 and MF CF2 , namely to range only over the feature
model and ignore the remaining configurations.

MF CF1 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, f : Featurefm |

n = f .name ∧ f ∈ mandatory⇒
(∃ s1 : Featurecf 1 | n = s1.name)

MF CF2 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, f : Featurefm |

n = f .name ∧ f ∈ mandatory⇒
(∃ s2 : Featurecf 2 | n = s2.name)

The conjunction of these predicates entails the missing part
of the desired MF specification, and hints at a possible ex-
tension to the standard checking semantics that largely im-
proves its expressiveness, as described in the next section.

Although our example could alternatively be interpreted
as a bidirectional transformation between a feature model FM
and a tuple of configurations CFk , in general the n models
may be of different nature. Moreover, the standard checking
semantics could not be reproduced under such view.

2.2 Extending the Standard Semantics
As the previous section makes clear, standard QVT-R re-

lations are not suitable for expressing many transformations
of interest, namely those where relationships are not sym-
metric. In fact, this is already a problem in the bidirectional
setting (for example, how to express a plain subset relation-
ship?), but is aggravated in the multidirectional setting due
to the explosion of possible dependencies between domains.
In this paper, we propose precisely to extend QVT-R with
a language of dependencies between domains in order to ex-
press the desired directionality of the checking semantics.

Let dom R denote the set of meta-model identifiers M1,
...,Mn in a relation R ⊆ M1 × ... ×Mn . A checking depen-
dency S → T for R, where S ⊆ dom R is a set of identifiers
and T ∈ dom R a single identifier (with T 6∈ S), states that
the model conforming to T depends on all the models con-
forming to the meta-models in S . Formally, the semantics
of a rule R according to a dependency S → T , denoted by
RS→T , prescribes that R should be checked by quantifying

universally over all the domains in S and, when the respec-
tive domain patterns and pre-condition hold, demanding an
element satisfying the respective domain pattern and post-
condition to exist in the T domain. The set of checking
dependencies attached to a relation R will be denoted by R.
The semantics of a top relation R is now the conjunction of
all directional checks ∧d∈R Rd (m1, ...,mn).

For example, to obtain the desired specification of the
MF relation, it suffices to attach to the above QVT-R spec-
ification the dependencies MF ≡ {CF1 CF2 → FM, FM →
CF1, FM→ CF2}. This extension is conservative, in the sense
that the standard semantics can still be specified by setting:

R ≡ ⋃
i∈{0..n } (dom R \ Mi → Mi)

The OF relation, stating that the union of selected fea-
tures should be included in the set of all available features

OF FM (cf 1 : CF, cf 2 : CF, fm : FM) ≡
Featurecf 1 .name ∪ Featurecf 2 .name ⊆ Featurefm .name

can now be represented by the QVT-R relation

top relation OF { n : String;
domain cf1 s1 : Feature { name = n }
domain cf2 s2 : Feature { name = n }
domain fm f : Feature { name = n } }

associated with the checking dependencies OF ≡ {CF1 →
FM, CF2 → FM}. Of course, this extension also improves the
expressiveness in the bidirectional setting, allowing for ex-
ample to specify a subset constraint between two domains
by just attaching one dependency between them. Note that,
at this point, we are just disregarding the dependencies im-
plied by the QVT-R standard. Expressing our dependency
would require some sort of extended QVT-R syntax.

Although at first sight this extension may seem too con-
servative, the fact is that from these simple dependencies
more complex ones can be built. In particular, multiple
model dependencies can be attained through the entailment
{M1 → M2,M1 → M3} ` {M1 → M2 M3} (thus resulting
in the expected MF CF1×CF2) while dependencies over unions
of models can be attained through {M1 → M3,M2 → M3} `
{M1 | M2 → M3} (from which OF FM arises).

2.3 Relation Invocations
As in the bidirectional scenario, multidirectional relation

calls must preserve the direction of the caller. However, the
QVT-R syntax does not guarantee that every relation in a
specification can be run in the same direction, e.g., nothing
prevents a relation R ⊆ CFk ×FM running in the FM direction
from calling another relation S ⊆ CFk , which has no FM
direction. The standard is omissive about these situations.
The newly introduced checking dependencies must also be
taken into consideration, e.g., should a relation R ≡ {M1 →
M2} be allowed to call another relation S ≡ {M2 → M1}?
We think the answer should be no, and this situation should
be flagged as a typing error at static time.

Notwithstanding, it is worth noting that the dependencies
of R and S need not be perfect matches. In fact, a relation
R ≡ D may be called in the direction Rd by another relation
S ≡ { ...d ...} if D ` d , i.e., D entails d . In our restricted
language this will allow, for instance, the call RM1→M3 when
R ≡ {M1 → M2,M2 → M3}, since {M1 → M2,M2 →
M3} ` M1 → M3. Since our dependencies are equivalent to
Horn clauses (disjunctions with a single positive literal) this
“type checking” can be done in linear time.

73

3. QVT-R ENFORCEMENT SEMANTICS
In [6], we proposed a technique for bidirectional QVT-

R model transformation following the least-change princi-
ple [8], which was implemented in the bidirectional trans-
formation tool Echo [7]. Given a binary consistency relation
R ⊆ M1×M2 and a model distance metric ∆M1 :M1×M1 →
N, if m1 and m2 are two inconsistent models, the new model

m′1 produced by transformation
−→
R M1 is a consistent model

that is as close as possible to the original one, according
to the given metric. This results in a clear and predictable

enforcement semantics. Note that although
−→
R M1 is a trans-

formation from M2 to M1, the original model m1 is also
taken into consideration in order to achieve minimality. The
technique embeds the QVT-R checking semantics in Alloy
specifications [4], then calling its model finder in an iterative
process of searching for all consistent models at increasing
distance from the original m1 (or alternatively, using opti-
mizing solvers, such as PMax-Sat, as proposed in a recent
extension [2]). The concretization of the ∆ metric is out-
side the scope of this paper, and the reader is redirected to
the original paper. This transformation technique requires
only the definition of a consistency relation and a suitable
distance metric for the target domain, thus extending it for
the multidirectional scenario requires only the definition of
suitable distances for the selected output.

Let us use the sample transformations from Section 1 to
explore the transformation space. Those with a single out-
put model can be trivially applied. For instance, assuming

a model distance ∆FM,
−→
F FM : CFk → FM would produce a

feature model fm ′ consistent with the input configurations
(MF (cf 1, ..., cf k , fm

′)) and closest to the original feature

model (minimizing ∆FM (fm, fm ′)). Similarly for
−→
F i

CF. As for
the tuple returning transformations, a naive way to achieve
the combined distance of the target models is to add up the
distance between every model, e.g.,

∆CFk ((cf 1, ..., cf k), (cf ′1, ..., cf ′k)) =
∆CF (cf 1, cf ′1) + ...+ ∆CF (cf k , cf ′k)

for the transformation
−→
F CFk : FM → CFk that updates all

configurations. Of course, this means that all changes in all
the models have the same weight, what may not be desirable

(e.g., in
−→
F i

FM×CF :CF→ FM×CFk−1 changes to configurations
could be prioritized over those to feature models). We leave
that customization for future work.

When applying a transformation, the user must be aware
that not all update directions are able to restore the con-
sistency of the system. Consider, for instance, that a new

mandatory feature is introduced in the FM model. Then
−→
F i

CF,
which updates a single model, will clearly not be able to re-
store consistency of the model-driven environment. Instead,

the user should apply
−→
F CFk and update all CFs.

4. FUTURE WORK
To the best of our knowledge, there exists no work dedi-

cated to multidirectional transformations in QVT-R (or in
any other model transformation language). Therefore, the
natural direction for this work is to collect reasonable case
studies and to study syntactic means to describe multidirec-
tional transformations in order to validate our approach.

We have shown that the checking semantics proposed in

the QVT-R standard is not suitable for specifying even sim-
ple examples of multidirectional transformations. We intend
to explore the expressive power of our multidirectional se-
mantics for writing more realistic examples of feature model
synchronization and co-evolution.

In the present paper, we have purposely left out subjective
considerations about the most adequate syntactic extensions
to the QVT-R language for expressing our proposed check-
ing dependencies, and have focused primarily on the multi-
directional semantics. We are currently considering several
syntactic extensions to allow the specification of the check-
ing dependencies in QVT-R.

Our Echo [7] model repair tool is deployed as an Eclipse
plug-in that implements the bidirectional least-change tech-
nique from [6]. We plan to release a multidirectional version
that naturally extends the existing one: users write multidi-
rectional relations between models and, when inconsistencies
are found, select which models are to be updated, establish-
ing the shape of the consistency-repairing transformation.

Acknowledgments
This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by national
funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technol-
ogy) within project FATBIT, reference FCOMP-01-0124-
FEDER-020532. The first author is also sponsored by FCT
grant SFRH/BD/69585/2010.

5. REFERENCES
[1] J. Bradfield and P. Stevens. Enforcing QVT-R with

mu-calculus and games. In FASE’13, volume 7793 of
LNCS, pages 282–296. Springer, 2013.

[2] A. Cunha, N. Macedo, and T. Guimarães. Target
oriented relational model finding. In FASE’14, LNCS.
Springer, 2014. To appear.

[3] K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr,
and J. Terwilliger. Bidirectional transformations: A
cross-discipline perspective. In ICMT’09, volume 5563
of LNCS, pages 260–283. Springer, 2009.

[4] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, revised edition, 2012.

[5] F. Jouault and I. Kurtev. Transforming models with
ATL. In MoDELS’05 Satellite Events, volume 3844 of
LNCS, pages 128–138. Springer, 2005.

[6] N. Macedo and A. Cunha. Implementing QVT-R
bidirectional model transformations using Alloy. In
FASE’13, volume 7793 of LNCS, pages 297 – 311.
Springer, 2013.

[7] N. Macedo, T. Guimarães, and A. Cunha. Model
repair and transformation with Echo. In ASE’13,
pages 694–697. IEEE, 2013.

[8] L. Meertens. Designing constraint maintainers for user
interaction. In Third Workshop on Programmable
Structured Documents. Tokyo University, 2005.

[9] OMG. MOF 2.0 Query/View/Transformation
specification (QVT), version 1.1.
http://www.omg.org/spec/QVT/1.1/, January 2011.

[10] P. Stevens. A simple game-theoretic approach to
checkonly QVT relations. Software and System
Modeling, 12(1):175–199, 2013.

74

Formalizing Semantic Bidirectionalization
with Dependent Types

Helmut Grohne
University of Bonn

grohne@cs.uni-bonn.de

Andres Löh
Well-Typed LLP

andres@well-typed.com

Janis Voigtländer
University of Bonn

jv@cs.uni-bonn.de

ABSTRACT
Bidirectionalization is the task of automatically inferring one
of two transformations that as a pair realize the forward
and backward relationship between two domains, subject to
certain consistency conditions. A specific technique, semantic
bidirectionalization, has been developed that takes a get-
function (mapping forwards from sources to views) as input—
but does not inspect its syntactic definition—and constructs
a put-function (mapping an original source and an updated
view back to an updated source), guaranteeing standard
well-behavedness conditions. Proofs of the latter have been
done by hand in the original paper, and recently published
extensions of the technique have also come with more or less
rigorous proofs or sketches thereof.

In this paper we report on a formalization of the original
technique in a dependently typed programming language
(turned proof assistant). This yields a complete correctness
proof, with no details left out. Besides demonstrating the
viability of such a completely formal approach to bidirection-
alization, we see further benefits:

1. Exploration of variations of the original technique could
use our formalization as a base line, providing assurance
about preservation of the well-behavedness properties
as one makes adjustments.

2. Thanks to being presented in a very expressive type
theory, the formalization itself already provides more
information about the base technique than the original
work. Specifically, while the original by-hand proofs
established only a partial correctness result, useful
preconditions for total correctness come out of the
mechanized formalization.

3. Finally, also thanks to the very precise types, there
is potential for generally improving the bidirectional-
ization technique itself. Particularly, shape-changing
updates are known to be problematic for semantic bidi-
rectionalization, but a refined technique could leverage
the information about the relationship between the
shapes of sources and views now being expressed at the
type level, in a way we very briefly sketch and plan to
explore further.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

1. INTRODUCTION
We are interested here in well-behaved, state-based, asym-

metric lenses, in which both transformation parts of the BX
are total functions. Formally, let S, V be sets. A lens in
the above sense is a pair of total functions get : S → V and
put : S × V → S for which the following two properties hold:

∀s ∈ S. put(s, get(s)) = s (GetPut)

∀s ∈ S, v ∈ V. get(put(s, v)) = v (PutGet)

Specifically, we are interested in the case when get is a
program in a pure functional programming language and put
is another program in the same language that is automatically
obtained from get somehow.

Voigtländer (2009) presented a concrete technique, seman-
tic bidirectionalization, that lets the programmer write get
in Haskell and delivers a suitable put for it. The technique is
both general and restricted: general in that it works indepen-
dently of the syntactic definition of get , and restricted in that
it requires get to have a certain (parametrically polymorphic)
type. Also, it comes at the price of partiality: even when
get is indeed a total function, the delivered put is in general
partial; and while GetPut indeed holds as given above, Put-
Get becomes conditioned by put(s, v) actually being defined.
Recent works have extended semantic bidirectionalization in
various ways (Matsuda and Wang, 2013, Voigtländer et al.,
2013, Wang and Najd, 2014), both to make it applicable to
more get-functions (lifting restrictions on get ’s type, thus
allowing more varied behavior) and to make put (for a given
get) defined on more inputs.

The original paper by Voigtländer (2009) gives proofs of the
base technique, and papers about extensions of the technique
also come with formal statements about correctness (i.e.,
about satisfying GetPut and PutGet) and proofs or proof
sketches thereof. As is typical for by-hand proofs, details
are left out and the reader is asked to believe that certain
lemmas that are not explicitly proved do indeed hold and
could in principle be proved by standard but tedious means.
In the programming languages community there is a move-
ment towards working more rigorously by using mechanized
proof assistants to establish properties of programs (and of
programming languages) in a fully formal way, see for ex-
ample the PoplMark challenge (Aydemir et al., 2005). We
report here on applying this way of thinking to the semantic
bidirectionalization technique, which has led to a complete
formalization (Grohne, 2013) that moreover provides more
precision concerning definedness of put than the previous
proofs. The proof assistant we use is Agda, which at the
same time is a pure functional programming language with

75

an even more expressive type system than Haskell, and we
take off from there to discuss further potential such expres-
sivity has in making semantic bidirectionalization itself more
useful.

2. LANGUAGE
Agda is what is called a dependently typed programming

language. It is a descendant of Haskell, and it is implemented
in and syntactically similar to Haskell. Based, like Haskell, on
a typed λ-calculus, Agda additionally allows values to occur
as parameters to types. This mixing of types and values
enables us to encode properties into types, and thus the type
checker is able to verify the correctness of proofs: statements
are represented by types and a proof is represented by a
term that has the desired type. For this to work out, a
strong discipline is required so that the type checker’s logic
remains consistent; in particular, all functions must be total—
runtime errors as well as non-termination of programs are
ruled out by a combination of syntactic means and type
checking rules. We give a brief introduction to the language;
a more comprehensive account is given by Norell (2008).

As mentioned, the line between types and values is blurred
in a dependently typed language. As a first example, let
us have a look at the identity function. We use a slightly
simplified version of the definition from the standard library1.

id : {α : Set} → α→ α
id x = x

While the definition itself looks much the same as in any
functional language, the type declaration is different from
what one would have in Haskell, for example. That is be-
cause the availability of dependent types changes the way to
express polymorphism. Instead of some convention treating
certain names in a type (say, all lowercase identifiers) as type
variables, we explicitly say here that α shall be an element of
Set. The type Set contains all types that we will use, except
for itself.2

The next notable difference in the type signature of id is
the use of curly parentheses and the fact that it has two
parameters instead of one. A parameter enclosed in curly
parentheses is called implicit. When the function is defined
or used, implicit parameters are not named or given. Instead,
the type system is supposed to figure out the values of these
parameters. In the case of the identity function, the type
of the explicit parameter will be the value of the implicit
parameter. It is possible to define functions for which the type
system cannot determine the values of implicit parameters.
A type error will be caused in the application of such a
function.

For brevity, we can declare multiple consecutive parameters
of the same type without repeating the type, as can be seen
in the constant function as given in the standard library3.

const : {α β : Set} → α→ β → α
const x = x

1The id function is available in the Function module. Further
footnotes about the origin of functions or types just mention
the module name.
2Actually, Agda knows about a type that contains Set, but

we are not interested in it and further types outside Set.
Therefore, all citations from the standard library have their
support for types beyond Set removed. Eliding those types
allows us to give shorter type signatures.
3Function

The underscore serves as a placeholder for parameters we do
not care about.

Even though the identity and constant functions already
use dependent types, these examples do not illustrate the
benefits of this language feature. To that end, we will have a
look at functions on the data types Fin and Vec soon. Data
types are introduced by notation as follows.

data N : Set where
zero : N
suc : N→ N

This definition introduces the type of natural numbers as
given in the standard library4. This type is named N, is an
element of Set and takes no arguments. It has two construc-
tors, named zero and suc, of which the latter takes a natural
number as a constructor parameter. To write down elements
of this type, we use constructors like functions and apply
them to the required parameters. So zero and suc zero are
examples for elements of N.

Let us have a look at a data type with arguments. The
type of finite numbers, as given in the standard library5,
takes an argument of type N and contains all numbers that
are smaller than the argument.

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n→ Fin (suc n)

We can see that declarations of the type and of constructors
have the same syntax as function declarations. The names
of the constructors here are shared with the N type. Over-
loading of names is allowed for constructors, because their
types can often be inferred from the context. Therefore, the
constructors of Fin use the suc constructor of N in their types.
Also note that the type Fin zero has no elements.

The type of homogeneous sequences is also given in the
standard library6.

data List (α : Set) : Set where
[] : List α
:: : α→ List α→ List α

Underscores have a special meaning when used in symbols.
They denote the places where arguments shall be given in an
application. For example, the list containing just the number
zero can be written as zeroN :: []. Here we already have to
disambiguate which zero we are referring to.

Like the Fin type, the List type takes one argument. How-
ever, this argument is given before the colon. We need to
distinguish the places of arguments, because they serve differ-
ent needs. An argument given after the colon is called data
index. Any symbols bound there are not visible in construc-
tor type signatures. The actual values given for data indices
can vary among constructors, as can be seen in the definition
of Fin. Arguments given before the colon are called data
parameters. They are written as a space-separated sequence,
and each of them must be given a name. Symbols bound as
data parameters can be used both in the types of data indices
and in constructor type signatures. But no discrimination
is allowed on data parameters: When declaring a construc-
tor, they must appear unchanged in the result type of the

4Data.Nat
5Data.Fin
6Data.List

76

signature. Nor are data parameters turned into (implicit)
arguments of the constructors. So functions cannot branch
on them when evaluating an element of a data type.

It is also possible to combine data indices and data pa-
rameters. An example for this is the type of fixed-length
homogeneous sequences as given in the standard library7.

data Vec (α : Set) : N→ Set where
[] : Vec α zero
:: : {n : N} → α→ Vec α n→ Vec α (suc n)

This definition has similarity to Fin and List and employs
both a data parameter and a data index. Unlike in Fin, the
base case [] is (only) constructible for a zero index instead
of a suc n index. So for each index value there is precisely
one constructor with matching type.

When defining functions on data types, we want to branch
on the constructors by pattern matching. A simple example
is the length function from the standard library6.

length : {α : Set} → List α→ N
length [] = zero
length (:: xs) = suc (length xs)

Unlike in Haskell, definition clauses must not overlap. For
instance, the following definition will be rejected for covering
the case zero zero twice.

invalid-pattern-match : N→ N→ N
invalid-pattern-match zero = zero
invalid-pattern-match zero = suc zero

It will also be rejected for not covering the case (suc i) (suc j),
since all constructor combinations must be covered to meet
the totality requirement.

Let us look at a truly dependently typed function now.
A common task to perform on sequences is to retrieve an
element from a given position. In Haskell, this can be done
using the function (!!) :: [a] -> Int -> a. When given
a negative number or a number that exceeds the length of
the list, this function fails at runtime. Such behavior is
prohibited in Agda, so a literal translation of this function
is not possible. Ideally, the bounds check should happen
at compile time. So the Vec type is accompanied with a
corresponding retrieval function in the standard library7, as
follows.

lookup : {α : Set} {n : N} → Fin n→ Vec α n→ α
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

In the declaration, the implicit parameter n is used as a
type parameter in the remaining function parameters. Such
appearance blends the type level and value level that are
clearly separated in Haskell. As a notational remark, the
arrows between parameters in a type signature can be omitted
if the parameters are parenthesized. The declaration above
therefore lacks the arrow separating the implicit parameters.

With the totality requirement in mind, the definition of
lookup may seem incomplete, because we omitted the case
of an empty Vec. But a closer look reveals that that case
cannot happen. The type of [] is Vec α zero, so it can only
occur when n is zero. There is no constructor for Fin zero
however. The type checker is able to do this reasoning and
recognizes that our definition actually covers all type-correct

7Data.Vec

cases. Another example in a similar spirit is the definition of
the head function from the standard library7.

head : {α : Set} {n : N} → Vec α (suc n)→ α
head (x ::) = x

The input type Vec α (suc n) effectively expresses that only
non-empty sequences can be passed—thus, no runtime error
like for the corresponding Haskell function can occur.

For further familiarization, let us look at other polymorphic
functions on Lists and/or Vecs. Our first example is to skip
every other element of a sequence. When implemented using
Lists, its type and implementation closely match what we
would write in Haskell.

sieveList : {α : Set} → List α→ List α
sieveList [] = []
sieveList (x :: []) = x :: []
sieveList (x :: :: xs) = x :: sieveList xs

Writing it using Vec requires us to give a length expression
for the result type. More precisely, we need a function that
relates input length to output length, in this specific case
computing the upwards rounded division by 2. It happens
to be available from the standard library4.

d /2e : N→ N
d zero /2e = zero
d suc zero /2e = suc zero
d suc (suc n) /2e = suc d n /2e

Equipped with this function, we can update the type of sieve
while retaining the implementation.

sieveVec : {α : Set} {n : N} → Vec α n
→ Vec α d n /2e

As another example, we consider the function that reverses
a size-indexed sequence. We can base our implementation on
the dependently typed left fold as does the standard library7.

reverseVec : {α : Set} {n : N} → Vec α n→ Vec α n
reverseVec {α} = foldl (Vec α) (λ rev x→ x :: rev) []

3. SEMANTIC BIDIRECTIONALIZATION
The Haskell version of semantic bidirectionalization, in its

most simple form, works for functions of type [a] -> [a],
i.e., polymorphic get-functions on homogeneous lists. We
want to translate the Haskell implementation of “put from
get” given by Voigtländer (2009) to Agda, and redevelop
the proofs of the well-behavedness lens laws in parallel. So
we should first look at the type of the forward function in
Agda. We can think of something like sieve or reverse, so a
reasonably general type expressing both the polymorphism
and the possible type-level information about lengths would
look as follows:

get : {α : Set} {n : N} → Vec α n→ Vec α { ! !}
where { ! !} is a hole that still needs to be filled by some
expression. For the sake of maximal generality, we can turn
the dependence of the output length on the input length into
an explicit function, thus arriving at the following type:

get : Σ (N→ N)
(λ getlen→ ({α : Set} {n : N}

→ Vec α n→ Vec α (getlen n)))

77

The Σ is notation for a dependent pair as defined in the
standard library8, expressing here that there is one compo-
nent that is a function from N to N and another component
whose type depends on the former function (named getlen).
Clearly, both sieveVec and reverseVec can be thus embedded,
for suitable choices of the getlen function. For example, the
pair (d /2e , sieveVec) has the above Σ-type.

That indeed every polymorphic function on homogeneous
lists can be thus embedded depends on free theorems, as given
by Wadler (1989). One free theorem in Haskell is that for
every function of type [a] -> [a] the length of the returned
list is independent of the contents of the passed list, instead
only depending on its length. Correspondingly, for list-based
get the correct getlen function can be constructively obtained,
and then used to define the type of the vector-based variant
of get. The relationship here has to do with the fact that
the vector type is an ornament of the list type (Dagand and
McBride, 2012, 2013, Ko and Gibbons, 2013). Another way
of thinking about it is colored type-theory (Bernardy and
Moulin, 2013).

Now we are in a position to give the main construction
from (Voigtländer, 2009). There, it is a Haskell function
named bff (which is a short form of “bidirectionalization for
free”) with the following type:9

bff :: (forall a. [a] -> [a])

-> (forall a. Eq a => [a] -> [a] -> [a])

Apparently, a get-function is turned into a put-function,
where the latter must be allowed to compare elements for
equality. The most interesting bit in Agda of course is how
the type plays out. It does become quite a bit more verbose,
but that verbosity is useful since the additional pieces carry
important information. Without further ado, here is the
Agda type for bff:

bff : {getlen : N→ N}
→ ({α : Set} {n : N} → Vec α n

→ Vec α (getlen n))
→ {n : N} → Vec Carrier n

→ Vec Carrier (getlen n)
→ Maybe (Vec Carrier n)

Let us discuss this type a bit. First of all note how the de-
pendent pair from the above prototypical Agda type for get,
which has to take the role of the (forall a. [a] -> [a])

argument function in Haskell’s bff, is turned into two argu-
ments for bff by currying. For the produced put , instead of
quantifying over an Eq-constrained type variable, we use a
Carrier type that is a parameter of the Agda module in which
bff is defined. That is solely done for convenience—since
a client of the module can pass an arbitrary type for that
parameter, as long as a decidable semantic equality10 is de-
fined for that type, there is no less flexibility when applying
the outcome put-function of bff than there is in the Haskell

8Data.Product
9For simplicity, we do not yet consider type class extensions

to get.
10To cut down on proof size, we do not support any other
kind of equality at the moment. Allowing arbitrary equiva-
lence relations here would be a first step towards supporting
type class extensions to get. Different notions of equality/e-
quivalence also play an important role in the work of Wang
and Najd (2014) on streamlining semantic bidirectionaliza-
tion for get-functions that are type class aware, or indeed
generally higher-order.

case. Another notable difference is that the final outcome is
wrapped in a Maybe. The reason for this is that in Agda all
functions must be total. So while the Haskell implementa-
tion fails with a runtime error if no suitable result can be
produced by put , in Agda we instead need to explicitly signal
error cases as special values. Finally, the vector lengths in
the type of the produced put-function tell us about shape
constraints. In fact, mismatches between expected shape
(from the original view obtained from the original source)
and actual shape (from the updated view) are one reason
for runtime errors in the Haskell version of bff. In Agda,
trying to combine a source s that has type Vec Carrier n for
some natural number n with a view v that has any other
type than Vec Carrier (getlen n), in particular one that has
any other length than the expected getlen n, will not even
be type-correct—so a possible runtime error has been turned
into a static check.

The actual definition of bff is not much different than in
Haskell. Apart from functions from the standard library11 it
uses a few custom functions. In particular,

enumerate : {n : N} → Vec Carrier n→ Vec (Fin n) n
enumerate = tabulate id

enumerates the elements of a Vec, i.e., takes a vector of
length n and produces a vector that corresponds to the list
[0 , 1 , . . . , n-1], and

denumerate : {n : N} → Vec Carrier n→
Fin n→ Carrier

denumerate = flip lookup

recovers the actual values, given a position. Using some
further auxiliary functions we do not repeat from (Grohne,
2013) in full here, we arrive at:

FinMapMaybe : N→ Set→ Set
FinMapMaybe m α = Vec (Maybe α) m

checkInsert : {m : N} → Fin m→ Carrier
→ FinMapMaybe m Carrier
→ Maybe (FinMapMaybe m Carrier)

checkInsert i b h with lookup i h
. . . | nothing = just (insert i b h)
. . . | just c with deq b c
. . . | yes b≡c = just h
. . . | no b6≡c = nothing

assoc : {n m : N} → Vec (Fin m) n→ Vec Carrier n
→ Maybe (FinMapMaybe m Carrier)

assoc {zero} [] [] = just empty
assoc {suc n} (i :: is) (b :: bs) = assoc is bs

>>= checkInsert i b

bff get s v = let s′ = enumerate s
g = tabulate (denumerate s)
h = assoc (get s′) v
h′ = (flip union g) <$> h

in (flip mapVec s′ ◦ flip lookup) <$> h′

We do not explain all syntax used here, in particular the
generalized form of pattern matching via with. Beside the

11For example, flip : {α β γ : Set} → (α → β → γ) →
β → α→ γ, mapVec : {α β : Set} {n : N} → (α→ β)→
Vec α n → Vec β n, and <$> : {α β : Set} →
(α→ β)→ Maybe α→ Maybe β are similar to their Haskell
counterparts.

78

fact that apart from the more informative types these func-
tion definitions are rather close to those from (Voigtländer,
2009), the more interesting aspect is anyway what we can
prove about them.

4. PROVING CORRECTNESS
Voigtländer (2009) proves two theorems about bff, cor-

responding to GetPut and PutGet. In Agda, a theorem is
represented/encoded as a type and a proof is a term that
has that type. The two theorems as expressed in Agda are:

theorem-1 :
{getlen : N→ N}
→ (get : {α : Set} {n : N} → Vec α n

→ Vec α (getlen n))
→ {n : N}
→ (s : Vec Carrier n)
→ bff get s (get s) ≡ just s

and:

theorem-2 :
{getlen : N→ N}
→ (get : {α : Set} {n : N} → Vec α n

→ Vec α (getlen n))
→ {n : N}
→ (s : Vec Carrier n)
→ (v : Vec Carrier (getlen n))
→ (u : Vec Carrier n)
→ bff get s v ≡ just u
→ get u ≡ v

Note how both are first “quantified”—since an argument type
means a piece that the user of the theorem can choose freely
as long as being type-correct—over the ingredients (a getlen
and a get) that are the main inputs to bff. Then, theorem-1
expresses that for every s and every put obtained as bff get
holds: put s (get s) ≡ just s, i.e., the here appropriate version
of the GetPut law put(s, get(s)) = s. Similarly, theorem-2
expresses that for every s, v, u, if bff get s v ≡ just u (note that
a precondition simply becomes a function argument whose
type is a statement, and thus whose every value witness will
be a proof object for that statement), then get u ≡ v. In
other words, again for put obtained as bff get: if there is some
u such that put s v ≡ just u, then get of that u is v. That
of course corresponds to the PutGet law, get(put(s, v)) = v,
conditioned by put(s, v) actually being defined.

Complete proof objects for theorem-1 and theorem-2 are
given in (Grohne, 2013, Agda source at http://subdivi.de/
~helmut/academia/fsbxia.agda). We will not give those
proofs/terms here; the important thing is that they exist.
What is interesting to record, of course, is what assumptions
they depend on. The only dependency that is not proved
within said formalization itself is the Vec variant of the free
theorem for polymorphic functions on homogeneous lists.
Instead, it is only postulated.

postulate
free-theoremVec :
{getlen : N→ N}
→ (get : {α : Set} {n : N} → Vec α n

→ Vec α (getlen n))
→ {β γ : Set}
→ (f : β → γ)→ {n : N} → (l : Vec β n)
→ get (mapVec f l) ≡ mapVec f (get l)

This is the natural transfer of the free theorem statement for
lists from Wadler (1989) to the setting of vectors. Actually
proving it in Agda as well would require techniques that are
orthogonal to our consideration of the lens laws (Bernardy
et al., 2012), so we opt for keeping it as a postulation here,
just as the list version of that free theorem for Haskell was an
assumption (by all beliefs of the Haskell community a very
well-founded one) in the proofs of Voigtländer (2009). The
important thing is that the proofs of theorem-1 and theorem-2
from free-theoremVec are now fully machine-checked!

Those proofs themselves proceed via a series of lemmas,
similarly as one would do on paper, but of course Agda is
uncompromising in requiring an explicit argument for each
step. There is no “this is obvious” or “left as an exercise to
the reader” as in (Voigtländer, 2009) and other papers on
semantic bidirectionalization and extensions thereof. Just to
give a taste, here are statements that we encounter which
correspond to Lemmas 1 and 2 of Voigtländer (2009):

lemma-1 :
{m n : N}
→ (is : Vec (Fin m) n)→ (f : Fin m→ Carrier)
→ assoc is (mapVec f is) ≡ just (restrict f (toList is))

lemma-2 :
{m n : N}
→ (is : Vec (Fin m) n)→ (v : Vec Carrier n)
→ (h : FinMapMaybe m Carrier)
→ assoc is v ≡ just h
→ mapVec (flip lookup h) is ≡ mapVec just v

as well as how an induction proof in Agda looks like, for the
former:12

lemma-1 [] f = refl
lemma-1 (i :: is) f = begin

(assoc is (mapVec f is) >>= checkInsert i (f i))
≡〈 cong (λ h→ h >>= checkInsert i (f i))

(lemma-1 is f) 〉
(just (restrict f (toList is)) >>= checkInsert i (f i))
≡〈 refl 〉

checkInsert i (f i) (restrict f (toList is))
≡〈 lemma-checkInsert-restrict f i (toList is) 〉

just (insert i (f i) (restrict f (toList is))) 2

farming out to another auxiliary lemma:

lemma-checkInsert-restrict :
{m : N}
→ (f : Fin m→ Carrier)
→ (i : Fin m)→ (is : List (Fin m))
→ checkInsert i (f i) (restrict f is)
≡ just (restrict f (i :: is))

which in turn requires further inductions, etc. Something
we do not dwell on here is the actual process of arriving
at the proofs, but Grohne (2013) describes in detail how
interactive proof construction works and how Agda lends
a helping hand, while also requiring familiarization with
certain idioms for effective formalization. This guidance

12The refl steps correspond to reflexivity of propositional
equality ≡. It can be used when Agda is able to prove an
equality by its built-in rewriting strategy based on function
definitions. Such rewriting also happens silently, but of
course always with Agda’s correctness guarantee, in some
other steps.

79

should be helpful when embarking on a similar endeavor
for correctness proofs of other techniques, or when further
developing the provided formalization, to cover extensions
of semantic bidirectionalization already presented in the
literature or still to be explored.

5. SO WHAT?
We have arrived at formal proofs of GetPut and PutGet for

the bidirectionalization technique from (Voigtländer, 2009).
But we already knew, or at least very strongly believed, that
the technique was correct beforehand. After all, the original
paper did contain lemmas, theorems, and proofs that seemed
acceptable to the community. So what have we actually
gained?

Beside the reassuring feeling that comes with a machine-
checked proof, the dependent types and formalization work
bring concrete additional benefits in terms of better under-
standing of the formalized technique and its properties. We
have already remarked on the fact that the Haskell version
of bff can fail with a runtime error, and that one reason for
such failure is shape mismatches, and that the constraints
on vector lengths in the Agda types we use prevent those.
Actually, it was already informally observed in previous work
for the Haskell version that only when the shapes of get s and
v are the same is there any hope that put s v is defined, but
the dependent types in the Agda version are both explicit
and more rigorous about this.

And there is more. Even when the shapes are in the correct
relationship, the put obtained as bff get can fail. After all,
that is why we have wrapped the ultimate return type of bff
in a Maybe. Such failure occurs when get duplicates some
entry from the source sequence and the two copies in the
view are updated to different values. On the other hand,
if no duplication takes place, then bff should not end up
returning nothing (thus signaling failure). In Agda, we can
formalize this intuition based on the following predicate:

data All-different {α : Set} : List α→ Set where
different-[] : All-different []
different-:: : {x : α} {xs : List α}

→ x /∈ xs
→ All-different xs
→ All-different (x :: xs)

What this definition says is that, trivially, the elements of
the empty list are pairwise different, and the elements of a
non-empty list are pairwise different if the head element is
not contained in the tail and if, moreover, the elements of
the tail are pairwise different. Based on All-different, Grohne
(2013) proves a sufficient condition for when an assoc-call
succeeds (i.e., for when there exists some h such that the
result of assoc is just h rather than nothing):

different-assoc :
{m n : N}
→ (u : Vec (Fin m) n)
→ (v : Vec Carrier n)
→ All-different (toList u)
→ ∃ (λ h→ assoc u v ≡ just h)

Moreover, he proves that if a certain assoc-call succeeds, then
the put obtained as bff get succeeds:

lemma-assoc-enough :
{getlen : N→ N}

→ (get : {α : Set} {n : N} → Vec α n
→ Vec α (getlen n))

→ {n : N}
→ (s : Vec Carrier n)
→ (v : Vec Carrier (getlen n))
→ ∃ (λ h→ assoc (get (enumerate s)) v ≡ just h)
→ ∃ (λ u→ bff get s v ≡ just u)

Combining different-assoc and lemma-assoc-enough, we learn
that bff get s v succeeds, and thus the precondition of Put-
Get/theorem-2 is fulfilled, if

All-different (toList (get (enumerate s)))

holds. Thus, we have formally established that a sufficient
condition on get to guarantee that the dependently typed
bff get always succeeds is what is called semantically affine
in (Voigtländer et al., 2013).

Further exploration of semantic bidirectionalization tech-
niques should also profit from the availability of a formaliza-
tion. Indeed, such availability would have benefited us in the
past. For example, the original paper (Voigtländer, 2009)
proved GetPut and PutGet, but only claimed that a third
law, PutPut, also holds. Later work (Foster et al., 2012)
refactored the definition of bff, essentially by formulating it
in terms of the constant-complement approach (Bancilhon
and Spyratos, 1981), to make more apparent that PutPut
indeed holds. But this refactoring required extra care and
consideration to make sure that no other properties were
destroyed. In fact, new arguments were needed for correct-
ness of the refactored version. Of course, the same would
have been the case if an Agda formalization of the original
correctness arguments had already been available, but the
dependent types and proof assistant would have provided a
safety net, just as standard type systems provide a safety
net when refactoring ordinary programs instead of programs
and proofs in one go. Similarly, other and further variations
of semantic bidirectionalization may profit now. It would be
useful to first extend the formalization to treat data struc-
tures other than sequences for get to operate on, for example
trees. Data type generic versions of get have already been im-
plemented in Haskell Voigtländer (2009), Foster et al. (2012),
but not been proved with the same rigor. The formalization
of indexed containers using ornaments (Dagand and McBride,
2013) should be useful here.

Finally, let us mention a promising new direction for bidi-
rectionalization that uses dependent types not only for veri-
fication but for doing a better job at the bidirectionalization
task itself. The idea here is to turn dependent types into
a “plug-in” in the sense of (Voigtländer et al., 2013). In
brief, the variation of semantic bidirectionalization presented
by Voigtländer et al. (2013) overcomes the limitation of
only being able to handle shape-preserving updates. It does
so by requiring that each invocation of bff is enriched by
a “shape bidirectionalizer”, a function that performs well-
behaved updates on an abstraction of sources and views to
the shape level, for example list lengths. Several possibilities
are discussed for solving the shape-level problem, ranging
from requesting programmer input, over search and syntactic
transformations, to bootstrapping semantic bidirectionaliza-
tion for abstracted problems. All this happens in Haskell,
but in Agda we have another resource for such plug-in tech-
niques. Namely, we can turn to shape information that comes
from the types. Specifically, the getlen functions already ex-
press relationships between source and view sequence lengths.

80

Since the propagation direction needed for shape bidirection-
alizer plug-ins is from views to sources, we would actually
need at least a partial inverse of getlen. But with the rich
expressiveness available at the type level in Agda, we could
even explore different abstractions, be they general relations
between source and view shapes, or functions in one or the
other direction. We can also prove connections between these
abstractions, and potentially move between them, depending
on what is most convenient for a given get-function. As a
very simple example of what we have in mind, consider the
tail function with its canonical type in Agda:

tail : {α : Set} {n : N} → Vec α (suc n)→ Vec α n
tail (:: xs) = xs

The type does not only express that tail is only well-defined
on non-empty sequences, it also tells us in no uncertain terms
that its input is always exactly one entry longer than its
output (so suc acts as getlen−1 here). Concerning bidirec-
tionality that tells us that if tail is get and the view sequence
is changed to some new length, we know exactly what the
new source length should be. This is exactly the information
that a shape bidirectionalizer plug-in needs to provide, but
now actually available statically by virtue of the very defi-
nition of get in a dependently typed language. We plan to
develop a general technique from this idea, of course with
Agda implementation and formalization going hand in hand.

References
Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn,

J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dim-
itrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich,
and Steve Zdancewic. Mechanized metatheory for the
masses: The PoplMark challenge. In Proceedings of
Theorem Proving in Higher Order Logics, volume 3603 of
Lecture Notes in Computer Science, pages 50–65. Springer,
2005. doi 10.1007/11541868 4.

François Bancilhon and Nicolas Spyratos. Update seman-
tics of relational views. ACM Transactions on Database
Systems, 6(4):557–575, 1981. doi 10.1145/319628.319634.

Jean-Philippe Bernardy and Guilhem Moulin. Type-theory
in color. In Proceedings of International Conference on
Functional Programming, pages 61–72. ACM, 2013. doi
10.1145/2500365.2500577.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson.
Proofs for free—Parametricity for dependent types. Jour-
nal of Functional Programming, 22(2):107–152, 2012. doi
10.1017/S0956796812000056.

Pierre-Évariste Dagand and Conor McBride. Transporting
functions across ornaments. In Proceedings of International
Conference on Functional Programming, pages 103–114.
ACM, 2012. doi 10.1145/2364527.2364544.

Pierre-Évariste Dagand and Conor McBride. A categor-
ical treatment of ornaments. In Proceedings of Logic
in Computer Science, pages 530–539. IEEE, 2013. doi
10.1109/LICS.2013.60.

Nils Anders Danielsson et al. The Agda standard library
version 0.6, 2011. URL http://www.cse.chalmers.se/

~nad/software/lib-0.6.tar.gz.

Nate Foster, Kazutaka Matsuda, and Janis Voigtländer.
Three complementary approaches to bidirectional program-
ming. In Spring School on Generic and Indexed Program-
ming (SSGIP 2010), Revised Lectures, volume 7470 of
Lecture Notes in Computer Science, pages 1–46. Springer,
2012. doi 10.1007/978-3-642-32202-0 1.

Helmut Grohne. Formalizing semantic bidirectionaliza-
tion in Agda. Master’s thesis, University of Bonn,
2013. URL http://subdivi.de/~helmut/academia/

fsbxia.pdf. Agda formalization available at http://

subdivi.de/~helmut/academia/fsbxia.agda.

Hsiang-Shang Ko and Jeremy Gibbons. Modularising induc-
tive families. Progress in Informatics, 10:65–88, 2013. doi
10.2201/NiiPi.2013.10.5.

Kazutaka Matsuda and Meng Wang. Bidirectionalization for
free with runtime recording: Or, a light-weight approach
to the view-update problem. In Proceedings of Principles
and Practice of Declarative Programming, pages 297–308.
ACM, 2013. doi 10.1145/2505879.2505888.

Ulf Norell. Dependently typed programming in Agda. In
Advanced Functional Programming, volume 5832 of Lecture
Notes in Computer Science, pages 230–266. Springer, 2008.
doi 10.1007/978-3-642-04652-0 5.

Janis Voigtländer. Bidirectionalization for free! (Pearl).
In Proceedings of Principles of Programming Languages,
pages 165–176. ACM, 2009. doi 10.1145/1480881.1480904.

Janis Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, and
Meng Wang. Enhancing semantic bidirectionalization
via shape bidirectionalizer plug-ins. Journal of Func-
tional Programming, 23(5):515–551, 2013. doi 10.1017/
S0956796813000130.

Philip Wadler. Theorems for free! In Proceedings of Func-
tional Programming languages and Computer Architecture,
pages 347–359. ACM, 1989. doi 10.1145/99370.99404.

Meng Wang and Shayan Najd. Semantic bidirectionaliza-
tion revisited. In Proceedings of Partial Evaluation and
Program Manipulation, pages 51–61. ACM, 2014. doi
10.1145/2543728.2543729.

81

BenchmarX

Anthony Anjorin
Technische Universität

Darmstadt
anthony.anjorin@es.tu-

darmstadt.de

Alcino Cunha
HASLab / INESC TEC and

Universidade do Minho
alcino@di.uminho.pt

Holger Giese
Hasso-Plattner-Institut

holger.giese@
hp.uni-potsdam.de

Frank Hermann
Université du Luxembourg
Interdisciplinary Centre for

Security, Reliability and Trust
frank.hermann@uni.lu

Arend Rensink
University of Twente

arend.rensink@utwente.nl

Andy Schürr
Technische Universität

Darmstadt
andy.schuerr@es.tu-

darmstadt.de

ABSTRACT
Bidirectional transformation (BX) is a very active area of research
interest. There is not only a growing body of theory, but also a rich
set of tools supporting BX. The problem now arises that there is
no commonly agreed-upon suite of tests or benchmarks that shows
either the conformance of tools to theory, or the performance of
tools in particular BX scenarios. This paper sets out to improve the
state of affairs in this respect, by proposing a template and a set
of required criteria for benchmark descriptions, as well as guide-
lines for the artifacts that should be provided for each included test.
As a proof of concept, the paper additionally provides a detailed
description of one concrete benchmark.

Categories and Subject Descriptors
D.4.8 [Software Engineering]: Performance—Measurements

General Terms
Measurement

Keywords
bidirectional transformations, benchmark, tools, comparison

1. INTRODUCTION AND MOTIVATION
Bidirectional transformations (BX) are required to maintain the

consistency of related artifacts modified by concurrent engineering
activities [2]. This task is relevant in multiple domains and is an
active research focus in various communities [2]. Although the
first theoretical foundations for BX have been laid and there are a
number of tools that already support BX to a certain extent [9], it is
difficult for non-developers to discern the exact capabilities of each
BX tool and effectively compare it with others.

What is missing is a collection of benchmarks, which can be used
to identify the strengths and weaknesses of different tools and their

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

respective approaches. Such a benchmark suite for BX will not
only clarify the state of the art and current limitations of BX tools,
but also drive further development and cross-fertilization between
the different BX sub-communities and tool developers.

Our goal in this paper is to improve the current situation by
proposing a template for BX benchmarks. Specifically, we:

1. Provide a precise definition for a BX benchmark, identifying
a set of required properties that distinguish a BX benchmark
from a mere BX example.

2. Identify a feature matrix similar to that given in [12], which
is to be used to classify BX benchmarks.

3. Present, as a proof of concept, a simple but concrete bench-
mark that adheres to our proposed template.

2. STRUCTURE OF A BX BENCHMARK
According to the dictionary,1 a benchmark is a standardised

problem or test that serves as a basis for evaluation or comparison.
The aim of benchmarking is to systematically assess and, if possi-
ble, measure a set of features of a system under different, precisely
defined, and reproducible circumstances [12]. Based on the respec-
tive results on a benchmark, different systems can be compared and
evaluated based on pertinent system characteristics. In this section
we collect the characteristics needed for a BX benchmark to make
such assessment and measurement possible.

2.1 Prerequisites
In order to precisely define different aspects and properties of

bidirectional transformations in this paper, we first provide some
detailed formalisations and general requirements.
A bidirectional transformation consists of the following:
• A left language LL, a right language LR, and a binary con-

sistency relation C over both languages that specifies which
pairs of left and right models are consistent. It is difficult
to escape the directional cultural bias here, though we try to
avoid equating “left” with “source” and “right” with “target”.
• Sets of possible left updates UL and right updates UR. Each

update u is a mapping from models to corresponding updated
models. The application of an update to a single model is
given by a change δ (we shall state exactly what this is in a
moment), that specifies how a model is modified to a changed
model. The sets of possible changes to the left and right
models are denoted by ∆L and ∆R, respectively.

1Merriam-Webster, 2013

82

• Propagation functions
−→
C : ∆L × LR → ∆R and

←−
C : ∆R ×

LL → ∆L, commonly called forward and backward propa-
gation. The forward propagation

−→
C takes a change δ on the

left-side together with a right model (consistent with the left
model that is the source of δ), and returns a change on the
right-side to be applied to that model. The same applies du-
ally for the backward propagation

←−
C .

We will equate languages with their extensions, being sets of
models; hence we can regard C ⊆ LL ×LR as a binary relation
between left models and right models. Consistency of a left-model
ML ∈LL and a right-model MR ∈LR will be denoted by ML C MR.
In some scenarios, the consistency relation C may only be admitted
if there is further evidence of consistency, for instance in the form
of an element-to-element mapping between related models; this can
be captured by defining C as the union of a set of indexed binary
relations Cϕ, where ϕ is the object that captures the evidence — for
instance, a binary relation between the elements of the left model
and those of the right model.

Members of the sets of left updates UL and right updates UR are
partial functions from models to models. For instance, a left update
uL ∈UL is a partial function from LL to LL. We reserve the word
change (or delta) for the pairs of models that are the extension of
an update; i.e., if u(M1) = M2 for some update u then (M1,M2)
is a change. Like pairs of consistent models, in some scenarios a
change may have additional information about the relation between
the elements of source and target model; in such a situation, the
change will be a triple (M1,M2,µ) for some object µ that encodes
the additional information. In general, a change δ will always have
a well-defined source model src(δ) and target model tgt(δ). The set
of all allowed left- [right-] changes is denoted by ∆L [∆R]. A single
change δ may be taken as a kind of degenerate update u, applicable
only to src(δ) and yielding tgt(δ).

The general requirement for
−→
C is that for all δL ∈ ∆L and MR ∈

LR, such that src(δL) C MR:

MR = src(
−→
C (δL,MR)) (1)

and analogously for
←−
C . These requirements are usually known as

incidence laws in delta-based BX frameworks [3]. In the simplest
case, where ∆ = L ×L is the set of all possible pairs of models,
(1) can be trivially satisfied. It should be noted that, when C is
left-unique and left-total (see below), then the target of

−→
C (δL,MR)

is uniquely defined by the target of δL; and dually for the other
direction. A special case of (say forward) propagation is where δL
is the change from some initial, empty model ⊥ ∈ LL into our left
model of interest ML (often referred to as a batch transformation).

How forward and backward propagation are defined is up to the
benchmark in question. For instance, if there is additional evidence
Cϕ associated with the consistency of ML and MR, then Cϕ might
play a role in the definition of

−→
C and

←−
C (and be required as input).

2.2 Definition of a BX benchmark
The following definitions are adapted from [12] and adjusted as

required for BX benchmarks:
A BX scenario is a broad application field that can be clearly

characterized as requiring BX. Examples include model synchro-
nization, tool integration, and round-trip engineering.

A BX benchmark is a bidirectional transformation that serves as
an incarnation of a BX scenario, with the following properties:

1. A precise, executable definition of the consistency relation
C , which can be used as an oracle to decide if a left model
ML ∈ LL, and a right model MR ∈ LR are consistent (i.e.,
ML C MR).

2. An explicit definition of data (input models) for the trans-
formation, or a generator that can be used to produce the
required models.

3. A set of precisely defined updates for certain input models.
4. A set of executable metric definitions for what is to be mea-

sured / assessed by the benchmark.
5. Finally, as it is of no interest to measure arbitrary and irrel-

evant features, a benchmark should represent a useful trans-
formation that covers aspects that are indeed relevant in the
corresponding BX scenario.

A BX benchmark consists of several test cases, each of which is
a complete, deterministic, but parametric specification fixing all de-
tails required for executing the corresponding measurements. Ev-
ery test case measures or assesses specific features.

Finally, a run is a test case for which all parameters (e.g., input
data size) are set to concrete values.

The results of carrying out a benchmark for a specific tool are
produced by executing a series of runs for the different test cases of
the benchmark.

2.3 Classification of BX benchmarks
A BX benchmark is to be classified using a feature matrix,

with one dimension corresponding to the different test cases of the
benchmark, and the other to paradigm and tool features, discussed
in the following.

2.3.1 Paradigm features of the benchmark
A paradigm feature of a BX benchmark describes a character-

istic of a test case of the benchmark. We identify the following
paradigm features (to be extended as required):

Properties of the consistency relation. The following proper-
ties purely depend on the left and right languages. While in some
BX approaches, the consistency relation is derived from the spec-
ification of the BX operations, we explicitly avoid this coupling.
This implies that the benchmark can be seen as a test for the cor-
rectness and completeness of the particular solution using a specific
approach.

1. C can be left-total, meaning that for every left model ML ∈
LL, there exists at least one right model MR ∈ LR such that
ML C MR; and right-total, which is the dual and defined anal-
ogously.

2. C can be left-unique, meaning that for every right model
MR ∈ LR, there exists at most one left model ML ∈ LL such
that ML C MR; and right-unique, which is the dual and de-
fined analogously.

For those more familiar with other terminology: a left-total relation
is often called total, right-total surjective, left-unique injective, and
right-unique functional.

Platform dependency. A test case can range from platform in-
dependent (PI) to platform specific (PS), depending on the nature
of its description. Note that according to our definition of a BX
benchmark, data must be provided, but this can be, e.g., in form of
a textual format for which adapters for different platforms can be
provided as required (PI), as opposed to, say, Ecore XMI files (PS).
A benchmark should state explicitly the platforms for which data
or appropriate adapters are provided.

Characteristics of the data domain. Every benchmark (or indi-
vidual test case) should state the characteristics of the required data
domain explicitly. With this we mean (i) if the data can be rep-
resented as simple sets, trees, or graphs, and (ii) what constraints
are imposed including keys, an order on elements, etc. This is im-
portant as some BX tools are specialized for, e.g., sets and do not
support graph-like structures.

83

Variations and extension points. Every benchmark should state
if it is a variation of an existing benchmark and make the differ-
ences as explicit as possible. The goal here is to be able to doc-
ument and manage a family of different benchmarks, which are
clearly related, i.e., use basically the same transformation, but ei-
ther simplify or introduce additional complexity.

2.3.2 Tool features measured by the benchmark
A tool feature of a BX benchmark represents a tool characteristic

that can be assessed and measured with a series of runs of a test
case of the benchmark. We identify the following tool features (to
be extended as required):

Run time: The run time required to execute a run can be mea-
sured in, e.g., milliseconds for a tool. Note that run time can also be
measured abstractly in “actions” or “edits” depending on the used
technology (e.g., a database or model repository).

Memory Consumption: The required memory for executing a
run can be measured for a tool either in (kilo)bytes or, as for run
time, in more abstract units if this makes sense.

Scalability: By plotting run time/memory consumption for
(i) increasing input data size and (ii) increasing size of propagated
changes (UL,UR), the scalability of a tool can be measured with
respect to the varied dimension. Note that this is only feasible if
the test case consists of several runs of increasing size or if a size
parametric data generator is provided.

Conformance to laws for BX approaches: The expected be-
haviour of BX tools is typically assessed by checking conformance
to a set of laws. Depending on the BX framework, e.g., lenses [3],
Triple Graph Grammars [8], or other BX algebraic frameworks
[10], various sets of laws can be formulated differently.

Given ML ∈ LL, MR ∈ LR, δL ∈ ∆L such that ML C MR and
src(δL) = ML, we identify the following potential laws of inter-
est (to be extended as required):
Correctness. A basic law present in all frameworks is confor-

mance of the forward and backward propagation to the con-
sistency relation C . Forward correctness is stated as:

[−→
C (δL,MR) = δR

]
=⇒ tgt(δL) C tgt(δR)

Backward correctness is defined analogously.
Completeness. Another interesting property to assess is whether

the forward propagation succeeds in returning a change
whenever at least one consistent right-model exists. Forward
completeness can be stated as:

[
∃MR

2 . tgt(δL) C MR
2

]
=⇒ −→C (δL,MR) ↓

Here,
−→
C (δL,MR) ↓ means that the forward propagation is

defined for the given inputs, i.e., the execution is successful
and returns a change on the right domain. Backward com-
pleteness is defined analogously.

As an alternative to the more consensual notion of correctness
proposed above, some scenarios may require some notion of com-
patibility of forward and backward propagation operations, e.g., the
GETPUT and PUTGET laws [6], or (weak) invertibility [4]. For
instance, instead of requiring the result of a forward propagation
to be consistent, one may only require it to be constant under an
additional round trip application of backward and forward propa-
gations. Benchmarks may vary on the used laws to assess expected
behaviour.

If the consistency relation C is not source unique, backward
propagation must possibly deal with a loss of information as it is
unclear and in general impossible to reconstruct the “expected”
source only given a modified target. It is important to assess if a

Figure 1: Meta-models for LL (left) and LR (right)

tool is able to use the old source to cope adequately with informa-
tion loss. The situation is analogous for non target uniqueness and
forward propagation. The following laws can be used to assess this:
Hippocraticness. A basic property that is present in most frame-

works forbids unnecessary changes when the left and right
model are already consistent. This is most commonly known
in a simplified form as hippocraticness [10]. Forward hip-
pocraticnes can be formalized as follows (similarly for back-
ward hippocraticnes):
[
tgt(δL) C MR∧−→C (δL,MR) = δR

]
=⇒ tgt(δR) = MR

Least Change. A stronger requirement than hippocraticness is the
least change property, that forbids changes that are clearly
unnecessary (first introduced in [7] as the principle of least
change). A formalization of forward least change is:[−→

C (δL,MR) = δR
]
=⇒

@ δR2 . src(δR2) = MR∧ tgt(δL) C tgt(δR2)∧δR2 <∆ δR
Here we assume the existence of a partial order <∆ between
changes that somehow measures if one change is “smaller”
than another. The concrete definition of this partial order is
benchmark dependent, and it may be interesting to even have
different instantiations of this law for different partial orders.

3. AN EXAMPLE BX BENCHMARK
We presuppose primitive types String and Int. Our left and

right languages are defined by the meta-models in Fig. 1. Both
are extremely simple: the left language consists of sets of Per-
sons, with name and age attributes, whereas the right language
likewise consists of collections of Persons, in this case only with
name attributes. For both languages, name is considered to be a
key attribute, meaning that only collections of persons with distinct
names are allowed. The languages are extensionally defined as sets
of models with the following characteristics:
• LL is the set of finite partial functions

ML : Int ⇀ (String× Int) such that for all pairs of elements
ML(pi) = (ni,ai) for i = 1,2, n1 = n2 implies p1 = p2.
• LR is the set of all finite injective partial functions

MR : Int ⇀ String.
Note that models are not simply tuples of names and ages, respec-
tively names: they include an identity, here taken from the set
Int. This is essential for the benchmark, as it allows us to speak
meaningfully of a given person changing his name while remain-
ing the same entity. The actual choice of identity does not matter.
Also note that, though for conciseness we have chosen to formulate
models as finite partial functions from the identity set to the corre-
sponding tuple of attributes, this is mathematically equivalent to a
left-unique relation between the identity set and tuples of attributes.

Consistency relation. We will use nameL : Int ⇀ String [resp.
ageL : Int⇀ Int] to denote the partial function mapping each person
p ∈ dom(ML) to the first [second] component of ML(p); likewise,
nameR : Int ⇀ String will have the same meaning in the right do-
main (hence it is actually the same function as MR).

84

The consistency relation is defined by C ⊆ LL×LR such that

ML C MR ⇔ ∃ϕ : dom(ML)↔ dom(MR), nameL = nameR ◦ϕ

In words: a pair of left/right models is related if and only if there
is a name-preserving bijection between the person identities in the
left and those in the right models. Thus, ϕ is an example of the
evidence mentioned in the previous section.

This consistency relation exhibits the following properties:
• It is both left-total and right-total;
• It is not left-unique but it is right-unique;
• It implies a unique one-to-one relation on the element level.

Changes. In general, a left-change is any triple (ML
1 ,M

L
2 ,µ) where

ML
1 and ML

2 are left models, and µ : dom(ML
1) ⇀ dom(ML

2) is a
partial injective function; A right-change is the same but for right
models.

The mapping µ connects the identities used in the original model
to those in the destination model. It is a partial function, meaning
that identities can neither be split nor merged by a change, but a
person p can be deleted (in which case p ∈ dom(ML

1)\dom(µ)) or
created (in which case p ∈ dom(ML

2)\ cod(µ)). In practice, identi-
ties will typically not change at all during updates, except for dele-
tion and creation, and so µ will always be a partial identity. Even
so, it is important to recognise this component; for instance, when
identities are reused (a person is deleted from the database and later
another person is added, reusing the identity of the first) this does
not mean it is the same person — and the only way in which this
confusion is avoided is through µ. In fact, in a very real sense,
the presence of the mapping µ defines the difference between state-
based and delta-based BX approaches.

A left-change is minimal if one of the following cases holds:
1. It deletes a single element:

• |dom(ML
1)\dom(µ)|= 1 and cod(µ) = dom(ML

2)

• ML
2 (µ(p)) = ML

1 (p) for all p ∈ dom(µ).
2. It creates a single element:

• dom(ML
1) = dom(µ) and |dom(ML

2)\ cod(µ)|= 1
• ML

2 (µ(p)) = ML
1 (p) for all p ∈ dom(µ).

• ML
2 (pi) = (ni,ai) for i = 1,2, n1 = n2 implies p1 = p2.

3. It modifies one of the fields of a single element:
• dom(µ) = dom(ML

1) and cod(µ) = dom(ML
2)

• For a single p ∈ dom(µ), either
(a) nameL1(p) 6= nameL2(µ(p)) or
(b) ageL1(p) 6= ageL2(µ(p)) (but not both)

• ML
1 (q) = ML

2 (µ(q)) for all q ∈ dom(µ)\{p}.
It can be seen immediately that every change is a composition of
a finite sequence of minimal chances. For each of these minimal
changes we can formulate update functions that cause them:

1. For all s ∈ String, delete(s) ∈UL is an update function that
deletes the person p with nameL(p) = s.

2. For all s ∈ String, create(s) ∈UL is an update function that
adds a person p with nameL(p) = s.

3. (a) For all s1,s2 ∈ String, setName(s1,s2) ∈UL is an up-
date function that changes the name of a person from
s1 (in the source model) into s2 (in the target model).

(b) For all s ∈ String,a ∈ Int, setAge(s,a) ∈UL is an up-
date function that changes the age of a person with
name s to a.

The right changes and updates are defined analogously, except that,
obviously, the age attribute (case 3b) is irrelevant.

Propagation. According to our definition of a BX benchmark,
we now have to precisely define update propagation for the exam-
ple. Since we have shown how arbitrary changes can be decom-
posed into minimal changes, we only have to explain how minimal

changes are propagated.2 Forward propagation is actually already
completely defined by demanding correctness as C is left-unique.
We therefore concentrate on backward propagation. Let ML

1 Cϕ MR
1

be a pair of consistent models, and let δR = (MR
1 ,M

R
2 ,µ

R) be a min-
imal right-change. We define δL =

←−
C (δR,ML

1) for each of the cases
of minimal change listed above. Note that age changes do not exist
in this setting.

1. For deletion, let p ∈ dom(MR
1)\dom(µR), and define ML

2 as
the restriction of ML

1 to all persons except ϕ−1(p). µL is the
identity function on dom(ML

2).
2. For creation, let p ∈ dom(MR

2) \ cod(µR) and fresh q /∈
dom(ML

1); define ML
2 = ML

2 ∪{(q,(nameR2 (µ
R(p)),a))} for

some default age a. µL is the identity function on dom(ML
1).

3. Let p ∈ dom(MR
1) be the person whose name has changed;

let s1 = nameR1 (p), a1 = ageR1 (p), and s2 = nameR2 (µ
R(p)),

and let q = ϕ−1(p). Define {ML
2 = ML

1 \ {(q,(s1,a1))}}∪
{(q,(s2,a1))}. µL is the identity function on dom(ML

1).
The interesting cases, for which not all information is available

in the right model, are when a person is created (in that case a
default age has to be inserted) or when a name is changed (in that
case the age must be preserved).

Test cases and BenchmarX repository. The draft and artifacts
related to this first benchmark (to be known as Person2Person),
and all future BenchmarkXs, will be uploaded to the BX Examples
Repository, being set up by Cheney et al. [1] at the BX community
Wiki at http://bx-community.wikidot.com/examples:home

Several illustrative test cases are already described in the Wiki,
tailored for assessing different operational modes of existing BX
tools, including the following:
Person2Person.BCF The goal of this test case is to assess the

conformance to BX properties (correctness and complete-
ness) of a forward propagation run in batch mode (i.e, to
create a new right-model from an input left-model). This
is equivalent to providing as original right-model the empty
model with no persons. The inputs for the runs in this
test case will be typically small in size, and hand-picked to
expose possible corner cases where achieving conformance
might not be trivial (in general this will be the case with con-
formance test cases).

Person2Person.BCB This test case is similar to the previous,
but for the backward propagation.

Person2Person.BSF The goal of this test case is to assess the
performance (scalability of run time and memory consump-
tion) of a forward propagation run in batch mode. A size
parametric left-model generator will be provided.

Person2Person.BSB This test case is similar to the previous,
but for the backward propagation.

Person2Person.MCB The goal of this test case is to assess the
conformance to BX properties (correctness, completeness,
and hippocraticness) of state based backward propagation.
It can be used to assess tools that allow the propagation of
changes on the right model to the left one in the style of
constraint maintainers (where only the result model of the
change is known) [7]. Since the right model contains strictly
less information than the left one, the dual test case is equiv-
alent to batch forward propagation.

A summary of the features these test cases intend to assess is
presented in Fig. 2.

2We thus require for this example that propagation be compatible
with update composition, i.e., for readers familiar with the delta-
lens framework, we demand PUTPUT [3].

85

Performance Scalability Laws
Test Cases Time Memory Time Memory Correctness Completeness Hippocraticness Least-change
Person2Person.BCF X X
Person2Person.BCB X X
Person2Person.BSF X X
Person2Person.BSB X X
Person2Person.MCB X X X

Figure 2: Feature matrix for the Person2Person BX Benchmark

4. RELATED WORK
Benchmarking is an important means of assessing and driving

development and improvement in a specific area. In BX related
communities, existing benchmarks include for instance [11] for
databases, and [12] for graph transformations. These and other ex-
isting benchmarks, however, are not directly applicable for BX and
cannot be used to address the specific challenges and characteris-
tics of a comparison of BX tools. Our proposal for a BX benchmark
format, certainly inspired by existing benchmarks (especially [12]),
is explicitly designed to address BX specific aspects.

There also exist tool comparisons and surveys for BX including
a quantitative and qualitative comparison of Triple Graph Grammar
(TGG) tools by Hildebrandt et. al [5], and the more general survey
of BX approaches by Stevens [9]. These survey papers indicate the
need for a systematic comparison of existing BX tools but are ei-
ther too specific (e.g., only covering TGG tools), or too general (no
quantitative comparison via a well-defined transformation). Our
benchmark proposal is an attempt to fill this gap.

Finally, the Transformation Tool Contest (TTC)3, organized
yearly, is an ideal venue for presenting challenge transformations
and soliciting solutions, which are then compared systematically.
Although the TTC 2013 actually had a challenge4 that required
bidirectionality, TTC does not typically focus on BX scenarios.
Furthermore, the TTC tends to be specialized for model transfor-
mation approaches, while BX encompasses other approaches, e.g.,
from the programming language or database community.

5. DISCUSSION AND CONCLUSION
In this paper, we have identified the properties of a BX

benchmark and proposed a format for classifying and present-
ing BX benchmarks. As a proof of concept, we presented the
Persons2Persons BX benchmark as an example that adheres to
our format. Note that our example, however, does not fulfil our
“usefulness” criterion as it is meant as a minimal template. The
next step is to establish a series of BX benchmarks according to
the proposed format, extending and refining it as required. There
have already been commitments from BX tool developers including
Echo,5 eMoflon,6 GRoundTram,7 and HenshinTGG,8 to provide,
support and implement BenchmarX in the near future.

Acknowledgements. The authors would like to thank the re-
viewers for their insightful comments, and all the participants in
the 2013 Banff’s meeting on BX that were also involved in the
discussion that eventually led to this paper, in particular, Soichiro
Hidaka and James Terwilliger.

The second author is funded by ERDF - European Regional De-

3http://planet-sl.org/ttc2013/
4http://goo.gl/754XT
5http://haslab.github.io/echo/
6http://www.emoflon.org
7http://www.biglab.org/
8https://github.com/de-tu-berlin-tfs/Henshin-Editor

velopment Fund through the COMPETE Programme (operational
programme for competitiveness) and by national funds through the
FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) within project FATBIT with
reference FCOMP-01-0124-FEDER-020532.

6. REFERENCES
[1] J. Cheney, J. Gibbons, J. McKinna, and P. Stevens. Towards a

Repository of BX Examples. In Proc. of BX 2014, 2014.
[2] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and

J. F. Terwilliger. Bidirectional Transformations: A
Cross-Discipline Perspective. In R. F. Paige, editor, Proc. of
ICMT 2009, volume 5563 of LNCS, pages 260–283.
Springer, 2009.

[3] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to
Delta-Based Bidirectional Model Transformations: the
Asymmetric Case. JOT, 10:1–25, 2011.

[4] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin,
Y. Xiong, S. Gottmann, and T. Engel. Model
Synchronization Based on Triple Graph Grammars:
Correctness, Completeness and Invertibility. Software &
Systems Modeling, pages 1–29, 2013.

[5] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer,
W. Schäfer, M. Lauder, A. Anjorin, and A. Schürr. A Survey
of Triple Graph Grammar Tools. In P. Stevens and J. F.
Terwilliger, editors, Proc. of BX 2013, volume 57 of
ECEASST. EASST, 2013.

[6] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric
Lenses. In T. Ball and M. Sagiv, editors, Proc. of POPL
2011, pages 371–384. ACM, 2011.

[7] L. Meertens. Designing Constraint Maintainers for User
Interaction, 1998. Available at
http://www.kestrel.edu/home/people/meertens.

[8] A. Schürr and F. Klar. 15 Years of Triple Graph Grammars.
In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer,
editors, Proc. of ICGT 2008, volume 5214 of LNCS, pages
411–425. Springer, 2008.

[9] P. Stevens. A Landscape of Bidirectional Model
Transformations. In R. Lämmel, J. Visser, and J. a. Saraiva,
editors, Proc. of GTTSE 2008, volume 5235 of LNCS, pages
408–424. Springer, 2008.

[10] P. Stevens. Towards an Algebraic Theory of Bidirectional
Transformations. In H. Ehrig, R. Heckel, G. Rozenberg, and
G. Taentzer, editors, Proc. of ICGT 2008, volume 5214 of
LNCS, pages 1–17. Springer, 2008.

[11] Transaction Processing Performance Council. TPC
Benchmark C (Standard Specification, Revision 5.11), 2010.
http://www.tpc.org/tpcc/.

[12] G. Varró, A. Schürr, and D. Varró. Benchmarking for Graph
Transformation. In Proc. of VL/HCC 2005, pages 79–88,
2005.

86

Towards a Repository of Bx Examples

James Cheney, James McKinna,
Perdita Stevens

School of Informatics
University of Edinburgh

firstname.lastname@ed.ac.uk

Jeremy Gibbons
Department of Computer Science

University of Oxford
firstname.lastname@cs.ox.ac.uk

ABSTRACT
We argue for the creation of a curated repository of examples of
bidirectional transformations (bx). In particular, such a resource
may support research on bx, especially cross-fertilisation between
the different communities involved. We have initiated a bx reposi-
tory, which is introduced in this paper. We discuss our design deci-
sions and their rationale, and illustrate them using the now classic
Composers example. We discuss the difficulties that this undertak-
ing may face, and comment on how they may be overcome.

1. INTRODUCTION
Research into bidirectional transformations (henceforth: bx) in-

volves a wide range of disciplines, from databases, to model-driven
development, to programming languages. The literature is rich
in examples illustrating the corresponding wealth of notations and
tools used to formalise the variety of bx as they occur “in the wild”.

In writing a paper about bidirectional transformations, one typ-
ically needs to use examples. Several examples, such as the noto-
rious UML class diagram to RDBMS schema example, have ap-
peared in many variants in papers by many authors. It can be dif-
ficult to identify whether examples in different papers are really
identical; moreover, the need to fully define every example men-
tioned often makes it difficult to use more than one or two examples
in a paper that is subject to a page limit, and can lead to examples
being defined so concisely as to make it difficult for a reader to
understand them. This, in turn, leads to proliferation of versions.

In 2013 at the ETAPS Bx workshop1, we announced the develop-
ment of a repository of examples, to be made publicly available on
the Bx wiki [14]. We have a personal interest in such a repository,
as a foundation for our own work in the EPSRC-funded project
A Theory of Least Change for Bidirectional Transformations; but
we hope that it will have much broader use. The repository aims
to simplify reuse of examples, especially in order that meaningful
comparisons between formalisms will be easier to make. It aims to
improve communication between sometimes quite disparate com-
munities, and to help explain bx to interested outsiders. We hope

1http://bx-community.wikidot.com/bx2013:home

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

that researchers in bx will both add their examples to the reposi-
tory, and refer to examples from the repository as appropriate. This
should have benefits both for authors and for readers. Naturally,
papers will still have to be sufficiently self-contained; but we think
that the repository may still be helpful. For example, if one’s paper
illustrates some new work using an existing example, one might
describe the example briefly (as at present), focusing on the as-
pects most relevant to the work at hand. One can, however, also
give a reference into the repository, where there is more detail and
discussion of the example, which some readers may find helpful.
Over time, we might expect that certain examples in the repository
become familiar to most researchers in bx. Then, if a paper says
it uses such an example, the reader’s task is eased. The reposi-
tory should also be a good place to link in auxiliary materials, such
as files showing how an example is implemented in different for-
malisms, or diagrams suitable for inclusion in papers and talks.

Repositories of examples are not easy to make successful, how-
ever; if this one is to succeed, it is important to design its formats
and processes with care, and to engage the community. This paper
describes our initial ideas and the rationale behind them.

Concretely, we illustrate what we have in mind through the Com-
posers example. We do not intend that every example in the repos-
itory will follow the format illustrated here – different examples
may have different needs. Our intention is that our template will at
least provide a basis for discussion for future iterations. The repos-
itory of examples is hosted on the Bx wiki at:
http://bx-community.wikidot.com/examples:home

2. DESIGN AND RATIONALE
We draw some inspiration from the design patterns movement

[6], but not so much in the sense of ‘a catalogue of expert advice
for assisting novices’. Indeed, there are socio-technical arguments
as to why this is a rather difficult case to make [5]. An easier case to
make for the benefits of patterns is that they improve communica-
tion between already proficient practitioners; and it is this analogy
that we hope to make in considering the design of the repository.

One way in which design patterns improve communication is
simply by capturing and recording ‘folk knowledge’ – the concepts
and stories known and shared by everyone in a community, and
assumed to be so known, so not always explained in detail. By
explicitly recording our corpus of common examples, we remind
ourselves of their existence, and we provide a resource for filling in
the inevitable gaps in our coverage of this ‘folk knowledge’.

A second way in which design patterns improve communication
is by providing a common vocabulary. The naming of entries is a
difficult matter; but a well-chosen name takes its place in the com-
munity’s discourse, evoking a concept or a story and invoking its
connotations. But for the purposes of scientific communication,

87

the name itself is not enough. We need also to be able to maintain
a stable reference for each example in the repository, so that it can
be referenced in a paper with some hope that that reference will
persist. We also need to have some confidence that example de-
scriptions themselves are stable; so we expect to have to curate the
repository, encouraging free discussion and commentary but ver-
sioning the descriptions at appropriate points.

Also extrapolating from the history of design patterns, we sug-
gest that there is value in having some regularity of the structure
between examples in the repository. We propose a standard tem-
plate for our examples, which we discuss in more detail below. We
do not intend to be too prescriptive and rigid about this template;
for one thing, we expect that our understanding of the best struc-
ture will evolve with experience, and for a second, examples arising
from different parts of the bx community, or examples that differ in
character, may well warrant different structures.

It should be noted that one way in which the example repository
diverges from the patterns movement is that the entries in the repos-
itory do not follow Alexander’s three-part rule of context, problem,
and solution – there are no conflicting forces to resolve, nor neces-
sarily any expectation of a resolution. Rather, if the examples are
to be considered ‘problems’ at all, then it is in the Kuhnian sense of
the problems and techniques that form a paradigm of ‘normal sci-
ence’ [9]. Nevertheless, we intend that the repository will provide
access to artefacts as well as descriptions, be they executable code,
proof scripts, sample inputs and outputs, or what have you.

We wish to maintain a “broad church” approach to what can be
included in the repository. We think that the most useful entries will
be small ones that can be defined precisely, but in a way that is as
independent as possible of any particular bx formalism. These we
intend to describe principally in English (perhaps augmented with
small amounts of simple mathematical notation) but with sufficient
precision that readers familiar with a particular formalism should
be able to tell, unambiguously, whether a representation of a bx in
that language is correctly implementing the example. The review
process, to be discussed, should play an important role in eliminat-
ing ambiguities. Artefacts showing how examples are implemented
in particular formalisms may also be helpful.

Besides these, several other classes of examples may be antic-
ipated. We agree with the authors of [1] (in this volume) that
benchmarks may be seen as a distinct class and therefore should be
included. Industrial-scale examples, accompanied by appropriate
artefacts, would clearly be of interest, but equally clearly, could not
be expected to be explained with full precision separately from their
artefacts. Other examples we have in mind are more like sketches:
situations in which a certain bx would clearly have applicability,
but where details have not been worked out. These might be of par-
ticular benefit to outsiders wondering whether bx are of interest to
them. We have adopted the suggestion made in group discussion at
the Bx workshop in Banff in December 20132, namely to make ex-
plicit the class to which an example belongs, because these classes
may be quite different in character.

3. A TEMPLATE FOR BX EXAMPLES
We propose the following template for examples. It consists of

the following headings, whose kernel is the description of bx given,
for example, by Stevens in [13]. That is, an example will typi-
cally define two or more classes of models, together with a consis-
tency relation between them, and appropriate consistency restora-
tion functions. Such functions might depend just on the states of

2http://www.birs.ca/events/2013/5-day-workshops/
13w5115

the models (state-based bx) or might require as input extra infor-
mation, e.g. concerning the edit that has been done. Either is fine
provided it is clear what is assumed.

We propose the following standard fields and their order. Op-
tional fields are indicated by ‘?’ in the fieldname; other fields
should be present, even if brief.

Title A descriptive name, such as COMPOSERS, by which authors
may refer to the example. More advanced indexing, and
traceability back to the originating sources (see under Refer-
ences below) may prove necessary as the repository grows.

Version 0.x for unreviewed examples.

Type For example, PRECISE, INDUSTRIAL, SKETCH. Use com-
mon sense concerning whether to use one or more: for exam-
ple, PRECISE and SKETCH should be mutually exclusive, but
conceivably either might be combined with INDUSTRIAL.

Overview A thumbnail description of the example, not more than
two or three sentences; might include a brief summary of the
example and/or a brief reason for its inclusion in the reposi-
tory (“demonstrates [some interesting point]” for example).

Models Descriptions of the models, possibly with (formal) expres-
sions of their meta-models. (We remind readers that we use
the term “model”, and “meta-model” inclusively: any appro-
priately precise description of the information sources being
transformed is acceptable.)

Consistency Description of the consistency relationship between
models. This should at least be in natural language, but may
be augmented by formal expression in some language cog-
nate with that of the meta-models.

Consistency Restoration Explain in which of the typically many
possible ways inconsistencies are to be repaired. May be
divided into separate descriptions of forward and backward
restoration.

Properties? What additional properties are expected to hold of, or
be exemplified by, the transformation? These will link to a
separate glossary of terms such as ‘hippocraticness’.

Variants? A difficult issue that we have found arises in writing ex-
amples is how to handle the choice points. Typically in mak-
ing an example precise, even a small one, one realises that
there are several points where more than one choice is rea-
sonable. These multiply to give a potentially unmanageable
set of examples. Our proposal is that one “base” example
should be given in the main body of the text, and variation
points be described here.

Discussion Origin, utility, interest, representativeness, related ex-
amples in the literature, . . .

References? Bibliographic data for the paper or papers from which
the example is taken, or where it is discussed, if applicable.

Authors Contributing author(s) of the example to the repository.

Reviewers? We intend that examples remain provisional (version
0.x) until reviewed (and approved, if necessary after mod-
ification) by other members of the wiki. In the interest of
traceability and credit, such reviewers are identified here.

88

Comments This is where any member of the wiki can comment.
As discussed later, we do not wish to have uncontrolled edit-
ing of the example itself, but it is important to make it easy
for community members to make comments. These might
guide the development of a later version of the example.

Artefacts? Formal descriptions, perhaps downloadable code, sam-
ple input and output, virtual machine instances, diagrams...

4. AN EXAMPLE INSTANCE
We choose to illustrate our ideas with the familiar example of

Composers, which first appeared in [3] and has been used by sev-
eral others since. This version is closest to the one in [12].

Title COMPOSERS

Version 0.1

Type PRECISE

Overview This example stands for many cases where two slightly,
but significantly, different representations of the same real
world data are needed. The definition of consistency is easy,
but there is a choice of ways to restore consistency.

Models A model m ∈M comprises a set of (unrelated) objects of
class Composer, representing musical composers, each with
a name, dates and nationality.

A model n ∈ N is an ordered list of pairs, each comprising a
name and a nationality.

Consistency Models m and n are consistent if they embody the
same set of (name, nationality) pairs. That is, both: (i) for
every composer in m, there is at least one entry in the list n
with the same name and nationality; and (ii) for every entry
in n, there is at least one element of m with the same name
and nationality (there may be many such, each with distinct
dates).

Consistency Restoration Given models m and n,

Forward produce a modified version of n by:

• deleting from n any entry for which there is no el-
ement of m with the same name and nationality;
• adding at the end of n an entry comprising each

(name, nationality) pair derivable from an element
of m but not already occurring in n.
Such additional entries should be in alphabetical
order by name, and within name, by nationality;
no duplicates should be added (even if there are
several composers in m with the same name and
nationality).

Backward produce a modified version of m by:

• deleting from m any composer for which there is
no entry in n with the same name and nationality;
• adding to m a new composer for each (name, na-

tionality) pair that occurs in n but is not derivable
from an element already occurring in m. The dates
of any newly added composer should be ????-????.

Properties

• Correct

• Hippocratic

• Not undoable

• Simply matching

Variants If the bx is to be correct and hippocratic, restoring con-
sistency must involve adding (respectively, deleting) com-
posers that are present (respectively, not present) in the au-
thoritative model but not in the one to be modified. Questions
that the bx programmer still needs to resolve are:

• Do we ever modify the name and/or nationality of an
existing composer, or do we create a new composer in
the event of any mismatch? E.g. if one side has Britten,
British and the other has Britten, English, does consis-
tency restoration involve changing one of the national-
ities, or adding a second Britten? Of course, if name is
a key in the models then there is no choice.

• Where in the list n is a new composer added? Choices
include: at the beginning; at the end. We might con-
sider in an alphabetically determined position, but note
that the user is not constrained to add composers in
alphabetical order, and we fail hippocraticness if we
choose to reorder when nothing at all need be changed.
It therefore seems unlikely that changing the order of
user-added composers will be wanted.

• What dates are used for a newly added composer in m?

Discussion This has been used as an example of why undoability
is too strong. Consider a composer currently present (just
once) in both of a consistent pair of models. If we delete it
from n, and enforce consistency on m, the representation of
the composer in m, including this composer’s dates, is lost.
If we now restore it to n and re-enforce consistency on m,
then the absence of any extra information besides the models
means that the dates cannot be restored, so m cannot return
to exactly its original state.

References This version was used in:

Perdita Stevens, “A Landscape of Bidirectional Model Trans-
formations”, in Generative and Transformational Techniques
in Software Engineering II, 2008, Springer LNCS 5235,
pp408–424. DOI 10.1007/978-3-540-75209-7_1

Original (asymmetric) variant was in:

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. “Boomerang: Re-
sourceful Lenses for String Data”. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), San Francisco, California, January 2008.
DOI 10.1145/1328438.1328487

Author(s) Perdita Stevens, James McKinna, James Cheney. Uni-
versity of Edinburgh.

Reviewer(s) None yet

Comments None yet

5. DIFFICULTIES AND HOW THEY MAY
BE TACKLED

We are only too aware that it is far easier to found a repository
such as proposed here than it is to ensure its success. In this section
we attempt to address some questions that a sceptical reader might
ask.

89

5.1 Can we ensure and maintain the quality
of the repository contents?

A key decision we have made is that the example repository will
be a curated resource in the sense of Buneman et al. [4]. This
means that it is put together by human effort by members of a
knowledgeable community – as opposed, say, to being extracted
automatically from a web crawl. Other examples include many
databases constructed to cover various areas of biomedical research
(sometimes using wikis, sometimes using custom-developed web-
sites). Example repositories in software engineering, such as Re-
MoDD [2], SPLOT [11], 101companies [10], and the Hillside pat-
terns wiki [7], could also be viewed as curated in this sense; notice
that there is a wide range of curation styles. One can also view
Wikipedia as an example of this phenomenon, and some biological
wikis are hosted there. These efforts have common technical and
organizational structure (and encounter similar problems) and our
aim is to learn from them.

Resources such as Wikipedia can be edited by anyone with an
Internet connection. Unhelpful contributions are common, with
editors and bots reverting such changes frequently. By contrast, re-
sources curated by smaller, focused communities typically do not
have this problem, especially if there is a barrier to entry, such as
registration to obtain a wiki account. This is the model we plan to
follow.

Specifically, we propose a three-level curatorial structure for the
repository. Anyone with a wiki account will be able to comment on
an example, and this should enable anybody to point out problems,
ambiguities, extensions and any other points of interest. Eventu-
ally, each example will also have one or more named reviewers:
recognised members of the community whose name as reviewer
indicates they consider the example to be of usable quality. Over-
all editorial control of the repository is the responsibility of a small
group of curators, initially ourselves.

At a technical level, there is a tension between fixing a struc-
ture for the curated data (such as our proposed example template)
and allowing free-text or lightweight markup only. Both fixing a
template and having no template at all can lead to headaches later;
the former risks being too rigid for the application and forcing a
premature decision about what the best template is, while the latter
diminishes the integrity and intelligibility of the resource. We aim
to take a middle road, providing a suggested template but not a bar-
rier to varying it where good reasons to do so arise. In the longer
term, adopting a more structured solution (e.g. to facilitate a move
to a different platform than a wiki) may be justifiable.

5.2 Will anybody use it?
It has frequently been observed (e.g. by Josuttis in [8]) that com-

panies that attempt to increase software reuse by creating a library
of reusable components frequently find it easier to get people to put
things into the library than to take them out.

In this case, informal discussion of the idea at two Bx meetings
(in Rome and Banff) together with separate discussions with in-
dividuals suggest that there is a genuine need for examples and a
willingness to refer to examples in a repository.

To help maximise the chance that the repository is used, we will
seek to:

• host the repository on the main long-lived community site,
the Bx wiki;

• use a format that makes it easy to find information quickly;

• provide guidance on how to refer to examples;

• keep old versions of examples available, so that old refer-
ences can still be followed;

• introduce a reviewing mechanism to help ensure high quality
of the examples.

To give more detail, we may split this question into several parts.

Will relevant people know about the repository?
Our aim in talking about our plans even before the repository

existed was not only to check that we were targeting a genuine
community need, but also to spread the word. The present paper is
an attempt to give more detail. Further, by hosting the repository
on the main Bx community site, the Bx wiki, we hope it will be
easy to find.

Will people be able to find and refer to relevant exam-
ples?

Suppose that we have succeeded in answering the earlier ques-
tion positively so that the repository does contain relevant, high
quality examples: this is still no use unless people can find and use
them. We might worry about a future in which there are so many
examples in the repository that it is hard to find the right one; but
experience suggests that ensuring that the wiki is (as at present)
google indexed goes a long way to solving this problem.

In this specific case, another important aspect of use is the ability
to refer accurately to an example, for example, in a paper that uses
it. Readers seeing the reference need to be able to identify exactly
the example referred to.

As already discussed, well-chosen names are important for the
usability of our examples. However, versioning and variability
management are likely to be problems; we have discussed this is-
sue among ourselves and it has been raised by others at the Banff
workshop also. It is important to distinguish between versioning
and variation. Both require assigning distinct identifiers, but ver-
sioning connotes a (sequential) evolution of a single example, while
variation connotes related variants of similar examples.

We could devise a system in which a short identifier represented
the example, its version and the choice at each variation point.
However, in the absence of automated support for such a system,
we believe that taking care to choose example names carefully, to
identify a single main variation within each example, and to main-
tain a linear sequence of numbered versions, will be more usable,
and adequate for the time being.

Will anybody but ourselves put any examples in?
Experience with curated databases and crowdsourcing projects

suggests that it is very important to pay attention to incentives for
contributing (and maintaining) quality examples. We have already
noted the importance of versioning; in addition to providing unique
identifiers, it seems like a good idea to recommend a format for ci-
tations to examples (including versions) or to the repository itself.
In addition, we hope that listing authors and reviewers of examples
will incentivise contributions of examples and of effort to review
them. If the repository reaches a point of relative maturity or sta-
bility, it may make sense to collect the most recent versions of all
of the examples in it into a manuscript (with all authors and review-
ers named), and publish it formally as a citable, archival technical
report.

5.3 Will the contents rot?
For the next three years, we the authors can undertake to curate

the repository under the aegis of the Least Change research project.

90

By that time, we hope that it will have gathered enough momentum
that if necessary, finding other volunteer curators may be possible.

5.4 What happens if the Bx wiki dies?
We hope that the Bx wiki will flourish. We shall, however, main-

tain a local copy of the repository contents, in case of future dif-
ficulties. We plan to give some thought to whether maintaining it
in a wiki-markup-independent form, and maintaining consistency
between that and the wiki via a bidirectional transformation, might
add value.

6. CONCLUSION
In the spirit of earlier documentary movements in the software

engineering literature, such as that of the Patterns community, we
have articulated the rationale for a repository of example bx, as
well as providing here a canonical reference in the literature to its
existence.

We hope that colleagues in the Bx community will wish to con-
tribute to the repository, to use it in their own work and papers,
and to discuss with us improved versions of the template described
here. An early example is discussion that has just begun with au-
thors of [1] about extra optional sections that may be necessary for
benchmark examples.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge the contributions made by partici-

pants of the two 2013 Bx workshops, in Rome and Banff, and by
the anonymous reviewers. The work reported here was supported
by the EPSRC-funded project A Theory of Least Change for Bidi-
rectional Transformations (EP/K020218/1 and EP/K020919/1).

8. REFERENCES
[1] Anthony Anjorin, Manuel Alcino Cunha, Holger Giese,

Frank Hermann, Arend Rensink, and Andy Schürr.
BenchmarX. In Proceedings of Bx’14, 2014.

[2] James M. Bieman, Betty H. C. Cheng, and Robert B. France.
ReMoDD: The repository for model-driven development.
http://www.cs.colostate.edu/remodd/.

[3] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. Boomerang:
Resourceful lenses for string data. In ACM
SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), San Francisco,
California, January 2008.

[4] Peter Buneman, James Cheney, Wang-Chiew Tan, and Stijn
Vansummeren. Curated databases. In Proceedings of the
2008 Symposium on Principles of Database Systems (PODS
2008), pages 1–12, 2008. Invited paper.

[5] Luciana d’Adderio, Rick Dewar, Ashley Lloyd, and Perdita
Stevens. Has the pattern emperor any clothes? A controversy
in three acts. ACM SIGSOFT Software Engineering Notes,
Jan/Feb 2002.
http://dx.doi.org/10.1145/566493.1148026.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[7] Hillside Group. The Hillside patterns wiki.
http://c2.com/cgi/wiki.

[8] Nicolai M. Josuttis. SOA in Practice: The Art of Distributed
System Design. O’Reilly, 2007.
http://www.soa-in-practice.com/.

[9] Thomas S. Kuhn. The Structure of Scientific Revolutions.
University of Chicago Press, 1962.

[10] Ralf Lämmel. The 101companies project.
http://101companies.org/.

[11] Marcilio Mendonca. SPLOT: Software product lines online
tools. http://www.splot-research.org/.

[12] Perdita Stevens. A landscape of bidirectional model
transformations. In Ralf Lämmel, Joost Visser, and João
Saraiva, editors, Generative and Transformational
Techniques in Software Engineering (GTTSE), volume 5235
of Lecture Notes in Computer Science, pages 408–424.
Springer, 2007.

[13] Perdita Stevens. Bidirectional model transformations in
QVT: Semantic issues and open questions. Journal of
Software and Systems Modeling (SoSyM), 9(1):7–20, 2010.

[14] The Bx Community. Bidirectional transformations: The Bx
wiki. http://bx-community.wikidot.com/.

91

Intersection Schemas as a Dataspace Integration
Technique

Richard Brownlow
Department of Computer Science

Birkbeck, University of London
London, UK

richard@dcs.bbk.ac.uk

Alex Poulovassilis
Department of Computer Science

Birkbeck, University of London
London, UK

ap@dcs.bbk.ac.uk

ABSTRACT
This paper introduces the concept of Intersection Schemas
in the field of heterogeneous data integration and datas-
paces. We introduce a technique for incrementally integrat-
ing heterogeneous data sources by specifying semantic over-
laps between sets of extensional schemas using bidirectional
schema transformations, and automatically combining them
into a global schema at each iteration of the integration pro-
cess. We propose an incremental data integration method-
ology that uses this technique and that aims to reduce the
amount of up-front effort required. Such approaches to data
integration are often described as pay-as-you-go. A demon-
strator of our technique is described, which utilizes a new
graphical user tool implemented using the AutoMed het-
erogeneous data integration system. A case study is also
described, and our technique and integration methodology
are compared with a classical data integration strategy.

Keywords
Dataspaces, Pay-as-you-go, Data Integration, Bidirectional
Schema Transformations

1. INTRODUCTION
Data integration is the process of taking data from sev-
eral different data sources and bringing them together in
a structured manner such that Data Services can be sup-
ported over the integrated resource. These data services
could be Data Mining tools, search engines or simple query-
ing tools. The data sources can be varied in type, for ex-
ample relational databases, XML data, or web pages. The
data sources might be located at different sites of a net-
work, and each data source may be running different data
management software. The overarching challenge in data
integration is to design frameworks and methodologies that
allow heterogeneous data sources to be accessed as a single
integrated resource by data services.

Traditional data integration approaches [5] require all the
mappings between the different data sources to be deter-
mined up-front, prior to being able to run any data services

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

on the integrated resource. In order to establish the map-
pings, it is likely a data integration project will require a
certain level of domain expertise. This approach to data
integration means that the full cost of the integration must
be committed up front. In order to do this accurately, the
timescales for producing the mappings must be accurately
estimated. As a result, data integration projects are often
costly and risky undertakings [9].

An active area of research [8, 9] is how to reduce the amount
of up front effort required in data integration. One ap-
proach is to develop a framework that presents all the data
in a Common Data Model, but in an unintegrated format.
Tools are then provided to allow the data integrator to in-
crementally identify the semantic relationships between the
different data sources. The concept of a dataspace allows
semantic integration of data to be undertaken incrementally
[7]. Such an approach is often described as pay-as-you-go,
since integration can proceed as resources (and budgets) al-
low. Data services can then be provided at each iteration,
rather than waiting for all the integration to be completed
up-front.

A theoretical discussion of data integration is presented in
[12]. This includes a discussion of global-as-view (GAV)
and local-as-view (LAV) approaches, along with a discus-
sion of query processing in data integration settings. The
data integration setting is formally defined in terms source
schemas, global schemas and mappings between source and
global schemas.

The data integration process can be considered as compris-
ing three subprocesses. Firstly, schema matching and map-
ping, which includes the identification of correspondences
between different schema objects and the definition of map-
pings between schemas. The work in [17] provides an over-
view of the schema matching process, while [3, 1, 4] discuss
different approaches to schema mapping. Secondly, schema
merging — the creation of an integrated schema based on
the schema mappings. Thirdly, schema improvement which
increases the quality of the integrated schema, for exam-
ple by removing redundant information. The work in [2]
discusses the schema improvement and refinement process.
An incremental (or pay-as-you-go) data integration process
results in an incomplete integration after each iteration of
these three subprocesses.

Data integrators tend to fall into two groups [9]. The first

92

group are domain experts who are knowledgable in the appli-
cation domain(s) of the data sources being integrated (often
with limited data integration experience). The second group
are data integration experts who are familiar with data in-
tegration environments (but are likely to have limited expe-
rience in the target application domain for a particular data
integration project). These two groups of integrators must
work closely together. It is therefore important to develop
tools which can be used by both of these types of data inte-
grators, to increase their productivity in the data integration
environment, while still allowing maximum flexibility in the
types of semantic mappings that can be supported.

This paper proposes a new technique for reducing the amount
of up front effort required in data integration, utilizing bidi-
rectional schema transformations. The focus of our research
is developing light–weight techniques for creating mappings
between data sources and in developing new data integration
frameworks and methodologies that use such techniques. By
light–weight techniques we mean techniques that can be used
for rapid, incremental dataspace integration. In Section 2 of
the paper we present in detail our approach. We present an
overview of the AutoMed system in Section 2.1, our new in-
tersection schema methodology in Section 2.2, a description
of the methodology integration workflow in Section 2.3 and
a worked example in Section 2.4. In Section 3 we present
a case study contrasting our approach with a classical data
integration approach in the context of a large-scale data in-
tegration project in the field of proteomics. We give our
concluding remarks and directions of further work in Sec-
tion 4.

2. OUR APPROACH
2.1 Overview of AutoMed
AutoMed1 is a schema transformation and integration sys-
tem that provides a low-level hypergraph-based data model
(the HDM) as a common data model for representing hetero-
geneous data sources. Higher level modelling languages (e.g.
relational, XML, RDF/S, OWL) can be defined in terms of
the HDM using the API of AutoMed’s Model Definitions
Repository (MDR) [6].

For any modelling language M specified in terms of the
HDM, AutoMed provides a set of primitive schema transfor-
mations that can be applied to schema constructs expressed
in M . In particular, there is an add and a delete primi-
tive transformation for adding/deleting any construct of M
to/from a schema. For those constructs of M which have
textual names, there is also a rename primitive transforma-
tion. Each add or delete transformation is accompanied by a
query which defines the extent of the new or deleted schema
object in terms of the rest of the objects in the schema (i.e.
this query specifies a view definition). This query is ex-
pressed in IQL, a functional query language developed for
the AutoMed system [10]. Also available are extend and
contract primitive transformations which behave in the same
way as add and delete except that they state that the extent
of the new/deleted schema object cannot be precisely de-
rived from the other schema objects. Each extend and con-
tract transformation takes a query of the form Range ql qu
where the subqueries ql and qu specify a lower and an upper

1http://www.doc.ic.ac.uk/automed

bound on the extent of the new/deleted schema object. The
lower bound may be the constant Void, equivalent to the
empty collection, and the upper bound may be the constant
Any, equivalent to the largest possible collection of the type
of the schema object.

Schemas and their associated instances can be incrementally
transformed by applying to them a sequence of primitive
transformations. A sequence of primitive transformations
transforming a schema S1 to a schema S2 is termed a path-
way from S1 to S2 and denoted by S1 → S2. All source,
intermediate and integrated schemas, and the pathways be-
tween them, are stored in AutoMed’s Schemas & Transfor-
mations Repository (STR) [6].

In addition to the five primitive schema transformations al-
ready mentioned, AutoMed also supports an ident primitive.
This operates at the level of entire schemas allows the inte-
grator to assert that two syntactically identical schemas, S
and S′, should be connected by a pathway. The AutoMed
system automatically translates such an ident transforma-
tion into a sequence of id transformations from S to S′, of
the form id(S : c, S′ : c) for each schema object c appear-
ing in S and S′ (where S : c denotes object c appearing in
schema S).

A key property of AutoMed’s pathways is that they are au-
tomatically reversible, in that from a pathway S1 → S2 we
can automatically derive a pathway S2 → S1 by reversing
the order of the transformations and replacing each add by a
delete with the same arguments, and vice versa; each extend
by a contract with the same arguments, and vice versa; and
each rename or id by a rename or id with the arguments
reversed.

Schema integration using AutoMed typically proceeds by
forming union-compatible schemas, as illustrated in Figure
1. Firstly, the appropriate AutoMed Wrapper for each data
source is used to extract metadata from the data sources
and to produce a set of data source schemas, DS1, . . . , DSn,
stored within the AutoMed repository. In order to integrate
these, each DSi is first transformed into a union-compatible
schema USi. The n schemas US1, ..., USn are identical, and
this is verified by injecting an ident transformation between
each pair USi and USi+1. An arbitrary one of the USi can
then be selected by the user for further improvement and
refinement into the global schema. In terms of the data ex-
tents of the objects in the global schema, AutoMed provides
a number of options for deriving these from the extents of
objects in the union–compatible schemas, e.g. bag union, set
union, choice, intersection. The first of these is the default,
and it is what we assume in this paper.

There may be information within a USi which is not se-
mantically derivable from the corresponding DSi. This is
indicated by extend transformation steps within the path-
way DSi → USi. Conversely, not all of the information
within a data source schema DSi need be transferred into
USi and this is indicated by contract transformation steps
occurring within DSi → USi.

The queries accompanying the primitive transformations are
used by AutoMed’s Query Processor [10] in order to refor-

93

Figure 1: Data Integration via Union-Compatible
Schemas

mulate users’ queries expressed on a global schema to queries
expressed on the source schemas. Query reformulation may
be by means of query unfolding for GAV query processing,
or by rewriting queries using views for LAV query process-
ing [12], or by a combination of both GAV and LAV query
processing techniques [15]. In [14], AutoMed’s transforma-
tion approach was termed Both-As-View (BAV) since the
add/extend steps in a pathway correspond to GAV mappings
and the delete/contract steps to LAV mappings. However,
BAV transformations capture a finer level of data integra-
tion granularity than do conventional GAV or LAV map-
pings, since BAV transformations are stated on the irre-
ducible modelling constructs of a modelling language M (as
determined by the definition of the language M in terms of
the HDM), e.g. on individual columns of relational tables
as opposed to on whole tables. It is also possible to express
global-local-as-view (GLAV) mappings using BAV transfor-
mations [11].

A typical data integration workflow using the AutoMed sys-
tem proceeds as follows: Firstly, each data source is wrapped
to produce a data source schema. Secondly, the schema
matching and mapping process is undertaken, with the help
of AutoMed’s Schema Matching tool [16] and the knowledge
of domain experts. Each data source schema is transformed
to a union-compatible schema via a series of primitive trans-
formations. Thirdly, the union-compatible schemas are au-
tomatically merged by injecting ident transformations be-
tween them. Finally, one of these schemas is chosen as the
source for further transformation, capturing any necessary
improvements and refinements into the final global schema.

2.2 Intersection Schemas
We now propose a new methodology for lightweight data
integration in an incremental pay-as-you-go environment,
based on the concept of Intersection Schemas. The primary
goal of this approach is to improve on existing data integra-
tion methodologies by increasing data integrators’ produc-
tivity in the overall Data Integration process.

We demonstrate a lightweight technique that allows a do-
main expert to identify schema mappings that represent se-
mantic intersections between different data source schemas.
Using our technique, both the schema matching/mapping

Figure 2: Intersection Schema

and the schema merging processes are undertaken itera-
tively.

Three types of schema are encompassed within our method-
ology:

Extensional Schema: This is any schema in the AutoMed
repository that is connected to a data source schema via a
pathway.

Federated Schema: This is a combination of multiple schemas
(of any kind), S1, ..., Sn, into a single virtual schema F con-
taining a union of the objects in S1, ..., Sn, without under-
taking any schema or data transformation or integration.
Within F , the schema objects from each Si are prefixed
with the schema identifier of Si so as to (i) be able to easily
distinguish their provenance and (ii) disambiguate objects
of the same name from different schemas. We write:

F = S1 ∪ S2 ∪ ... ∪ Sn

Intersection Schema: This is a schema which contains only
semantically overlapping content from a pair of extensional
schemas ES1 and ES2 (see Figure 2). In more detail, there
need to exist in the AutoMed repository two pathways ES1

→ ES′
1 and ES2 → ES′

2 with ES′
1 and ES′

2 being union-
compatible schemas, and each pathway consisting of a se-
quence of add and delete operations followed by a sequence
of contract operations. Specifically, the pathway ES1 →
ES′

1 will be of the form:

add(o1, f1(ES1)), add(o2, f2(ES1)), ... , add(or, fr(ES1)),
del(c1, g1(ES′

1)), del(c2, g2(ES′
1)), ..., del(cm, gm(ES′

1)),
contract(cm+1, Range V oid Any),
contract(cm+2, Range V oid Any),
contract(cn, Range V oid Any)

where the ci are schema objects of ES1, the oi are schema
objects of ES′

1, the fi are IQL queries over ES1 and the gi
are IQL queries over ES′

1 (the pathway ES2 → ES′
2 has a

similar form). The part of this pathway comprising the add
and delete steps asserts the semantic equivalence of the set of
schema objects o1, ...or of ES′

1 and the set of objects c1...cm
of ES1. There is also a pathway ES′

1 → ES′
2 comprising a

single ident operation.

The schemas ES′
1 and ES′

2 can both be regarded as intersec-
tion schemas, and one of them can be explicitly renamed to
reflect the fact that it is specifically chosen to be the inter-
section schema, I. As noted in Section 2.1, the data extents
of the objects in schema I are formed from a bag-union of

94

Figure 3: Integrated Intersection and Extensional
Schemas

Figure 4: Global schema derived from Intersection
and Extensional Schemas

the objects in schemas ES′
1 and ES′

2 from which they are
derived.

In our approach a federated schema can be created from a set
of extensional schemas ES1, ..., ESn and a set of intersection
schemas I1, ..., Im (see Figure 3):

F = ES1 ∪ ... ∪ ESn ∪ I1 ∪ ... ∪ Im

If the intersection schemas I1, ..., Im have been derived from
a subset of the extensional schemas ES1, ..., ESn then it is
possible to automatically determine objects that are now
semantically redundant in F and our implemented tool (see
Section 2.3 below) offers this as an option. For example, in
Figure 4, the intersection schema I has been derived from
the extensional schemas ES1and ES2, and the global schema
G is defined as:

G = I ∪ (ES1 − I) ∪ (ES2 − I) ∪ ES3...... ∪ ESn

The − operator here removes from the schema that is its first
argument the subset of objects that are semantically equiv-

alent with some subset of the objects in the schema that is
its second argument. Operationally, given two extensional
schemas ES1 and ES2 and an intersection schema I derived
from them as described earlier, the schema ES1 − I is ob-
tained from ES1 by retaining only those schema objects of
ES1 which have been removed in the pathway ES1 → I by
a contract operation; likewise for the schema ES2 − I. In
more detail, if the pathway ES1 → I is of the following form
(possibly with a sequence of ident transformations added at
the end as well):

add(o1, f1(ES1)), add(o2, f2(ES1)), ..., add(or, fr(ES1)),
del(c1, g1(I)), del(c2, g2(I)), ..., del(cm, gm(I)),
contract(cm+1, Range V oid Any),
contract(cm+2, Range V oid Any),
contract(cn, Range V oid Any)

where the ci are schema objects of ES1, the oi are schema
objects of I, the fi are IQL queries over ES1 and the gi are
IQL queries over I, then the pathway ES1 → ES1 − I is
automatically derived to be:

contract(c1, Range V oid Any), ..., contract(cm, Range V oid
Any)

2.3 Integration Workflow
Our techniques for creating federated, intersection and global
schemas have been described in the previous subsection.
These techniques now need to be incorporated into an over-
all workflow through which the global schema is produced
iteratively. We describe the workflow below. Before doing
so, we briefly describe the Intersection Schema Tool that has
been developed to support this workflow. This tool firstly
creates a single federated schema from a set of extensional
schemas — this also serves as the first version of the global
schema. The tool then allows a data integrator to incremen-
tally identify semantic intersections between pairs of exten-
sional schemas, and create a schema representing their in-
tersection. Each intersection schema can be integrated with
the current global schema using the tool, producing a new
global schema.

The steps of the workflow proceed as follows:

1. Identify the extensional schemas representing the set
of data sources that are to be integrated.

2. Initially a federated schema is created from the schemas
identified in Step 1. Data Services can immediately be
supported by this schema e.g. AutoMed’s Query Tool
[13].

3. Inspect the schemas identified in Step 1 and select two
of them from which to derive an intersection schema.

4. Identify mappings between these two schemas and the
intersection schema. For each Intersection Schema,
a mappings table is maintained by the Intersection
Schema Tool, which shows the IQL query correspon-
dences between objects in the Intersection Schema and
the current global schema. The Intersection Schema
tool allows mappings to be added and edited by the
data integrator. Other existing tools supported by Au-
toMed can be used to assist with this, for example the

95

Extent Tool which allows the extent of any schema
object to be displayed [13] and the Schema Matching
Tool [16] which aims to provide suggestions for schema
mappings.

5. When all the mappings have been identified for this
cycle of the workflow, the user can ask for an intersec-
tion schema to be generated. A new Global Schema
is created automatically from the Intersection Schema
and the extensional schemas by our tool, as described
in Section 2.3. The user may optionally elect for any
redundant objects in the new Global schema to be
dropped.

6. The user may test the Intersection schema or Global
schema at this stage by running queries on it using the
AutoMed Query Tool and verifying that the results are
as expected.

The data integrator can now proceed from Step 3 again,
identify another pair of extensional schemas from which to
create a new intersection schema, test this schema, generate
a new global schema and, optionally, ask for any redundant
objects to be removed from it. Any number of intersections
between any pair of extensional schemas. ESi and ESj can
be created at each iteration of the process.

2.4 Example
A large-scale data integration project that used AutoMed
within a traditional data integration process was the iSpi-
der project, which integrated data from several specialist
Proteomics relational databases under a single virtual re-
lational schema [19, 20]. In the iSpider project, all of the
integration work was done “up front”, before any data ser-
vices were deployed and the integration took several person
months to accomplish.

Two of the source databases used in iSpider were Pedro2

and PepSeeker3 and we now illustrate how our intersection-
schema based tools and methodology can be used to (par-
tially) integrate them. We were able to do this by examining
the set of schema transformations generated for the original
iSpider project by the domain experts and data integrators
working on that project. These are listed in Appendix E of
[18].

An initial Federated schema is first generated, prior to the
creation of any Intersection schemas. Upon inspection of
the Pedro and Pepseeker fragments of this federated schema,
the user identifies that � proteinhit, db search� from Pe-
dro and � proteinhit, fileparameters � from PepSeeker
are semantically equivalent concepts and should be repre-
sented by a new concept � UProteinHit, dbsearch � in
an intersection schema between them4. The user creates an

2http://pedro.man.ac.uk/
3http://nwsr.smith.man.ac.uk/pepseeker
4AutoMed gives considerable flexibility for configuring how
a construct m of a modelling language M is represented
in the HDM, in general identifying the construct using a
scheme of the form � M,m, s1, ..., sn � where the si are
either literals, or schemes representing other constructs. In
this paper, we consider that AutoMed is configured to use a
scheme of the form� sql, table, t� to represent an SQL ta-

intersection schema in the tool as illustrated in Figure 5.
The left hand panel of the tool shows the source schemas
for Pedro and PepSeeker and allows the user to select ob-
jects from each source schema. The bottom panel shows the
transformation queries for each subset of objects selected,
and the name of the new Global schema object. If only a
single object is selected from a source schema then, by de-
fault, the tool automatically creates a tranformation query
consisting of just that object; the user is free to edit this
query. The current Global schema is shown in the right hand
panel. Once all the transformation queries in the “forwards”
direction have been specified, a similar screen is presented
to the user in order to specify the transformation queries in
the reverse direction. This time, the top panel shows the
newly defined Global schema objects on the left hand side
and the source schemas on the right. Suggested transfor-
mation queries are presented in the bottom panel. Where
possible, these queries are automatically generated by the
tool from the user-specified queries in the forwards direc-
tion; for more complex transformations, the default query
Range Void Any is used, which the user may edit. In this
particular example, both the forwards and the reverse trans-
formation queries consist of the same schema object. Once
the user is satisfied with the new Global schema objects and
the transformation queries, the user then requests the cre-
ation of the intersection schema.

The Intersection Schema is then automatically integrated
with the original federated schema to create a new Global
schema. If the user requests this, the schema objects �
proteinhit, db search� from Pedro and � proteinhit,
fileparameters� from PepSeeker can be dropped from the
resulting federated schema, since their extents are included
in the extent of � UProteinHit, dbsearch � in the Inter-
section Schema. Queries can now be run by the user over
the resulting schema to verify the data integration, and in
particular to check that the extent of � UProteinHit,
dbsearch� is as expected.

3. CASE STUDY
We have re-examined the iSpider documentation and the
original set of schema transformations that were produced
by that project in order to see how our intersection-schema
based approach could have been used in the context of a
large-scale real-world data integration project to undertake
an incremental, pay-as-you-go integration that would have
allowed query services to be supported in a gradual fashion.
In addition to Pedro and PepSeeker, a third database that
had been integrated with them in the iSpider project was
gpmDB5.

The original iSpider project domain experts had identified
a set of queries of high priority that the integrated resource
should be able to answer (see Chapter 7 of [18]). Despite

ble named t, and a scheme of the form� sql, column, t, c�
to represent a column c of an SQL table t. Where the con-
text of using a scheme would not cause ambiguity, the user
may omit the modelling language M or the construct type
m from the scheme, or both. Thus, in the context of the
examples in this paper, where only relational tables are be-
ing considered, we refer to a table by a scheme of the form
� t�, and to a column of a table by a scheme of the form
� t, c�.
5http://www.thegpm.org/

96

Figure 5: Intersection Schema Tool - identifying
mappings

this fact, the iSpider project team elected to undertake a
complete “up-front” integration of the data sources rather
than using the set of queries to prioritise their integration
effort.

We have used this set of queries in order to undertake an
intersection schema-based integration, using the priority or-
dering of the queries to drive each iteration of the process.
The set of queries are as follows, with higher priority queries
being listed before lower priority ones:

1. Retrieve all protein identifications for a given protein
accession number

2. Retrieve all protein identifications for a given group of
proteins

3. Retrieve all protein identifications for a given organism

4. Retrieve all protein identifications given a certain pep-
tide and their related amino acid information

5. Retrieve all identifications of a given protein given a
certain peptide

6. Retrieve all peptide-related information for a given
protein identification

7. Retrieve all ion related information

To answer query 1, we need to integrate � protein,
accession num � from Pedro, � proseq, label � from gp-
mDB and � protein � from PepSeeker, to create an en-
tity� UProtein, accession num� in the first intersection
schema. These integrations are achieved by the following
6 transformations defined by the user in the Intersection
Schema tool6 (as well additional transformations automati-
cally created by the tool7):

6The general syntax of the IQL queries within these add
transformations is that of a comprehension [...|...] in which
the expressions on the right hand side of the | are iterators
and filters over one or more collections, and the expression
on the left hand side of the | constructs a new collection.
7The additional contract transformations are automatically

Table 1: Case Study Queries

add� UProtein� [{′PEDRO′, k} | k ←� protein�]
add� UProtein� [{′gpmDB′, k} |
k ←� proseq �]

add� UProtein� [{′pepSeeker′, x} |
{k, x} ←� proteinhit, ProteinID �]

add� UProtein, accession num� [{′PEDRO′, k, x} |
{k, x} ←� protein, accession num�]

add� UProtein, accession num� [{′gpmDB′, k, x} |
{k, x} ←� proseq, label�]

add� UProtein, accession num� [{′pepSeeker′, k, x} |
k ←� uprotein�]

To answer query 2, we need additionally to create an at-
tribute � UProtein, description� from � protein,
description � in Pedro. This is achieved by the following
transformation defined by the user8:

add� UProtein, description� [{′PEDRO′, k, x} |
{k, x} ←� protein, description�]

To answer query 3, we need additionally to create an at-
tribute � UProtein, organism� from � protein,
organism � in Pedro. This is achieved by the following
transformation defined by the user:

add� UProtein, organism� [{′PEDRO′, k, x} |
{k, x} ←� protein, organism�]

To answer query 4, we additionally need to integrate the
following:

generated. Where possible, the delete transformations in
the pathway from a data source schema to an intersec-
tion schema are also automatically generated from the user-
specified add transformations to complete the bidirectional
pathway. For more complex transformations, the user’s in-
put is needed to specify the delete transformations.
8Note, this is a refinement of the intersection schema-
based methodology described in Section 2.3 — our Intersec-
tion Schema tool allows ad-hoc transformations of a single
schema as well, as part of the iterative integration process.

97

• � proteinhit, protein� from Pedro, � protein,
proseqid� from gpmDB and � proteinhit,
proteinid � from PepSeeker to create an attribute
� UProteinHit, protein�;

• � peptidehit � from Pedro, � peptide � from gp-
mDB and � peptidehit � from PepSeeker to create
an entity � UPeptideHit�;

• � peptidehit, sequence� from Pedro, � peptide,
seq � from gpmDB and� peptidehit, pepseq � from
PepSeeker to, create an attribute � UPeptideHit,
sequence�;

• � peptidehit, score� from Pedro and � peptidehit,
score� from PepSeeker to create attribute
� UPeptideHit, score�;

• � proteinhit, db search� from Pedro and
� proteinhit, fileparameters � from PepSeeker to
create an attribute � UProteinHit, dbsearch�.

We also create an attribute � UPepT ideHit, dbsearch �
from � peptidehit, db search � in Pedro, and an entity
� UPeptideHitToProteinHit mm � from the join of �
UPeptideHit, dbsearch� and � UProteinHit,
dbsearch � already in the global schema. This is achieved
by the following 15 transformations defined by the user:

add� UProteinHit, protein� [{′PEDRO′, k, x} |
{k, x} ←� proteinhit, protein�]

add� UProteinHit, protein� [{′gpmDB′, k, x} |
{k, x} ←� protein, proseqid�]

add� UProteinHit, protein� [{′pepSeeker′, k, x} |
{k, x} ←� proteinhit, proteinid�]

add� UPeptideHit� [{′PEDRO′, k} |
k ←� peptidehit�]

add� UPeptideHit� [{′gpmDB′, k} | k ←� peptide�]
add� UPeptideHit� [{′pepSeeker′, k} |
k ←� peptidehit�]

add� UPeptideHit, sequence� [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, sequence�]

add� UPeptideHit, sequence� [{′gpmDB′, k, x} |
{k, x} ←� peptide, seq �]

add� UPeptideHit, sequence� [{′pepSeeker′, k, x} |
{k, x} ←� peptidehit, pepseq �]

add� UPeptideHit, score� [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, score >]

add� UPeptideHit, score� [{′pepSeeker′, k, x} |
{k, x} ←� peptidehit, score�]

add� UProteinHit, dbsearch� [{′PEDRO′, k, x} |
{k, x} ←� proteinhit, db search�]

add� UProteinHit, dbsearch� [{′pepSeeker′, k, x} |
{k, x} ←� proteinhit, fileparameters�]

add� UPeptideHit, dbsearch� [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, db search�]

add� uPeptideHitToProteinHitmm� [{k1, k2} |
{k1, x} ←� upeptidehit, dbsearch�;
{k2, y} ←� uproteinhit, dbsearch�;x = y]

To answer query 5, no further concepts need to be inte-
grated. To answer query 6, we need to integrate
� peptidehit, probability � from Pedro, � peptide,
expect � from gpmDB and � peptidehit, expect � from

PepSeeker to create the attribute � UPeptideHit,
probability � in the next intersection schema. This is ach-
ieved by the following 3 transformations defined by the user:

add� UPeptideHit, probability � [{′PEDRO′, k, x} |
{k, x} ←� peptidehit, probability �]

add� UPeptideHit, probability � [{′gpmDB′, k, x} |
{k, x} ←� peptide, expect�]

add� UPeptideHit, probability � [{′pepSeeker′, k, x} |
{k, x} ←� peptidehit, expect�]

Finally, to answer query 7, no further concepts need to be
integrated. For completeness, we list in Table 1 examples of
the 7 queries (expressed in IQL) formulated over the result-
ing global schema.

In summary, we see that a total of 6+1+1+15+3 = 26 man-
ually defined transformations are required to be able to an-
swer all seven of these high priority queries.

By way of comparison, in the original iSpider integration
(see Chapter 7 and Appendix E of [18] for full details, in-
cluding listings of all the transformations), three successive
versions of the global schema were produced, GS1, GS2,
GS3. GS1 was defined to be identical with the Pedro schema
due to the rich content of this schema compared with the
gpmDB and PepSeeker schemas. AutoMed transformation
pathways were then defined from the three data sources to
GS1. Since all GS1 schema constructs have a trivial identify
derivation from Pedro, we can consider the integration ef-
fort to comprise the manually defined transformations from
gpmDB and PepSeeker to GS1. Also, we ignore any trans-
formations whose query part is just Range V oid Any. There
are 19 non-trivial transformations from gpmDB to GS1 and
35 non-trivial transformations from PepSeeker to GS1.

The next version of the global schema, GS2, improved on
GS1 by adding concepts that are supported by the gpmDB
data source but not by Pedro and that therefore where not
present in GS1. This required an additional 41 non-trivial
transformations from PepSeeker to GS2 (note that all the
additional transformations from Pedro to GS2 would have
query parts Range V oid Any).

The final version of the global schema, GS3, improved on
GS2 by adding concepts that are supported by the PepSeeker
data source but not by Pedro or gpmDB and that therefore
were not present in GS2. This required no more non-trivial
transformations (all the additional transformations from Pe-
dro and gpmDBto GS3 would have query parts Range V oid
Any). Hence there are a total of 19+35+41=95 non-trivial
transformations required by the original iSpider integration
effort.

Of course, using the number of manually defined transfor-
mations as a comparison metric is rather crude; and more-
over, as stated earlier, the original iSpider integration did
not attempt to undertake a query-driven integration. There-
fore, we are planning for the near future a more detailed
evaluation of our intersection schema-based data integration
methodology compared with traditional ones.

98

4. CONCLUSIONS
In this paper we have introduced a data integration method-
ology based on the concept of Intersection Schemas, using
the AutoMed data integration framework. We have demon-
strated the technique on a real-world data integration sce-
nario, adopting a query-driven approach, and have seen that
the number of user-defined steps required to perform the in-
tegration is significantly reduced compared to the original
data integration methodology used by the domain experts
on that project.

This work has been carried out in the context of the Au-
toMed data integration framework, which supports bidirec-
tional schema and data transformations but which, up till
now, has been used only for “up-front” data integration. In
this paper we have shown how the AutoMed toolkit can be
used to underpin a new light-weight data integration tech-
nique within an incremental pay-as-you-go data integration
process, and hence how AutoMed can be applied within a
dataspace environment.

Our future work includes extending the methodology so that
intersections can be created between any number of source
schemas at each iteration of the process, rather than just two
as at present. We will also undertake a more detailed evalu-
ation of our intersection-schema based integration approach
with traditional integration methodologies in the context
of further real-world large-scale data integration settings.
For these investigations, we will take in both cases a query-
driven approach and we will assess the productivity benefits
arising using our approach. Since our techniques and tools
are intended to be used by both domain experts and data
integration experts, we propose a user evaluation which will
consider two groups of users. The first group will consist of
people familiar with the application domain but with limited
knowledge of data integration processes, while the second
group will be familiar with data integration processes but
have limited knowledge of the application domain. Each
group will be split randomly into two equally-sized sub-
groups. Each subgroup of a given group will be asked to
undertake the same, query-driven, integration of a given
set of data sources, guiding one subgroup through an inter-
section schema-based methodoloty and the other subgroup
through a more traditional methodology, such as the ‘lad-
der’ approach [5]. A set of metrics will be measured for each
subgroup, for example the time taken to complete the in-
tegration and the number of key clicks required within the
toolset.

5. REFERENCES
[1] B. Alexe, B. T. Cate, P. G. Kolaitis, and W.-C. Tan.

Characterizing schema mappings via data examples.
ACM Trans. on Database Systems, 36(4):23, 2011.

[2] B. Alexe, L. Chiticariu, R. J. Miller, and W.-C. Tan.
Muse: Mapping understanding and design by
example. In Proc. ICDE, pages 10–19. IEEE, 2008.

[3] B. Alexe, W.-C. Tan, and Y. Velegrakis.
STBenchmark: towards a benchmark for mapping
systems. PVLDB, 1(1):230–244, 2008.

[4] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan.
Designing and refining schema mappings via data
examples. In Proc. ACM SIGMOD, pages 133–144.
ACM, 2011.

[5] C. Batini, M. Lenzerini, and S. B. Navathe. A
comparative analysis of methodologies for database
schema integration. ACM Computing Surveys,
18(4):323–364, 1986.

[6] M. Boyd, C. Lazanitis, S. Kittivoraviktul, P. Mc Brien,
and N. Rizopoulos. An overview of the AutoMed
Repository. Technical Report, AutoMed Project, 2004.

[7] M. Franklin, A. Halevy, and D. Maier. From databases
to dataspaces: a new abstraction for information
management. ACM Sigmod Record, 34(4):27–33, 2005.

[8] A. Halevy, A. Rajaraman, and J. Ordille. Data
integration: the teenage years. In Proc. VLDB, pages
9–16. VLDB Endowment, 2006.

[9] C. Hedeler, K. Belhajjame, N. W. Paton, A. Campi,
A. A. Fernandes, and S. M. Embury. Flexible
dataspace management through model management.
In Proc. EDBT/ICDT Workshops, pages 114–134.
Springer, 2010.

[10] E. Jasper, A. Poulovassilis, L. Zamboulis, and H. Fan.
Processing IQL queries and migrating data in the
automed toolkit. Technical Report, AutoMed Project,
2003.

[11] E. Jasper, N. Tong, P. McBrien, and A. Poulovassilis.
Generating and optimising views from both as view
data integration rules. In Proc. DBIS’04, volume 972,
pages 13–30, 2004.

[12] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. ACM PODS, pages 233–246.
ACM, 2002.

[13] P. McBrien. AutoMed in a nutshell. Technical Report,
AutoMed Project, 2006.

[14] P. McBrien and A. Poulovassilis. Data integration by
bi-directional schema transformation rules. In Proc.
ICDE, pages 227–238. IEEE, 2003.

[15] P. Mcbrien and A. Poulovassilis. P2P query
reformulation over both-as-view data transformation
rules. In Proc. DBISP2P, pages 310–322. Springer,
2006.

[16] N. Rizopoulos. Automatic discovery of semantic
relationships between schema elements. In Proc.
ICEIS (1), pages 3–8, 2004.

[17] B. ten Cate, P. G. Kolaitis, and W.-C. Tan. Schema
mappings and data examples. In Proc. EDBT, pages
777–780. ACM, 2013.

[18] J. Wang. A Framework and Architecture for Quality
Assessment in Data Integration. http://www.dcs.
bbk.ac.uk/research/recentphds/jwang.pdf, 2012.
[Online; accessed 01-December-2013].

[19] L. Zamboulis, H. Fan, K. Belhajjame, J. Siepen,
A. Jones, N. Martin, A. Poulovassilis, S. Hubbard,
S. M. Embury, and N. W. Paton. Data access and
integration in the ISPIDER Proteomics Grid. In Proc.
Data Integration in the Life Sciences, pages 3–18.
Springer, 2006.

[20] L. Zamboulis, N. Martin, and A. Poulovassilis. Query
performance evaluation of an architecture for
fine-grained integration of heterogeneous grid data
sources. Future Generation Computer Systems,
26(8):1073–1091, 2010.

99

Bidirectional Transformations in Database Evolution:
A Case Study "At Scale"

Mathieu Beine
University of Namur

Namur, Belgium
math.beine@gmail.com

Nicolas Hames
University of Namur

Namur, Belgium
nicolas.hames@gmail.com

Jens H. Weber
University of Victoria

Victoria, Canada
jens@acm.org

Anthony Cleve
University of Namur

Namur, Belgium
anthony.cleve@unamur.be

ABSTRACT
Bidirectional transformations (BX) play an important role
in database schema/application co-evolution. In earlier work,
Terwilliger introduced the theoretical concept of a Channel
as a BX-based mechanism to de-couple “virtual databases”
used by the application code from the actual representation
of the data maintained within the DBMS. In this paper, we
report on considerations and experiences implementing such
Channels in practice in the context of a complex real-world
application, and with generative tool support. We focus on
Channels implementing Pivot/Unpivot transformations. We
present different alternatives for generating such Channels
and discuss their performance characteristics at scale. We
also present a transformational tool to generate these Chan-
nels.

Keywords
Bidirectional transformations, database evolution, schema-
code co-evolution, performance

1. INTRODUCTION
Many of today’s software applications are backed by data

base management systems (DBMS), most of them using a re-
lational data model. With increasing system complexity and
changing requirements arises the need to adapt and evolve
software applications to meet new objectives. In the context
of database applications, adaptations may be performed at
the database level (i.e., schema changes, data migration) or
at the level of the software application (i.e., program code).
Changes made at either level often necessitate changes at
the other level in order for the overall system to keep func-
tioning. The synchronization of adaptation at different lev-
els is often referred to as the schema/program co-evolution
challenge.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Figure 1: BX in DB/program co-evolution

Bidirectional transformations (BX) can be used as one
way of addressing this co-evolution challenge. BX can be
used to decouple the evolution of the database schema from
the evolution of the program code, for example, by allow-
ing changes to the database structure to be implemented
while some programs can remain unchanged. In this case,
any database access of the program code that uses the “old”
schema is transformed to an equivalent database access us-
ing the new schema structure. Terwilliger [12] introduced
the theoretical concept of a Channel to formalize this notion
of transformations that translate application code queries to
a “virtual database” structure to equivalent queries into the
actual database implementation structure, cf. Figure 1.

From an engineering perspective, implementation of Chan-
nels in practice and at scale raises a range of design deci-
sions and trade-offs. While previous authors have reported
on experiences with implementing Channels (also referred
to as wrappers) [3], such reports remain rare and often con-
sider only small-scale applications and simple transforma-
tions only.

This paper presents empirical results from a large-scale in-
dustrial case study of engineering Channels to support the
evolution of a complex medical information system. We fo-
cus on a couple of complex transformations, including Pivot
and Unpivot and discuss their efficient implementation in
practice. The Pivot and Unpivot operations can be de-
scribed as rotation a table from a 1-column-per-attribute to a

100

1-row-per-attribute representation and vice-versa. The rea-
son why these operations are of particular interest from a
software evolution point of view is that it is often beneficial
to transform complex, sparsely populated table structures
to a generic, more concise Entity-Attribute-Value (EAV)
model. This reduces the complexity of the database schema
as well as the programs accessing such data. The following
case study will provide an example for such a transforma-
tion.

1.1 Case Study: OSCAR EMR Software
The application case study used in our work is a real-

world medical information system called OSCAR used in
primary health care in hundreds of clinics in Canada [8].
OSCAR has evolved over more than a decade and its cur-
rent database includes more than 450 tables. The OSCAR
database consists of well-populated “core” table structures
that store information about patient demographics, aller-
gies, medications, active problems etc., as well as more spe-
cialized, “satellite” table structures that store information
for specific types of encounters and patient situations in pri-
mary care. These more specialized table structures are often
associated with elaborate electronic forms that are filled out
by the clinician on certain types of patient encounters. Due
to the broad spectrum of different conditions that patients
may have, these tables may have thousands of columns but
any given data record (the actual data in each row) may
only be populated sparsely (i.e., many null values).

The data in these large, sparsely populated tables are
more adequately represented in a 1-row-per attribute format,
also called Entit-Attribute-Value (EAV) format, in order to
save space and simplify program access. To see how the EAV
representation might simiplify program access, consider a
program that exports all encounter information, including
all forms that may exist for a given patient. Using the EAV
model, such a program will not need to query a large set
of different tables and probe the existence of values in each
column.

OSCAR’s schema includes more than 60 form tables that
can be transformed to a generic model in this way. This
situation is by no means unique to our case study systems.
Other systems and vendor products we have been working
with show a similar structure and are expected to benefit
from similar schema transformations.

1.2 Contributions and overview
This paper makes two main contributions. Firstly, we

discuss implementation decisions and trade-offs related to
the implementation of pivoting and unpivoting Channels at
scale in the context of a real-world, industrial application.
Secondly, we present a transformational tool for generat-
ing such Channel implementations in support of database
schema evolution.

The rest of this paper is structured as follows. The follow-
ing section provides an overview over research work related
to our topic. Section 3 defines the transformations used in
our work in more detail. Section 4 discusses implementa-
tion alternatives and trade-offs realizing the pivoting Chan-
nel. Section 5 presents the transformational tool we imple-
mented for generating Channel implementations. Section 6
presents quantitative results from studying the performance
of Channel implementations. Finally, Section 7 offers con-
clusions and directions for current and future work.

2. RELATED WORK
Most software must continue to adapt to fit changing re-

quirements to remain useful. Database applications are no
exception. In the context of database evolution, we are
primarily interested in changes that involve the database
schema definition. Evolution of program code that does not
impact the database is out of scope for this paper and sub-
ject to a broad spectrum of research on different aspects of
software evolution and reengineering. The reader may refer
to [10] for a general overview.

Changes to the schema definition of a database application
usually (but not always) require updates to application code
(programs) that use the database as well as updates to the
actual data instances. These two kinds of updates are com-
monly referred to as application migration and data migra-
tion, respectively [9]. A common strategy for adapting appli-
cation programs to database changes is to use so-called wrap-
pers, i.e., programs that “hide” the database changes from
the application program by effectively translating queries
(and updates) of the “old” database to equivalent accesses
to the “new” (changed) database [13]. Application programs
adapted in such a way can remain unchanged. Conversely,
wrappers can also be used to accommodate evolution in ap-
plication programs, while leaving the database implementa-
tion unchanged. In that case, the wrapper will transform
queries (and updates) from newly developed or evolved pro-
grams (requiring a modified database structure) to accesses
on the “old” database implementation.

In practice, large-scale database applications that have
evolved over longer periods of time often have to support
a combination of wrappers for forward as well as backward
compatibility of different versions of programs with different
versions of databases.

Of course, the question as to whether or not it is possi-
ble to create a wrapper that adapts a particular program
(version) to a particular version of a schema depends on the
nature of changes made in the schema (or the program).
Schema changes are usually formalized in terms of transfor-
mation functions and categorized as information capacity
preserving, -augmenting, -reducing. Thiran et al. [13] have
proposed a semi-automatic approach for generating wrap-
pers from composition of well-defined schema transforma-
tions. They report experiences with wrapping a small and a
medium size system, but do not consider performance char-
acteristics or more complex transformations, such as the
ones discussed in this paper.

In later work, Terwilliger extends the concept of database
wrappers to that of so-called Channels [12]. The latter not
only transforms data queries and manipulations (queries /
inserts / updates) from a “virtual” database to the real
datatabase, but also transforms schema manipulations in a
similar manner. In other words, from the point of view of an
application program, a Channel should be indistinguishable
from a “real” database. While Terwilliger discusses many of
the same transformations as Thiran et al. (e.g., table par-
titioning and merging), he also discusses Pivot and Unpivot
transformations. These two tranformations are of particular
importance for database evolution and studies of their effi-
cient implementation in auto-generated wrappers (or chan-
nels) with “at-scale” systems are scarce. We therefore con-
centrate on these transformations in this paper.

Research on BX has not been confined to the domain
of databases, but other communities such as software engi-

101

neering, programming languages and graph transformations
have studied BX based on different theoretical frameworks.
Czarnecki et al. [4] provide an overview and comparison of
BX theories accross disciplines. A theoretical framework
of particular influence on the BX community has emerged
from programming language domain, namely the lens frame-
work [6]. In its most basic form, BX are considered as pairs
of functions commonly referred to as get : S → V and
put : S → V → S, where the first one produces a view V on
a source data structure S and the second one updates the
source data structure S according to any changes made to V .
The special case of applying put to an empty source model
in S is also referred to as create, i.e, create(v) ≡ put(v, ∅).
While our work on Channels is not formally based on the
theory of lenses, we will informally adopt the get/put/create
terminology framework [11] to describe the transformation
that creates a virtual database (get) for the purpose of legacy
program access and propagates any updates to that virtual
DB to the real database (put) (cf. Figure 1).

Research on generating bidirectional channnels (or wrap-
pers) is related to the well-known view-upate problem in
databases [1]. Bohannon et al. [2] present relational lenses
as an attempt to adapt the lens framework to address the
relational view update problem from an algebraic perspec-
tive. They propose a new programming language to formal-
ize view update policies in terms of lenses and define for-
mal laws on well-behavedness of these lenses. While related,
our work on database schema evolution has a different ob-
jective. Rather than programming BX, we are interested in
automatically generating BX Channels as a side effect of ap-
plying schema redesign transformations during the process
of evolving and refactoring database applications.

3. TRANSFORMATION DEFINITION
In this section, we provide definitions for the primitive

and composite transformation used in this paper.

3.1 Pivot and Unpivot
The Pivot operator (T’=PIVOT(T,A,V)) transforms a ta-

ble T in generic key-attribute-value form into a form with
one column per attribute. Column A must participate in
the primary key of T and provide the names for the new
columns in T ′, populated with data from column V . The
resulting table is named T ′. The formal definition given for
the Pivot operator using relational algebra is presented be-
low and based on [12]. Readers who are unfamiliar with
relational algebra are referred to [7] for a primer.

2↗C;A;V T ≡

(πcolumns(T)−{A,V }T) ./ (ρV→C1πcolumns(T)−(A)σA=C1T)

./... ./ (ρV→Cnπcolumns(T)−{A}σA=CnT)

for C1, ..., Cn = C = δ(πA(T))

Figure 2 shows the intermediate steps of the Pivot opera-
tion for an example table T with three columns. In this case,
Period is the pivoting attribute A whose values will give rise
to columns in the resulting table and Price provides the val-
ues for these columns. Figure 2 shows that intermediate
tables are created for each arising attribute. The key for
the resulting table T ′ will be all remaining columns in T (all
columns other than A and V).

The Unpivot operator (T’=UNPIVOT(T,A,V)) is the in-

Figure 2: T’=PIVOT (T,Period,Price)

Figure 3: T’=UNPIVOT(T, Period, Price)

verse of the Pivot operator and transforms a table T from a
one-column-per-attribute form into key-attribute-value tri-
ples, effectively moving column names into data values in
new column A (which is added to the key) with correspond-
ing data values placed in column V . The resulting table
is named T ′. The formal definition (given in [12]) for this
operator in relational algebra is presented below.

2↙C;A;V T ≡
⋃

c∈C
(ρC→V πcolumns(T)−(C−{C})σC<>null(T)

×ρ1→A(name(C)))

Figure 3 shows the intermediate steps of the Unpivot op-
eration.

3.2 VPartition and VMerge
In practice, Pivot and Unpivot transformations are of-

ten used in composition with two other operators, com-
monly referred to as VPartition and VMerge in [12]. The
(T1, T2) = V Partition(T, f) operator splits a given table
into two tables T1, T2, according to a total selection func-
tion f , which associates each non-key column with one of the
two target tables (T1 or T2). Both resulting tables share the
key columns of T . The (T ′ = VMerge(T1, T2)) operator is
the inverse of the V Partition operator and reconstructs a
single table using two tables sharing a common primary key.
The formal definition of VPartition and VMerge is straight
forward based on projection and joins in the relational alge-
gra, respectively, and omitted here.

3.3 Complex transformations: create/get/put
Complex transformations (and the Channels that imple-

ment them) can be composed by concatenations of primi-
tive ones, such as the ones defined above. The composite
transformation we will focus on in our case study combines
VPartition and Unpivot to transform database structures in
one-column-per-attribute format into equivalent structures
into an Entity-Attribute-Value (one-row-per-attribute) for-
mat (akin to create and put in the lens framework). The
inverse transformation composes Pivot and VMerge to re-

102

Figure 4: Composite BX - create/get/put

construct the original structure (akin to get). Figure 4 illus-
trates these transformations with a graphical example.

4. CHANNEL IMPLEMENTATION
Different strategies and techniques can be applied when

implementing Channels for the above transformations. This
section describes and compares several such alternatives and
presents a novel technique referred to as the “coalescing ap-
proach”. For this discussion, we assume that the database
management system (DBMS) used does not have built-in
operators for Pivot and Unpivot transformations. Indeed,
most current DBMS still lack these operators.

In most of the examples below, we present some SQL
pseudo-code in order to help the reader to fully understand
the theory. All the examples are based on the tables from
the schema available in the Figure 4.

4.1 Implementing "Create"
In our application domain of database evolution, create is

mainly used for the data migration task, i.e., to transform
data that conform to the “old” schema to equivalent data
conforming to the newly evolved (transformed) schema. The
amount of that data may be large in real-life applications.

This step can be implemented with a DB client program
or directly within the DB server, in the form of a stored
procedure. We implemented both alternatives. As expected,
the first alternative is much less efficient. However, it has the
benefit of being more platform independent. The algorithms
are similar for both approaches and provided below.

4.1.1 The procedural approach
The procedural approach uses nested loops. The first loop

inserts each entity in the entity table (the table containing
the columns that will not be unpivoted, e.g., the entity keys
and any columns that should remain in the original format).
For each inserted entity, the second loop will be executed in
order to insert the unpivoted attributes in the corresponding
Entity Attribute Value (EAV) table. An example using the
tables from Figure 4 is presented at Figure 5. Although it
is a small example, it is easy for the reader to project this
for such big tables as exist in real software systems.

4.1.2 The declarative approach
The declarative approach first inserts all the entities into

the entity table and then it executes one “big” insert com-
posed of unions of select to migrate all the unpivoted at-

BEGIN
DECLARE id_var ,A_var ,B_var ,C_var ,D_var INTEGER;
DECLARE cur1 CURSOR FOR SELECT * FROM form;
OPEN cur1;
read_loop: LOOP
FETCH cur1 INTO id_var ,A_var ,B_var ,C_var ,D_var;
IF (no more records){LEAVE read_loop ;}
INSERT INTO form_entity VALUES(id_var ,A_var ,B_var);
...
IF(C_var is not null or C_var !=""){
INSERT INTO form_eav VALUES(id_var ,"C",C_var);}
... (for all the unpivoted attributes)
END LOOP;

CLOSE cur1;
END

Figure 5: Procedural approach (Create)

BEGIN
INSERT INTO form_entity SELECT id,A,B FROM form;
INSERT INTO form_eav SELECT * from (
SELECT id,name ,value FROM (SELECT id,C AS value FROM

form WHERE C IS NOT NULL),(SELECT "C" AS name
FROM DUAL)

UNION
SELECT id,name ,value FROM (SELECT id,D AS value FROM

form WHERE D IS NOT NULL),(SELECT "D" AS name
FROM DUAL))

END

Figure 6: Declarative approach (Create)

tributes into the corresponding table. The SQL pseudocode
is given at Figure 6.

4.2 Implementing "Put"
The solution presented here is an implementation of the

update channel transformation defined by Terwilliger [12].
The update channel transformation consists of three basic
operations that are insert, update and delete. Database trig-
gers are a natural solution for invoking these operations.
Each time a“legacy”application inserts/updates/deletes the
data in the virtualized (old) DB, a dedicated trigger executes
the corresponding part of the put function. The listings at
Figures 7, 8 and 9 sketch the SQL pseudocode for the insert,
delete and update triggers in our example.

Of course, these triggered put functions may fail if some
integrity constraints become violated due to concurrent up-
dates, e.g., an insert fails if an item with the same key al-
ready exists in the target database. We do not further dis-
cuss concurrency issues in this paper, as it is assumed that
legacy programs use transactions when accessing the virtual-
ized database, and executing the Channel code is part of that

% SQL Code for Insert trigger
CRETE TRIGGER insert_form INSTEAD OF INSERT ON

form_view
FOR EACH ROW BEGIN
INSERT INTO form_entity VALUES(NEW.id,NEW.A,NEW.B);
...
IF(NEW.C IS NOT NULL){
INSERT INTO form_eav VALUES(NEW.id,"C",NEW.C);}
... (for all the unpivoted attributes)

END

Figure 7: Insert trigger (Put)

103

% SQL Code for Delete trigger
DROP TRIGGER IF EXISTS delete_form;
CREATE TRIGGER delete_form INSTEAD OF DELETE ON

form_view
FOR EACH ROW
BEGIN
DELETE FROM form_eav WHERE id=OLD.id;
DELETE FROM form_entity WHERE id=OLD.id;

END

Figure 8: Delete trigger (Put)

% SQL Code for Update trigger
CREATE TRIGGER update_form INSTEAD OF UPDATE ON

form_view
FOR EACH ROW BEGIN
UPDATE form_entity SET B=NEW.B,A=NEW.A where id=NEW.

id;
...
IF(NEW.C not like OLD.C){
IF(OLD.C==""){
INSERT INTO form_eav VALUES(NEW.ID,"C",NEW.C);

}ELSEIF(new.id is null){
DELETE FROM form_eav WHERE name="C" AND ID=NEW.ID;
ELSE
UPDATE form_eav SET value=NEW.C WHERE name="C" AND

ID=NEW.id;
}

}
... (for all the unpivoted attributes)
END

Figure 9: Update trigger (Put)

transaction (and potentially aborts it in case of conflicts).
Pessimistic strategies (locking) may be used to avoid such
inconsistencies at the cost of limiting concurrency. How-
ever, locks applied on the virtualized DB should be propa-
gated through the Channel to the actual DB to be effective.
Terwilliger’s current model of Channels does not cover the
propagation of locks, nor does our implementation of Chan-
nel transformations [12]. We will address this limitation in
future work.

4.3 Implementing "Get"
The get function recreates the old “virtual” database for

the legacy programs to use. To implement the get func-
tion, we first followed the formal definition presented in
Section 3.1. However, we found scalability problems with
this solution. We therefore present a second implementa-
tion right after to avoid these problems.

4.3.1 The join approach
In order to allow “legacy programs” to keep working on

the virtualized “old” database, we defined a set of queries
that can be used to define views on the database. We im-
plemented DML-SQL triggers to handle the usual CRUD
operation on the new schema through the “virtual schema”.
This implementation is based on the theorical solution de-
scribed in [12].

• The Join approach The join approach creates for each
column that was unpivoted from the original table, an
intermediate table containing the key-attribute-value
triple for all the non-null values in the original table.
Those intermediate tables are then joined together in
order to create our “virtual schema”. A pseudocode

SELECT a.id,a.A,a.B,a1.value as C,a2.value as D
FROM form_entity a
LEFT OUTER JOIN form_eav as a1
ON a1.id=a.id
AND a1.name="C"

LEFT OUTER JOIN form_eav as a2
ON a2.id=a.id
AND a2.name="D";

Figure 10: Join approach (Get)

example is given at Figure 10.

This approach is theoretically perfect. However, at
scale, we found that DBMS run into the problem of
the maximum-joins-per-query limit. The DBMS used
in our case study application (MySQL) allows 61 joins
per query. Some DBMS have higher limits, such as
Microsoft’s SQLServer, which accepts up to 256 joins.
However, some of the tables in our case study have
thousands of columns, which would require thousands
of joins, clearly exceeding such a limit.

• The join approach revisited A solution to face the maxi-
mum-joins-per-query limit is to split the set of columns
to migrate into multiple subsets, execute the join ap-
proach for subsets having less than 61 columns (or
whatever the join limit of the DBMS may be) and then
joining all those subsets in the final table. This solu-
tion worked at scale but lacked in performance com-
pared to the coalescing approach we will describe be-
low.

4.3.2 The coalescing approach
We decided to design another solution to execute the Pivot

operation. We refer to this solution as the “coalescing ap-
proach”. The formal definition of the Unpivot operator for
the coalescing approach is given below:

2↗C;A;V (T) = γ(columns(T)−{A,V }),MAX(C1),...,MAX(Cn)

((
⋃

c∈C
(ρvalue→name(C)(πvalue,id(σA=name(C)(T)))))

×(ρ1→name(C′
1)

(null) .// ρ1→name(C′
n)(null)))

for C1, ..., Cn = C AND C′1, ..., C
′
n = C− {C}

where C is the set of values on which to pivot (the set of
attributes you want to pivot), A is the Pivot column (the
column containing the values for the new column names)
and V is the pivot-value column (the column containing the
value for the attributes).

This operation can be decomposed in multiple intermedi-
ate steps that will be explained here.

For this operation, the query is executed with a group-by
clause on the id on the EAV table.

First, the query selects each row in the EAV table (re-
lation T) where the column A contains the name of a col-
umn that belongs to C (In the example given below, C =
{(columns(T)-{A,V})}, i.e. all columns are pivoted.) and
transform it from a 1-row-per-attribute to a 1-column-per-
attribute representation. This will create as many rows as
they are attributes for the given id in the EAV model.

104

SELECT id,A,B,C,D FROM
(SELECT
MAX(IF(a.name =’C’,a.value ,null)) AS ’C’,
MAX(IF(a.name =’D’,a.value ,null)) AS ’D’,
id FROM form_eav a GROUP BY id) AS grp , form_entity

AS i WHERE i.id=grp.id;

Figure 11: Coalescing approach (Get)

Figure 12: The coalescing approach

Then, for each row, the query will add columns that exists
in the destination schema (all the values of C-A) and put a
“null” value into those “joined” columns. This will produce
a row having only one attribute with a non-null value per
row and null-values for all the other columns.

Finally, the query executes an aggregate function (MAX)
in order to “coaelesce” all the rows corresponding to same id
into only one row.

This approach is significantly faster than the join ap-
proaches. We only have to execute one select for each entity
and then execute only one join with the entity table, as
shown at Figure 11. Figure 12 illustrates the coalescing al-
gorithm described above. The example starts with the EAV
model and reconstructs the original table, i.e., the virtual
database. On the left (box 1), there is the EAV table and
the table containing some columns kept in a 1-column-per-
attribute representation. In the middle of the figure, box 2
presents the operation of pivoting the EAV table and joining
the result with the entity table. The result of this box is the
original table, or virtual database, presented in the box 3.

The aim of this MAX function is to coalesce all the rows
that contains only one non-null value per row for each id into
only one row per id, and so allow us to retrieve the original
table. The example of Figure 13 (subschema of Figure 12)
depicts the application of the max operator in this specific
case. Here, the max function is used to retrieve the only
“non-null” value for a specific column of a given id value.

Figure 13: The MAX function

4.4 “Type-preservation" EAV model
One issue arising with transforming relational data into an

EAV model (unpivoting) and back (pivoting) is the preser-
vation of type information. Columns in the original table
may use a large variety of different types. However, once
cast into a joint EAV model, that type information may be
lost, if it is not preserved. The implementation of type-
preservation may complicate the resulting EAV model. We
can consider different implementation alternatives summa-
rized below. The three first alternatives have been described
in [5].

1. The basic EAV schema. This schema store all the val-
ues in a single columns that usually uses a generic
TEXT data-type. The original type information is
lost.

2. The multi data-type EAV Schema. This schema use
multiple tables, one for each data-type.

3. The hybrid EAV schema. This schema use multiple
columns in the EAV table, one column for each data-
type.

4. The Variant data-type. This schema use a variant
data-type to store the different data-type. This so-
lution has performance limitations and may not be of-
fered in many DBMS systems. (It is not offered in
MySQL, for example, the DBMS used by OSCAR.)

The choice we made for the Oscar case is to use a hy-
brid EAV schema with on table and multiple columns types.
Since this may result in a potentially large number of co-
lumns, our transformation implementation generates an EAV
schema to consider only those datatype that are really needed
in the original tables.

This issue of type-preservation also implied that it is im-
possible to use the PIVOT and UNPIVOT functions that
are sometimes defined in certain DBMS. As soon as we have
to manage multiple column in the input for the pivot func-
tion or in the output for the unpivot function, we have to
define our own implementation.

Another detractor of using PIVOT/UNPIVOT operators
provided by some DBMS is that they are not well-defined
and lack a unified semantics (see [14]). It is therefore not
possible to predict what will be the output in specific cases
as for example, a non-unique id for the pivot function.

5. TOOL SUPPORT
We developed a plug-in for DBMain(www.db-main.eu), an

interactive database (re)engineering tool developed by the
University of Namur and its spin-off company Rever. To
date, DBMain offers rich support for database schema trans-
formations, but does not generate Channels. Our plug-in
extends DBMain with the capability of evolving database
schemas based on the aforementioned transformations. DB-
Main generates the database definition of the newly evolved
schema as well as all the code for the bidirectional Channel
that allows legacy programs to run on the newly evolved
database. We have experimented with different alterna-
tives to implement the required transformations, particu-
larly Pivot and Unpivot, as these operators are not pro-
vided as built-in primitives by most database management
systems, or at least, not as we had to use it.

105

Figure 14: Create performance

The DBMain plugin can be used to pivot/unpivot tables
from a DBMain schema (SQL to DBMain schema extrac-
tion also available in DBMain), one at a time or multiple at
a time. The plugin then supports the migration of the ex-
isting data into the new EAV schema, generate the channel
implementation (triggers), generate the view’s, test the data
migration, etc.

The tool support provided by the DBMain plugin is sig-
nificant for two reasons, correctness and scalability. The
first reason is related to the safety critical nature of health-
care information systems. There are strict requirements on
the correctness of transformations and the ability for back-
wards compatibility of programs that use the “old” database
structures. A tool that is capable of implementing schema
transformations based on formally defined lossless transfor-
mations as well as generating code for Channels that can
be used to automatically adapt “legacy programs” provides
welcome assurance in this domain.

Secondly, the size of the Channel code generated by our
plugin is considerable and writing this code by hand would
be tedious and error prone. We found that in the best
performing code (discussed below), each column in a trans-
formed table gives rise to approximately 34 lines of code in
the update (“put”) function of the channel. A table of 1000
columns will therefore give rise to 34KLOC of channel code
for the “put” direction alone.

6. IMPLEMENTATION COMPARISON
In order to evaluate the viability of our solution in a real

world application we decided to perform some performance
tests. We will provide here some performance measurements
of the different implementations presented above.

First, we present a comparison of the performance for the
data migration from the original model to the EAV format.
This step corresponds to the implementation of the Channel
create function. It is composed of a VPartition operation
followed by the Unpivot operation. For these performance
tests we decided to benchmark the data migration time on
three different tables. We choose three tables from OSCAR
containing 17, 117 and 425 columns. The following chart
gives an overview of the time needed to migrate 1000 records
from the original table to the EAV table.

Figure 14 shows the different performance characteristics
of the declarative implementation and the procedural meth-

Figure 15: Pivot performance

ods.
The performance gap between the two unpivoting meth-

ods can be understood by taking a look on the SQL query.
The procedural statement executes a query for each value
of each line that have to be unpivoted to insert all the field
value one by one. The DBMS query optimizer is not able to
optimize this iterative loop. In the other hand, the declara-
tive approach executes only one insert query. This query is
composed of one sub-query per attribute, but is not directly
dependent of the number of rows contained in the original
table, even if it will impact the data set size. The DBMS
query optimizer can optimize and execute this single nested
query more efficiently.

We also took measurements on the view reconstruction
query (“get”). First, a Pivot operation is executed and then
a VMerge is applied on the result of the Pivot operation with
the table that contains the attributes kept in the “classical”
relational form. We present in the Figure 15 the time to piv-
ot/merge the table for the join approach and the coalescing
approach. For these measurements we took the same tables
as above and measured the time needed to perform a select
query on the EAV model containing 1000 entities.

Comparing the performances of the two pivoting meth-
ods, we see that the first method uses a lot of joins (costly
database operation), by creating one temporary sub-table
per pivoted attribute. The second approach (coalescing ap-
proach) performs a unique select query that retrieves a huge
result-set, then manipulates it to pivot the data. This me-
thod performs no join nor any costly operator. It only uses
a single select with some conditions and is therefore faster.

7. CONCLUSION
Database evolution raises the challenge of co-evolving all

program code that uses the database, unless we can put in
place “adapters” that allow programs to remain unchanged
and use the database in its“old format”. Bidirectional trans-
formations (BX) and Channels implementing BX can play
an important role in keeping legacy applications running
while evolving the database to a more suitable structure. In
this paper, we have reported on experiences of generating
Channels for an industrial case study “at scale”. In particu-
lar, we focus on Channels involving transformations between
traditional relational structures (one column per attribute)
and generic project data structures (one row per attribute).

106

Implementation alternatives of these transformations have
not been studied at scale to date. We present performance
and salability aspects related to diffent implementation tech-
niques and propose a novel approach for implementing the
Pivot operator, referred to as the coalescing technique. We
developed a plug-in for DBMain that extends the database
reengineering tool with capabilities of generating Channel
implementation code. Our future work is on researching
ways in which Channel transformations can be implemented
by means of object-relational mapping descriptions. Current
object-relational middleware does not have support for com-
plex transformations, such as Pivot and Unpivot, and would
have to be extended to implement such Channels.

8. REFERENCES
[1] F. Bancilhon and N. Spyratos. Update semantics of

relational views. ACM Trans. Database Syst.,
6(4):557–575, Dec. 1981.

[2] A. Bohannon, B. C. Pierce, and J. A. Vaughan.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’06, pages 338–347, New
York, NY, USA, 2006. ACM.

[3] A. Cleve, J. Henrard, D. Roland, and J.-L. Hainaut.
Wrapper-based system evolution - application to
CODASYL to relational migration. In
K. Kontogiannis, C. Tjortjis, and A. Winter, editors,
Proceedings of the 12th European Conference in
Software Maintenance and Reengineering (CSMR
2008), pages 13–22. IEEE Computer Society, 2008.

[4] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J. F. Terwilliger. Bidirectional
transformations: A cross-discipline perspective. In
Proceedings of the 2nd International Conference on
Theory and Practice of Model Transformations, ICMT
’09, pages 260–283, Berlin, Heidelberg, 2009.
Springer-Verlag.

[5] S. El-Sappagh, S. El-Masri, A. M. Riad, and
M. Elmogy. Electronic health record, data model
optimized for knowledge discovery. International
Journal of Computer Science issues, 9, 2012.

[6] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient
lenses. ACM Sigplan Notices, 43(9):383–396, 2008.

[7] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2 edition, 2008.

[8] M. Gobert, J. Maes, A. Cleve, and J. Weber.
Understanding schema evolution as a basis for
database reengineering. In Proceedings of the 29th
IEEE International Conference on Software
Maintenance (ICSM 2013). IEEE Computer Society,
2013.

[9] J.-L. Hainaut, A. Cleve, J. Henrard, and J.-M. Hick.
Migration of legacy information systems. In Software
Evolution, pages 105–138. Springer Berlin Heidelberg,
Jan. 2008.

[10] T. Mens and S. Demeyer, editors. Software Evolution.
2008.

[11] J. Terwilliger, A. Cleve, and C. Curino. How clean is
your sandbox? : Towards a unified theoretical
framework for incremental bidirectional

transformations. In Proceedings of the 5th
International Conference on Model Transformation
(ICMT 2012), volume 7307 of Lecture Notes in
Computer Science, pages 1–23. Springer, 2012.

[12] J. F. Terwilliger. Bidirectional by necessity: Data
persistence and adaptability for evolving application
development. In GTTSE, pages 219–270, 2011.

[13] P. Thiran, J.-L. Hainaut, G.-J. Houben, and
D. Benslimane. Wrapper-based evolution of legacy
information systems. ACM Trans. Softw. Eng.
Methodol., 15(4):329–359, Oct. 2006.

[14] C. M. Wyss and E. L. Robertson. A formal
characterization of pivot/unpivot. In Proceedings of
the 14th ACM International Conference on
Information and Knowledge Management, CIKM ’05,
pages 602–608, New York, NY, USA, 2005. ACM.

107

Entangled State Monads

Extended abstract

James Cheney, James McKinna,
Perdita Stevens

School of Informatics, University of Edinburgh
firstname.lastname@ed.ac.uk

Jeremy Gibbons, Faris Abou-Saleh
Dept. of Computer Science, University of Oxford

firstname.lastname@cs.ox.ac.uk

ABSTRACT
We present a monadic treatment of symmetric state-based bidi-
rectional transformations, and show how it arises naturally from
the well-known asymmetric lens-based account. We introduce two
presentations of a concept we dub the “entangled” state monad,
and prove their equivalence. As a step towards a unifying account
of bidirectionality in general, we exhibit existing classes of state-
based approaches from the literature as instances of our new con-
structions. This extended abstract reports on work in progress.

1. INTRODUCTION
This extended abstract describes work in progress towards uni-

fying approaches to formalising bidirectional transformations (bx).
For purposes of this paper, a bx is a device for maintaining consis-
tency between two or more information sources. In model driven
development, such sources are usually models; for example, UML
models of a system to be developed. Other artefacts treated with
these techniques could include database tables, XML files, abstract
syntax trees, code, etc. We use the (admittedly overloaded) term
‘models’ broadly to refer to any of these information sources.

There are multiple dimensions over which notions of bx vary.
For example, they may operate on only two information sources, or
several. They may insist that one source be a strict abstraction of
the others (asymmetric case), or not (symmetric case).

Our main motivation is to lay foundations that we will later use
to work towards a uniform, typed understanding of the extra infor-
mation that is used by bx, besides the current states of the models
that are to be synchronised. We begin in this paper with state-based
bx, including those with explicit complement.

In formal semantics, stateful computations are often expressed in
terms of monads [3], giving a unified account of impure side-effects
in pure functional languages. They have since become an essential
programming pattern in such languages [6], and we follow suit.

2. BACKGROUND

Monads for Effectful Functional Programming. The es-
sential idea of monads in functional programming is to encapsulate

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

a computation with side-effects, taking inputs of type A and return-
ing a result of type B, as a function of type A→M B, for a suitable
type constructor M, known as a monad. Whereas inhabitants of the
plain type A denote pure values, those of the monadic type M A
denote computations, which may incur computational effects be-
fore yielding a value of type A. For instance, one may describe
non-deterministic computations of type A→ B in terms of the List
monad – i.e., as functions A→ List B, where each value a : A is
assigned a list of possible return values [b1,b2, . . .] : List B. Mon-
ads can be used to capture side-effects, input/output, exceptions,
probabilistic choice, and many other computational effects. In this
paper we are concerned with computations which may depend on,
and modify, various forms of mutable state; such computations are
described by the state monad, as defined shortly.

More formally, a monad is a type constructor M equipped with
the following structure of typed operations (parametric in A,B):

return : A→M A
(>>=) : M A→ (A→M B)→M B
(>>) : M A→M B→M B
ma>>mb = ma>>=λ . mb

(We borrow the Haskell convention of writing an infix operator ⊕
in parentheses (⊕) in order to refer to it without arguments.) Here,
the operation return simply returns its argument with no other ef-
fect. The ‘bind’ operation ma>>= f runs a computation ma return-
ing an A, then runs a computation f , parameterized over A and re-
turning a B, finally returning that B value. The definable operation
‘sequence’ ma>>mb is a special case of ‘bind’ in which the com-
putation mb does not depend on the A value returned by ma.

We work in the equational theory of the λ -calculus, as is com-
mon when discussing monads in Haskell; our presentation is a
special case of the general categorical treatment of monads. The
monad operations are required to satisfy the following three equa-
tional laws. The first two assert that return is a left and right unit
for the ‘bind’ operation and the third that ‘bind’ is associative. (As
usual, λ -binding scope extends as far to the right as possible. In the
third equation, a is not free in g.)

return a>>= f = f a
ma>>= return = ma
ma>>=(λa . (f a>>=g)) = (ma>>= f)>>=g

As a corollary, ‘sequential composition’ (>>) is associative, with
left unit return ().

The State Monad. A distinguished instance of the above con-
cept is MS, the state monad on type S, representing computations
with access to a single updateable memory cell of type S. We define
MS A = S→ A× S so that a computation of type A→MS B takes
input a : A, and then can query the (old) state s : S, before return-

108

ing a new state s′ : S and a result b : B. The monadic operations of
MS are defined below. The return operation takes a value a : A and
produces a computation which, for any initial state s : S, returns the
value a and leaves the state s untouched. The ‘bind’ operation >>=
chains together two stateful computations, using the final state s′ of
the first computation as the initial state of the second.

return : A→ (S→ A×S)
return a = λ s . (a,s)
(>>=) : (S→ A×S)→ (A→ (S→ B×S))→ (S→ B×S)
ma>>= f = λ s . let (a,s′) = ma s in f a s′

In addition to the generic operations return and >>=, the state monad
supports two operations get, set, to read and write the state:

get : MS S
get = λ s . (s,s)
set : S→MS ()
set s′ = λ s . ((),s′)

In general, one may characterise state monads with multiple mem-
ory cells in terms of an algebraic theory of reads and writes, with
seven equations [4]. In the restricted setting of a single memory
cell, the theory reduces to the following four equations:

(GG) get>>=λ s . get>>=λ s′ . k s s′ = get>>=λ s . k s s
(GS) get>>= set = return ()
(SG) set s>>get = set s>> return s
(SS) set s>> set s′ = set s′

It is routine to verify that the above definitions of get and set satis-
fy these laws. However, in the algebraic perspective, one abstracts
away from the specific concrete representation MS and the corre-
sponding implementations of get and set, and instead considers a
‘state monad on S’ abstractly to be any monad M equipped with the
additional structure of get and set satisfying the above four laws.

Asymmetric lenses via the state monad. An asymmetric
lens [1] between S and V consists of a pair l of functions, usually
called ‘get’ and ‘put’, which we write as follows:

l.get : S→ V
l.put : S→ V→ S

The idea is that S and V represent source and view data, e.g. in
a database; V is derived from S using l.get, and l.put computes a
modified S on the basis of an old S and an updated V .

Given such a lens l, the state monad MS admits computations
getl, setl, where setl takes input from V , updates the state S, and
returns void; and getl is the trivially stateful operation that queries
but doesn’t change the state S, and returns the V view of it:

getl : MS V
getl = λ s . (l.get s,s)
setl : V→MS ()
setl v = λ s . ((), l.put s v)

These computations do not allow us to observe, or update, the un-
derlying state S, except via the view type V . But viewed as abstract
operations relative to an arbitrary monad M, the structure

getl : M V
setl : V→M ()

defines a state monad on V , provided that the equational laws hold.
In the special case of the identity lens l = id, between S and S,

where id.get just reads the state, and id.set updates it, we have:

getid = λ s . (s,s)
setid s′ = λ s . ((),s′)

i.e. we obtain the state monad structure (MS,get,set) on S.
Thus, an asymmetric lens l gives rise to two distinct state monad

structures, one on V derived from l, the other on S corresponding
to the special case id. Each accesses the same underlying state;
we say the two structures are entangled. In the rest of this paper,
we consider such entangled state monads in general. The general-
isation turns out to be both simple and powerful: several other bx
formalisms are instances of this notion, corresponding to monads
which present two updateable views of some shared, possibly hid-
den, state. In the next section we give details of the generalisation.
We revisit the discussion of asymmetric (and other) lenses, in more
detail, in Section 4.

3. ENTANGLED STATE MONADS
We now show that a monad that exhibits the structure of a state

monad in two ways is essentially a bidirectional transformation.
We do this by introducing two definitions, those of ‘set-bx’ (cor-
responding directly to state monads) and ‘put-bx’ (corresponding
more closely to symmetric lenses) and showing that they are equiv-
alent. (The proofs are included in an extended paper currently in
preparation.) We use the umbrella term ‘entangled state monad’ for
these two formulations.

3.1 Set-bx
Given types A, B, we define a set-bx between A and B to be a

monad M, equipped with four operations:

getA : M A
getB : M B
setA : A→M ()
setB : B→M ()

that satisfy the three laws for getA and setA

(GG) getA >>=λ s . getA >>=λ s′ . k s s′

= getA >>=λ s . k s s
(GS) getA >>= setA = return ()
(SG) setA a>>getA = setA a>> return a

and symmetrically for getB and setB. A set-bx that in addition sat-
isfies the following:

(SS) setA a>> setA a′ = setA a′

(and symmetrically in B) is called overwriteable.
We write (getA,getB,setA,setB) : A M⇐⇒ B to indicate that M is a

set-bx between A and B equipped with operations getA, etc. When

discussing more than one such structure, we write t : A M⇐⇒ B and
t.getA and so on for the operations of t.

3.2 Put-bx
Given types A, B, we define a put-bx between A and B to be a

monad M, equipped with four operations:

getA : M A
getB : M B
putBA : A→M B
putAB : B→M A

satisfying the following laws:

(GG) get>>=λ s . get>>=λ s′ . k s s′ = get>>=λ s . k s s
(GP) getA >>=putBA = getB
(PG1) putBA a>>getA = putBA a>> return a
(PG2) putBA a>>getB = putBA a

(and symmetrically, swapping A and B).

109

A put-bx that in addition satisfies the following:

(PP) putBA a>>putBA a′ = putBA a′

(and symmetrically in B) is called overwriteable.
As above, we write (getA,getB,putBA,putAB) : A M⇐⇒ B to indicate

that M is a put-bx with operations getA, etc., and write t : A M⇐⇒ B,
t.getA and so on when discussing more than one such structure.

3.3 Relating set-bx and put-bx
We will show that set-bx and put-bx are equivalent in the fol-

lowing sense: for each set-bx t : A M⇐⇒ B we can construct a put-bx
set2pp(t) :A M⇐⇒B and for each put-bx u :A M⇐⇒B we can construct

a set-bx pp2set(u) : A M⇐⇒ B. Moreover, the two constructions are
inverses: pp2set(set2pp(t)) = t and set2pp(pp2set(u)) = u. This
means that any equation satisfied by all set-bx translates to an equa-
tion that holds for all put-bx, and vice versa. So, we can work with
set-bx or put-bx as convenient, justifying our overloaded notation
t : A M⇐⇒ B.

The translations are defined as follows. Given set-bx t :A M⇐⇒ B,
define put-bx set2pp(t) by:

set2pp(t).getA = t.getA
set2pp(t).getB = t.getB
set2pp(t).putBA a = t.setA a>> t.getB
set2pp(t).putAB b = t.setB b>> t.getA

Likewise, given put-bx u : A M⇐⇒ B, we define set-bx pp2set(u) as
follows:

pp2set(u).getA = u.getA
pp2set(u).getB = u.getB
pp2set(u).setA a = u.putBA a>> return ()

pp2set(u).setB b = u.putAB b>> return ()

LEMMA 1. If t : A M⇐⇒ B is an (overwriteable) set-bx
then set2pp(t) : A M⇐⇒ B is an (overwriteable) put-bx.

LEMMA 2. If u : A M⇐⇒ B is an (overwriteable) put-bx
then pp2set(u) : A M⇐⇒ B is an (overwriteable) set-bx.

LEMMA 3. Translations pp2set(·) and set2pp(·) are inverses.

3.4 Entanglement
Note that the state monad on pairs MA×B determines a set-bx,

with

getA = get>>=λ (a,) . return a
getB = get>>=λ (,b) . return b
setA a = get>>=λ (,b) . set (a,b)
setB b = get>>=λ (a,) . set (a,b)

However, this structure also satisfies stronger laws than our defini-
tions require; in particular, commutativity of sets:

setA a>> setB b = setB b>> setA a

This law is not required of a set-bx; it is consistent with the set-
bx laws that the A and B components of the state be “entangled”,
in the sense that setting one component also changes the other to
restore consistency; in other words, that setA and setB need not
commute. The monad MA×B arises simply as a special case of our
general analysis of algebraic bx in Section 4 below, in which the
consistency relation is universally true: setA automatically restores
consistency without the need to change B and vice versa.

4. INSTANCES
In this section we justify our view that set-bx (and hence also put-

bx) structures are a general form of state-based bx, by showing how
they capture the usual presentations such as asymmetric and sym-
metric lenses. Even though symmetric lenses subsume asymmetric
lenses and algebraic bx, it is instructive to start with the simpler
cases. We also give a simple example of a stateful bx that is not
(isomorphic to) a symmetric lens. Investigation of other instances,
and their relationships, is ongoing work.

Asymmetric lenses. Let l :A
 B be a classic asymmetric lens,
i.e. l.get : A→ B and l.put : A→ B→ A. We may construct a set-

bx l : A MA⇐⇒ B (where MA is the state monad on state type A, as
introduced in Section 2 above) as follows:

getA = λa . (a,a)
getB = λa . (l.get a,a)
setA a′ = λa . ((),a′)
setB b′ = λa . ((), l.put a b′)

If l is a so-called ‘well-behaved’ lens, then it also satisfies:

(GetPut) l.put a (l.get a) = a
(PutGet) l.get (l.put a b) = b

Finally, an asymmetric lens may optionally satisfy:

(PutPut) l.put (l.put a b) b′ = l.put a b′

in which case it is called very well-behaved.

LEMMA 4. If the asymmetric lens l : A
 B is well-behaved,

then the above definitions indeed make l : A MA⇐⇒ B into a set-bx. If

l is very well-behaved, then l : A MA⇐⇒ B is also overwriteable.

Algebraic bxs. Let (R,
−→
R ,
←−
R) be an algebraic bx A↔ B in the

style of Stevens [5], i.e., R⊆ A×B,
−→
R :A×B→ B,

←−
R :A×B→ A,

satisyfing the conditions

(Correct) (a,
−→
R(a,b)) ∈ R

(Hippocratic) R(a,b)⇒−→R(a,b) = b

and symmetrically for
←−
R . We say R is undoable if it also satisfies

(Undoable) R(a,b)⇒−→R(a,
−→
R(a′,b)) = b

and symmetrically for
←−
R .

Let MR be the state monad over R, viewing R as a set of pairs,
R⊆ A×B. Then we define the following operations:

getA = λ (a,b) . (a,(a,b))
getB = λ (a,b) . (b,(a,b))
setA a′ = λ (a,b) . ((),(a′,

−→
R(a′,b)))

setB b′ = λ (a,b) . ((),(
←−
R(a,b′),b′))

The condition (Correct) ensures that setA a′ and setB b′ are well-
defined functions R→ ()×R, and thus preserve the consistency of
pairs (a,b) ∈ R.

LEMMA 5. For any algebraic bx (R,
−→
R ,
←−
R), the above opera-

tions make MR into a set-bx. If (R,
−→
R ,
←−
R) is undoable, then MR is

also overwriteable.

Symmetric lenses. Let l : A C←→ B be a symmetric lens as pre-
sented by Hofmann et al. [2]. That is, let l = (putl,putr) consist of
a pair of functions

110

putl : A×C→ B×C
putr : B×C→ A×C

which satisfy

(PutRL) putr (a,c) = (b,c′)⇒ putl (b,c′) = (a,c′)
(PutLR) putl (b,c) = (a,c′)⇒ putr (a,c′) = (b,c′)

Let Ml be the state monad MT over the set T of consistent states in
A×B×C, i.e., those triples (a,b,c) ∈ A×B×C satisfying

putr (a,c) = (b,c) and putl (b,c) = (a,c)

Then define the following operations for Ml:

getA = λ (a,b,c) . (a,(a,b,c))
getB = λ (a,b,c) . (b,(a,b,c))
putBA a′ = λ (a,b,c) . let(b′,c′) = putr (a′,c) in(b′,(a′,b′,c′))
putAB b′ = λ (a,b,c) . let(a′,c′) = putl(b′,c) in(a′,(a′,b′,c′))

We need to show that these operations are well defined in the sense
that they preserve consistency of the state, and this is where we
need the symmetric lens laws – once this is done, it is easy to see
that these definitions satisfy the put-bx laws.

LEMMA 6. Given any symmetric lens l= (putl,putr) :A C←→ B,
the above operations are well-defined and make Ml into a put-bx.

Stateful bx. We now consider an example that performs I/O side-
effects, and thus by definition cannot be a symmetric lens (or any
of the other bx mentioned above). We define a monad M that com-
bines stateful updates (just on integer states, for simplicity) with
Haskell-style monadic I/O; the latter is captured via a monad IO
and an operation print : String→ IO (). The return and >>= oper-
ations of M are therefore defined in terms of those of IO, so to be
explicit we use subscripts below to disambiguate.

M A = Integer→ IO (A, Integer)
returnM x = λ s . returnIO (x,s)
ma>>=M f = λ s . ma s>>=IO λ (a,s′) . f a s′

getA = λ s . returnIO (s,s)
getB = λ s . returnIO (s,s)
setA a = λ s . (if a 6≡ s

then print "Changed A"
else returnIO ())>>IO returnIO ((),a)

setB b = λ s . (if b 6≡ s
then print "Changed B"
else returnIO ())>>IO returnIO ((),b)

That is, a computation in monad M yielding a result of type A
amounts to an IO-computation yielding a pair of an A and a new
Integer state, given as input an old Integer state. This is a set-bx:
in particular, its behaviour satisfies the laws (GG), (GS) and (SG).
Its set operations are side-effecting, but the side-effects only occur
when the state is changed. For simplicity, we have taken the un-
derlying bidirectional transformation to be trivial, but we should be
able to add similar stateful behaviour to any (symmetric) lens or
algebraic bx following a similar pattern.

5. CONCLUSIONS
Lenses are traditionally presented asymmetrically, whereas many

bx applications such as model synchronisation are entirely symmet-
ric. Symmetric lenses [2] and algebraic bx [5] cover the more gen-
eral symmetric case, but both formulations go beyond equational
logic. We have shown a very simple equational characterisation

that unifies lenses, symmetric lenses, and algebraic bx, by a natural
generalisation of the ‘get’ and ‘set’ operations of the state monad.
Interestingly, the notions of consistency for algebraic bx and com-
plement disappear into the hidden state of the monad. We expect
to be able to accommodate bx with richer complements or witness
structures in the same way. Moreover, our approach offers the pos-
sibility of generalisation to reconcile effects such as I/O, nonde-
terminism, exceptions, or probabilistic choice with bidirectionality,
drawing on the rich theory of monads, and possibly leading to a
theory of bidirectional programming with effects.

This is work in progress. We are currently investigating the cen-
tral issues of equivalence and composition of entangled state mon-
ads. Symmetric lenses are quotiented by an equivalence relation in
order for properties such as associativity of composition to hold.
We expect something similar to be needed for entangled state mon-
ads. Indeed, the question of whether entangled state monads can
be composed seems nontrivial; some restrictions on the class of
monads considered may be necessary for composability.

We have considered entangled state monads only in relatively
standard settings, such as the category of sets and functions (in the
guise of Haskell types and functions). Another interesting direc-
tion may be to explore other settings, such as partial orders, metric
spaces, or topologies, which may offer insights into notions of least
change or predictable behaviour.

Acknowledgements
We thank the participants at the Banff Bx workshop, and Benjamin
Pierce, for helpful comments, as well as the anonymous review-
ers for their generous and thoughtful remarks. The work is partly
supported by EPSRC grants EP/K020218/1 and EP/K020919/1.

6. REFERENCES
[1] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and

A. Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and
Systems, 29(3):17, May 2007.

[2] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses.
In ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), Austin, Texas, Jan. 2011.

[3] E. Moggi. Computational lambda-calculus and monads. In
LICS, pages 14–23. IEEE Computer Society, 1989.

[4] G. D. Plotkin and J. Power. Notions of computation determine
monads. In FoSSaCS, pages 342–356, 2002.

[5] P. Stevens. Bidirectional model transformations in QVT:
Semantic issues and open questions. Journal of Software and
Systems Modeling (SoSyM), 9(1):7–20, 2010.

[6] P. Wadler. Monads for functional programming. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming,
volume 925 of Lecture Notes in Computer Science, pages
24–52. Springer, 1995.

111

Spans of lenses

Michael Johnson
School of Mathematics and Computing

Macquarie University
Robert Rosebrugh

Department of Mathematics and Computer Science
Mount Allison University

ABSTRACT
Corresponding to the variety of notions of asymmetric lens,
various notions of symmetric lens have been proposed. A
common theory of the various asymmetric and symmetric
lenses should result from a study of spans of asymmetric
lenses. In order to define a category whose arrows are spans
of asymmetric lenses, the fact that a cospan of asymmetric
lenses may not have a pullback must be dealt with. In this
article, after resolving that problem we develop the functors
which exhibit a category whose arrows are spans of well-
behaved lenses as a retract of a category whose arrows are
the corresponding symmetric lenses. We relate them to the
symmetric lenses of Hofmann, Pierce and Wagner.

1. INTRODUCTION
A span is a pair of functions, or more generally of arbitrary

morphisms of a given kind, with common domain:

X Y

S

X

u

�������
S

Y

v

��?????

Such a span is often described as a “span from X to Y ”, and
denoted u : X oo S // Y : v. The object S is sometimes
called the peak of the span and the arrows u and v are called
the legs of the span.

Spans have been used in a variety of fields as diverse as
the abstract theory of relations and the design of circuits
and systems. Naturally the mathematical theory of spans is
well-developed. Of particular importance: The composition
of a span from X to Y and a span from Y to Z is a span
from X to Z calculated by constructing a pullback, and
two spans from X to Y are span-equivalent when there is
an isomorphism between their peaks which commutes with
their legs.

Spans of transformations arise widely in areas related to
Bidirectional Transformations (Bx) too. Examples include
model driven engineering, triple graph grammars, and sym-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

metric lenses. However, in Bx the classical theory of spans
is harder to apply. Even in the case of basic (asymmetric)
lenses, the classical theory doesn’t apply because in the cat-
egory whose morphisms are lenses, what one might expect
to be the pullback of lenses need not satisfy the universal
property of a pullback — the difficulty that arises is that the
universally provided comparison morphism may not have a
lens structure.

Even if we neglect for a moment the difficulty in prop-
erly defining composition of spans of lenses, there is a fur-
ther complication: Span-equivalence does not seem to be the
right notion of equivalence for spans of lenses. As Hofmann
et al remarked in discussing spans of asymmetric lenses in
[5] (full version), “in the span presentation there does not
seem to be a natural and easy-to-use candidate for ... equiv-
alence.”

The main goal of this paper is to develop the mathematical
foundations required to support the use of spans in Bx. We
show that

1. While categories whose morphisms are lenses may not
have pullbacks, there is a framework that frequently
allows us to work as if they did by finding canonical
lens structures on the pullbacks of the Get functions.

2. While classical span-equivalence is far too strong a
condition for equivalence of spans of lenses, there is
a natural generalisation (replacing isomorphisms with
suitably non-empty lenses) which seems right.

Combining these we have the mathematical foundations
required. To demonstrate this we apply them here to the
study of the symmetric lenses of [5], and in future work to
a unified theory of symmetric lenses of many kinds.

A remark on the technical content. The paper is neces-
sarily quite mathematical – we are after all building a math-
ematical foundation, and the measure of its utility or even
correctness is its ability to provide precise proofs and in-
sightful clarifications of mathematical results about spans
of lenses. Many proofs have been omitted because, once the
correct formulation has been found, the proof is relatively
routine for those with category theoretic skills, and is un-
likely to be very enlightening for those with less category
theoretic experience. Other proofs have been sketched es-
pecially where an unusual approach might be required. The
main contributions of this work are not the proofs them-
selves, but rather finding the right formulations (eg Proposi-
tion 5 for dealing with the missing pullbacks, and the equiv-
alence ≡G) which make the proofs feasible.

112

The structure of the paper is as follows. In Section 2 we
review some details about asymmetric lenses and show how
to canonically construct lenses on the pullbacks of the get
functions of asymmetric lenses. The following section, Sec-
tion 3, lays out the general theory that we use to systemati-
cally deal with these pullback like constructions (that aren’t
pullbacks) and introduces the equivalence relation which we
will use on spans of asymmetric lenses. In Section 4 we in-
troduce rl lenses — the approach to symmetric lenses that
parallels that used in [5]. We show how to generalise that
so that it can be applied in any category with products,
making available immediately notions of symmetric lenses
for graphs, categories, and ordered sets for example. In Sec-
tion 5 we develop an equivalence for rl lenses motivated by,
but different from, the equivalence for set based rl lenses
in [5], and begin the development of two functors A and S
which are used to compare span based and rl based symmet-
ric lenses. Finally, in Section 6 we specialise to rl lenses with
a pointed complement. These lenses correspond exactly to
the lenses of [5] and we compare Hofmann et al’s equivalence
of such lenses with the equivalences proposed in this paper.

2. ASYMMETRIC LENSES
In this section we collect information about various no-

tions of asymmetric lens along with some basic results that
we will use later.

Let C be a category with finite products. Categories such
as the category of sets and functions, ordered sets and mono-
tone mappings, and categories and functors, are some of the
examples we have in mind. We recall the definition of asym-
metric lens in C [2, 5, 7].

Definition 1. For objects X,Y in C, an asymmetric
lens in C from X to Y , denoted L : X // Y is L =
(X,Y, g, p) where g : X // Y is called the Get morphism
and p : Y ×X //X is called the Put morphism. A lens is
called well-behaved if it satisfies:

(i) (PutGet) the Get of a Put is the projection: gp = π0

(ii) (GetPut) the Put for a trivially updated state is trivial:
p〈g, 1X〉 = 1X

Diagrammatically, two commutative triangles:

Y ×X

Y

π0

��777777Y ×X X
p // X

Y

g

���������
X

Y ×X
〈g,1X〉 ��7777777X X

1X // X

Y ×X

CC

p

�������

PutGet GetPut

A well-behaved lens is called very well-behaved if it satisfies:

(iii) (PutPut) composing Puts does not depend on the first
update:
p(1Y × p) = pπ0,2

Diagrammatically, a commutative square:

Y ×X X
p

//

Y × Y ×X

Y ×X

π0,2

��

Y × Y ×X Y ×X1Y ×p // Y ×X

X

p

��

PutPut

We showed in [7] that, up to isomorphism, a very well-
behaved asymmetric lens L in C has X = Y × C for an
object C of “complements” and then g is the projection g :
Y ×C //Y while the put is defined by p : Y ×(Y ×C) //Y ×
C = π0,2, the projection onto the first and third factors.
That generalises to categories with products (for example,
those where the states ofX and Y are, rather than mere sets,
ordered sets or even more generally graphs or categories) the
classical theory of constant complement updating [1]. Such
lenses are algebras for a monad on C/Y . Thus there is a
well-defined notion of morphisms between lenses. However,
our interest in this article is rather to treat various kinds of
lenses as arrows of categories, so we will need a composition
of lenses themselves.

Given lenses L = (X,Y, g1, p1) and M = (Y,Z, g2, p2), the
composite lens is ML = (X,Z, g, p) where g = g2g1 and p is

Z ×X 1Z×〈g1,1X〉 // Z × Y ×X p2×1X // Y ×X p1 //X

or as an elementary formula: p(z, x) = p1(p2(z, g1x), x). For
X in C there is an identity lens 1X = (X,X, 1X , p0) with
p0 the first projection, π0. We will assume that products
in C are associative. With that assumption, composition of
lenses in C is associative and the identity lens acts as an
identity.

The first additional properties of lenses are stable under
composition:

Lemma 2. Suppose that L, M and ML are defined as
above. If L and M both satisfy PutGet, respectively GetPut,
PutPut, then ML satisfies PutGet, respectively GetPut and,
provided L satisfies PutGet, respectively PutPut.

Thus, there are categories we denote ALens0(C), ALenspg(C),
ALensgp(C), ALensw(C) and ALens(C) of asymmetric lenses,
respectively lenses satisfying PutGet, GetPut, well-behaved
lenses, and very well-behaved lenses in C. In each case the
objects are those of C and the arrows are asymmetric lenses
with the corresponding property. When C is understood we
will sometimes write ALensw, for example, for ALensw(C).
There are faithful, but evidently not full, inclusion functors

ALens0

ALensgp

ee
LLLLLL

ALenspg

ALens0
yyrrrrrr

ALenspg

ALensgp

ALensw

ALensgp
yyrrrrrr

ALenspg

ALensw

ee
LLLLLLALenspg

ALensgp

ALensALensw oo

There are some further results about asymmetric lenses
we need to record. First, finite product preserving functors
preserve lens structures:

Proposition 3. Suppose that C and D are categories
with finite products and F : C // D is a finite product
preserving functor. If L = (X,Y, g, p) is an asymmetric
lens in C, and respectively satisfying PutGet, GetPut, a
well-behaved lens or a very well-behaved lens, then FL =
(FX,FY, Fg, Fp) is an (asymmetric) lens in D, respectively
satisfying PutGet, GetPut, a well-behaved lens, or a very
well-behaved lens. If M is a lens in C composable with L,
then F (ML) = (FM)(FL), and we obtain a functor, also
denoted F ,

F : ALens0(C) // ALens0(D)

113

and respectively from ALenspg(C), ALensgp(C), ALensw(C)
and ALens(C).

We denote the product-preserving inclusion of sets as dis-
crete ordered sets by I, and of ordered sets as small cate-
gories by J in:

set
I // ord J // cat

Thus there are faithful functors:

ALens0(set)
I // ALens0(ord)

J // ALens0(cat)

and similarly for the PutGet, GetPut, well-behaved and very
well-behaved cases.

Next we consider pullbacks in C and the various categories
above. Remember that the lenses are morphisms. For ex-
ample, when very well-behaved lenses are viewed as algebras
for a monad on C/Y , pullbacks exist in the algebras when-
ever they do in the base. Our case here is different. Since
we need products and pullbacks in the base, we assume all
finite limits.

Proposition 4. Suppose that C is a category with finite
limits and let L = (X,Y, g, p) be a morphism of ALenspg,
resp. ALensw and ALens, and h : Z // Y be a morphism in
C. Let

X Z

W

X

h′

�������
W

Z

g′

��?????

X

Y

g ��?????X ZZ

Y
h�������

be a pullback in C. Then L′ = (W,Z, g′, p′) is in ALenspg,
resp. ALensw and ALens, where p′ : Z × W // W is the
unique morphism into the pullback determined by p(h×h′) :
Z×W //X and π0 : Z×W //Z. If also M = (Z, Y, h, q)
is in ALenspg, resp. ALensw and ALens, then for M ′ =
(W,X, h′, q′) the corresponding lens we have LM ′ = ML′.

In the proof, the PutGet law gives gp(h × h′) = π0(h ×
h′) = hπ0 which is used to define p′. When PutGet is avail-
able, the remaining properties for L′ follow routinely from
those for L. When M ′ is defined, it is routine to check that
the composite lenses are equal.

Note that we say nothing about ALens0 nor ALensgp. It
appears that at least the PutGet condition is needed both
to define a sensible p′ and to show that the square of lenses
commutes.

Finally, we make some comments regarding lenses involv-
ing initial objects. For any set Y there is a unique well-
behaved asymmetric lens whose Get has empty domain in
the category set of sets and functions. The Put is the unique
Y ×0 ∼= 0 //0. On the other hand, when the Get for a lens
is a split epimorphism in C then it has a section s satisfying
gs = 1Y . We call an asymmetric lens split if its Get is a split
epimorphism. Thus, an asymmetric lens which is split and
has an inhabited codomain also has an inhabited domain. If
the codomain is not inhabited (for example, is empty in the
set case) then its domain is also not inhabited. In that case
there is, of course, a unique lens structure taking the unique
(identity) endo-function of the empty set for the Get.

3. CONSTRUCTION OF SP(G)
The various categories of asymmetric lenses usually do

not have pullbacks. However, since the base category C
is assumed to have finite limits, a cospan of asymmetric
lens Gets has a pullback in the base category C. Moreover,
the pullback projections in C are themselves canonically the
Gets of arrows (lenses) in the corresponding asymmetric lens
category. We are interested in defining categories whose
arrows are spans of the various sorts of asymmetric lenses.
That motivates the following constructions.

Let C be a category with finite limits and G : A // C
an identity on objects functor. The reader should think of
A as a category of asymmetric lenses and G as the forgetful
functor which remembers only the Gets.

We suppose that there is an operation P on cospans of

the form B
g // C oo

G(r)
D in C which outputs an arrow

P (g, r) of A. We are thinking of r as an asymmetric lens and
g as a C arrow with the same codomain. We require three
properties of P . Suppose first that G reflects isomorphisms,
that is, if Gf is an isomorphism then f is an isomorphism.
Next, we assume there is a pullback in C:

B D

A

B

t′

�������
A

D

g′

��?????

B

C
g ��?????B DD

C
G(r)�������

with t′ = G(r′) where r′ = P (g, r) is in A. Finally, if we also
have that g = G(v) then for v′ = P (G(r), v) the following
square commutes in A:

B D

A

B

r′

�������
A

D

v′

��?????

B

C
v ��?????B DD

C
r�������

Note that the image under G of the square is still a pullback
in C.

As noted above, the categories ALenspg(C), ALensw(C)
and ALens(C) of various types of asymmetric lenses all sat-
isfy the hypotheses for G and P .

Given G and P as above, we define a category Sp(G).
The objects of Sp(G) are those of A (or C). The arrows are
equivalence classes for ≡G of spans in A. The equivalence
relation ≡G is generated by morphisms of spans in A such
as

A B

C

A

u

yyrrrrrrrr C

B

v

%%LLLLLLLL

A

D

ee

u′ LLLLLLLLA BB

D

99

v′rrrrrrrr

C

D

t

��

in which u = u′t and v = v′t (this is what it means to
be a morphism of spans) and for which G(t) is a split epi-
morphism. This condition on G(t) is important since G(t)
will be a Get and we want to avoid cases where a lens whose
Get has empty domain can make two spans equivalent. Two
spans are equivalent, written (u, v) ≡G (u′, v′) if there is a

114

“zig-zag” (a string of length zero or more of arrows, adja-
cent members of which meet head to head or tail to tail) of
the span morphisms described above between them. Com-
position in Sp(G) is defined by span composition in C of
representatives. That is, the composite of the ≡G equiva-
lence classes of spans (u, v), (r, s) (in A) is the ≡G equiva-
lence class of the span (ur′, sv′) where r′ = P (G(v), r) and
v′ = P (G(r), v), as in the diagram in A:

A B

C

A

u

yyrrrrrrrr C

B

v

%%LLLLLLLL

B C

D

B

r

yyrrrrrrrr D

C

s

%%LLLLLLLLC D

E

C

r′

yyrrrrrrrr E

D

v′

%%LLLLLLLL

Proposition 5. With the data just defined, Sp(G) is a
category.

The proof is largely routine but we do note that it uses
the fact that a split epimorphism “pulls back” to (that is, it
has as an opposite pullback projection) a split epimorphism.

4. SYMMETRIC LENSES
As for asymmetric lenses, symmetric lenses were first de-

fined in set and the concept can be generalized. The asym-
metric lens concept is expressible in any category with finite
products. The same is true for the symmetric lenses (in set)
of Hofmann, Pierce and Wagner [5].

Definition 6. Let C be a category with finite products
(including the empty product). For objects X,Y in C, an
rl lens from X to Y is a quintuple, L = (X,Y,C, r, l) where
C is an object of C of “complements” and r and l are mor-
phisms

r : X × C // Y × C and l : Y × C //X × C
satisfying the four equations

πX lr = πX : X×C //X;πC lr = πCr : X×C //C (PUTRL)

and

πY rl = πY : Y ×C //Y ;πCrl = πC l : Y ×C //C (PUTLR)

An rl lens with a specified point m : 1 //C (m is for “miss-
ing”) in its complements is called a pointed-complement- or
pc-symmetric lens and denoted L = (X,Y,C, r, l,m). If L is
an rl lens there is an opposite lens Lop = (Y,X,C, l, r) with
the same complements and l and r interchanged.

Remarks. A pc-symmetric lens in set is what was called
a symmetric lens in [5]. We will have more to say about
them below, but for now we just note that the point m is
not involved in the equations so it just ensures that C is
inhabited.

For an rl lens in set, the equations in the definition are
equivalent to the implications used to define a symmetric
lens in [5]. Those implications are

r(x, c) = (y, c′)⇒ l(y, c′) = (x, c′)

and

l(y, c) = (x, c′)⇒ r(x, c′) = (y, c′)

First, assume the equations in the definition and r(x, c) =
(y, c′). We need to show that l(y, c′) = (x, c′). Now since

l(y, c′) = lr(x, c) we have πC l(y, c
′) = πC lr(x, c) = πCr(x, c)

= πC(y, c′) = c′ using the second equation of (PUTRL).
Similarly πX l(y, c

′) = πX lr(x, c) = πX(x, c) = x using the
first (PUTRL) equation, so l(y, c′) = (x, c′). The other im-
plication follows similarly. Now assume the implications.
The first shows that lr(x, c) = (x, c′) where r(x, c) = (y, c′).
Projections from this equation are exactly the (PUTRL)
equations in the definition. The (PUTLR) equations follow
from the second implication.

We have the following:

Proposition 7. For an rl lens L = (X,Y,C, r, l) in C,
the equations rlr = r and lrl = l hold.

Proof. Since πX lr = πX , we have πX lrl = πX l : Y ×
C // X and πC lr = πCr implies πC lrl = πCrl = πC l
using the fourth equation. Since lrl and l have the same
projections to X and C, they are equal. That rlr = r is
similar.

It appears that the equations in the preceding Proposition
do not imply the rl lens equations.

For any L : X // Y in ALensw(set), say L = (X,Y, g, p),
which is split by s : Y // X, there is a pc-symmetric lens
T (L) = (X,Y,C, r, l,m) where C = {f : Y //X | gf = 1Y }
is the set of sections of g, r(x, f) = (g(x), p(−, x)), l(y, f) =
(f(y), p(−, f(y)), and m = s.

Proposition 8. [5] For an asymmetric lens L in
ALensw(set) which is split, T (L) is a pc-symmetric lens in
set from X to Y .

We are more interested in relating rl lenses with spans of
asymmetric lenses.

We begin by supposing that L = (X,Y,C, r, l) is an rl
lens in C. If L is an rl lens in set it is easy to see that
{(x, y, c) | r(x, c) = (y, c)} = {(x, y, c) | l(y, c) = (x, c)}.
More generally,

Proposition 9. If e : S //X ×Y ×C is an equalizer of

rπ0,2, π1,2 : X × Y × C // Y × C
then e : S // X × Y × C is an equalizer of lπ1,2, π0,2 :
X × Y × C //X × C.

Proof. Consider the diagram:

S′ X × Y × Ce′ // X × Y × C

Y × Cπ1.2
))RRRRX × Y × C X × C

π0,2 // X × C

Y × C
55

l
llll

X × C Y × C
r
//

C

X × C

55πC

lllll C

Y × C
OO
πC

Y × C Y
πY

//

Y × C

Y

πY��

If e′ : S′ //X×Y ×C is an equalizer of lπ1,2 and π0,2 then it
equalizes rlπ1,2 and rπ0,2. Also, πY rl = πY by assumption,
so rπ0,2e = π1,2e and e′ factors through the equalizer e :
S //X×Y ×C of rπ0,2 = π1,2. Similarly, e factors through
e′, so e is also an equalizer of lπ1,2 and π0,2.

The equalizer S is called the consistent triples. In set,
if (x, y, c) is a consistent triple for an rl lens then r(x, c) =
(y, c) and l(y, c) = (x, c). The definition of S as an equalizer
extends the concept of consistent triples to other categories
with products.

115

Furthermore the construction of S allows us to define a
span of well-behaved asymmetric lenses from an rl lens as
follows.

Proposition 10. Suppose that L = (X,Y,C, r, l) is an rl
lens in C. Let e : SL //X × Y ×C be an equalizer of rπ0,2

and π1,2. Then there is a span

Ll : X oo SL // Y : Lr

in ALensw from X to Y with Gets defined by gl = πXe,
gr = πY e. The Put for Ll is defined by

pl : X × SL
1X×e //X ×X × Y × C π0,3 //X × C

∆X×1C //X ×X × C 1X×r // SL

The Put for Lr is similar.

We denote the span (Ll, Lr) by A(L). In set the formula
for the Put for Ll is pl(x

′, (x, y, c)) = (x′, r(x′, c)).
Thus to every rl lens L we have associated a span of asym-

metric well behaved lenses A(L). Indeed the main purpose
of this paper is to develop the machinery to allow us to,
given a category of asymmetric lenses like ALensw, and its
forgetful functor that remembers only the Gets, use the Sp
construction to obtain the corresponding category of sym-
metric lenses. In future work we apply this construction
to a range of types of lenses including delta lenses [3, 4],
c-lenses [8], very well behaved lenses, and so on, to obtain
categories of symmetric lenses of each kind.

Returning to our case in point, denote by Uw the forgetful
functor from ALensw to C which remembers only the Gets.
The category of symmetric well behaved lenses in C
is defined to be Sp(Uw) and is denoted SLensw.

Of course, we should compare in more detail the symmet-
ric well behaved lenses in C with the rl lenses in C. To do
that properly we need to define composites of rl lenses, and
an appropriate equivalence of rl lenses.

5. EQUIVALENCE OF RL LENSES
For rl lenses L1 = (X,Y,C1, r1, l1) and L2 = (X,Y,C2, r2, l2)
we introduce a relation R and say that L1RL2 if there is a
well-behaved asymmetric lens L = (C1, C2, t, p) from C1 to
C2 with t a split epimorphism and such that L respects the
operations of L1 and L2. That is,

r2(X × t) = (Y × t)r1 and l2(Y × t) = (X × t)l1
and

r1(X×p) = (Y ×p)(r2×C1) and l1(Y ×p) = (X×p)(l2×C1).

(In other words L commutes with the rl structures.) The
relation R on rl lenses from X to Y generates an equivalence
relation (its reflexive, symmetric, transitive closure) denoted
≡rl on rl lenses from X to Y . We denote the ≡rl equivalence
class of L = (X,Y,C, r, l) by [L]rl.

Definition 11. For rl lenses L = (X,Y,C, r, l) and M =
(Y,Z,C′, r′, l′) the rl-composite lens is

LM = (X,Z,C′′, r′′, l′′,m′′)

where C′′ = C × C′,
r′′ = 〈π0,2, π1〉(r′ × 1C)〈π0,2, π1〉(r × 1C′),

and

l′′ = (l × 1C′)〈π0,2, π1〉(l′ × 1C)〈π0,2, π1〉.

Proposition 12. For rl lenses L1, L2 from X to Y and
M from Y to Z in C, the rl-composite lens ML1 is an rl lens
from X to Z. Moreover, if L1 ≡rl L2 then ML1 ≡rl ML2.

Proof. The first statement is similar to that in [5] using a
twist isomorphism. For the second point, it is straightfor-
ward to prove the statement for the relation R and then it
follows for ≡rl.

Corollary 13. For rl lenses L1, L2 from X to Y and
M1,M2 from Y to Z in C, if L1 ≡rl L2 and M1 ≡rl M2

then M1L1 ≡rl M2L2.

The corollary allows us to define an associative composi-
tion on ≡rl classes. The proof of associativity is again like
that in [5]. We can now define the category of rl lenses,
RLLens. The objects are those of C. The arrows from X
to Y are the ≡rl classes of rl lenses from X to Y with the
composition just described.

Proposition 14. There is an identity on objects func-
tor we call A : RLLens // SLensw defined by A([L]rl) =
[A(L)]Uw .

Proof. The proof proceeds by showing that A is well-
defined, independently of the choice of representative of the
rl equivalence class [L]rl, and that the composite of rl lenses
is sent, up to ≡Uw , to the composite of the corresponding
spans in Sp(Uw).

Given a span L : X oo S // Y : M in ALensw (that
is a representative for an equivalence class which is a mor-
phism in SLensw) we determine an rl lens denoted S(L,M)
as follows.

Proposition 15. Suppose that L = (S,X, gl, pl) and that
M = (S, Y, gr, pr) form a span of well-behaved asymmetric
lenses in C. Define

r = 〈gr, 1〉pl : X × S // Y × S
and

l = 〈gl, 1〉pr : Y × S //X × S
then S(L,M) = (X,Y, S, r, l) is an rl lens in C.

Proof. The proof is a routine verification that r and l so de-
fined satisfy the four equations called PUTRL and PUTLR
in Definition 6.

Proposition 16. Suppose that L : X oo S // Y : M
is a span of well-behaved asymmetric lenses in C and de-
note AS(L,M) by Ll : X oo SL // Y : Lr. There is an
isomorphism g : S // SL that is a morphism of spans, and
consequently AS(L,M) ≡Uw (L,M), and they are isomor-
phic as spans of asymmetric lenses.

Proof. The main point in the proof is to show that the
consistent triples SS(L,M) have, in the case when C is the

116

category of sets, the form (gl(s), gr(s), s) where gl and gr
are the gets of the asymmetric lenses L and M respectively.
The required isomorphism g is then apparent, being an iso-
morphism it has a canonical lens structure, and as a lens
it commutes with the four asymmetric lenses L, M , Ll and
Lr.

Proposition 17. Suppose that L : X oo S // Y : M
and L′ : X oo S′ // Y : M ′ are ≡Uw equivalent spans of
well behaved asymmetric lenses in C. Then S(L,M) ≡rl
S(L′,M ′) and so S([(L,M)]≡Uw

) = [S(L,M)]rl defines a
functor S : SLensw // RLLens.

Proof. For the first point, S(L,M) ≡rl S(L′,M ′) pro-
vided that AS(L,M) ≡Uw AS(L′,M ′), but certainly we
haveAS(L,M) ≡Uw (L,M) ≡Uw (L′,M ′) ≡Uw AS(L′,M ′).

To see that S is a functor, we note first that it is identity
on objects. The first part of the proposition shows that S
is well-defined on morphisms. Finally, to see that S is com-
patible with composition it suffices to trace how composition
works on each side, noting that Proposition 15 defines each
of the r and l operations in terms of the lenses L and M .

Theorem 18. SLensw is a retraction of RLLens via the
functors A and S.

Proof. Both A and S are identity on objects.
If L : X oo S //Y : M is a span of well-behaved asymmet-

ric lenses in C, then AS([(L,M)]≡Uw
) = [(L,M)]≡Uw

.
This result shows that every rl lens can be normalised into

one of the form S([L,M]) for a span of assymmetric well
behaved lenses L : X oo S //Y : M , and that the category
of rl lenses of that form is equivalent to the category SLensw.

6. PC-SYMMETRIC LENSES
There is a category of pc-symmetric lenses defined in [5]

which we now review. Our goal is to relate the equivalence of
symmetric well behaved lenses defined as spans, ≡Uw , with
the equivalence of pc-symmetric lenses used in [5].

The main difficulty we face is that the pointing turns out
to be fundamentally important to the equivalence of pc-
symmetric lenses, although it plays no role in the algebraic
structure, and so has been excluded from the definition of rl
lenses and symmetric well behaved lenses.

Definition 19. For pc-symmetric lenses
L = (X,Y,C, r, l,m) and M = (Y,Z,C′, r′, l′,m′) the pc-
composite lens is

L ◦M = (X,Z,C′′, r′′, l′′,m′′)

where C′′ = C × C′,
r′′ = 〈π0,2, π1〉(r′ × 1C)〈π0,2, π1〉(r × 1C′),

l′′ = (l × 1C′)〈π0,2, π1〉(l′ × 1C)〈π0,2, π1〉
and m′′ = (m,m′). We display r′′ (l′′ is similar):

X × C × C′
r×1C′ // Y × C × C′

〈π0,2,π1〉 // Y × C′ × C

r′×1C // Z × C′ × C
〈π0,2,π1〉 // Z × C × C′

Proposition 20. For pc-symmetric lenses L and M in
C, the pc-composite lens L ◦M is a pc-symmetric lens from
X to Z.

The proof for symmetric lenses in set is in [5], and is
similar for symmetric lenses in C.

In [5] an equivalence relation on pc-symmetric lenses from
X to Y in set is defined as follows.

Definition 21. Suppose L1 = (X,Y,C1, r1, l1,m1) and
L2 = (X,Y,C2, r2, l2,m2) are pc-symmetric lenses from X
to Y and R ⊆ C1 × C2. Say L1 is (R-)equivalent to L2,
denoted L1 ≡R L2 iff (m1,m2) is in R and furthermore
(c1, c2) ∈ R, x ∈ X, (y1, c3) = r1(x, c1), (y2, c4) = r2(x, c2)
imply that y1 = y2 and (c3, c4) ∈ R (1)
and corresponding symmetric statements hold for l1, l2. We
write L1 ≡pc L2 if there exists an R such that L1 ≡R L2

Recall from [5] that ≡pc is an equivalence relation which
respects pc-symmetric lens composition. There is a category
pcLens (called Lens in [5]) whose arrows are ≡pc equivalence
classes of pc-symmetric lenses with composition given by the
pc-composite of representatives.

We want to relate the equivalence of spans of asymmetric
lenses by≡Uw with equivalence between pc-symmetric lenses
given by ≡pc. We start with a generator of ≡Uw . We will
show that when two symmetric well behaved lenses are each
pointed compatibly (choose any point in the peak of one, and
use the equivalence to determine the corresponding point in
the other) then their corresponding pc-symmetric lenses are
≡pc equivalent.

Proposition 22. Suppose that L = (X,Y,C, r, l) is an rl
lens with A(L) the span Ll : X oo SL // Y : Lr of well-
behaved asymmetric lenses. Suppose that M = (W,SL, g, p)
is in ALensw and is split by s : SL // W . Define hl =
glg, hr = grg, ql : X×W //W by ql(x,w) = p(pl(x, gw), w)
and qr : Y ×W //W by qr(x,w) = p(pl(x, gw), w), defin-
ing asymmetric lenses Ml : X oo W // Y : Mr. Define
R = {(w, πCgw)} ⊆ W × C, and suppose m : 1 //W is
a point of W and hence (m,πCgm) is in R. Let Lgm =
(X,Y,C, r, l, πCg(m)) be the pc-symmetric lens pointed by
πCgm. Let S(Ml,Mr) = (X,Y,W, rM , lM) be the rl lens
determined above and Lm = (X,Y,W, rM , lM ,m) its corre-
sponding pc-symmetric lens . Then Lm ≡R Lgm.

Proof. The situation is summed up in the following:

X SLoo
gl

W

X

hl

||yyyyyyyyy
W

SL

g

��
SL Y

gr
//

W

SL
��

W

Y

hr

""EEEEEEEEE

We first note that rM : X ×W // Y ×W is defined by
rM (x,w) = (hrql(x,w), ql(x,w)).

We are going to prove only implication (1), so suppose
(w, πCgw) ∈ R, x ∈ X, (y1, w1) = rM (x,w) and (y2, c2) =
r(x, πCgw). We need to show that y1 = y2 and (w1, c2) ∈ R.

117

First

y1 = hrql(x,w)

= grgql(x,w)

= grgp(pl(x, gw), w) by def of ql

= grpl(x, gw) by PutGet

= gr(x, r(x, πCgw)) def of pl

= πY (r(x, πCgw) = y2

Next w1 = ql(x,w) by definition, so we want to show
that c2 = πCg(ql(x,w)) to get (w1, c2) ∈ R. Now c2 =
πC(r(x, πCgw)), so

c2 = πC(r(x, πCgw))

= πCπY,Cpl(x, gw) def of pl

= πCpl(x, gw) comp’n of projections

= πCgp(pl(x, gw), w) by PutGet

= πCgql(x,w) def of ql

That completes the proof.

Corollary 23. If L : X oo S // Y : M and L′ :
X oo S′ // Y : M ′ are ≡Uw equivalent spans in SLensw
via g : S // S′, m : 1 // S and m′ : 1 // S′ where m and
m′ = g(m) are related by ≡Uw . Then for the corresponding
pc-symmetric lenses we have L′m′ ≡pc Lm.

Since we have it on generators of the equivalence, the
corollary shows that ≡Uw , appropriately pointed to permit
a comparison, is a finer equivalence relation than ≡pc.

7. FUTURE WORK
This paper has been about developing the theory of spans

of lenses and an appopriate equivalence relation for them
which can then be used parametrically in the type of asym-
metric lens of interest.

Having laid the mathematical foundations for a theory of
symmetric lenses of type X as spans of asymmetric lenses of
type X we are in a position to define new symmetric lenses,
and to make detailed comparisons with the various extant
notions of symmetric lenses.

We have currently carried through this project for the
delta lenses of Diskin et al [3, 4, 6], and we are progressing
well with c-lenses [8]. The overall goal is a unified treatment
of all the various kinds of symmetric lenses that have been
defined, along with guidance for the future development of
new types of symmetric lenses.

In each case, we strive, as in the preceding section of this
paper, to relate the work to extant structures, and to use the
theory to shed more light on why they are the way that they
are, or to reveal when there are choices that have been made
that could have been made differently (thus for example, ≡pc
seems to be a coarser equivalence than is strictly needed, and
we are studying this further).

In other future work we are exploring the lens-like aspects
of our construction of Sp(G). The operation P (g, r) can
itself be seen as a kind of put operation which satisfies its
own PutGet, GetPut and PutPut conditions. It appears
that if they are formulated correctly the resultant structure
is a c-lens — further evidence of the utility of bidirectional
transformations (even in the development of the theory of
bidirectional transformations!).

8. CONCLUSIONS
We have presented foundations for a consistent and uni-

fied treatment of several different types of asymmetric and
symmetric lenses. In that treatment, Sp(U) is used to build
categories of spans of asymmetric lenses. Sp(U) provides
a different treatment to the usual treatment for compos-
ing spans, thus overcoming the difficulty about categories of
lenses frequently not having pullbacks. In addition, Sp(U)
uses a different equivalence from the one usually used in
categories of spans. The new equivalence seems to be the
natural generalisation for Bx as it replaces a requirement
for an isomosphism between spans (a particularly restrictive
kind of bidirectional transformation) with a lens.

The work has allowed us to compare the equivalence of the
general theory with the equivalence proposed in [5]. The
latter has some surprising features. It certainly achieves
the outcomes its authors required, but it appears that the
new equivalence can do the same without forcing so many
different lenses to be equivalent.

9. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of the

Australian Research Council and the Natural Sciences and
Engineering Research Council of Canada. In addition the
authors are grateful for the valuable suggestions and thought-
ful analysis of the anonymous referees.

10. REFERENCES
[1] Bancilhon, F. and Spyratos, N. (1981) Update

semantics of relational views, ACM Trans. Database
Syst. 6, 557–575.

[2] Bohannon, A., Vaughan, J. and Pierce, B. (2006)
Relational Lenses: A language for updatable views.
Proceedings of Principles of Database Systems
(PODS) 2006.

[3] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki
(2011), From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case,
Journal of Object Technology 10, 6:1–25,
doi:10.5381/jot.2011.10.1.a6

[4] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki,
Hartmut Ehrig, Frank Hermann and Francesco Orejas
(2011), From State- to Delta-Based Bidirectional
Model Transformations: the Symmetric Case,
ACM/IEEE 14th International Conference on Model
Driven Engineering Languages and Systems: Springer,
10/2011.

[5] Hofmann, M., Pierce, B., and Wagner, D. (2011)
Symmetric Lenses. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL), Austin, Texas.

[6] Johnson, M. and Rosebrugh, R. (2013) Delta lenses
and fibrations. to appear in Electronic
Communications of the EASST, Proceedings of BX
2013.

[7] Johnson, M., Rosebrugh, R. and Wood, R. J. (2010)
Algebras and Update Strategies. J.UCS 16, 729–748.

[8] Johnson, M., Rosebrugh, R. and Wood, R. J. (2012)
Lenses, fibrations and universal translations.
Mathematical Structures in Computer Science. 22,
25–42.

118

Energy Data Management (EnDM)

Torben Bach Pedersen (Aalborg University, Denmark)

119

Pipeline Production Data Model

Jitao Yang
Production System Research

Lab, CPPEI
PetroChina Company Limited

Beijing 102206, China
yangjitao@petrochina.

com.cn

Yu Fan
Production System Research

Lab, CPPEI
PetroChina Company Limited

Beijing 102206, China
fanyugd@petrochina.

com.cn

Yinliang Liu
Production System Research

Lab, CPPEI
PetroChina Company Limited

Beijing 102206, China
liuyinliang@petrochina.

com.cn

Hui Deng
Production System Research

Lab, CPPEI
PetroChina Company Limited

Beijing 102206, China
denghui1984@petrochina.

com.cn

Yang Lin
Production System Research

Lab, CPPEI
PetroChina Company Limited

Beijing 102206, China
lin_yang@petrochina.

com.cn

ABSTRACT
With the rapid construction of long-distance oil and gas pipelines,
big pipeline network was gradually formed in China and its sur-
rounding areas, therefore the management of pipeline production
becomes increasingly complicated and difficult.

In this paper, we propose a data model for pipeline production
to support the planning, scheduling, distribution, metering, energy
consumption, process technology, professional computing and the
other business in pipeline production. We also present a query
language that can be used for discovering resources of interest in
pipeline production based on the descriptions attached to the re-
sources.

Following our model and based on the actual business needs,
we have implemented a pipeline production management system
(PPMS). The system provides services for group company, profes-
sional companies, regional companies and their affiliated grassroots
units, and overseas companies to improve the efficiency and effec-
tiveness of pipeline production management as well as safeguard
the accuracy and the completeness of data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Theory

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Keywords
Data Model, Information System, Oil and Gas Pipeline, Pipeline
Production Management

1. INTRODUCTION
In recent years, with the rapid construction of long-distance oil

and gas pipelines, the big pipeline network was gradually formed
in China and its surrounding areas. As of March 2013, a group
company owns about 50,000 kilometers long-distance pipelines, of
which approximately 33,000 kilometers of natural gas pipelines,
10,000 kilometers crude oil pipelines and 6,700 kilometers refined
oil pipelines. The pipelines formed a cross-country and cross-region
oil and gas pipeline network. This makes the production manage-
ment of oil and gas pipeline network become more and more diffi-
cult and complex.

Roughly speaking, pipeline production management system is an
information system managing the storage and transportation busi-
ness of long-distance oil and gas pipelines. In particular, PPMS
focused on the pipeline production business including: planning
management, scheduling and operation, transportation and distri-
bution, professional computing, statistics and analytics etc. In gen-
eral, a pipeline production management system will be used to:

• standardize the management of pipeline production and op-
eration,

• safeguard the accuracy and the completeness of data,

• improve the efficiency and effectiveness of pipeline produc-
tion management, as well as

• reduce the burden of grass-roots staffs.

In order to carry out the above mentioned tasks, a pipeline pro-
duction management system should be able to handle the entities
and relationships in pipeline production in an accurate and flexible
way, amongst which descriptions and their attachments to resources
play an important role.

Combined with years of relevant professional pipeline produc-
tion business knowledge and the previous experience of building,

120

operating and managing the information systems for pipeline pro-
duction, in this paper, we propose a data model for pipeline pro-
duction defining in a clear and rigorous way all the resources and
relationships required to carry out the tasks of a pipeline production
management system. The model is established based on the deep
understanding of oil and gas pipeline production business and the
related technologies, including the planning management, schedul-
ing and operation, transportation and distribution, professional com-
puting, statistics and analytics, Supervisory Control and Data Ac-
quisition (SCADA) system, ERP system and etc. We formalize the
model using first order logic, and the model places descriptions as
first class citizens. We also present a query language that can be
used for discovering resources in pipeline production based on the
descriptions of resources.

The rest of the paper is structured as follows: Section 2 intro-
duces the basic concepts of pipeline production, then Section 3
defines the formal data model for pipeline production along with
an example, and Section 4 presents the query language. Section
5 discusses the implementation of a pipeline production manage-
ment system. Section 6 briefly reviews the relevant work. Finally,
Section 7 concludes the paper and outlines future work.

2. THE BASIC CONCEPTS OF PIPELINE
PRODUCTION

Intuitively, we think of a resource as anything can be identified
in pipeline production, such as a pipeline, a station, a place and so
on. For the purposes of our discussions, we assume the existence of
a set consisting of all resources that one can ever define in pipeline
production.

We view each resource is associated with a content and a set of
descriptions.

2.1 Content
In this work, by content of a resource r we mean the set of other

resources that make up r; each such resource is called a part of
r. For example, each pipe segment (seen as a resource in its own
right) can be seen as a part of the pipeline. Similarly, each station
can be seen as a part of an organization.

2.1.1 Concepts
To understand pipeline production business, basic knowledge of

pipeline production is necessary, therefore the definitions of some
important concepts in pipeline production are given as follows:

• Station, is the industrial place supporting the operation, main-
tenance, and monitoring of pipelines. Some of the stations
also support the sales of gas or oil and the other pipeline
production business. Along the pipelines, the stations pro-
vide different functions, for example, there are pump station,
compressor station, metering station and so on. The valve
chamber, gas storage, and oil depots along the pipelines are
also classified into station. Station is the key node along the
pipelines.

• Pipe Segment, is the pipe between two stations. Pipe seg-
ment is represented by a directed line segment.

• Pipeline, is the pipe connected by a plurality of directed pipe
segments.

• Equipment, is the device used in pipeline production, such as
Compressor, Chromatographic Analyzer, Flow Meter, Pump,
Air Cooler, and other oil and gas pipeline monitoring and
control devices.

• Organization, is the oil and gas pipeline production business-
related company and the administrative department affiliated
to the company.

• Customer, is the buyer of Natural Gas, Crude Oil, Com-
pressed Natural Gas (CNG), or Liquefied Natural Gas (LNG).

• Supplier, is the company of supplying Natural Gas, Crude
Oil, Compressed Natural Gas, or Liquefied Natural Gas.

• Transport Location, is the location where the gas or oil was
transported away by train, boat, lorry or the other carriers
except by the pipelines.

Here, we just list a few import concepts of our understanding
in pipeline production, note that, the concepts may be defined dif-
ferently by the other pipeline production business related organiza-
tions.

2.1.2 Relations
In pipeline production, some of the resources are closely related,

for instance, stations are connected by pipeline, there are multiple
suppliers providing gas or oil for a station and etc. In order to
meet the actual business needs, the relations in pipeline production
should be described clearly and rigorously. Some of the relations
in our pipeline production business are listed as follows:

• Pipe Segment and Station: each pipe segment is defined by
the starting station and the ending station.

• Pipeline and Pipe Segment: pipeline is composed by a plu-
rality of pipe segments in a certain order.

• Station and Organization: an organization can manage mul-
tiple stations.

• Pipeline and Organization: a pipeline can be managed by
multiple organizations.

• Organization, Customer and Supplier: an organization can
be a customer and a supplier at the same time.

• Equipment, Station and Organization: an equipment can be
associated with multiple stations or multiple pipelines. By
default, an equipment belongs to the organization that man-
ages the station where the equipment is located at; if an equip-
ment is associated with multiple stations, then the equipment
belongs to the least upper bound organization that can man-
age all the stations that the equipment is associated with.

• Supplier, Pipeline, Station, and Transportation Location: a
supplier could transport its oil/gas to a station (suppose iden-
tified by st) by a pipeline; if in the station st, the oil/gas was
transported to another place for distribution by train or boat
or the other carriers except by pipeline, then the position of
the station st is a transport location.

• Turnover between Pipelines: the transported oil/gas could be
transferred from one pipeline to another pipeline through a
station.

2.2 Description
A description of a resource r is the descriptive information of

the resource. For example, the description of a station will include
the location and the type of the station, while the description of a
pipeline will include the length and the regions that the pipeline
goes through and etc. A pipeline, however, can be described from

121

different points of view, each leading to a different description. As
a result, a pipeline might be associated to a set of descriptions (and
the same goes for a station). In order to accommodate several de-
scriptions for the same resource, we will treat descriptions as re-
sources in their own right.

2.2.1 Data Points
Data points are the important data that we should take special

care of in pipeline production, so that to:

• monitor the operating status of pipelines (e.g. through the
unit operation parameters);

• meter the transportation or distribution volume of oil/gas (e.g.
through the flow-meter operation data);

• analyze the gas quality (e.g. through the chromatographic an-
alyzer operation data);

• support the professional computing (e.g. calculating pipe de-
posit according to ISO 12213-2:2006 “Natural gas – Calcula-
tion of compression factor – Part 2: Calculation using molar-
composition analysis” [13]);

• generate different kinds of report forms (e.g. Energy Con-
sumption Monthly Report of Natural Gas Station);

• provide decision support by statistics and analytics; and etc.

In pipeline production, to use data points effectively, data points
must be associated with descriptions. For example, the rotation
speed of compressor is a very important operating parameter used
for monitoring the status of compressor; however, if we only have
the rotation speed of a compressor (suppose marked by a data item
RotationSpeed), then the RotationSpeed data will be useless, be-
cause to know the corresponding compressor, we need to find the
identifier of the compressor, the location of the compressor and the
other information related to the compressor. Therefore, descrip-
tions should be attached to data points. For the above example, the
data point RotationSpeed could be associated with CompressorSN,
Station, Time, Date and the other related properties by descriptions.

2.2.2 Description Reuse
In pipeline production, descriptions should be reusable so that to

reduce the workloads of describing similar resources. Generally,
we have two ways of reuse:

• reuse without any customizations, which means a description
will be reused directly without any modifications. There are
thousands and tens of thousands of data acquisition points
along the pipelines, some of the data points are the same type,
therefore it is not a good idea if we need to create each time a
similar description for each data point of the same type. For
example, a station could have multiple compressors, the data
acquisition points of compressor rotation speed are the same
type, these data points could be described by reusing a same
description.

• reuse with customizations, which means a description will
be reused by extending the description with new properties.
For example, to further describe the rotation speed of a com-
pressor RotationSpeed, we could attach new properties for
instance InletPressure and OutletTemperature to the descrip-
tion for RotationSpeed.

We note that descriptions will be defined according to schemas,
for our purposes, we view a schema as consisting of a set of classes
and/or a set of properties; additionally, a property could have one
or multiple ranges and one or multiple domains. Our definition
of classes and properties are similar to the ones in object-oriented
modeling, in Description Logics [5], and in semantic web frame-
work [6]. When defining a description, properties may come from
one or more schemas.

3. PIPELINE PRODUCTION DEFINITION

3.1 The Language L of Our Model
The language that we propose for our data model is a function-

free first-order language, the predicate symbols are listed as fol-
lows:

• Class(s,c), expresses the fact that c is a class defined in sche-
ma s.

• Property(s, p), expresses the fact that p is a property defined
in schema s.

• Domain(s, p,c), expresses the fact that in schema s class c is
the domain of property p.

• Range(s, p,c), expresses the fact that in schema s class c is
the range of property p.

• IsaCl(s,c1,c2), expresses the fact that in schema s class c1 is
a sub-class of class c2.

• IsaPr(s, p1, p2), expresses the fact that in schema s property
p1 is a sub-property of property p2.

• Description(d,s, p), expresses the fact that property p over
schema s belongs to description d.

• PrVal(i,s, p, j) expresses the fact that i has a resource iden-
tified by j as value of property p from schema s.

• ClInst(i,s,c) expresses the fact that i is an instance of class c
from schema s.

• PartOf(i1, i2), expresses the fact that i1 identifies a resource
which is part of the resource identified by i2.

• DescOf(d, i), expresses the fact that d is a description of i.

We denote the the above predicate symbols defined in first-order
logic as L . Before we proceed further with the definition of our
data model for pipeline production, let’s see how a real example in
pipeline production can be represented using L .

3.2 An Example Using L

Consider a SCADA data point “Compressor Rotation Speed”,
we refer to it by an identifier crs. In our formulas, we represent
strings by enclosing them between quotes, and resources as the val-
ues themselves italicized. Based on these conventions, we have the
following formula:

ClInst(crs,s,CompressorRotationSpeed)

By the above formula, we understand that crs is an instance of
class CompressorRotationSpeed and CompressorRotationSpeed is
a class defined in schema s:

Class(s,CompressorRotationSpeed)

122

To describe the data point crs, we define a description d including
multiple properties from schema s1 and s2, and description d is
represented as follows:

Description(d,s1,Name)

Description(d,s1,CompressorSN)

Description(d,s1,Speed)

Description(d,s1,Time)

Description(d,s1,Date)

Description(d,s1,Station)

Description(d,s2, InletPressure)

Description(d,s2,OutletPressure)

We understand in the above formulas, Name, CompressorSN, Speed,
Time, Date, and Station are properties defined in schema s1, while
the properties InletPressure and OutletPressure are defined by sche-
ma s2. They are represented as:

Property(s1,Name)

Property(s1,CompressorSN)

Property(s1,Speed)

Property(s1,Time)

Property(s1,Date)

Property(s1,Station)

Property(s2, InletPressure)

Property(s2,OutletPressure)

We now could assert that d is a description of crs by a formula:

DescOf(d,crs)

Finally, we could attach values to the properties of crs as follows:

PrVal(crs,s1,Name,“Compressor Rotation Speed”)
PrVal(crs,s1,CompressorSN,“UZS-001”)
PrVal(crs,s1,Speed,“8 000”)
PrVal(crs,s1,Time,“13:12:11”)
PrVal(crs,s1,Date,“2013-11-01”)
PrVal(crs,s1,Station,“UZS”)
PrVal(crs,s2, InletPressure,“5 000 000”)
PrVal(crs,s2,OutletPressure,“8 000 000”)

Note that, the above description d could be reused to describe other
SCADA data points. For example, a compressor rotation speed
crs2 of another compressor, which is the same type of crs, can be
described by d as follows:

DescOf(d,crs2)

We then can attach different values to the properties of crs2 using
PrVal as follows:

PrVal(crs2,s1,Name,“Compressor Rotation Speed”)
PrVal(crs2,s1,CompressorSN,“UZS-002”)
PrVal(crs2,s1,Speed,“9 000”)
PrVal(crs2,s1,Time,“23:12:11”)
PrVal(crs2,s1,Date,“2013-12-01”)
PrVal(crs2,s1,Station,“UZS”)
PrVal(crs2,s2, InletPressure,“4 500 000”)
PrVal(crs2,s2,OutletPressure,“7 000 000”)

3.3 The Axioms A of Our Model
We now present the axioms of our model. The axioms of our

model will be used to capture the meaning of the predicate symbols,
as well as capture the implicit knowledge in pipeline production.
Variables in the axioms are universally quantified.

(A1) If property p has class c as its domains in a schema s, then p
and c must be defined in s:

Domain(s, p,c)→ (Property(s, p)∧Class(s,c))

(A2) If a property p has class c as its ranges in a schema s, then p
and c must be defined in s:

Range(s, p,c)→ (Property(s, p)∧Class(s,c))

(A3) If c1 is a sub-class of c2 in a schema s, then c1 and c2 must
be defined in s:

IsaCl(s,c1,c2)→ (Class(s,c1)∧Class(s,c2))

(A4) If p1 is a sub-property of p2 in a schema s, then p1 and p2
must be defined in s:

IsaPr(s, p1, p2,)→ (Property(s, p1)∧Property(s, p2))

(A5) If i is an instance of class c over schema s, then c must be
defined in schema s :

ClInst(i,s,c)→ Class(s,c)

(A6) If a description d contains a property p over schema s, then
p must be defined in schema s :

Description(d,s, p)→ Property(s, p)

(A7) Sub-class is reflexive:

Class(s,c)→ IsaCl(s,c,c)

(A8) Sub-class is transitive:

(IsaCl(s,c1,c2)∧ IsaCl(s,c2,c3))→ IsaCl(s,c1,c3)

(A9) Sub-property is reflexive:

Property(s, p)→ IsaPr(s, p, p)

(A10) Sub-property is transitive:

(IsaPr(s, p1, p2)∧ IsaPr(s, p2, p3))→ IsaPr(s, p1, p3)

(A11) If i is an instance of class c1 from schema s, and c1 is a sub-
class of c2 in s, then i is also an instance of class c2 from
schema s :

(ClInst(i,s,c1)∧ IsaCl(s,c1,c2))→ ClInst(i,s,c2)

(A12) If p1 is a sub-property of p2 in s, and j is a p1-value of i,
then j is also a p2-value of i:

(IsaPr(s, p1, p2)∧PrVal(i,s, p1, j))

→ PrVal(i,s, p2, j)

(A13) If d describes i that is part of j, then d describes j too:

(DescOf(d, i)∧PartOf(i, j))→DescOf(d, j)

This axiom transfers descriptions from parts to the whole.

123

We denote the above set of axioms as A , and we denote the
theory defined by L and A as T .

In pipeline production, an interpretation I is created by the con-
tents and the descriptions manually inserted by users when they
record information about pipeline production or gathered from the
relevant systems such as SCADA system, ERP system etc. The re-
sulting pipeline production is then given by applying the axioms to
these facts. In order to make this concept more precise, we re-write
the axioms A of our data model for pipeline production in the form
of a positive datalog program DA as follows:

Property(s, p) :− Domain(s, p,c)
Class(s,c) :− Domain(s, p,c)
Property(s, p) :− Range(s, p,c)
Class(s,c) :− Range(s, p,c)
Class(s,c1) :− IsaCl(s,c1,c2)

Class(s,c2) :− IsaCl(s,c1,c2)

Property(s, p1) :− IsaPr(s, p1, p2)

Property(s, p2) :− IsaPr(s, p1, p2)

Class(s,c) :− ClInst(i,s,c)
Property(s, p) :− Description(d,s, p)
IsaCl(s,c,c) :− Class(s,c)
IsaCl(s,c1,c3) :− IsaCl(s,c1,c2), IsaCl(s,c2,c3)

IsaPr(s, p, p) :− Property(s, p)
IsaPr(s, p1, p3) :− IsaPr(s, p1, p2), IsaPr(s, p2, p3)

ClInst(i,s,c2) :− ClInst(i,s,c1), IsaCl(s,c1,c2)

PrVal(i,s, p2, j) :− IsaPr(s, p1, p2), PrVal(i,s, p1, j)
DescOf(d, j) :− DescOf(d, i), PartOf(i, j)

Given an interpretation I which can be seen as a set of facts of
pipeline production, then the above rules in DA will be applied in
order to derive the minimal model of DA containing I. The min-
imal model will be a larger set of facts containing I as well as all
the consequences of I according to DA . Based on the logical pro-
gramming [7], the minimal model exists and is unique.

DEFINITION 1. (Pipeline Production) Let I be any interpreta-
tion of L , we call pipeline production over I, denoted PP, the
minimal model M (DA , I) of A that contains I.

4. QUERY THE DATA OF PIPELINE PRO-
DUCTION

When searching the data of pipeline production, an intuitive and
straightforward way of expressing the user’s information need is to
relate description to the sought resource.

For example, to search all the compressors in the station “UZS”,
the user could use a query like:

(∃ ?csn) PrVal(?csn,s,LocatedIn,“UZS”)

In the above query, ?csn is a variable representing the compressor
serial number, LocatedIn is a property defined in schema s.

For allowing queries to state simple conditions on property val-
ues, we consider any completion of PP endowed with six built-in
relations, namely the =, 6=, >, <, ≤ and ≥ relations; we consider
these relations as built-in predicates, therefore not subject to the
completion of PP.

To exemplify, let us consider again the “Compressor Rotation
Speed” example. When searching for the time when the compres-
sor “UZS-001” was not running in the day of 2008-09-25, the user

could use a query Qt like:

(∃ ?t) PrVal(?crs,s,Time,?t)∧
(PrVal(?crs,s,Speed,?rs)∧ (?rs < “100”))∧
PrVal(?crs,s,CompressorSN,“UZS-001”)∧
PrVal(?crs,s,Date,“2008-09-25”)

In the above query, ?t, ?crs and ?rs are variables occur in Qt , and
?t represents the time, ?crs represents the identifier of compressor
rotation speed, ?rs represents the compressor rotation speed. Note
that, the compressor rotation speed can be used to judge the running
status of a compressor, i.e. if the rotation speed was less than 100,
we consider the compressor was not running.

DEFINITION 2. (Query over Pipeline Production) A query over
pipeline production PP is well-formed formula Q(x1, . . . ,xn) of L ,
in which x1, . . . ,xn are free variables and n≥ 1.

The answer of a query with n (n ≥ 1) free variables is the set of
resources 〈r1, . . . ,rn〉 such that, when every variable xi is bound to
the corresponding resource ri, the resulting formula of L (r1, . . . ,rn)
is true in PP. Formally, we have the following definition for the an-
swer of a query.

DEFINITION 3. (Answer of A Query) The answer of a query
Q(x1, . . . ,xn) over pipeline production PP is given by:

answer(Q,PP) = {〈r1, . . . ,rn〉 | Q(r1, . . . ,rn) ∈ PP}

5. PIPELINE PRODUCTION SYSTEM
We have adopted first-order logic for modeling pipeline produc-

tion. The choice of logic was deliberate in order to be able to de-
scribe the pipeline production without being constrained by any
technical considerations. However, the goal of our work is to con-
tribute to the management system of pipeline production. There-
fore, we now consider how our model can be implemented. We
consider two different scenarios:

• The first scenario consists in implementing the model with
relational database and computing the completion of pipeline
production via a datalog engine [8, 9, 10, 11, 12]. This im-
plementation is conceptually straightforward, as an interpre-
tation of L consists just of a set of relations that can be im-
plemented as tables.

• The second scenario consists in implementing the model with
Resource Description Framework (RDF) [1], and using an
RDF inference engine for computing the completion of the
pipeline production. This implementation is conceptually
much more complicated, as it requires translating the rela-
tions and the axioms of the model in RDF.

The first scenario exploits the well-established relational tech-
nology, including the optimized query processing of SQL. This
guarantees scalability and robustness of the implementation. The
second scenario benefits from the fact that RDF is a generally ac-
cepted representation language in the context of the Semantic Web.
Although RDF has not yet achieved the maturity of relational tech-
nology, tools for managing RDF graphs have been intensely re-
searched and developed in the last decade, and are now reaching
a significant level of technological maturity. Such tools include
systems for the persistence of large RDF graphs, for instance [3],
RDF inference engines and optimized query processing engines for
SPARQL [2], e.g. [4].

124

5.1 Relational Implementation
By choosing an implementation strategy based on relational tech-

nologies, we can benefit at a minimal effort of the scalability and
the optimized query evaluation of relational database management
systems (RDBMSs).

A simple strategy for implementing the model could then consist
of the following steps:

• Store the initial interpretation I of pipeline production to a
relational database RDB(I); the mapping from I to RDB(I)
is straightforward.

• Compute the completion of RDB(I) to obtain the database
RDB(M (DA , I)) via a datalog engine [8, 9, 10, 11, 12]; this
requires adding tuples to the tables in RDB(I) using the in-
ference mechanism that we have described in A .

• Map each query Q against the pipeline production to an equiv-
alent SQL query SQL(Q).

To implement our data model for pipeline production by rela-
tional database, we should pay attention to the design of algorithms
for maintaining RDB(M (DA , I)) in the condition of user updates.
We also should take care in choosing a suitable datalog engine.

5.2 RDF based Implementation
RDF is a knowledge representation language for describing re-

sources using triples of the form (subject, predicate, object). In a
triple, the subject can be a URI or a local identifier (also called
blank node) for unnamed entities; the predicate can only be a URI;
the object can be a URI, a local identifier or a literal (i.e. a string
of characters). The predicate in an RDF triple specifies how the
subject and the object of the triple are related.

A set of RDF triples is called an RDF graph. This graph is ob-
tained by interpreting each triple as a labelled arrow having the
subject as its source, the object as its target and the predicate as its
label. RDF has a formal semantics on top of which an inference
mechanism is defined. This mechanism allows expanding a given
RDF graph by adding to it the new triples that can be inferred from
existing ones.

In order to implement our model in RDF, we must provide means
for:

• mapping the relations of L into equivalent RDF graphs,

• mapping the inference mechanism of our data model into that
of RDF, and

• translating the query language of our model to SPARQL.

5.3 System Development
As we have already observed, implementing our model using

RDF is more complicated, while implementing our model using
relational technologies is straightforward. For this reason and due
to the time limit for the project of pipeline production management
system, we implemented the pipeline production data model using
relational technologies.

Based on the investigation report and solution design, pipeline
production management system should provide the following busi-
ness functions for the users:

• Planning Management, manages yearly agreement intake and
transportation volume of gas/oil, yearly planned production
volume of gas/oil, subdivided monthly production plan, and
etc.

Figure 1: Function Architecture of Pipeline Production Man-
agement System

• Scheduling and Operation, manages station daily pipeline
production operating data, production logs, unit operating
data, flow-meter operating data, chromatographic analyzer
operating data, as well as generates production operating daily
report and hourly parameter summary table.

• Transportation and Distribution, manages the daily gas/oil
intake volume, daily gas/oil distribution volume, gas/oil qual-
ity information and etc.

• Professional Computing, provides pipeline production pro-
fessional computing services. For instance, pipe deposit cal-
culation according to the ISO 12213-2:2006 “Natural gas –
Calculation of compression factor – Part 2: Calculation using
molar-composition analysis” [13].

• Statistics and Analytics, generates different kinds of reports
including production daily report, production monthly re-
port, operation daily report, energy consumption report, and
so on for the group company headquarters, the regional com-
panies, and the vendors, as well as provides decision support.

The pipeline production business functions are supported by the
following system functions:

• System Management, configures the system functions, such
as the user group creation based on users’ authority layers,
user role configuration based on user’s duties, work-flow man-
agement based on business process, and etc.

• Basic Information Management, manages the basic informa-
tion of the system such as pipeline basic information main-
tenance, pipeline network and station visualization, pipeline
running dynamic visualization, supplier and customer infor-
mation management, and etc.

• Application Management, manages the configurable appli-
cations such as the configuration of different form templates
for different stations, configuration of different reports based
on different companies’ requirement, and etc.

• Working Assistant, enhances production management effi-
ciency by the functions of job alerts, work-flow process, sys-
tem information publish, short message service, personal in-
formation management, and the other auxiliary functions.

125

Figure 2: System Architecture of Pipeline Production Manage-
ment System

Figure 3: Software Architecture of Pipeline Production Man-
agement System

The function architecture of the pipeline production management
system is summarized in Figure 1.

The data of PPMS comes from SCADA system, manual entry,
and the external systems (ERP, CRM and etc) of the enterprise, the
system architecture of pipeline production management system is
presented in Figure 2.

PPMS was developed with .NET and the related softwares and
technologies, the software architecture of pipeline production man-
agement system is given by Figure 3.

The hardwares for supporting the running of PPMS are listed in
Table I.

A simplified ER diagram of PPMS is demonstrated in Figure 4.
A few ways were used to ensure the security of pipeline produc-

tion management system:

• communications security: strict access control was provided
by a firewall that isolates the enterprise internal network from
the outside world; Demilitarized Zone (DMZ) and HTTPS
encryption were used to protected external access to PPMS;
in addition, hardware encryption (USB key) was used for
PPMS user authentication.

• data security: local and off-site data backups were performed
regularly (in seconds).

• system application security: hot standby mechanism was es-
tablished for important services; virtualization technology

Figure 4: A Simplified ER Diagram of Pipeline Production
Management System

Table I: The Hardwares for Running PPMS
Device Device Requirements and Configuration Qty

Web Server 10 core 2.26GHz Intel Xeon E7 series processor × 4, 256GB DDR3 memory,
8GB HBA card × 2, 600GB SAS hot plug hard drive × 5, Hyper-V supported

6

Report Form Server 10 core 2.26GHz Intel Xeon E7 series processor × 4, 64GB DDR3 memory,
600GB SAS hot plug hard drive× 5, Hyper-V supported, dual backup required

2

Operation Monitor-
ing Server

ditto, no dual backup required 2

Application Server ditto, dual backup required 3

Data Acquisition
Server

ditto 2

Front End Server 8 core 2GHz Intel Xeon E5 series processor× 2, 32GB DDR3 memory, 600GB
SAS hot plug hard drive × 5

1

Database Server 10 core 2.26GHz Intel Xeon E7 series processor × 4, 256GB DDR3 memory,
8GB HBA card× 2, 600GB SAS hot plug hard drive× 5, Hyper-V supported,
double cluster deployment

4

ESI Load Forecast-
ing Server

10 core 2.26GHz Intel Xeon E7 series processor × 4, 64GB DDR3 memory,
600GB SAS hot plug hard drive × 5, Hyper-V supported

1

Backup Server 8 core 2GHz Intel Xeon E5 series processor× 2, 32GB DDR3 memory, 600GB
SAS hot plug hard drive × 5

1

Storage Device Dual controller, buffer capacity of 24G, 16 front-end 8Gb fiber ports, 8 back-
end 6Gb ports, 4 Gigabit NAS network ports; SAN architecture drive bare
capacity 30TB, NAS architecture drive bare capacity 20TB; 24-port optical
switch, configure and activate 16 ports

1

Load Balancer 12 Gigabit ports, 4 core processor, 4Gbps throughput, the maximum num-
ber of concurrent connections: 8000000, 8GB DDR3 memory, double storage
medium

2

Ethernet Switch 48-port Gigabit switch, redundant power supply 2

KVM 16 ports, with remote management function 1

Disk Array Logical backup capacity more than 100TB, 2 BGb FC ports, 2 Gigabit ethernet
ports

1

was used to enhance the high availability of web servers.

The pipeline production management system has been launched
for a few months, providing around 276 professional services for
managing the group company’s pipeline production business within
China. The number of ingested data is around 622800 items per
day. The system was also extended to manage the pipeline pro-
duction of Turkmenistan, Uzbekistan, Kazakhstan and China gas
pipelines and the pipeline production of Sino-Burma gas pipelines.

6. RELATED WORKS
To the best of our knowledge, our model is the first data model

specializing in the production management of pipelines. Although
there are some models for pipelines such as Pipeline Open Data
Standard (PODS) [14], ArcGIS Pipeline Data Model (APDM) [16],
and PODS ESRI Spatial [15], these models focus on the man-
agement of pipeline integrity, i.e. integrated with Geographic In-
formation System (GIS) information, these models help pipeline
operators to collect, verify, analyze, and maintain the information

126

about physical segment of pipeline, so that to support the re-route,
change of service, abandonment, removal, repair, and replacement
of pipeline [14].

Entity-Relationship (ER) model [17] is a data model for describ-
ing data in an abstract and conceptual way, the essential elements
of ER model are: Entity Set, Relationship Set, and Attribute. En-
tity is an object that can be uniquely and distinctly identified, Entity
Set is a set of entities of the same type that has the common prop-
erties. Relationship is the association among entities, Relationship
Set is a mathematical relationship among n ≥ 2 entities. Attribute
is the descriptive information about an entity or a relationship. The
ER model describes only the static view of data. Unified Modeling
Language (UML) [18] is a widely accepted object-oriented model-
ing language that has many components to model different aspects
of an entire system graphically; Class Diagram is the closest com-
ponent of UML corresponds to ER Diagram, but several differences
[19]. In our model, we use relations to express the basic facts in
pipeline production, and rely on a first-order theory to derive infor-
mation implicit in the given facts, under certain axioms; descrip-
tions are placed as first class citizens and are defined independently
of the resources they might be associated with, this is different from
the systems often used to implement ER models, which generally
assume that attributes of an object are stored in the object; in addi-
tion, our model supports the reuse of descriptions. The choice of
logic for modeling is motivated by the desire of generality, which
includes freedom from any technological constraint.

Enterprise Resource Planning (ERP) is a system focused on busi-
ness management, to improve the efficiency and effectiveness of
business processes so that to reach the business goals. Customer
Relationship Management (CRM) is a system for a company to
manage current and future customer interactions, to improve cus-
tomer relations so that to increase brand loyalty and profits. How-
ever, neither ERP nor CRM can satisfy the requirements of our
pipeline production management. In fact, part of the customer in-
formation from CRM and some of the ERP modules such as PM
(Plant Maintenance), MM (Materials Management) and PS (Project
Systems) are the data sources of pipeline production management
system, in turn, PPMS supports the FI (Financial Accounting) mod-
ule of ERP.

7. CONCLUSIONS
In this paper, we have defined a data model for pipeline produc-

tion based on two basic concepts: content and description. The two
concepts are expressed by a certain set of predicates using a first-
order logical approach, the axioms of the model are defined to fix
the semantics of the predicates and to capture the implicit knowl-
edge in pipeline production. In our model, descriptions are placed
as first class citizens with their own identifiers and are defined inde-
pendently of the resources they might be attached to, additionally
descriptions are flexible for extension and reuse. We also present
a query language for discovering resources of interest in pipeline
production based on the descriptions attached to the resources.

Our model provides a convenient and flexible way for describing
the concepts, the properties, and the relations in pipeline produc-
tion. The model also leads to an efficient communication between
the business people defining the pipeline production management
requirements for an information system and the technical people
developing the information system in response to those require-
ments.

Following our model, we implemented a pipeline production man-
agement system for managing the group company’s pipeline pro-
duction business in China as well in some overseas regions. The
pipeline production management system received very high ap-

praisal from the users of the group company, the regional compa-
nies, and the overseas companies.

Regarding further work, we will continue improving our model.
Furthermore, there is one direction which is promising in our opin-
ion that the group company has many different information sys-
tems, which are categorized into ERP Systems, Petroleum Explo-
ration and Development Systems, Refining and Marketing Systems,
Service and Support Systems, Infrastructure and Security Systems,
and so on. We are currently working towards the extension of our
model to manage the big data across these above mentioned sys-
tems to allow all information systems of the enterprise to operate
together in a cooperative manner, so that to maximize the overall
data management and analysis benefit to the enterprise.

8. REFERENCES
[1] Resource Description Framework (RDF).

http://www.w3.org/RDF/

[2] SPARQL 1.1 Overview, W3C Recommendation 21 March
2013. http://www.w3.org/TR/sparql11-overview/

[3] Semantic Web Development Tools.
http://www.w3.org/2001/sw/wiki/Tools

[4] SPARQL Implementations.
http://esw.w3.org/SparqlImplementations

[5] Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi and Peter F. Patel-Schneider. The description
logic handbook: theory, implementation, and applications.
Cambridge University Press, 2003.

[6] Frank Manola and Eric Miller (Editors). RDF Primer, W3C
Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-primer/

[7] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag New York, Inc., 1987.

[8] Datalog. http://www.ccs.neu.edu/home/ramsdell/
tools/datalog/

[9] Clojure Datalog. https://code.google.com/p/
clojure-contrib/wiki/DatalogOverview

[10] IRIS Reasoner. http://iris-reasoner.org/
[11] 4QL. http://4ql.org/
[12] Datalog Educational System (DES).

http://www.fdi.ucm.es/profesor/fernan/DES/

[13] ISO 12213-2:2006 Natural gas – Calculation of
compression factor – Part 2: Calculation using
molar-composition analysis.
http://www.iso.org/iso/home/store/catalogue_

ics/catalogue_detail_ics.htm?csnumber=44411

[14] Pipeline Open Data Standard. http://www.pods.org/
[15] PODS ESRI Spatial. http://www.pods.org/75/PODS%

20ESRI%20Spatial%20Geodatabase/

[16] ArcGIS Pipeline Data Model (APDM).
http://www.esri.com/industries/pipeline/

community/datamodel

[17] Peter Pin-shan Chen. The Entity-Relationship Model:
Toward a Unified View of Data. ACM Transactions on
Database Systems, volume 1, pages 9–36, 1976.

[18] Unified Modeling Language (UML).
http://www.omg.org/spec/UML/

[19] Bernadette Marie Byrne and Yasser Shahzad Qureshi. The
Use of UML Class Diagrams to Teach Database Modelling
and Database Design. Proceedings of the 11th International
Workshop on the Teaching, Learning and Assessment of
Databases, University of Sunderland, 5 July 2013.

127

Renewable Energy Data Sources in the
Semantic Web with OpenWatt

D. Davide Lamanna
Sapienza Università di Roma

Rome, Italy
lamanna@dis.uniroma1.it

Antonio Maccioni
Università Roma Tre

Rome, Italy
maccioni@dia.uniroma3.it

ABSTRACT
Although the sector of renewable energies has gained a sig-
nificant role, companies still encounter considerable barri-
ers to scale up their business. This is partly due to the
way data and information are (wrongly) managed. Often,
data is: partially available, noisy, inconsistent, sparse in het-
erogeneous sources, unstructured, represented through non-
standard and proprietary formats. As a result, energy plan-
ning tasks are semi-automatic or, in the worst cases, even
manual. As a result, the process that uses such data is
exceedingly complex and results to be error-prone and inef-
fective. OpenWatt aims at establishing an ideal scenario
in the renewable energy sector where different categories of
data are fully integrated and can synergically complement
each other. In particular, OpenWatt overcomes existing
drawbacks by introducing the paradigm of Linked Open
Data to represent renewable energy data on the (Semantic)
Web. With OpenWatt, data increases in quality, tools be-
come interoperable with each other and the process gains in
usability, productivity and efficiency. Moreover, OpenWatt
enables and favours the development of new applications and
services.

Keywords
OpenWatt, Renewable Energy, Ontology, Linked Open
Data, Web of Data

1. INTRODUCTION
Renewable Energy (RE) has a prominent market share.

It will increase its popularity in the near future due to
sustainability issues that are affecting the Earth.

Motivation. The report Energy [R]evolution [18] shows
that employees in this sector are around the 50% of the
overall energy sector. On the other hand, RE satisfies only
12.5% of European energy consumption. It sounds like the
potential production and consumption are a mirage and the

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Europe 20-20-201 target is far to be reached. Actually, com-
panies in this sector are not able to scale up their business as
it should be. We ascribe such lack to the wrong way data and
information are managed. Nowadays, businesses can grow
quickly only if information and knowledge management is
efficient, e.g., Amazon, Google, Twitter.

When a player in this sector has to conduct an energy plan
or has to take important decisions about a territory, she has
a limited scope of available information, because they are
closed in several data silos, they use different scale, they
refer different locations, they use different schemas; not to
mention the not-so-rare presence of inconsistencies and er-
rors. Correlating and integrating automatically these data
is unfeasible. It follows that, the planning process requires
significant manual operations and final results have approx-
imations that can incur into errors. These deficiencies affect
the tools that support business decisions. Figure 1 shows
the fragmentation of actual scenario of reference, where sev-
eral data sources are separated and the integration consists
of different processes conducted by humans.

PHOTOVOLTAICWIND POWER

BIOMASSES
GEOTHERMAL

Figure 1: The actual scenario of renewable energy
data managemenent.

In addition, since the scope is limited and the uniformity
is poor, the tools are vertical. It means that they pursue a
technology-driven approach instead of a potentiality-driven
approach. They do not fully consider the potentialities of
available resources in a territory. For example, let us think
of the agricultural contexts where usually only solar energy
is considered in the planning, while other sources (e.g.,
biomasses, wind power) are abundantly available. Decision

1 http://ec.europa.eu/europe2020/index_en.htm

128

tools leave further big potential unexploited. Issues like
these prevent the business in this sector to expand properly.
OpenWatt aims at being the answer to such issues, thus
providing a valid support for energy designers, local public
administrations and private bodies to evaluate the energetic
potential of a territory.

Contribution. OpenWatt2 attempts to change the man-
agement of the data in the RE sector in order to overtake
actual barriers. It creates a unique global database over
a single schema for data about solar energy, wind energy,
biomasses, etc. Data will be integrated, tools will be in-
teroperable at data-level and, consequently, processes will
be automatic. In this way, people can make rational and
convenient choices and it will be much easier to guarantee
self-sustainability of territories.

S
P
A
R
Q

L

OpenWattOpenWatt
DataData

OpenWatt OntologyOpenWatt Ontology

OpenWatt OpenWatt
OntologyOntology

OpenWatt OpenWatt
OntologyOntology

OpenWatt OpenWatt
OntologyOntology

OpenWatt OpenWatt
OntologyOntology

Figure 2: The scenario of renewable energy data
managemenent with OpenWatt.

To this aim, OpenWatt introduces the use of Semantic
Web technologies and Linked Data for energy data man-
agement problems of modelling and integration, which are
recently arising [14]. The benefits that Linked Data bring
about in the renewable energy sector are evident to many [1]
but still there is no adopted ontology nor Linked Data to be
exploited. More in details, the contributions of OpenWatt
are the following:

1. Definition of a common schema (i.e. an ontology) for
renewable energy data;

2. Creation of a global instance of (Linked Open) renew-
able energy data;

The contribution in 1) allows to share the meaning of
concepts and information. In this way, we can spread the
(re-)use of OpenWatt data at global scale. The defini-
tion of the OpenWatt ontology is required to guarantee
interoperability among data and applications. It facilitates
the understanding by both humans and automatic agents.
Consequently, it will be easier to compute automatic elab-
orations and inferences over the data. The contribution in
2) creates the OpenWatt “data common” of available data
within the Web of Data. As we will deepen in the follow-
ing of the paper, we started by considering the datasets that
are actually used for planning purposes. Integrating data by
tracing relationships through links makes value of individ-
ual data higher. This happens because a single information

2 http://openwatt.net/

is enriched by the content of data connected to it. At the
moment, the RE sector is a closed world of data, applica-
tions and human resources. Hence, the greater impact of
OpenWatt is the breakdown of the state of the art in this
sector in order to open it up towards a new scenario based
on innovation, creativity and collaboration.

In fact, since OpenWatt data will be available on
the Web for everyone, people will be enabled to develop
applications and services. It is a fundamental drive to
open the market and create business opportunities. From
the software engineering point of view, the advantage is
twofold: from one hand, they can develop applications
without spending much time in understanding the meaning
of data (nor permission to access them); on the other
hand, applications can benefit from the fact that the
application back-end is leaner, as it does not need to
manage a persistence layer (i.e. a database) nor duplicate
and include big datasets. This is particularly beneficial
to mobile applications, which have limited resources and
cannot embed large datasets or compute real-time data
integrations. This scenario is summarized by Figure 2,
where different data sources directly feed the Web of Data.
On the other side, applications and human users use a
single point of access (i.e. the Web of Data) by means of
the W3C standards for the Semantic Web.

Outline. The rest of the paper is organized as follows. In
Section 2 we introduce some preliminary notion as well as
some related work. Section 3 overviews the project, focus-
ing in particular on the methodology to generate the data
and to design the ontology. The impact and the perspec-
tives are analysed in Section 4. In Section 5, we discuss the
development of the project. Finally, in Section 6, we draw
some conclusions and sketch some future perspectives for
OpenWatt.

2. BACKGROUND
This section introduces the technological and social

scenario where OpenWatt fits.

Open Data. The social, economical and technological
scenario (i.e. crowd-sourcing, Web 2.0, mobile apps, etc.)
contributed to create the Open Data concept, that is the
movement of individuals and organizations who believe
that public data should not “live” enclosed within data
silos, but they have to be freely available on the Web.
As a result, organizations such as government bodies and
public administrations (PAs) have started to publish online
their data [10]. Obviously, the opening and publication of
data in a “raw” format is not sufficient to guarantee high
quality, interoperability and re-use in the development of
applications. It is crucial to provide them in a standard
and machine-readable form. These issues are addressed by
the protocols of the Semantic Web stack and implemented
by Linked Data as explained in the following. This is the
reason why many Open Data initiatives follow the Linked
Data principles [4].

Semantic Web and Linked Data. The vision of the Se-
mantic Web is to introduce a global knowledge base where
data is freely available on the Web and semantically orga-
nized through the so called ontologies of reference, described
with RDF and “linked” to other data. This underlies the re-

129

placement of a Web of linked documents with a proper linked
information space (Web of Data) where data are being en-
riched and inferred (Web of Meaning). These two concepts
of Web of Data and Web of Meaning are often considered
together as Semantic Web.

<rdf:RDF xmlns:owl =

"http://www.w3.org/2002/07/owl#"

xmlns:rdf =

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:skos =

"http://www.w3.org/2004/02/skos/core#"

xmlns:rdfs =

"http://www.w3.org/2000/01/rdf-schema#"

xmlns:ow = "http://www.openwatt.net/">

<owl:Ontology rdf:about="http://openwatt.net/">

<owl:Class rdf:about="Municipality"></owl:Class>

<owl:Class rdf:about="Province"></owl:Class>

<owl:Class rdf:about="Region"></owl:Class>

<owl:Class rdf:about="Country"></owl:Class>

<owl:Class rdf:about="Province"></owl:Class>

<owl:Class rdf:about="Typology"></owl:Class>

<owl:Class rdf:about="Category"></owl:Class>

<owl:Class rdf:about="Measure"></owl:Class>

<owl:Class rdf:about="Potential">

<rdfs:subClassOf rdf:resource="Typology"/>

</owl:Class>

<owl:Class rdf:about="Census">

<rdfs:subClassOf rdf:resource="Measure"/>

</owl:Class>

<ow:Category rdf:about="Solar">

<skos:narrower rdf:resource="Category" />

</ow:Category>

<ow:Category rdf:about="WoodyCrop">

<skos:narrower rdf:resource="Biomass" />

</ow:Category>

...

<rdf:Property rdf:about="measured">

<rdfs:domain rdf:resource="Typology" />

<rdfs:range rdf:resource="Estimation" />

</rdf:Property>

</owl:Ontology>

</rdf:RDF>

Figure 3: The OpenWatt OWL Ontology.

To pursue this vision, Tim Berners-Lee proposed four
principles to follow when opening data on the Web [4]: 1)
use URIs to identify things; 2) use http URIs so people can
look things up; 3) provide useful data in standard RDF; 4)
use RDF to link to other things. Upon these principles, an
Open Data rating system consisting of five levels indicated
through the star symbol ? was proposed3 .

Related Work. Semantic Web technologies tackle data

3 http://5stardata.info/

management tasks differently with respect to existing
paradigms. For this reason, they have been proposed in dif-
ferent contexts as, for instance, to enable a Social Semantic
Web [11]. In the energy data management, Semantic Web
and Linked Data are starting to be taken into considera-
tion [15, 8, 7, 16]. Authors of [15] and [8] use Linked Data
to solve existing problems in smart environments and in do-
motics, including the energy management. EDF, the French
electricity company uses semantic technologies to model its
energy domain [7]. Linked Data principles inspired the de-
sign of an architecture for decentralised Smart Grid sys-
tems [16]. OEI (Ontology for Energy Investigations) [9],
takes inspiration from the Ontology for Biomedical Investi-
gations (OBI) to present a core ontology for energy systems.
Authors of [5] state the intention to base on OWL a rea-
soner for their semantic modelling of life cycle assessment for
energy environmental impact. The non-profit organisation
for Renewable Energy and Energy Efficiency Partnership
(REEP4) has the purpose to use renewable technologies to
make improvements in the developing world. It includes 45
governments among its 385 partner organisations. REEP
manages a Web portal5 where Linked Data about partners,
projects and available datasets are provided [3]. It can be
possible that in the future OpenWatt will be part of the
REEP data.

3. OPENWATT: DATA AND ONTOLOGY
To develop OpenWatt, we adopted a methodology that

leads to the generation of the ontology of the data.

Methodology. The methodology is composed of the fol-
lowing steps:

1. Data gathering: we listed all the data available on the
Web (through dumps of the datasets) that are use-
ful for our aims, that are basically, the data actually
used for the energy planning. For each dataset, we
tracked all its descriptive information (e.g., meaning
of the records, update frequency, licensing, etc.).

2. Data cleaning: this step regards the data quality. The
data is analysed (in order to find inconsistencies, miss-
ings, etc.), cleaned (in order to correct errors) and nor-
malized (in order to homogenize similar fields and dif-
ferent formats). At the end of the step, the datasets
are more accurate and ready to be elaborated.

3. Data modelling: we developed a conceptual model
comprising all the concepts needed and we defined rela-
tionships among these elements. We assigned names to
the concepts and we defined an URI policy. Note that
we considered the concepts that are represented in the
datasets found in Step 1, but we did not take into con-
sideration how they were originally modelled. Hence,
we modelled them from scratch, it would have been
impossible to apply a reverse engineering approach of
different datasets.

4. Data recognition: we compared the data against the
created model in order to find logical inconsistencies.
At the same time, we checked if some of the concepts
can be represented through existing ontologies. This

4 http://www.reeep.org/
5 reegle.info

130

increases interoperability and understandability of our
data. In particular, we reused existing concepts for
geographical locations and people (e.g., core public lo-
cation vocabulary6).

5. Ontology definition: the final model is formalized using
the W3C standard language for ontologies on the Web,
that is OWL7 The output of this step will be explained
better in the following.

6. Data generation: we transformed our data in RDF
conforming the OpenWatt ontology. The output of
this phase is explained better in the following.

7. Metadata generation: we enriched the information
about the datasets by adding metadata, e.g., about
the provenance of the datasets, the last modified date,
the keywords describing the data, etc.

8. External linking: in this phase we linked our data to
data already present in the Web of Data. External
linking is intended as the process to produce RDF
triples which subjects and objects belong to differ-
ent datasets, that is, to bind related entities. Usu-
ally, these links represent the identity relationship be-
tween entities representing the same thing. The OWL
property sameAs is used for the purpose. In our case,
we linked our geographical entities to others already
present on the Web (e.g., DBPedia8 , Geonames9 ,
etc.). This task is usually performed with record link-
age tools. After this step, data is assessed with 5 stars.

9. Data and ontology validation: similarly to every other
development process, a testing and validation task is
performed. We have two different kinds of validation:
syntactic and logical. The first checks if the syntax
of both data and ontology are compliant to the W3C
standards. Logical validation uses test cases that have
to be satisfied. They are expressed through the def-
inition of SPARQL queries. Logical problems may
emerge and require the ontology to be modified, thus
repeating the tasks from the third.

10. Data publication: we loaded our data on a triple store
exposing a SPARQL endpoint10 The endpoint is not
available publicly at the moment of the issue of this
paper. Once it will be published on the Web, URIs
will be dereferenceable [17].

Note that some of these steps have no strict precedence
over others. So, the methodology can be repeated with a
different order of the steps.

Ontology. This paragraph discusses the OpenWatt on-
tology. Figure 4 shows the main concepts of the ontol-
ogy, while Figure 4 shows an excerpt of the ontology in
RDF/XML format. They point out that other ontologies
such as SKOS [12], PROV [13] and GeoNames11 have been
used in OpenWatt.

6 https://joinup.ec.europa.eu/asset/core_location/
home
7 Web Ontology Language - www.w3.org/TR/owl-features/
8 http://dbpedia.org/
9 http://www.geonames.org/

10 SPARQL Query Language for RDF - www.w3.org/TR/
rdf-sparql-query/

11 http://www.geonames.org/

Class

Entity/Individuals

Region

Province

Municipality

Country

Potential Production
Consumption

Renewable Energy
Category

Biomass

Solar

Woody
Crop

Solid
Waste

Source
owl:equivalentClass

rdf:type

rdf:type

skos:narrower

Renewable Energy
Typology

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOfgeonames:locatedIn

geonames:locatedIn

geonames:locatedIn

owl:equivalentClass

owl:equivalentClass

owl:equivalentClass

skos:narrower

Measure

Census
Estimation

rdfs:subClassOf rdfs:subClassOf

rdf:type

rdf:type

prov:wasDerivedFrom

associatedWith

associatedWith

energy

measured

Figure 4: The OpenWatt ontology graph.

The core classes of the ontology are Typology (i.e.
Renewable Energy Typology), Category (i.e. Renewable
Energy Category) and Measure. We have three sub-classes
of Typology: Consumption, Potential and Production.
Every energy data value is instance of one of these classes.
Their names are self-explanatory. They are also associated
to (through the property associatedWith) a geographical
location. These associations are mutually exclusively, in the
sense that only one among the location taxonomy formed
by Country, Region, Province and Municipality classes
is valid. Category is a taxonomy of the existing renewable
energy sources (e.g., Biomass, Solar, Solid Waste, etc.)
implemented through SKOS [12]. Measure describes how
the data was collected (e.g., Estimation, Census, etc.) and
from which source (i.e. Source). Some of the relationships
(i.e. energy) represented in Figure 4 denotes that the
incident class nodes are domain and range of that property.

Data. OpenWatt contains the data we have gathered, but
modelled over the ontology of the previous paragraph. In
Figure 5 we have instantiated and described sample entities
to understand better how data is modelled, which the full
Turtle12 serialization is in Figure 6. In the example, we have
the entity ent1 representing a potential of 10.4 GW coming
from biomasses. It was estimated (i.e. msr1) from the source
src1, which is itself described through the URL and the
creator. ent1 is associated to the municipality mun1, which
is located in the province prv2. This province is already
represented in another dataset of the Web of Data. We
explicitly indicate this equivalence through a link with the
property owl:sameAs.

The example underlines our URI policy. We
have specified URI structures for classes, properties
and instances. The URIs for classes follow the
pattern http://www.openwatt.net/{concept name} where
{concept name} is usually the name of the class,
e.g., Estimation. The URIs for properties follow
the same structure http://www.openwatt.net/{property

name}. The URIs for the instances are structured as
http://www.openwatt.net/{concept name}/{key}. In this
case, {concept name} refers to the class to which the in-

12 Terse RDF Triple Language.

131

Class

Entity/Individuals

Value

Potential

10.4

ent1

Biomass

GW

Source

http://ww..
msr1

Institute...

associatedWith

rdf:type

url

dc:creator
prov:wasDerivedFrom

energy

rdf:type

unitOfMeasurement

geonames:locatedIn

measuredvalue

owl:sameAs

src1

rdf:type

mun1

ent2prv2

rdf:type

Woody
Crop

Estimation

owl:sameAs

Municipality

Province

rdf:type

Census

 Production

7.2 GW

unitOfMeasurementvalue

associatedWith

energy

msr2

measured

rdf:type

rdf:type

Figure 5: OpenWatt sample data graph.

stance belongs to and {key} denotes a unique alphanu-
meric identifier of the instance. If natural keys exist we
use them13 .

4. IMPACT AND PERSPECTIVES
In this section, we try to highlight the potential impact

and the civic relevance of OpenWatt. The whole Renew-
able Energy sector will benefit of more efficient, convenient
and accurate tools.

The work to cleaning and integrating the data is repeat-
edly and redundantly made by everyone approaching the
matter, but it never becomes a common asset, as everyone
starts it from scratch every time. OpenWatt intends to
convert data in standard representations, so that everyone
can directly use the data together with a high quality seman-
tic description of their. Another positive impact of Open-
Watt is on the mobility of people working in the RE sector.
On-the-spot inspections and displacements, the most fre-
quent and time-consuming activities when planning, could
be considerably limited.

Public organizations are actively involved in energy man-
agement of the territories. Many of them regularly pro-
duce local energy plans, where information on provision of
primary energy sources, renewable and non renewable, and
on their use and consumption are collected and provided.
OpenWatt returns this important patrimony in an inte-
grated way to the tax payers.

The benefits about quality and semantic interoperability
of data will be effective with the involvement and partic-
ipation of PAs, citizens and enterprises. PA opens itself
to citizens for the sake of transparency and direct partici-
pation to decision making processes. Apart from counting
on a massive quantity of data, individual citizens and as-
sociations could contribute in a crowd-sourcing fashion to
collect more data. As a matter of fact, detection tools (e.g.,
anemometers, small weather stations, heliometers, etc.) are
often provided free of charge in exchange of data to be col-
lected by them. This enlarges the territorial density covered
by OpenWatt.

13 A natural key is a key that is formed of attributes that
already exist in the real world, e.g., the post code for a
municipality.

@prefix ow: <http://openwatt.net/> .

@prefix rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix

geonames: <http://www.geonames.org/ontology#> .

<http://www.openwatt.net/Potential/ent1>

rdf:type ow:Potential ;

ow:energy ow:Biomass ;

ow:measured

<http://www.openwatt.net/Estimation/msr1> ;

ow:associatedWith

<http://www.openwatt.net/Municipality/mun1> ;

ow:value "10.4" ;

ow:unitOfMeasurement "GW" .

<http://www.openwatt.net/Estimation/msr1>

rdf:type ow:Estimation ;

prov:wasDerivedFrom

<http://www.openwatt.net/Source/src1> .

<http://www.openwatt.net/Municipality/mun1>

rdf:type ow:Municipality ;

owl:sameAs <http://www....> ;

geonames:locatedIn

<http://www.openwatt.net/Province/prv2> .

<http://www.openwatt.net/Source/src1>

rdf:type ow:Source ;

dc:creator "Institute ..." ;

ow:url "http://www..." .

...

Figure 6: OpenWatt sample RDF Data.

Indeed, the maximum achievement of the project would
be making OpenWatt a universally recognized point of ref-
erence in the RE planning for the specialists and operators
of the sector.

5. IMPLEMENTATION
In this section we explain the technical work for imple-

menting OpenWatt, providing implementation details of
the phases referred in the previous section.

1. There are governmental and private energy databases
used for planning purposes. At the moment of publica-
tion we are considering among the others: the Italian
Atlas of solar radiation14 that is useful for inferring
potential energy from photovoltaic systems, the RSE
eolic Atlas15 containing shape files about wind mea-
sures, the National registry of zootechnics16 contain-
ing details at municipal level about farming (e.g., pigs,
cattle, horses, etc.), the GSE 2011 report on renew-

14 http://www.solaritaly.enea.it
15 http://atlanteeolico.rse-web.it
16 http://www.izs.it/ZS/

132

able energies17 containing production plants of differ-
ent categories divided into provinces.

2. We used existing techniques and tools (e.g., relational
databases) for the cleaning. For instance, we checked
the values of similar concepts, we checked if there were
missing rows (e.g., missing provinces), etc.

3. The work of this step is explained in the Section 3.

4. We represented manually the parts of the datasets in
order to check if the model of the previous step was
suitable and could represent the data correctly.

5. The work in this step is explained in Section 3 and was
conducted using the editor Protégé ontology18 .

6. Since we have heterogeneous kinds of data, several
different methods were adopted in this matter. To
convert CSV, TSV, relational databases and spread-
sheets, we used the framework D2RQ [6], which al-
lows to flexibly define mapping from the tabular to
the RDF model. In case of shape files and Web
APIs, we extracted the data and stored them into re-
lational databases. We used PostgreSQL 9.1 as rela-
tional database management system. In case of XML
source data, we used XSLT programs.

7. Most of metadata were added manually. Some other
were obtained through a transformation as it happened
with the data.

8. The external links were produced by configuring
scripts for SILK [19], a record linkage tool for Linked
Data.

9. We defined a set of SPARQL queries to assess the log-
ical validation. For example, we checked that produc-
tion data were not related to estimation measures. To
validate the syntax we used the available validators:
the W3C validator for the data19 and the validator
from the University of Manchester20 for the ontology.

10. We used the triple store Openlink Virtuoso21 to load
our data. It exposes, by default, a SPARQL endpoint.

To make more efficient this long process, we will think
of products for the native production of linked on the Web
data from sensors (i.e. Sense2Web [2]). For facilitating the
development of applications by third parties, we are setting
up an open platform to develop, deploy and run applications,
with useful services to link and mash-up data. The platform
will expose interfaces and provide standard APIs, allowing
the integration with other tools or products by means of
plug-ins. Moreover, we will release all the software as Open
Source, GPLv3 licensed software, for boosting the process
of community development.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented OpenWatt, the Web of

Data space containing renewable energy data. It overcomes
issues related to accessibility, interoperability and under-
standability of data on the Web. In this way, everyone is
allowed to build applications, both mobile and Web, that
facilitate the integration with legacy informative systems.

17 http://www.gse.it/en/pressroom/News/Pages/
statistical-report-2011.aspx

18 http://protege.stanford.edu/
19 www.w3.org/RDF/Validator/
20 http://mowl-power.cs.man.ac.uk:8080/validator/
21 http://virtuoso.openlinksw.com/

As future work, we will take into account more data as we
want OpenWatt to scale at international level. This is a
very challenging task since there will be the need to collect
and organize massive amounts of data. The evolutionary
support needs to be well-designed. In addition, the ontol-
ogy will be extended according to new concepts that we will
come across and we will appropriately model. We are inves-
tigating the working modes to gather data from the crowd
and we are planning to develop demo applications on our
data.

7. REFERENCES
[1] H. Abanda and J. H. M. Tah. Linked data in renewable

energy domain. In 6th International Congress on
Environmental Modelling and Software (iEMSs), 2012.

[2] P. M. Barnaghi and M. Presser. Publishing linked sensor
data. In SSN, 2010.

[3] F. Bauer, D. Recheis, and M. Kaltenböck. data.reegle.info -
a new key portal for open energy data. In ISESS, pages
189–194, 2011.

[4] T. Berners-Lee. Linked data.
http://www.w3.org/DesignIssues/LinkedData.html, 2013.

[5] B. Bertin, V.-M. Scuturici, E. Risler, and J.-M. Pinon. A
semantic approach to life cycle assessment applied on
energy environmental impact data management. In
EDBT/ICDT Workshops, pages 87–94, 2012.

[6] C. Bizer. D2r map - a database to rdf mapping language. In
WWW (Posters), 2003.

[7] P. Chaussecourte, B. Glimm, I. Horrocks, B. Motik, and
L. Pierre. The energy management adviser at EDF. In
International Semantic Web Conference, 2013.

[8] F. Corno and F. Razzak. Publishing lo(d)d: Linked open
(dynamic) data for smart sensing and measuring
environments. In ANT/MobiWIS, pages 381–388, 2012.

[9] M. Cotterell, J. Zheng, Q. Sun, Z. Wu, C. Champlin, and
A. Beach. Facilitating knowledge sharing and analysis in
energy informatics with the ontology for energy
investigations (OEI). Energy Informatics, 12(4), 2012.

[10] G. Lodi, A. Maccioni, and F. Tortorelli. Linked open data
in the italian e-government interoperability framework. In
6th International Conference on Methodologies,
Technologies and Tools enabling e-Government
(METTEG), 2012.

[11] A. Maccioni. Towards an integrated social semantic web. In
2nd International Workshop on Data Management in the
Social Semantic Web (DMSSW), 2013.

[12] A. Miles and S. Bechhofer. Skos simple knowledge
organization system reference. Technical report, W3C,
2009.

[13] P. Missier, K. Belhajjame, and J. Cheney. The w3c prov
family of specifications for modelling provenance metadata.
In EDBT, pages 773–776, 2013.

[14] T. B. Pedersen, W. Lehner, and G. Hackenbroich. Report
on the first international workshop on energy data
management (endm 2012). SIGMOD Record, 42(1):50–52,
May 2013.

[15] F. Razzak, D. Bonino, and F. Corno. Mobile interaction
with smart environments through linked data. In SMC,
pages 2922–2929, 2010.

[16] D. Rech and A. Harth. Towards a decentralised hierarchical
architecture for smart grids. In EDBT/ICDT Workshops,
pages 111–115, 2012.

[17] L. Sauermann, R. Cyganiak, and M. Völkel. Cool uris for
the semantic web. 2011.

[18] S. Teske, T. Pregger, S. Simon, T. Naegler, W. Graus, and
C. Lins. Energy [R]evolution 2010: a sustainable world
energy outlook. Energy Efficiency, 4(3):409–433, 2011.

[19] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk - a link
discovery framework for the web of data. In LDOW, 2009.

133

A Generic Ontology for Prosumer-Oriented Smart Grid

Syed Gillani
Telecom Saint Etienne,
Université Jean Monnet
Saint Etienne, France

syed.gillani@univ-st-
etienne.fr

Frederique Laforest
Telecom Saint Etienne,
Université Jean Monnet
Saint Etienne, France

frederique.laforest@telecom-
st-etienne.fr

Gauthier Picard
Institute Henri Fayol, EMSE

Saint Etienne, France
gauthier.picard@emse.fr

ABSTRACT
The concept of Smart Grid (SG) has comprehensively overhauled
the scene of electric power grid and the integration of Prosumers,
where an entity can consume and produce simultaneously extempo-
rised in a complete paradigm shift. This requires a detailed knowl-
edge base model at each entity level that can react according to con-
textual changes.
This paper outlines a generic and layered ontology design for such
complex Prosumer oriented SG, which enables the autonomous in-
tegration and real-time management of distributed and heteroge-
neous sources. It details the relevant layer to the right granularity
with keen insight into distributed co-ordination and semantic het-
erogeneity. It also presents an inductive based reasoning on such
ontology to make it thoroughly elucidative.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Smart Grid, Prosumers, Ontology design

1. INTRODUCTION
Electrical Grid has evolved surprisingly less over the past 50

years, while the population and electricity demand has grown con-
siderably. The current version of electrical grid suffers from num-
ber of problems including, inefficiency, unreliability in demand re-
sponse, ill-equipped to handle integration of renewable sources and
relying on uninformed infrastructure to educate users regarding their
usage level at any given time. The term Smart Grid (SG) can be
illustrated as according to the description of Energy Independence
and Security Act of 2007 1 ``Smart Grid refers to the modernization
of electricity delivery system that can monitor, protects and auto-
matically optimizes the operations of its interconnected elements.

1http://energy.gov/eere/femp/articles/energy-independence-and-
security-act

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Figure 1: Prosumer Oriented Smart Grid2

It starts from central and distribution generation, through the or-
ganization of system, to the end user's (residential, industrial) au-
tomation, electricity storage and household devices''. Hence, SG is
characterized by distributed flow of energy and information to cre-
ate an intelligent energy delivery system.
This paradigm shift introduces an intriguing concept of Prosumers,
an entity that blurs the distinction between the consumer and pro-
ducer as depicted in Figure 1. Such docile combination allows
a bi-directional flow of energy and information, where even the
consumers (residential, industrial) can produce and trade unused
energy. The centralized grid in-charge of distribution can utilize
this reverse flow of energy by herding it towards power critical
users. Moreover, geographical localized Prosumers can conform
a Smart micro grid to share over-harvested energy. This accrues
systematic reliability of SG and decreases the cost, while eschew-
ingCO2 emissions by employing renewable energy sources at Pro-
sumer premises. This cohesion of efficiency by such system can be
regarded as passive manoeuvre by engaging a consistent consump-
tion model, while Prosumer oriented SG triggers an active plan by
manifestation of DemandResponse (DR), thus allowing the produc-
tion of energy on the basis of meticulous demand, which in return
mitigate the energy losses.
Engineering an intelligent Prosumer oriented SG requires obsequio-
us modelling of information acquired from distributed sensors, whi-
le considering the realm of both producers and consumers. Al-
though, the main challenge in this case is, how to collect data from

2http://www.greenmanufacturer.net/article/machinery-and-
equipment/demand-response-the-power-program-that-pays-
you-back

134

each energy source at individual level, considering the presence
of various techniques and data models. The two indigenous ap-
proaches used to acquire such data are Direct Sensing and Single
Point Sensing [5]. Direct Sensing employs each device with a dis-
tant sensor, while Single Point Sensing, uses one sensor to disam-
biguate all the appliances with total voltage measurement as events
[6]. Since Prosumer oriented concept of SG involves in profound
role change of system-wide stakeholders (Consumers, Producers,
Prosumers), there is a compelling need of handling, storing and ex-
tracting knowledge out of data received from heterogeneous sources.
Semantic web offers such functionality by allowing Smart Grid to
imbue with intelligence, logical and domain specific reasoning and
meticulous mapping between entities. Thus, a generic and layered
ontology plays a vital role in embedding efficient knowledge rea-
soning and management of bi-directional flow of information.
The rest of the paper is distributed into two sections. Section 2
discusses the design and requirements for generic and layered on-
tology and Section 3 examines the rule-based inductive reasoning
on domain ontology.

2. ONTOLOGY MODELLING
An optimized ontology is characterized by encapsulating entire

domain concepts to the right granularity. Since modern systems
evolve continuously with time and SG is still far from its stan-
dardized model, thus it faces number of issues, such as complex-
ity of network, large number of entities, diversity in architecture
and highly flexible requirements. This solicits a generic knowledge
base design, where all the participants of the system are modelled
and linked to the right granularity. The idea of dynamic ontology
integration [8] may be applicable to such context, where different
versioning techniques are used to focus the impact of changes on
logical consistency of ontology. Although, in the context of com-
plex Smart Grid, where current and historical information are both
expedient and system comprised of large number of heterogeneous
and distributed sources, such techniques won't suffice to solve se-
mantic heterogeneity [9]. For instance a media player could be a
simple stereo system or a professional sound system. This how-
ever, enlightens the pressing need of a generic and layered ontology
design, where these diverse entities should be mapped according to
their context. The acceptable requirements of such system are two
folded. Firstly, the knowledge base data model should encapsulate
all the information at right granularity (generality). Secondly, it
should entertain any evolved context without disturbing the overall
structure of knowledge base (layered). Therefore, it requires an on-
tology design that can adapt according to a new concept, such as if
a new device is added at consumer premises that is not yet defined
in domain ontology. Furthermore, the system should employ a lay-
ered ontology, where classified concepts could be modified without
affecting the wholemodel. For instance, if a new type of power gen-
erator is added to the system, it should only require the addition of
new concept in right class without modifying any link in domain
ontology. The integration of Prosumers to such complex system,
where individual entities co-operate with each other according to
their goals and geographical location, begets it more challenging to
annotate available data with well-defined relationships that provide
the accurate context of their use.

2.1 Use Cases
In order to consolidate and excite the idea of modelling multi-

domain and flexible ontology, we present some use cases as follow-
ing. This is not an exhaustive list, but a cross-section of interesting
use cases.

Ad-hoc Based :

A-UC 1 Find a residential sector with highest power consump-
tion rates and advise the system regarding the type and
number of new storage or renewable sources that should
be added in order to satisfy its demands and reduce en-
ergy cost (micro grid composition).

A-UC 2 Determine the most economical, reliable and environ-
mental friendly energy producer in a certain city. What
kind of energy is produced by such source and com-
pare the change in their production capacity with corre-
sponding weather conditions?

A-UC 3 Determine the number of consumers connected to a spe-
cific producer and list their infrastructure type, energy
classes and total revenue generated since last 2 months.

A-UC 4 Compare all the power sources used by a certain premi-
ses for the last 6 months as according to their reliability,
costs and environmental effects.

Advice Based :

AB-UC 1 What is the total power consumption for applianceswith
power rating greater than 1000Watt in a certain premises
and describe their usage patterns for the last month at
the temperature range of 27-35 C. Additionally, advise
about better scheduling to reduce the cost of electricity?

AB-UC 2 List feasible dates and times, whichwould be cost effec-
tive to operate awashingmachine in certain premises by
comparing past consumption patterns.

Event Based :

E-UC 1 In an event of power failure or shortage from a certain
generation source, switch to back-up energy storage or
other available power sources.

E-UC 2 If the generator power source rating is 3KWatt for last
2 hours during peak time with price ``P1'' and only low
voltage (10-100Watt) appliances are operational at cur-
rent time, then check the status of attached power stor-
age unit, if it's more than 70% charged then shift the
load from the main power source to storage source.

The following section illustrates our ontology design for Prosumer
oriented SG. Our ontology3 is divided into eight conspicuous layers
as depicted in Figure 2.

2.2 Infrastructure Type
The power consumption patterns directly correlate with infras-

tructure's operational type, time and geographical location, which
evocates the requirement of such classifications. For instance a
residential house will consume more energy at night or weekends,
while consumption demand of an office varies according to working
hours. Additionally, these premises based classification can iden-
tify each entity in the system by using the address property and at-
tributes it as normal or power critical, e.g. a hospital requires more
reliable energy source as compare to residential property. These
distributions are influenced by UK property classifications4 and are
as following.
Commercial Premises Entities in this class consist of commercial

premises, such as retailing shops, food restaurants, cinemas
etc. with varying operating times depending on the type.

3http://data-satin.telecom-st-etienne.fr/
ontologies/smartgrids/smartgrid2.ttl
4http://www.legislation.gov.uk/uksi/1987/ 764/article/3/made

135

rdf:type

rdf:type

rdf:type

Owl:Entity

Power

Generator

 Electrical

Appliances

rdf:type

rdf:type

rdf:type

Power

Storage

Weather

Report

Service

Contract
Component

Conectivity
Infrastructure

Type

xsd:string

xsd:integer
Timeline

xsd:string

xsd:string

hasserviceprovider

hasperuniprice

hascontractperiod

hasprofileclasses

haspaymentscheme

Consumer

Conncetivity

Producer

Connectivity

instance of

Infra-Type

Instance of

Infra-Type

hasconsumertype

hasprosumertype

rdf:type

Commercial
geo:Point

xsd:string

geo:Point

hascoordinates

haspremisestype

haspremissestype

hascoordinates

Events

Generator

Event
Appliances

Event

Weather

Event

Storage

Event

haseventsource

haseventsource

haseventsource

haseventsource

haseventsource

rdf:type rdf:type

Temporal

Concepts

Instant Interval

hastimestamp

rdf:type rdf:type

Weather

Ontology

0-10

10-100

100-1000

Above 1000

rdf:type

rdf:type

Renewable

Non-renewable

rdf:type

Energy

Management

Power

Quality

rdf:type

rdf:type

Subclass Relation

Property Relation

Industrial

xsd:string

Figure 2: Prosumer-oriented SG Ontology Design

Business Related Premises This class constitutes various business
related entities. These premises usually operate during office
times, thus it would permit to postulate their consumption be-
haviours and better scheduling algorithms.

Residential Premises This class deals with residential premises a-
nd plays a vital role to determine the overall consumption
of the SG, as it constitutes of nearly quarter of total energy
consumption, additionally, residential consumption patterns
are agitated before and after office hours.

Non-residential Institutions This class consists of non-residential
institutes such as hospitals, schools, libraries etc. These prem-
ises accord as power critical ones and require a higher prior-
ity.

Industrial Premises This class defines the industrial infrastructure,
where industries demand an uninterrupted and reliable power
source, thus modelling such entity portrays the consumption
pattern of power critical sources and aids in assigning power
sources.

The importance of such distribution can be concluded from A-UC 1 .
Hence, in order to accurately advise a consumer reading storage
choice, infrastructure type should be taken into consideration be-
cause residential premises can't afford an industrial type storage unit
and its preferred choice should have fast charging and discharging
response. Furthermore, micro grid composition is more feasible in
residential sector as compared to industrial one. Such information
comfort the composition of smart micro grid, better scheduling to
reduce consumption costs and prioritise the power distribution ac-
cordingly.

2.3 Electrical Appliances
The efficient management of heterogeneous electrical appliances

residing in different entities require automatic collection of data
from power consumers. Direct sensing promises an exact consump-
tion and temporal data, while single point sensing reasoned for a
more practical solution by using a single sensor to disambiguate
different appliances. This demands a generic data structure that
can accommodate both direct and single point sensing. Addition-
ally, there could be numerous novel devices tuning in to the system
that would require a flexible data structure. This leads us to classify
these devices in a two layered architecture, where first layer divides
the consumer devices according to their power ratings, while second

layer classifies them according to their exact type (mining appropri-
ate IEC CIM 5 defined devices). This enables the ontology to grasp
the dynamic nature of SG.
The gravity of this distribution can be judged from AB-UC 1 .
Where appliances with higher or mid-level power consumption re-
quires better scheduling and most of these appliances (washing ma-
chines, water heaters) demonstrate repeatable switching pattern alo-
ng certain time periods, while appliances with lower levels permit
to continuous consumption pattern. Consequently, these classifica-
tions will aid in implementing inductive inference to distribute ap-
pliances according to their operational/consumption patterns. This
assortment of appliances are comprised of 0-10Watts of basic house-
hold and office appliance with lower priority of scheduling, 10-100
Watts of mid range appliances and over 1000 Watts of higher pow-
ered and priority devices.

2.4 Electrical Generation System
Smart Grid encompasses a vast number of diversified, distributed

and variable energy sources, which endeavour to model these en-
ergy sources within the domain ontology. Additionally, the comeli-
ness of Smart Grid resides with its flexible architecture that allows
the integration of renewable energy sources, while mitigating the
climate effects. This very point rested a compelling case to classify
each power source not only according to its operational type but
also regarding the type of produced energy. This classification will
provide an omniscient view of the system, while offering valuable
information to the end users. Our ontology captures these classifi-
cations as following.
Non-Renewable Energy Non-renewable energy sources encom-

pass all kinds of fossil fuel and its classification is based on
their carbon footprint, while considering both direct - arising
during operational power plant and indirect - arising during
the non-operational phases of production life cycle (cradle-
to-grave).

Renewable Energy Renewable energy exists perpetually, inexhau-
stible and more importantly a clean alternative to non-renew-
able sources. Although it is regarded as green energy, but Its
reliance on weather conditions demands the classification of
renewable sources according to their operational types. For
example wind, solar.

5http://www.iec.ch/smartgrid/standards/

136

The classification of such power sources can be regarded as an im-
portant part of the ontology and its absence would impede efficient
management of energy sources. A-UC 2 enlightens its impor-
tance. For instance, a competent energy source should be reliable
and environmental friendly, where fossil fuel produced energy is re-
garded as reliable with hugeCO2 footprint, while renewable energy
sources are much more cleaner but its reliability varies according to
geographical locations and weather conditions.

2.5 Power Storage System
Power Storage systems provide three crucial services, firstly it

depletes the electricity cost by storing it during the off-peak times,
secondly, it improves the reliability of the system in case of power
network failure. And finally to maintain and improve the power
quality, frequency and voltage. Additionally, renewable energy
sources can maximise their production efficiency when paired with
an energy storage system. These storage systems are classified ac-
cording to type, produced power, charge-and-discharge efficiency,
cost per KHW [3]. Such attributes can guide the consumer regard-
ing economics and reliability of a storage system. There are two
principle criteria to classify various storage systems: functional and
forms, as the context of SG demands more of functional attributes,
consequently modelling such behaviours at knowledge level res-
onates well with load balancing and scheduling of power storage
systems.
Energy Management These types of storage solutions are usu-

ally equipped with large-scale entities drawing power up to
100MW. Hence, they can be regarded as sole power genera-
tor sources and most of the industrial based renewable energy
sources are connected to such storage units. This class of de-
vices is attributed with higher charging and discharging time
periods.

Power Quality Storage devices of this class are utilized for power
quality, such as instantaneous voltage drop, flicker mitiga-
tion and short duration uninterrupted power supply. They are
equipped at relatively lower power consumers (residential)
and have lower charging and discharging time periods.

Bridging Power These are more responsive type of storage de-
vices with relatively fast response and long discharging time.
These are usually installed at residential renewable sources
with power rating of about (100KW-10MW).

This distribution recommends an efficient scheduling of power gen-
erator and storage sources and A-UC 1 is influenced by the right
characterisation of these storage sources. As the right functional
type of these sources determines if a premise is using it merely as a
energy source or as a dis-patchable generation source to accord for
power shortage and to mitigate frequency problems. Furthermore,
by determining weather conditions, infrastructure type and required
characteristic of an entity, system can predict a better choice of stor-
age unit. This constitute a strong case for behavioural distribution
of storage units rather than just according to their storage capacity.

2.6 Weather Report
Weather and temperature are important drivers of electricity con-

sumption and production patterns and meticulous forecast of en-
ergy production relies on accurate measurement and modelling of
weather data. AB-UC 1 and A-UC 2 straighten out the impor-
tance of such information. As change in weather conditions leads to
the use of high power appliances (air-con in summer, heater in win-
ter) and in order to avoid power shortage during these periods, the
system should build forecasting models for consumption patterns
and schedule these sources in acceptable and efficient manner. Fur-
thermore, the production of alternate or renewable energy directly

relates to fickle weather conditions and reliability of these sources
can be predicted by modelling weather related information. There
are various ontologies available for modelling such functionalities,
such as NNEW 6 and SSN 7.

2.7 Events
Smart Grid deals with real-time monitoring and management of

interconnected entities, this emanates a system equipped with Com-
plex Event Processing (CEP) [1] that is able to detect occurrence of
specified patterns of events and respond accordingly. Thus, fabri-
cating events becomes a legitimate objective of ontology, where it
must be capable of accounting for spatial relation both synchron-
ically and diachronically. Such functionality can be embedded to
ontology by classifying each event type, temporal annotation and
their relationship with domain entities. This distinction is based on
the fact that an event may involve with number of processes. E.g. a
change in the consumption power of an entity might involve in turn-
ing a washing machine off or turning on a hover. This requires an
exact relationship of an event with corresponding sub-entity. Our
ontology segregates events into following four types.
Electrical Appliance Events These events are coined to the elec-

trical appliance and trigger the change in the consumption
pattern, which in result prompt the process of load schedul-
ing or change in demand response.

Weather Event These events capture the context of drastic change
in weather, as power consumption and production is directly
related to weather condition, thus mining those events lay
down the ground for predicting consumption and production
behaviours.

Storage Events The anticipated production capability of a stor-
age system is highly dependent on its temporal aspects, such
as, performance of a storage unit is directly proportional to
its charging and discharging time and complying with such
events aid in articulating the reliability of certain premises.

Generator Events These events deal with the power production
capabilities of producers. For instance, if there is a change in
the production capabilities or failure of a generator.

Consequently, the notion of Prosumers consolidated with renew-
able energy sources portray a more complex glimpse of the system
as depicted in E-UC 1 and E-UC 2 , where with frequent nego-
tiations between available producers crave to capture the current
relationship between consumers and producers. Furthermore, in or-
der to predict the reliability of such production facility the temporal
events linked to the corresponding sources must be added to the
domain ontology.

2.8 Service Contracts Ontology
Service contracts or agreements are legally enforceable promise

or undertaking along-with associated conditions. In case of Pro-
sumers, these contracts will be between two parties, one who pro-
duced electricity (seller) and one who will like to consume electric-
ity (buyer). Contractual information is quite cogent for communi-
cation between producer and consumer domains as in a competitive
market; this information will directly cajole the decision and pref-
erence of both parties. Modelling such information will enable the
consumer to choose a service provider entailing better economical
deals and will guide producer to offer lucrative deals in order to
attract maximum number of customers. The various properties as-
sociated with this class of ontology includes, the name of service
provider, Start Date/End Date of contract, Profile Classes8 of con-
6https://wiki.ucar.edu/display/NNEWD/
7http://www.w3.org/2005/Incubator/ssn/ssnx/weather-station/
8http://www2.ademe.fr

137

nected consumer, type of payment scheme for the connection, early
contract termination charges and per unit price of electricity.
This part of ontology draws a comprehensive attention towards com-
petitive energy market. Consequently, with the integration of Pro-
sumers, each entity will prefer a flexible energy package and such
properties in domain ontology not only assist consumer to deter-
mine the right connectivity type but also advocate a producer to
predict the approximate energy demand of a consumer according to
described consumer profiles and thus, calculate total revenue gen-
erated from such consumers as depicted in A-UC 3 . For example,
an energy provider can classify a city according to consumption
classes of customers while calculating revenue in each sector and
prioritise or increase the production facilities to areas with higher
revenues or predicted energy consumption.

2.9 Component Connectivity
The movement towards renewable energy resources and the ap-

parent awareness of energy consumption lead to new challenges in
the distribution grid and energy production. This distributed and
decentralized power generation leads to the concept of smart mi-
crogrid, where a group of loads and energy sources are aggregated
together to appear as a single asset in a localized way. This for-
mation requires the correct location of connected sources, thus this
part of the ontology focused on defining the exact connectivity re-
lationships between producers and consumers. Furthermore, these
properties can also be used to determine the efficiency and expected
load of consumer entities. An entity coined as a power source clas-
sifies consumers according to their total consumed power and an
entity under consumption's tutelage record the type of energy pro-
duced by the power source and total power consumed from such
sources, while inheriting all the types discussed in Power genera-
tion and Storage system. Component connectivity advocates much
of the moral motivations of a consumer. Since consumer decides
its energy source according to its reliability and produced carbon
footprint. As depicted in A-UC 4 , the connectivity information of
these distributed sources and sinks is quite essential to compare the
overall performance, such information assist in reasoning the user's
preferred energy type, as environmental aware consumers will pre-
fer alternate energy, while industrial users will prefer more reliable
energy source like nuclear or fossil fuel.

3. RULES BASED INDUCTIVE INFERENCE
Inductive inference involves in looking various patterns/trends

and classifying them according to their properties. Its judgement
process is influenced by heuristics and rules that tap into associa-
tive information about context and similarity. This, however is
more non-monotonic in nature, where the conclusion of premises
are drawn much due to the presence or absence of them and are
bound to change, when more knowledge is acquired and previously
drawn conclusion may have nullified, as the rules of inference that
led to them may no longer be active. Such inference process con-
sist of two main approaches, where the first one merely draws sta-
tistical conclusion based on historical data, while the later deals
with predicting future values by utilising probabilistic models, such
as Bayesian inference [4]. Let ``X'' is a set of observed charac-
teristics from data and ``Y'' is a set of predicted outcomes then,
Ω = (X ⊗ Y)∞, where Ω is a set of concluded states and can
be narrow downed to the right granularity by employing Bayesian
model [4]. In the context of SG, where efficient scheduling and
management of energy sources makes quite the case, these inferred
incremental part of ontology drives the effective reasoning and an-
alytical job. The three main types of these incremental ontologies

rdf:type

rdf:type

rdf:type

Type of

Appliance

On/Off

Appliances

 Permanent Consumer

Appliances

Finate State

Machines

Continuously Variable

Appliances

Weekly/Monthly

/Daily

E-Timestamp

S-TimestampS-Timestamp

Weekly/Monthly

/Daily

S-Timestamp

Weekly/Monthly

/Daily
hastypeofusage dtstarttime

dtendtime

hastypeofusages

dtstarttime

dtendtimedtstarttime

dtendtime

hastypeofusage

dtstarttime

dtendtime

hastypeofusage

hastypeofappliance

rdf:type

Figure 3: Inductive Ontology for Appliance Consumption Pat-
terns

that ex-cogitate from inductive inference are as following.

3.1 Appliance Consumption Patterns
The efficient management of electricity requires classification

of consumer appliances according to their operational patterns and
provide the required flexibility in controlling electricity costs. Such
methods of controlling electricity consumption are directly related
to demand response, which relies on varying price of electricity to
reduce peak demand. For instance, a washing machine electricity
consumption pattern is usually weekly, hence it can be scheduled to
operate at night during weekdays (AB-UC 2). Furthermore, con-
sumer entity could entail the production attribute, thus it can sell its
produced power according to the consumption patterns of its appli-
ance. Consumer appliance can be classified according to assigned
rules into three main types, depending on their consumption pat-
terns [10] [6], as depicted in Figure 4.
Finite State Machines or Multi State Devices This category inc-

ludes the devices that have repeatable switching patterns. Th-
us, the switching cycle could be repeated daily, weekly or
monthly. Examples are washing machines, dryers and lawn
mowers.

On/Off Devices This includes the most household devices that are
turned on and off in frequent manner, such as toaster, light
bulb, water pumps etc.

Permanent Consumer Appliances This category inclu-des the ap-
pliances that remain operative for all the time (24x7). Ex-
ample includes hard-wired smoking alarms and some power
supplies.

Continuously Variable Consumer Devices This category includ-
es the devices with variable states and draw power randomly
without any specific pattern. E.g. Power tools, dimmer lights.

These classifications follow the non-monotonic principle and they
revised itself with change in newly acquired data. Furthermore, as
according to AB-UC 1 and AB-UC 2 , extractingmeaningful ap-
pliance patterns can not only assist the users with understanding
their behaviours but also to make judgement in relation to better
scheduling of appliances during peak hours in order to reduce the
overall cost of electricity.

3.2 Alternate Energy Production Patterns
Energy produced by almost all renewable energy technologies is

wholly dependent on the weather. Wind and wave power depend on
the speed, direction and duration of the wind. Solar power, whether
photovoltaic or thermal, depends on the intensity and duration of
solar irradiation. Consequently, weather and climate is a common

138

denominator for all of these increasingly important sources of re-
newable energy. To determine the expected energy yield of a re-
newable power source, inductive reasoning can match the past pat-
terns (production and weather) and predict the future production
accordingly. Embedding this information in the ontology will en-
able the consumer to predict the reliability of the energy source and
also helps in distributing load of consumer appliances. IBM's 9 new
advanced power and weather modelling technology showcases the
importance of such information.

3.3 Producer’s Performance Patterns
The performance of an energy producer can be judged from its

efficiency, economical operations and impact on the environment.
SG not only promises a more efficient and reliable system but also
emphasis on the reduction of greenhouse gases (GHG), which em-
phasis on reliable audit of energy producer. Hence, each consumer
can infer the reliability of its producer by applying inductive reason-
ing on its past patterns. As performance critical entities, for instance
hospitals and industries will prefer a more reliable source. Further-
more, in order to accurately compare carbon footprints of these dif-
ferent technologies, the total CO2 emitted through the production
cycle must be calculated. This measurement will influence the con-
sumers to priorities the choice on the bases of reliability and/or envi-
ronment friendly consumers. The carbon footprint of each producer
entity can be calculated by comparing the type of the power plant
and produced power.

4. RELATED WORK
There are various industrial standards that co-exist for SGmodel,

e.g. IEC CIM and NEMA10, but these standards are not diversified,
and detailed enough to embed into Prosumer oriented SG. Although
appliance description as mentioned in IEC CIM (as discussed in
Section 2.3) is quite interesting and our model extracts and extends
these useful concepts and exploits them for low-level appliance de-
scription.
Semantic based modelling discussed in [7] offers certain design
guidelines to effectively integrate smart grid to the household ap-
pliance. It emphasis on heterogeneous data acquisition and how it
could be used to provide value added services to users. But, with
the integration of distributed alternate energy resources and Pro-
sumers, the model requires to cater this useful information to har-
ness the effective energy exchange between various entities. [11]
describes an interesting ontology for mapping household devices by
integrated various available ontologies. It also outlines an interest-
ing event processing architecture considering the context of Smart
Grid. The main drawbacks that can be inferred from such tech-
niques are its reliance on direct sensing and failure to capture real
world scenarios. Its ontology is quite detailed in nature by integrat-
ing IEC CIM concepts, where such information cannot be extracted
from each and every household. Furthermore, nothing sustainable
has been discussed regarding the compatibility of these integrated
ontologies and presented ontology is still in conceptual stage with-
out any implemented version. [2] describes a semantically rich en-
ergy management system, where ontologies are used to represent
each customer in a relevant domain, focusing on its energy usage
and environment. These facts are then reasoned to infer the rele-
vant tips for customers. This work doesn't detail any information
regarding the acquisition of data and the conceptual ontology and
reasoning is performed on a static set of triple store rather process-
ing any real time events. However, A-box and T-box assertion from
9http://www.ibm.com/press/us/en/pressrelease/41310.wss
10http://www.nema.org/pages/default.aspx

customer data mimics the usefulness of extending ontology in the
context of energy management systems. In a whole, state of art
ontologies for Smart Grid are unable to capture the real world sce-
narios or various heterogeneous domains (generation, storage) this
leads to an abstract ontologies that doesn't cater each domain level
in detail.

5. CONCLUSION AND FUTURE WORK
In this paper we present a multi-dimensional and generic ontol-

ogy model equipped with inductive based reasoning and complex
event processing, by attributing each domain of interest with rele-
vant relations. These relations and requirements, as depicted in our
ontology are ratified through our use cases, while considering the
context of Prosumer oriented SG. Our future endeavours involve in
integration of proposed ontology with SEAS project 11 and regress
testing with various SG based simulators. Furthermore, we intend
to develop an open source engine for complex event processing us-
ing distributed multi-agents paradigm in the context of Prosumer
oriented SG.

6. REFERENCES
[1] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Etalis:

Rule-based reasoning in event processing. Semantic Web:
Interoperability, Usability, Applicability, 2011.

[2] P. Chaussecourte, B. Glimm, I. Horrocks, B. Motik, and
L. Pierre. The energy management adviser at edf. In
H. Alani, L. Kagal, and A. Fokoue, editors, The Semantic
Web-ISWC 2013, volume 8219 of LNCS, pages 49--64.

[3] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding.
Progress in electrical energy storage system: A critical
review. Progress in Natural Science, Mar. 2009.

[4] M. Feldkircher. Forecast combination and bayesian model
averaging - a prior sensitivity analysis. Working Papers in
Economics and Finance 2010-14, Sept.

[5] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds, and
S. Patel. Disaggregated end-use energy sensing for the smart
grid. Pervasive Computing, IEEE, 10(1):28--39, 2011.

[6] G. Hart. Nonintrusive appliance load monitoring. pages
1870--1891. IEEE, 1992.

[7] A. Monacchi, D. Egarter, and W. Elmenreich. Integrating
households into the smart grid. In Modeling and Simulation
of Cyber-Physical Energy Systems (MSCPES), 2013.

[8] P. Pittet, C. Nicolle, and C. Cruz. Guidelines for a dynamic
ontology - integrating tools of evolution and versioning in
ontology. CoRR, abs/1208.1750, 2012.

[9] M. Uschold and M. Grüninger. Ontologies and semantics for
seamless connectivity. SIGMOD Record, 33(4):58--64, 2004.

[10] M. Zeifman and K. Roth. Nonintrusive appliance load
monitoring: Review and outlook. Consumer Electronics,
IEEE Transactions on, 57(1):76--84, 2011.

[11] Q. Zhou, S. Natarajan, Y. Simmhan, and V. Prasanna.
Semantic information modeling for emerging applications in
smart grid. In Proceedings of the 2012 Ninth International
Conference on Information Technology - New Generations,
ITNG '12, pages 775--782. IEEE Computer Society.

11https://itea3.org/project/seas.html

139

Computing Electricity Consumption Profiles
from Household Smart Meter Data

Omid Ardakanian
University of Waterloo

Waterloo, Ontario, Canada
oardakan@uwaterloo.ca

Negar Koochakzadeh
∗

Oracle
Vancouver, BC, Canada

negar@koochakzadeh.net

Rayman Preet Singh
University of Waterloo

Waterloo, Ontario, Canada
rmmathar@uwaterloo.ca

Lukasz Golab
University of Waterloo

Waterloo, Ontario, Canada
lgolab@uwaterloo.ca

S. Keshav
University of Waterloo

Waterloo, Ontario, Canada
keshav@uwaterloo.ca

ABSTRACT
In this paper, we investigate a critical problem in smart
meter data mining: computing electricity consumption pro-
files. We present a simple, interpretable and practical pro-
filing framework for residential consumers, which accounts
for variations in electricity consumption at different times
of day and at different external temperatures. Our approach
is to isolate the effect of external temperature on electricity
consumption and apply a time-series autoregressive model to
the remaining signal. The proposed profiles may be used for
making personalized energy-saving recommendations, de-
tecting outliers, and generating very large realistic data sets
for testing the scalability of smart meter data management
systems. Using predictive power as a metric for the accu-
racy of consumption profiles, we show, using a real data
set of 1000 homes, that our approach results in improved
root-mean-squared prediction error compared to existing ap-
proaches.

1. INTRODUCTION
Smart electricity meters are rapidly replacing conventional

meters in many parts of the world. Smart metering systems
offer many operational advantages for energy utilities and
policy makers, including

• enabling automated collection of fine-grained (typ-
ically half-hourly or hourly) consumption readings,
thereby eliminating the need for utilities to send out
estimated bills or to dispatch personnel to customer
premises and manually read the meters,

• enabling dynamic pricing schemes that depend on the
time-of-day in order to reduce demand for electricity

∗Work done while the author was a Postdoctoral Fellow at
the University of Waterloo.

(c) 2014, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014, Athens,
Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0.

during peak times.

However, exploiting smart metering systems to their fullest
also requires mining the vast amounts of collected consump-
tion data to obtain insights into grid operations and con-
sumer behaviour [2, 4, 7, 12,16,21].

In this paper, we address the problem of computing elec-
tricity consumption profiles from smart meter data, with a
focus on residential customers. The residential sector con-
tributes a significant fraction to the total electricity demand
(30 percent in Canada [5]) and greenhouse gas emissions
(see, e.g., [19,24] for United States statistics). Furthermore,
in many regions, residential consumers are significant con-
tributors to peak demand; e.g., in Ontario, Canada, resi-
dential air conditioning load is a major contributor to peak
demand, which occurs in the afternoon of hot summer week-
days [23].

We argue that consumption profile generation is a fun-
damental smart meter data mining operation that electric-
ity providers, resellers and consultants can perform, with at
least the following applications:

• Conducting “virtual energy audits” and making per-
sonalized recommendations for saving electricity based
on the trends identified in the profiles.

• Clustering households based on the features captured
by the profiles. This may be used to understand differ-
ent classes of consumers and to design targeted energy
conservation and peak reduction programs for different
classes.

• Generating real-time alerts if new consumption read-
ings do not match the expected consumption predicted
by the profiles. A related application is to identify con-
sumers with “suspicious” load profiles that do not fit
in any cluster, which could indicate electricity theft,
malfunctioning meters or the presence of specialized
equipment such as electric vehicle chargers.

• Generating realistic synthetic data based on the avail-
able real data. This may be used as input to grid simu-
lation, transformer sizing, forecasting and pricing mod-
els, or to create very large realistic data sets for testing
the scalability of smart meter data management sys-
tems.

140

1.1 Challenges and Contributions
In order to be useful for the above applications, we argue

that consumption profiles must satisfy the following criteria.

• First, they must be accurate, i.e., able to describe and
predict consumption with reasonable accuracy.

• Second, they must be easily interpretable; a complex
machine learning model may be accurate, but if it is
not interpretable, then actionable energy-saving rec-
ommendations cannot be easily inferred from it.

• Third, they must be practical, and therefore they
should only require data that are easily available to
utilities, such as hourly smart meter readings and
weather. While household characteristics (e.g., home
size and age, number of appliances, number of occu-
pants, etc.) and consumer demographics could be use-
ful, this information is typically not available to utili-
ties due to privacy regulations and cannot be easily ob-
tained without intrusive measurements and question-
ing.

The challenge in computing accurate and interpretable
profiles from smart meter data is that residential electricity
consumption depends on many factors, including the time
of day, weather and the occupants’ daily routines. Broadly
speaking, prior work can be divided into two approaches.
One is to compute various aggregate statistics from histori-
cal consumption data that account for typical daily activity;
examples include the average, maximum, minimum and vari-
ance of hourly or daily consumption, ratios of night-to-day
or morning-to-evening consumption, or identifying the hour
of day when peak consumption usually occurs. The other
approach has been to correlate consumption with external
temperature, e.g., using piecewise linear regression, and use
the correlation coefficients as representatives for the cooling
and heating efficiency of homes.

In this paper, we propose a simple and practical tech-
nique that combines the best features of existing methods,
and accounts for both temperature and activity in an ac-
curate and interpretable fashion. The idea is to remove the
effects of external temperature and outliers from the raw
consumption data1, and compute typical hourly consump-
tion values from the remaining signal using a time series
auto-correlation model. This gives us typical consumption
levels of a given home at different times of the day, indepen-
dent of temperature and robust to “noise” (e.g., time periods
when the home was empty or unusually busy).

Specifically, we make the following contributions in this
paper:

• We propose a simple and interpretable technique for
computing electricity consumption profiles from house-
hold smart meter data, which may be used for per-
sonalized recommendations, forecasting, classification,
and as input to simulation models.

• Using predictive power as a metric for accuracy and
hence the representativeness of consumption profiles,

1Here, by outliers we mean consumption readings that are
much lower or higher than the average consumption for the
given home, and thus do not correspond to the typical level
of activity in this home.

we compare the proposed method to several existing
approaches. Using a real data set, consisting of a year
of hourly smart meter readings from 1000 homes in
southern Ontario, Canada, we show that our approach
outperforms existing approaches in terms of the root-
mean-squared prediction error.

1.2 Roadmap
The remainder of this paper is structured as follows. Sec-

tion 2 gives the intuition and an overview of our solution;
Section 3 presents the details of our consumption profile al-
gorithm; Section 4 describes our experimental results; Sec-
tion 5 discusses related work; and Section 6 concludes the pa-
per and discusses open problems in smart meter data man-
agement.

2. INTUITION AND SOLUTION
OVERVIEW

In this section, we give an overview of our solution and
we explain the intuition behind it. The input to our prob-
lem consists of two time series: 1) periodic (e.g., hourly)
timestamped electricity consumption readings from a given
home for some period of time (e.g, 6 months or a year), and
2) a corresponding time series with external temperature
measurements, with the same granularity and for the same
period of time, e.g., from a nearby weather station.

A very simple consumption profile could consist of 24
numbers: the average consumption for each hour of the day,
aggregated over some or all of the input data. A simple ex-
tension is to compute two such profiles: one for weekdays
and one for weekends and holidays. (We could go further
and compute separate profiles for every day of the week,
but, to keep the model simple and easily interpretable, we
will only consider weekday-weekend splits in this paper.)

Hourly averages may reveal some high-level details about
the consumption habits of a household, but we can do better.
Observe that in climates with summer air conditioning usage
and/or winter electric heating, a large part of the electric-
ity consumption is temperature-sensitive; e.g., in the United
States, roughly 40 percent of a home’s energy consumption
servers heating and cooling needs [24]. For example, Fig-
ure 1 plots the hourly consumption and external temper-
ature (measured in degrees Celcius) for a sample home in
southern Ontario, Canada, between April 2011 and Octo-
ber 2012 (we omit further details about the data source to
preserve privacy). Observe that the peak summer consump-
tion of this home is roughly 1.5 kilowatt-hours (kWh) higher
than the peak winter consumption, which is likely due to air
conditioning usage. If we could quantify the consumption of
temperature-sensitive loads and remove it from the original
consumption time series, the remaining consumption would
give us a better idea of the occupants’ routines and activi-
ties, and thus a more accurate profile.

The problem is that the relationship between consumption
and external temperature is not exact, making it difficult
to estimate the consumption of temperature-sensitive ap-
pliances from whole-house smart meter data. Figure 2 plots
the noon-time energy consumption of the same sample home
as a function of temperature; i.e., each point represents the
noon-time consumption of this home on some day between
April 2011 and October 2012 as well as the temperature at
that time. On some days, the noon-time consumption is rel-

141

Figure 1: Hourly consumption of a sample home (blue curve
with Y-axis on the left) and the temperature (green curve
with Y-axis on the right), measured between April 2011 and
October 2012.

atively high when the temperature is moderate or relatively
low, and vice-versa. Some of these “outliers” may correspond
to days when the home was empty or unusually busy. If we
could remove these outliers, we could obtain a more accurate
estimate of the temperature-sensitive load, and also a more
accurate estimate of the remaining (routine and activity)
load, which can give a more accurate and robust profile.

Our proposed solution, illustrated in Figure 3, implements
the above observations. Given the smart meter and temper-
ature time series, we will compute 48 numbers: the typi-
cal daily consumption values for each hour of the day on
weekdays and weekends, after accounting for temperature-
dependent load and outliers. The details of our solution are
presented in the next section.

3. COMPUTING CONSUMPTION PRO-
FILES

We now describe the proposed solution, beginning with an
overview of the time series model that we employ (Section
3.1), followed by a discussion of how outliers and temper-
ature effects are taken into account (Section 3.2) and how
model parameters are chosen (Section 3.3). We then show
how to extract consumption profiles from our time series
model (Section 3.4) and we discuss several applications of
the proposed profiles (Section 3.5).

3.1 The PARX Model
The main idea behind our solution is to apply a time series

autoregression model, specifically Periodic Auto Regression
with eXogenous variables (PARX) [17]. Table 1 lists the sym-
bols used in the remainder of the paper; in our case, we have
24 “seasons”, each corresponding to a particular hour of the
day, as we will be building separate consumption models for
each hour.

In general, a PARX model of order p represents a time
series in terms of 1) its recent history (the most recent p
data points), 2) exogenous variables, and 3) a white noise

-10 0 10 20 300

1

2

3

4

5

Temperature (C)

E
ne

rg
y

co
ns

um
pt

io
n

at
 n

oo
n

Figure 2: Hourly consumption measured at noon in a sam-
ple home versus the external temperature. The dashed
line represents best linear fit for temperatures higher than
20◦Celsius.

component. In our case, this can be written as

Yt =

p∑

i=1

φisYt−i +

n∑

j=1

ψjsX
j
t + Cs + εt, t ∈ s (1)

where Yt is the electricity consumption at a particular hour
at time t, n is the number of exogenous variables (i.e., the
Xj ’s), εt is the value of the white noise component2 at time
t, Cs is an intercept term, and s is the “season” index. The
model parameters Cs, φis, ψjs, and σ2

s depend on the season.
Intuitively, Equation (1) states the following. Pick a “sea-

son”, i.e., some hour of the day, say, noon. The electricity
consumption at noon is a linear function of the consumption
at noon on the previous p days3, and of the n exogenous vari-
ables (such as temperature), plus a constant intercept term
and an error term. Since each hour of the day is a separate
season with its own model, the values of the coefficients φi

and ψj may be different for different hours. That is, this
method is flexible enough to capture the possibility that at
some hours of the day (e.g,. night-time), temperature has
a stronger relationship with consumption, whereas at other
hours of the day (e.g., dinner-time), the load is more affected
by the occupants’ activities.

3.2 Exogenous Variables
As mentioned in Section 2, we want to compute the typi-

cal hourly consumption of a household, after accounting for
temperature and “outliers” corresponding to periods of very
low or very high consumption. This is exactly the purpose
of exogenous variables. The effects of other unknown fac-
tors on the overall consumption (i.e., other appliances, daily
routines and patterns) will be captured in the resulting con-
sumption profile via the auto-regressive part of the model.

2We assume that the white noise process is a sequence of in-
dependent and identically distributed random variables with
zero mean and finite variance σ2

s .
3More precisely, it is a function of the previous p week-
days for the weekday profile and the previous p week-
ends/holidays for the weekend/holiday profile.

142

Hourly	 consump-on	

Hourly	 temperature	

Remove	
outliers	 and	
temperature-‐
dependent	
consump-on	
component	

Average	 consump-on	
for	 each	 hour	 of	 day	 (weekdays)	

Average	 consump-on	
for	 each	 hour	 of	 day	 (weekends)	

Figure 3: Overview of the proposed consumption profile approach.

Yt

The original time series of house-
hold electricity consumption at
time t

Y ∗
t

The time series at time t obtained
after removing the effects of exoge-
nous variables, representing tem-
perature and outliers

XT1, XT2, XT3
Temperature related exogenous
variables

XO1, XO2
Occupancy related exogenous vari-
ables

σs The standard deviation of season s

εt
The value of the white noise com-
ponent at time t

φis The coefficient of Yt−i in season s

ψjs

The coefficient of the jth exogenous
variable in season s

Cs The intercept term of season s

Table 1: List of symbols used in this paper

First, we deal with temperature. Recall Figure 2 and no-
tice that the effect of temperature in the summer may be
very different to the effect of temperature in the winter. In
southern Ontario, the regression line has a positive slope
at high temperatures, corresponding to the increasing in-
tensity of air conditioning usage as temperatures climb. On
the other hand, the winter effects of temperature are less
pronounced, because the majority of homes, including our
sample home, mainly use natural gas for heating.

The above observation implies that we cannot use a sin-
gle exogenous variable to account for temperature. Instead,
following previous work on modelling the effect of temper-
ature on electricity consumption (e.g., [5, 13]), we use three
variables: XT1, XT2, and XT3. They are defined in Equa-
tions (2),(3) and (4). The coefficients of these variables rep-
resent the cooling (temperature above 20 degrees), heating
(temperature below 16 degrees), and overheating (tempera-
ture below 5 degrees) slopes, respectively.

XT1 =

{
T − 20 if T > 20
0 otherwise

(2)

XT2 =

{
16− T if T < 16
0 otherwise

(3)

XT3 =

{
5− T if T < 5
0 otherwise

(4)

Now, we show how to handle “outliers” corresponding to
unusually low or high consumption. The first step is as fol-
lows. For each season (i.e., hour of the day), logically we
produce a plot similar to that in Figure 2, which illustrates
the relationship between temperature and consumption at
that particular hour of the day across different days, using
all the historical data given as input. For each value of tem-
perature, we then compute the 10th and 90th percentiles of
the consumption values. Using these values, we then define
two new exogenous variables, XO1 and XO2, as follows.

• At any time t, XO1 is equal to one if the consumption
at t is higher than the 90th percentile of the consump-
tion at that hour of the day and that specific temper-
ature, as described above. It is zero otherwise.

• Similarly, XO2 is equal to one if the consumption at t
is less than the 10th percentile of the consumption at
that hour of day and that specific temperature. It is
zero otherwise.

We chose the 10th and 90th percentile values heuristically
to define XO1 and XO2, corresponding to very low con-
sumption (when the home may have been empty for a long
while) and very high consumption (when the household is
unusually busy). We refer to XO1 and XO2 as occupancy-
related variables.

Using all five exogenous variables, our PARX model be-
comes

Yt =

p∑

i=1

φisYt−i + ψ1sXT1t + ψ2sXT2t + ψ3sXT3t

+ ψ4sXO1t + ψ5sXO2t + Cs + εt, for t ∈ s (5)

143

3.3 Parameter Estimation
The first parameter that we need to set is p, the number

of previous days to include in the auto-regressive part of
the model. For each of our 24 seasons (hours of day), we
tried different values of p between 1 and 48, and computed
the Bayesian Information Criterion (BIC) [25]. Based on our
data set of 1000 homes, p = 3 gave the best results (i.e., the
lowest BIC).

Once we have determined an optimal value of p, we use
the standard Ordinary Least Squares (OLS) method to de-
rive the coefficients of the PARX model for each hour of
the day (repeating the process for weekdays only, and for
weekends/holidays).

3.4 Putting it All Together
Having presented the details of our PARX framework, we

are now ready to describe how the consumption profiles are
derived. First, we compute our PARX model for each hour
of day, separately for weekdays and weekends/holidays. We
then generate a new consumption time series by taking the
original values and removing the temperature-sensitive con-
sumption as well as the outliers. For each hour of day (and
separately for weekdays and weekends/holidays), we do this
simply by “reversing” the model and subtracting the effects
of exogenous variables. Let Y ∗

t be the new consumption time
series after removing temperature- and occupancy-sensitive
components:

Y ∗
t = Yt − ψ1sXT1t − ψ2sXT2t − ψ3sXT3t

− ψ4sXO1t − ψ5sXO2t for t ∈ s (6)

That is, what remains in Y ∗
t is just the auto-regressive part

of the model.
Finally, we take the hourly averages of the corresponding

Y ∗
t ’s, separately for weekdays and weekends/holidays, which

completes the discussion of the process shown in Figure 3.
Thus, our profiles consist of two vectors of 24 values, where
the ith value is the typical consumption level of the given
home at the ith hour of the day, after removing the effects
of exogenous variables.

Figures 4 and 5 illustrate the weekday and weekend pro-
files of our sample home. Note that the profiles are easy to
interpret and contain a great deal of useful information . For
example, it is easy to see that 1) the typical hourly consump-
tion is higher on weekdays than weekends, 2) peak weekday
load occurs at 19:00 with a small peak at 9:00, while peak
weekend load occurs at 17:00, and 3) the occupants of this
home appear to consume more electricity between 8:00 and
11:00 on weekends than weekdays.

3.5 Applications
We conclude this section with a brief description of how

the proposed consumption profiles can be used for two of
the motivating applications listed in Section 1.

Personalized recommendations for saving electricity
Normally, we expect the hourly consumption of a typical
household to decrease at night, when there is little to no
activity in the home. If the consumption profile suggests
that the nightly consumption of a given household remains
high, then we can recommend a new refrigerator or another
appliance that is always on. Note that this recommendation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.25

0.5

0.75

1

1.25

1.5

Time of day

H
ou

rly
 e

ne
rg

y
co

ns
um

pt
io

n
(k

W
h)

Figure 4: Weekday consumption profile of a sample home.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.25

0.5

0.75

1

1.25

1.5

Time of day

H
ou

rly
 e

ne
rg

y
co

ns
um

pt
io

n
(k

W
h)

Figure 5: Weekend/holiday consumption profile of a sample
home.

makes sense because we have removed temperature-sensitive
load before computing the profiles. Otherwise, we would not
know if the high nightly load is caused by heating and cool-
ing or by another appliance. Similarly, if the profile shows
high consumption during expensive on-peak hours regard-
less of temperature, then we can recommend shifting some
activities (such as laundry) to off-peak hours.

Furthermore, we can generate comparative feedback by
clustering similar consumers based on the hourly loads con-
tained in their profiles and/or the coefficients of their ex-
ogenous variables. For instance, if a household belongs to a
cluster in which other households have similar hourly loads
but lower coefficients of the temperature-related exogenous
variables, then we can hypothesize that this household has
an inefficient air conditioning system.

144

Generating realistic synthetic data as input to forecast-
ing models or to test the scalability of smart meter data
management systems
Here, the objective is to create realistic synthetic “house-
holds” based on the profiles computed from a real data set.
One way to do this is as follows. First, we use a clustering al-
gorithm such as k-means to group together similar profiles.
To generate a new consumption time series, we randomly
choose a cluster and use its centroid as the consumption
profile of the new household. We can then choose the ex-
ogenous variable coefficients from a random member of this
cluster, generate a weather forecast time series, and use this
information to create the new consumption time series.

4. EXPERIMENTS
In this section, we evaluate the predictive power of our

consumption profiles and compare it to the predictive power
of representative profiling techniques from prior work—one
that focuses on hourly consumption aggregates, one that
uses temperature alone, and one that uses both tempera-
ture and hourly averages. We implemented the algorithms
in Matlab.

Our dataset is comprised of aggregate hourly electricity
consumption levels of 1000 homes from a city in south-
ern Ontario, Canada. Measurements were taken between
March 2011 and October 2012. We also obtained the ambient
air temperature data of that region from the Environment
Canada Website.

4.1 Methodology
We use two thirds of the consumption dataset of each

home as the training data set for building the model, and
the rest, including 170 days from April 2012 to October 2012,
as the testing data set for evaluating its predictive power.
For instance, to evaluate the predictive power of a model
on April 1, 2012, we use consumption measurements from
March 2011 to March 2012 as the training set. We extend
the training set by adding days from the test set which are
prior to the day for which we evaluate the predicative power.
For example, April 1, 2012 is added to the training set when
we evaluate predictive power for April 2, 2012.

We predict the consumption of each home using the fol-
lowing four profiling approaches, assuming that the hourly
temperature forecast is available one day in advance.

The first is our approach, labeled PARX. We predict the
hourly consumption on the test day, for a given hour h, as
follows. First, we look up the average hourly consumption
for that hour from the profile, call it Ph. We then add in the
contribution of exogenous variables for that hour using the
coefficients of that hour’s model. This gives us an estimate
of the consumption for that hour, call it Ŷh:

Ŷh = Y ∗
h + ψ1hXT1h + ψ2hXT2h + ψ3hXT3h

+ ψ4hX̂O1h + ψ5hX̂O2h (7)

Note that in order to use our consumption profiles for
predicting future consumption, we must use estimated val-
ues of the occupancy-related exogenous variables, denoted

X̂O1 and X̂O2, since we obviously do not know their true
values when making the prediction. Here, we simply use
the observed value of these variables in the previous hour

(X̂O1h = XO1h−1 and X̂O2h = XO2h−1), although more
sophisticated methods could be used to estimate these vari-
ables and further improve the predictive power of our ap-
proach.

The second approach represents methods that compute
hourly aggregates from the consumption time series. In par-
ticular, we compute hourly averages over the training set
and use these for prediction. We call this approach Hourly
Mean.

The third approach represents methods that focus on the
correlation between consumption and temperature [5]. This
algorithm fits a three-piece linear regression model after re-
moving very-low and very-high consumption values and uses
the temperature of the test day to predict consumption. We
refer to this technique as 3-Line.

Finally, the fourth approach, proposed in [13], uses a time
series model similar to PARX and also takes temperature
into account (but does not account for outliers, which we
do). We call this algorithm Convergent Vector since it com-
putes typical hourly consumption by finding the convergent
vector of the input time series.

The real value of the hourly electricity consumption on the
test day is then compared with the predicted values to com-
pute the root-mean-square error (RMSE) of each approach
for each day.

4.2 Results
We compared the predictive power of the above four ap-

proaches using all 1000 homes in our dataset. Our findings
are as follows.

• PARX outperformed Hourly Mean for 982 homes, 3-
Line for 960 homes, and Convergent Vector model for
901 homes.

• The average RMSE was 0.70 for PARX, 0.81 for Hourly
Mean, 0.94 for 3-Line, and 0.77 for Convergent Vec-
tor. This means that our model’s RMSE was 14 per-
cent lower than that of Hourly Mean, 26 percent lower
than that of 3-Line, and 9 percent lower than that of
Convergent Vector.

Thus, although 3-Line and Convergent Vector obtained
a slightly lower prediction error for a few homes, on aver-
age their prediction error is considerably higher than that
of PARX. This confirms that, in most cases, incorporat-
ing historical hourly consumption, temperature dependence,
and occupancy dependence results in a more representative
model. Nevertheless, in some cases, temperature is highly
correlated with electricity consumption, and therefore incor-
porating occupancy does not improve prediction accuracy.
This is most likely because the bulk of the electricity con-
sumption of these homes serves heating and cooling needs,
and thus temperature alone is a very good predictor.

Figure 6 shows the average RMSE on the testing days
for 20 randomly selected homes along with the RMSE val-
ues averaged over all 1000 homes on the testing days. The
RMSE of PARX is lower than the RMSE of the other three
approaches for all but two of these homes.

5. RELATED WORK
A considerable body of previous work has developed

various consumption modelling techniques from household

145

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 avg.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3-Line
Hourly Mean
Convergent Vector
PARX

Figure 6: Average RMSE of the four approaches on 20 randomly selected homes measured on 170 testing days.

smart meter data, with applications ranging from cluster-
ing similar consumers, planning and forecasting, tariff de-
sign, electricity loss and theft detection, to providing per-
sonalized feedback on how to save electricity. Our technique
may be used in many of these applications in regions where
some fraction of the electricity consumption is correlated
with temperature.

From a technical standpoint, previous work has ap-
proached the consumption profiling problem from two di-
rections. One was to examine historical consumption val-
ues and compute various representative aggregates; see, e.g.,
[3,8–10,14,20,22]. The other direction has been to focus on
the relationship between electricity consumption and tem-
perature; see, e.g., [1, 5]. There are also techniques that
combine aggregated values with temperature correlations,
e.g., [13]. In this paper, our goal was to design a simple and
interpretable but also accurate profiling algorithm by com-
bining the best features of existing methods.

In particular, the two approaches most closely related to
ours are by Espinoza et al. [13] and Birt et al. [5]. Our ap-
proach combines the time series modelling approach of [13]
with the temperature model of [5], and additionally takes
outliers into account. As we experimentally showed in Sec-
tion 4, by combining and enhancing the best features of prior
models, our techniques resulted in a lower prediction error.

In general, energy data management is an emerging field
of study, with recent work on smart grid data management
and analytics [6, 15], using Hadoop to manage smart meter
data [11], imputing missing data in smart meter time series
[18], and symboling representation of smart meter time series
[26].

6. CONCLUSIONS AND OPEN PROB-
LEMS

In this paper, we described a simple and interpretable
technique for computing electricity consumption profiles
from residential smart meter data combined with temper-
ature data. Our solution relies on auto-regressive time se-
ries modelling with exogenous variables to take into account
various factors influencing electricity consumption, such as
temperature and the occupants’ daily habits. Experimental
evaluation using a real data set of smart meter readings from
1000 homes revealed the advantages of our method over pre-
vious work in terms of prediction accuracy.

One limitation of the proposed approach is that it is effec-
tive only for regions where some fraction of household elec-
tricity consumption is correlated with temperature, such as
those with heavy air conditioning use during the summer.
If this is not the case, simpler profiling techniques may be
used, such as computing the average electricity consumption
in each hour of the day.

We are currently building a prototype smart meter data
management system, in which the proposed consumption
profiling method will play a central role. We highlight several
open problems in this area that we intend to study:

• Smart meter data quality: missing values are common,
and unusually low or high values may indicate failing
meters that need to be replaced.

• Efficient and scalable smart meter analytics: there is
very little work that focuses on exploiting modern data
analytics platforms, such as Hadoop, data stream en-
gines or time series databases, for smart meter data.

146

• In addition to smart electricity meters, smart wa-
ter meters are being introduced in many juris-
dictions, including Toronto, Canada, as described
at torontowatermeterprogram.ca. This will enable
large-scale water data analytics and require smart me-
ter data management system to handle water data in
addition to electricity data.

7. REFERENCES
[1] A. Albert and R. Rajagopal. Building dynamic

thermal profiles of energy consumption for individuals
and neighborhoods. In IEEE Big Data Conf., 2013

[2] AutoGrid. www.auto-grid.com

[3] C. Beckel, L. Sadamori, and S. Santini. Towards
automatic classification of private households using
electricity consumption data. In 4th ACM Workshop
on Embedded Sensing Systems for Energy-Efficiency in
Buildings (BuildSys), pages 169-176, 2012.

[4] Big Data Energy Services.
www.bigdataenergyservices.com

[5] B. J. Birt, G. R. Newsham, I. Beausoleil-Morrison,
M. M. Armstrong, N. Saldanha, and I. H. Rowlands.
Disaggregating categories of electrical energy end-use
from whole-house hourly data. Energy and Buildings,
50(0):93–102, 2012.

[6] M. Boehm, L. Dannecker, A. Doms, E. Dovgan, B.
Filipic, U. Fischer, W. Lehner, T. B. Pedersen, Y.
Pitarch, L. Siksnys and T. Tusar. Data Management in
the MIRABEL Smart Grid System. In 1st Workshop
on Energy Data Management (EnDM), 2012.

[7] C3 Energy. www.c3energy.com

[8] G. Chicco. Overview and performance assessment of
the clustering methods for electrical load pattern
grouping. Energy, 42(1):68–80, 2012.

[9] G. Chicco and I.-S. Ilie. Support vector clustering of
electrical load pattern data. IEEE Trans. on Power
Systems, 24(3):1619–1628, 2009.

[10] G. Chicco, R. Napoli, P. Postolache, M. Scutariu, and
C. Toader. Customer characterization options for
improving the tariff offer. IEEE Trans. on Power
Systems, 18(1):381-387, 2003.

[11] L. dos Santos, A. da Silva, B. Jacquin, M.-L. Picard,
D. Worms, C. Bernard. Massive Smart Meter Data
Storage and Processing on top of Hadoop, In VLDB
BigData Workshop, 2012.

[12] eSmart Systems. www.esmartsystems.com

[13] M. Espinoza, C. Joye, R. Belmans, and B. DeMoor.
Short-term load forecasting, profile identification, and
customer segmentation: A methodology based on
periodic time series. IEEE Trans. on Power Systems,
20(3):1622–1630, 2005.

[14] V. Figueiredo, F. Rodrigues, Z. Vale, and J. Gouveia.
An electric energy consumer characterization
framework based on data mining techniques. IEEE
Trans. on Power Systems, 20(2):596–602, 2005.

[15] U. Fischer, D. Kaulakiene, M. E. Khalefa, W. Lehner,
T. B. Pedersen, L. Siksnys and C. Thomsen. Real-time
Business Intelligence in the MIRABEL Smart Grid
System. In VLDB Workshop on Business Intelligence
for the Real-Time Enterprise (BIRTE), 2012.

[16] Green Button. www.greenbuttondata.org

[17] H. Hurd and A. Miamee. Periodically correlated
random sequences: spectral theory and practice, volume
355. Wiley-Interscience, 2007.

[18] R.-S. Jeng, C.-Y. Kuo, Y.-H. Ho, M.-F. Lee, L.-W.
Tseng, C.-L. Fu, P.-F. Liang, L.-J. Chen. Missing
Data Handling for Meter Data Management System.
In e-Energy Conf., pages 275-276, 2013.

[19] J. Miller. North american power plant air emissions.
Technical Report 2-923358-11-2, Commission for
Environmental Cooperation of North America, 2004.

[20] A. Nizar and Z. Dong. Identification and detection of
electricity customer behaviour irregularities. In
IEEE/PES Power Systems Conference and
Exposition, pages 1–10, 2009.

[21] OPower. www.opower.com

[22] T. Rasanen, D. Voukantsis, H. Niska, K. Karatzas and
M. Kolehmainen. Data-based method for creating
electricity use load profiles using large amount of
customer-specific hourly measured electricity use data.
Applied Energy, 87(11):3538-3545, 2010.

[23] I. Rowlands. Demand response in Ontario: exploring
the issues. A report for the Independent Electricity
System Operator (IESO) of Ontario, 2008.

[24] U.S. Annual Energy Outlook 2012.
www.eia.gov/forecasts/aeo/pdf/0383(2012).pdf.

[25] W. W.-S. Wei. Time series analysis: univariate and
multivariate methods, pages 156–157. Addison-Wesley,
2nd edition, 2006.

[26] T. K. Wijaya, J. Eberle and K. Aberer. Symbolic
representation of smart meter data. In 2nd Workshop
on Energy Data Management (EnDM), pages 242-248,
2013.

147

ECAST: A Benchmark Framework for Renewable Energy
Forecasting Systems

Robert Ulbricht2, Ulrike Fischer1, Lars Kegel1, Dirk Habich1,
Hilko Donker2, Wolfgang Lehner1

1 Technische Universität Dresden, Database Technology Group, Dresden, Germany
2 Robotron Datenbank-Software GmbH, Dresden, Germany

1 {first name.lastname}@tu-dresden.de
2 {first name.lastname}@robotron.de

ABSTRACT
The increasing capacities of renewable energy sources and
the opportunities emerging from the smart grid technology
lead to new challenges for energy forecasters. Energy output
fluctuates stronger compared to conventional power produc-
tion. More time series data is available through the usage
of sensor technology. New supply forecasting approaches
are developed to better address those characteristics, but
meaningful benchmarks of such solutions are rare. Conduct-
ing detailed evaluations is time-intensive and unattractive
to customers as this is mostly handwork. We define and
discuss requirements for efficient and reliable benchmarks
of renewable energy supply forecasting tools. To cope with
those requirements, we introduce the automated benchmark
framework ECAST as our proposed solution. The system’s
capability is demonstrated on a real-world scenario compar-
ing the performance of different prediction tools against a
naive method.

1. INTRODUCTION
As much as for any other industry, forecasting is tradi-

tionally an important issue for utility companies. In areas
like energy generation and distribution, load balancing or
pricing many decisions have to be made based on uncertain
data. This is the reason why beside the administration of
meter data and market communication processes, the pre-
diction of energy time series is seen as a core functionality
for Energy Data Management Systems. Nowadays, with the
technical challenges and opportunities emerging from the
world-wide increasing capacities of renewable energy sources
(RES) world-wide along with advancements like the smart
grid technology, efficient and dedicated forecasting methods
are being developed. Such solutions are designed to better
address the typical RES characteristics like a decentralized
allocation and the mainly fluctuating output owed to the
changing nature of the underlying natural powers.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

To cope with those challenges, a lot of research has been
conducted by different communities during the past few years.
However, choosing the optimal solution for a specific fore-
casting problem remains a formidable and intensive task for
users. Despite of the large amount of available literature
and both academic and practical optimization ideas, there
is still a dominance of trial-and-error approaches. Results
of different publications can hardly be compared, as the un-
derlying experiments are conducted on dissimilar data sets.
Also, a constant form of result evaluation is missing because
different error metrics can be applied to measure output ac-
curacy. In fact, the probability for successfully replicated
results is low. Complex benchmarks tend to be time- and
cost-intensive and most of the assessment procedures re-
quire expert knowledge. Integrating state-of-the-art energy
supply forecasting systems into an automated benchmark
framework will dramatically reduce the manual evaluation
work. A suchlike composed software-supported benchmark
allows for the systematical assessment and optimization of
multiple tools including varying configuration settings, while
saving the time of human experts. Forecasting practices in
the energy sector can be improved by enabling the knowl-
edge transfer needed to bridge the gap between scientific
approaches and commercial solutions.

In this paper, we address the problem of systematic bench-
marking for energy supply forecasts and introduce the En-
ergy Forecasting Benchmark Framework (ECAST) as our
proposed solution. The remainder of the paper is organized
as follows: In Section 2 we describe the challenge of renew-
able energy supply forecasting. Then, we define and discuss
the requirements for a dedicated benchmark against that
background. In Section 3, we describe the architecture and
the functional core components of our framework as well as
the resulting data flows. We demonstrate the system’s func-
tionality by evaluating exemplary forecasting tools on a use
case in Section 4. Finally, we conclude and outline our pro-
posals for future developments in Section 5.

2. ENERGY FORECAST BENCHMARKS
Although the topic of benchmarking time series forecast-

ing approaches seems to be a mature area covered e.g. by the
M-x competition series developed by the International Insti-

148

tute of Forecasters, the last activities date back more than
a decade and findings were obtained in a mostly domain-
neutral environment [10]. Considering the background pre-
viously described in Section 1, we believe that now there is
a need for benchmarks covering sophisticated energy supply
forecasting solutions. Such systems were designed consider-
ing the typical characteristics of fluctuating energy produc-
tion time series and the impact of external influences on the
forecasting results. In this section we give a brief summary
on work related to that topic and discuss the requirements
for our systematical benchmarking approach.

2.1 Related Work
In order to make energy supply planning rational, fore-

casts of RES production have to be made considering weather
conditions. Certainly the most influencing factors for energy
output determination are the quality of the global irradia-
tion forecast in the case of solar panels and wind speed and
-direction for wind mills, respectively. Consequently, the
use of precise weather forecast models is essential before re-
liable energy output models can be generated for such units,
thus leading to the typical two-step approach presented in
Figure 1. Weather forecast models can be derived using
techniques like Numerical Weather Prediction (NWP), Sky
Image Processing or statistical models [15]. However, this
step is considered as orthogonal to our work, as grid oper-
ators and energy producers can usually purchase such data
from reliable meteorological services.

Figure 1: RES forecasting approach

As for the second step, any output obtained from the
weather models is converted into electric energy output.
This is done by integrating historical observation data and/or
additional context information like the RES production unit’s
technical details or geographical location. According to the
underlying methodology, existing solutions for energy mod-
els can be classified into the categories of physical, statistical
and hybrid models.

Identifying the optimal energy forecasting approach or the
best-fitting software solution out of hundreds of published
papers related to renewable energy supply prediction is dif-
ficult. Fortunately, there are reviews and surveys available
like the work of Glassley et al. [5], who give an overview
on literature for solar power forecasting but focused on ir-
radiation prediction. A benchmark of such methods was
conducted by Lorenz et al. [9] but does not cover energy
models. In contrast, the work of Pedro and Coimbra [13]

assesses a couple of state-of-the-art solar energy forecasting
techniques while completely excluding all exogenous inputs
in their reviewed models. For wind power prediction, liter-
ature reviews are provided e.g. by Giebel et al. [4] or Mon-
teiro et al. [11]. Another interesting approach is the Global
Energy Forecasting Competition (GEFCom), having numer-
ous participating research teams evaluating their models on
a set of normalized wind power time series. The insights
published by Hong et al. [6] show that such a competitive
approach has difficulties with the simulation of real-world
situations where forecasts have to be provided on a daily
(or even shorter) basis. This means that newly arriving ob-
servation data is used and the forecast origin shifts with
every day, thus leading to multiple time-intensive forecast-
ing phases.

2.2 Benchmark Requirements
A well designed benchmark is beneficial to both system

optimizing developers and evaluating customers. In this
context, we observe the two vertical levels of application
depicted in Figure 2: Benchmarks are commonly used to
evaluate (A) a system’s overall technical performance while
executing predefined tasks on different use cases or (B) the
functional quality like e.g. the result accuracy of an algo-
rithm or software implementation of interest. This can be
done either (1) in a domain-neutral environment like in the
case of TPC-H database benchmarks [12] or time series fore-
casting competitions, or (2) for a product dedicated to a
specific industrial application like energy data management
systems or specialized energy forecasting tools.

Figure 2: Benchmark design methodologies

Forecasting tools are traditionally implemented in differ-
ent ways: As simple but robust spreadsheet add-ins, mod-
ules in statistical programs like R or SPSS or as dedicated
stand-alone business software. Previous research in this area
has shown that the latter category offers the best score for
the implementation of the forecasting principles, as such
software generally includes effective data preparation proce-
dures and integrates expert knowledge for method selection
support [14]. The weakness of those systems is that even
by using batch versions, task automation is generally low
which handicaps an efficient execution of complex bench-
marks where multiple choices of conditions and parameter
settings have to be tested. A more recent trend is the in-
tegration of forecasting functionality directly into database
systems (e.g. [3]). This is a promising approach when con-
sidering energy supply forecasting as a massive and data

149

intensive process, thus requiring a higher level of automa-
tion to cope with the challenges raised from decentralized
production and smart meter technology. Since this converts
the forecasting tool itself into a black box thus complicating
its proper adjustment and also creates dependencies on the
underlying database system, we focus our work on stand-
alone forecasting software.

Following the principles of time series forecasting devel-
oped by Armstrong [1], we can derive the relevant require-
ments for our purpose:

Conditions. First, the overall conditions for the experi-
ment must be described. This includes e.g. the definition
of the applied forecast horizon (static or continuous), the
periods for the used original time series and the validation
method to be applied on results. Possible sources of bias
should be eliminated or at least described in detail if not
avoidable at all.

Data. Usually the benchmark’s underlying scenario pro-
vides the foundations for its requirements and is therefore
one of the major influences for the credibility and under-
standability of the obtained results. To simulate a coher-
ent business context for the target sector, the included us-
age models must have enough characteristics of meaning-
ful real-world situations although it is clear and perfectly
understandable that no benchmark can cover all existing
use cases [16]. Applied to the energy producing sector, this
means that a benchmark should include a wide range of ob-
served energy supply time series obtained from installations
allocated across different geographical regions, including all
relevant and measurable external influences. Having such a
use case repository allows for the easy extension of experi-
ments to assess their generalization potential. Further, the
experimental setup should match the formulated forecast-
ing problem. This means that the underlying source data
must be selected carefully considering the possible impacts
on results by using real-world or synthetic or analogous data.
Researchers often depend on the latter of those, as their ac-
cess to real-world use cases is limited. If so, trying to find
or create similar situations out of the available use cases
might offer suitable alternatives. In any case access to the
test data should be provided for the public (e.g. raw data
for the M-competitions is always downloadable1). However,
this can be problematic with real-world data sets like in the
case of private energy demand and supply, because the own-
ers will consider their data as confidential. Transformation
techniques like normalization help to make the origin unrec-
ognizable.

Transparency. Also, the implementation details of the
evaluated methods should be disclosed in order to make sure
that users understand them. This is naturally difficult when
assessing commercial solutions due to the need of knowledge
protection. However, identifying optimization potential for
the conceptual or physical implementation layer of the sys-
tem under test will be more likely if replication tests are
possible. The same applies to guaranteeing both the relia-
bility and the validity of data.

1http://forecasters.org/resources/time-series-data/

Result Evaluation. When it comes to forecast accuracy
evaluation, multiple error measures should be used to com-
pare the obtained results as the choice of an accuracy metric
can affect the ranking of the forecasting methods. The dis-
cussions frequently observable in literature show that there
is no all-dominating standard accuracy evaluation criteria
for time series forecasts (e.g. compare Hyndman and Koehler
[7] or Chen and Yang [2]). Despite of all proposed improve-
ments, we think that the chosen metric should be simple,
easy to explain and tailored to the decision to be derived
from the results. For example, the difference between over-
and underestimating a wind park’s expected energy output
can lead to different financial penalties for its owner depend-
ing on the contractual situation.

Limitations. The desired benchmark is first and foremost
defined as an accuracy benchmark, but anyhow under cer-
tain consideration of the calculation time which is used as
a simple performance measure of the tools under test. It
is definitely not meant to test the usability of the revised
solutions (except parameter configuration), their result pre-
sentation quality nor every possible feature or function. We
do not focus on a competitive character but want to offer sys-
tematic decision support when comparing existing systems.
Other common aspects of measuring like update frequency,
continuous data integration, or system reliability are con-
sidered as not being relevant for this purpose. This is why
conducting an explicit cost-benefit analysis is not reasonable
and excluded from our study.

3. SYSTEM ARCHITECTURE
In this section we describe the general architecture of our

implementation. The ECAST conceptual framework is com-
posed of four principal components as displayed in Figure 3:

1. A Database Management System (DBMS) as central
data storage unit,

2. the Core Logic Component (CLC) representing a con-
tainer used to encapsulate all necessary functions for
system configuration, time series management, task
creation and output evaluation,

3. the Prediction-Interface (PAPI) as connector to the
forecasting systems represented by the internal and ex-
ternal predictors and finally

4. the Graphical User Interface (GUI) for necessary con-
figurations, interactions and result presentation.

Database Management System.
The Database Management System (DBMS) represents

the frameworks’ central data storage unit. Its relational
data structure offers tables for the purpose of storing (1) the
reference parameters used for system and experiment con-
figuration, (2) all originally observed energy- and influence
time series data files which are needed for the experiments,
(3) the generated forecasting tasks and (4) the obtained fore-
cast output from the predictors. Besides the predicted time
series data, the latter also includes the calculated error val-
ues and the total computation time for each experiment.
For the DBMS, this results in frequent interactions in form

150

Figure 3: ECAST system architecture overview

of reading and writing operations carried out by the CLC
modules Time Series Manager, Task Creator and Output
Evaluator. Once source time series are stored in the DBMS,
they form part of the use case repository thus easily extend-
ing the available scenarios. Data files belonging together
are grouped in bundles. Additional context information like
geographical location, energy type or technical installation
details can be added in the use case description. That facil-
itates the re-identification of the stored use cases at a future
date, for instance for replication tests or parameter adjust-
ments.

Core Logic Component.
As the name suggests, the Core Logic Component (CLC)

is the heart of the framework. It contains the functionality
needed to configure the system accordingly, handle input
and output data for the experiments and forecasting task
automation procedures. This is realized in separate mod-
ules (compare Figure 3), some of those will be described
more in detail hereinafter.

Time Series Manager. This is responsible unit for time se-
ries data preparation and transformation. Frequently, fore-
casters face the problem that their source time series are too
short, too noisy or having too many missing values. Over-
looking the quality of source data can lead to large forecast-
ing errors. However, we decided to reduce this functional-
ity to input format conversion and source data validation
only for the following reasons: (1) Data cleansing proce-
dures are usually provided by Energy- or Meter Data Man-
agement Systems as this is considered being one of their
core functions and (2) offering data quality improvements
in the framework would bias the stand-alone performance of
the forecasting tools under test, due to the fact that many
of them include more or less complex data pre-processing
steps as well. In order to guarantee the framework’s inter-
operability, all imported time series are converted into an

internal character format treating them as equidistant data
structures of identical granularity throughout each scenario.
This allows for an efficient storing in the use case repository
and data transport to the external predictors and back, but
creates a slight drawback for the human forecaster who will
have to prepare the input data accordingly.

Task Creator. All forecast queries belonging to an exper-
iment lead to forecast tasks. This means that the chosen
settings and parameters are persisted and stored until their
final execution or rather until their handover to the predic-
tors. Depending on the experimental setup, a single forecast
query can lead to multiple tasks. For example, an experi-
ment including 2 external and the default naive predictor
will lead to 3 tasks which then are sequentially executed on
the same source time series. In case of predefined loops us-
ing a variable data history length for model creation or con-
tinuous forecasting horizons the number of generated tasks
increases accordingly. Currently, task scheduling function-
ality is spared so tasks are executed immediately once the
creation is completed.

Output Evaluator. It computes the statistical error met-
rics that can be applied on the output data in order to evalu-
ate the forecast accuracy. Regarding the energy domain, the
Root Mean Square Error (RMSE) is a recommended mea-
sure and main evaluation criterion especially for intra-day
forecasts, as is addresses the likelihood of extreme values
better [8]. The RMSE is found by

RMSE =

√∑n
t=1(Pt − P ′

t)
2

n
(1)

where Pt is the observed value, P ′
t is the predicted value and

n is the number of tuples to be compared. As the RMSE
returns absolute values, we add a normalized version to al-
low for the comparison of the models’ performance across
different scenarios thus eliminating the variance of results
when including power output curves of different aggregation
scales. The Normalized Root Mean Square Error (nRMSE)
is achieved by

nRMSE =
RMSE

Pmax
∗ 100 (2)

with Pmax being the maximum power output observed (only
applicable if Pmax > 0). In the case of forecasts with day-
ahead horizons or above, the mean absolute or percentage
difference between observed and predicted power output can
be the more appropriate evaluation criterion for users. The
Mean Absolute Error (MAE) computes as

MAE =
1

n

∑n

t=1

∣∣Pt − P ′
t

∣∣ (3)

while the percentage difference is expressed by the Mean
Absolute Percentage Error (MAPE) defined as

MAPE =
1

n

∑n

t=1

∣∣∣∣
Pt − P ′

t

Pt

∣∣∣∣ (4)

which also implies that all tuple having Pt = 0 are excluded
from error calculation. As energy supply time series contain
only positive values the MAPE is biased because it will favor
low forecasts. Adjusted versions of MAPE are known like
the Symmetric Mean Absolute Percentage Error (sMAPE)
being one of them. Having a lower and an upper bound,

151

the sMAPE can provide error values between 0% and 100%
which are much easier to interpret. Therefore the formula is
implemented as follows

sMAPE =
1

n

∑n

t=1

|Pt − P ′
t |

Pt + P ′
t

(5)

Another aspect of evaluation is the data range on which
the error measure is applied. Commonly, all forecast values
are included which leads to one returning error value based
on the whole predicted time series. In addition, especially
when considering the diurnal character of RES time series,
also fractions of the obtained data might be interesting, for
example to analyze the variance of model output accuracy
on certain days. Therefore, in addition to the total error
value, errors can be computed for arbitrary periods of the
forecasted time series thus for example returning error time
series of hourly, daily or weekly granularity.

Prediction API.
The Prediction Interface realizes the connection to each

prediction tool in terms of configuration, calling the calcu-
lation method as well as the output retrieval. Several pa-
rameters are taken from the DBMS and are offered to the
predictors as displayed in Figure 4: (1) The energy time se-
ries, containing the historical observation values Pt for the
training and forecasting periods, (2) the influencing time se-
ries, containing the corresponding external influences to be
included in the model, (3) the starting and the ending date
of the training period, (4) the prediction period, indicating
the start and end date of the wanted forecast and finally (5)
the tool configuration, represented by a set of parameters
which are passed to the respective prediction tool. With
the help of those input parameters, the framework is able
to externally set the configuration of the prediction tools
and execute the calculations. Afterwards, the API returns
the forecasted values P ′

t and the total calculation time con-
sumed by the predictor to calculate the forecast model and
the forecast itself.

Figure 4: Prediction API methods

Due to the fact that sometimes even simple extrapolation
methods may be reasonable, we include an internal Naive
Predictor that assumes that things will not change between
one day and another in a form like:

P ′
t = Pt−k (6)

with k being the number of values per day, i.e. k = 96 having
a granularity of 15min. Such persistence-based methods are
easy to implement and commonly used to compare with the
performance of more sophisticated forecasting techniques,
that are represented by the external predictors connected to

ECAST. Using complex forecasting tools is worthwhile only
if they are able to clearly outperform such trivial models.

Graphical User Interface.
The user interface is designed to facilitate the experimen-

tal setup by including sophisticated functionality and trig-
gering the internal data flows (compare Figure 5). One core
function is the upload of data files into the use case reposi-
tory. The external data arrives in a specified comma sepa-
rated value (CSV) file, this being the lowest common form
of time series data exchange and frequently seen in the en-
ergy market. Alternatively, previously stored raw time series
can be selected from the use case repository. Further, the
selection of tools and parameters to be assessed and the con-
ditions needed for the generation of forecasting queries can
be configured. This includes e.g. the history length of train-
ing data, forecasting horizons and loop frequencies. The
setting is transformed into a XML file and later on passed
to the task creator. In the post-experimental phase, the in-
terface offers prototypical functions for output presentation
like output time series plotting and error display.

Figure 5: Logical data flow in the ECAST system

4. DEMONSTRATION
In order to demonstrate the functionality of the bench-

mark framework we conducted experiments evaluating the
performance of the integrated prediction tools on two sce-
narios taken from the use case repository. In the following
we describe the setup of the experiments and discuss the
observed results.

4.1 Experimental Setup
The forecast quality of the external prediction tools pre-

sented in Table 1 will be compared: (1) an academic imple-
mentation originally developed for the MIRABEL project,
(2) the commercial product ePredict and (3) OpenForecast,
a domain-neutral open-source forecasting library. All of the
chosen tools use stochastic models based on multiple regres-
sion analysis. To the best of our knowledge, none of them in-
clude relevant data pre-processing steps. Output data post-
processing is reduced to the correction of negative values or
completely missing as in the case of OpenForecast.

As for data, we decided to evaluate all tools on a solar- and
a wind-power prediction use case. The solar power scenario

152

Model Applied Algo-
rithm

Data Prepa-
ration

Data Post-
Processing

Source

Naive Predictor Diurnal persistence
(compare equ. 6)

No No -

Mirabel Principal component
analysis + Multiple
linear regression

No Negative
value correc-
tion

http://www.mirabel-project.eu/

ePredict Multiple non-linear
regression (MARS)

No Negative
value correc-
tion, ARIMA

http://www.robotron.de/

OpenForecast Multiple linear re-
gression

No No http://www.stevengould.org/
software/openforecast/

Table 1: Benchmarked forecasting tools

consists of an observed energy output time series taken from
a single PV-installation located in central Germany. Data is
available for the year 2012 having a resolution of 15 minutes.
Corresponding influences are provided by a nearby weather
station in form of hourly measurements of irradiation, out-
side temperature and wind speed. The usage of observed
instead of forecasted influence values eliminates the pre-
diction error naturally included in the underlying weather
model thus allowing for an evaluation of the energy model
performance itself. While we use the first eleven months
for training, the month of December serves as prediction pe-
riod. For the second scenario, a normalized wind power time
series from the GEFCom 2012 wind track2 was used. The
installation’s location remains unknown. Historical data is
available from July 2009 to December 2010 including the cor-
responding forecasts for wind speed and -direction, all with
hourly resolution. Concurrent to the solar use case, we take
all observation data except the last month for training. The
forecast queries are configured with a continuous 24h-ahead
horizon using a moving origin for the model. Accordingly,
31 forecasting tasks are generated for each predictor and sce-
nario, therefore a total of 248 tasks has to be executed.

4.2 Benchmark results
Comparing the results for solar power prediction presented

in Table 2, we can point out that all prediction tools out-
perform the naive benchmark in terms of RMSE, nRMSE,
MAE, and MAPE. As for the sMAPE, the values for Open-
Forecast (0.75) and ePredict (0.70) are relatively high con-
sidering the relative position on a scale from 0 to 1. This
can be explained by the impact of tuples having forecasted
values P ′

t close to 0 and observation values Pt = 0 on the
total error value. Forecasting tools optimized for solar en-
ergy can include the possibility of cutting all forecast values
before dawn and after sunset (derived from geographical lo-
cation) to solve such issues if properly configured. Not taken
into account all tuples with Pt = 0 for error calculation, the
sMAPE values can be reduced to 0.32 and 0.34, respectively.

In Figure 6 the daily sMAPE values are displayed for
the whole forecasting period. While the naive model has
a strong fluctuation between one day and another, the ex-
ternal predictors show a more stable performance. More-
over, on December 12th no energy output was observed (e.g.

2http://www.kaggle.com/c/GEF2012-wind-
forecasting/data

due to snow coverage or technical failures) which explains
the high error obtained from all prediction tools on that
day. Figure 7 compares the measured energy output and
the predicted output calculated by all predictors for Decem-
ber, 8th, as according to the daily error analysis good val-
ues were obtained for this period. We notice that Mirabel

0 5 10 15 20 25 30

0
.2

0
.4

0
.6

0
.8

1
.0

Day in December 2012

D
a
ily

 e
rr

o
r

[S
M

A
P

E
]

Naive

OpenForecast

Mirabel

ePredict

Figure 6: Daily sMAPE values for solar power pre-
diction

and OpenForecast perform almost identical for that period,
while ePredict seems to have slight advantages when cap-
turing small peak values. It is a common drawback of using
regression-based prediction models not to be able to reach
peak values, as the estimations for model parameters are
done by using average regression coefficients. The naive per-
sistence method does not have that problem because data
is simply copied from the previous period and accidentally
energy output is very similar on both days. Also, the peak
value was reached later thus leading to a shifted plot. In
suchlike conditioned periods, diurnal persistence can be con-
sidered as a useful prediction method. However, it does not
reach the average accuracy of the sophisticated tools using
weather-aware forecasting models.

Similar results can be observed on the wind power sce-
nario. In contrast to the solar use case, the underlying
power time series has been normalized thus limiting the
cross-scenario result comparison to the percental accuracy
measures. Regarding the MAPE, all models show lower re-
sults than for solar power prediction. Possible explanations
are higher fluctuation of wind power as there are no diurnal

153

Model RMSE nRMSE MAE MAPE sMAPE Time
Naive 5.43 11.41 1.93 1.89 0.51 <1 ms
Mirabel 3.89 8.18 1.36 1.10 0.43 851 ms
ePredict 3.68 7.73 1.46 1.65 0.70 999 s
OpenForecast 3.76 7.90 1.50 1.33 0.75 2389 ms

Table 2: Average forecast accuracy for 24h-ahead solar power prediction

Model RMSE nRMSE MAE MAPE sMAPE Time
Naive 0.27 31.48 0.20 2.91 0.53 <1 ms
Mirabel 0.21 24.44 0.14 1.85 0.41 511 ms
ePredict 0.19 22.82 0.16 3.18 0.44 60.8 s
OpenForecast 0.20 24.13 0.17 3.48 0.46 379 ms

Table 3: Average forecast accuracy for 24h-ahead wind power prediction

cycles and the use of weather forecasts instead of observa-
tions for model parameter estimation and forecast calcula-
tion. Those superior computation times result mainly from
the smaller number of included data points, as all time se-
ries have a lower resolution and instead of 3 only 2 weather
influences were used in the regression models.

0
1
0

2
0

3
0

4
0

Time of day 8.12.2012 [h]

E
n
e
rg

y
 o

u
tp

u
t

[k
W

h
]

08:00 12:00 16:00

Naive

OpenForecast

Mirabel

ePredict

Source

Figure 7: Model performance comparison for solar
power prediction

5. CONCLUSIONS AND FUTURE WORK
Typical requirements for benchmarking energy forecast-

ing tools are the definition of the overall conditions, the se-
lection of appropriate test data and evaluation criteria and
finally providing transparency. These principles were con-
sidered in the ECAST framework design: Evaluations can
be conducted by configuring the desired conditions on own
scenarios or given ones from the use case repository. Ex-
perimental results and initial parameter configurations are
persisted in the DMBS to ease future replication attempts.
Technical details of the tools under test are described as far
as possible. The demonstrated use cases show that both
revised energy forecasting tools really offer added value as
they perform better than naive or domain-neutral methods,

although the selection of appropriate evaluation criteria in-
fluences their ranking. Basic functionality of result presenta-
tion is offered because visual inspection of plotted raw data
is common and hard to replace as it helps to reveal unusual
data points. Further, the efficiency of such assessments is
increased by using a graphical interface for creating forecast
query definitions and by substituting manual steps with au-
tomated task creation and execution.

Regarding our future work, we identified the main direc-
tions to follow: First, the Prediction API needs to be ex-
panded as it is currently limited to statistical approaches,
but physical models have to be included. They are popular
especially amongst planners and investors because instead
of depending on historical observation data, the production
units’ technical properties are used to estimate the future en-
ergy output and once they are fitted, they are accurate. We
are also planning to increase the number of available exter-
nal predictors, for instance, by adding for instance solutions
provided by the machine learning community - variety is the
key for making benchmarks more representative. Second,
ECAST can be converted into decision support technology.
By systematically evaluating all reasonable parametrization
options, the forecasting tools will be self-adjusted to a pre-
defined accuracy threshold. Also, combining forecasts offers
additional optimization options whenever there is no solu-
tion to be found that individually outperforms in all given
use cases. Using appropriate combination criteria allows for
the creation of flexible hybrid models across different fore-
casting tools.

Acknowledgment
The work presented in this paper was funded by the Euro-
pean Regional Development Fund (EFRE) under co-financing
by the Free State of Saxony and Robotron Datenbank-Soft-
ware GmbH. We thank the anonymous reviewers for their
constructive comments that helped to improve our paper.

154

6. REFERENCES
[1] J. Armstrong. Evaluating Forecasting Methods. In

J. Armstrong, editor, Principles of Forecasting,
volume 30 of International Series in Operations
Research & Management Science, pages 443–472.
Springer US, 2001.

[2] Z. Chen and Y. Yang. Assessing forecast accuracy
measures. Technical Report 2004-2010, Iowa State
University, Department of Statistics & Statistical
Laboratory, 2004.

[3] U. Fischer, D. Kaulakiene, M. E. Khalefa, W. Lehner,
T. Bach Pedersen, L. Siksnys, and C. Thomsen.
Real-time Business Intelligence in the MIRABEL
Smart Grid System. In Proc. of BIRTE, Istanbul,
2012.

[4] G. Giebel, R. Brownsword, G. Kariniotakis,
M. Denhard, and C. Draxl. The state-of-the-art in
short-term prediction of wind power: A literature
overview. Technical report, ANEMOS. plus, 2011.

[5] W. Glassley, J. Kleissl, C. P. van Dam, H. Shiu,
J. Huang, G. Braun, and R. Holland. Current state of
the art in solar forecasting. Technical report,
California Renewable Energy Collaborative (CREC),
2012.

[6] T. Hong, P. Pinson, and S. Fan. Global Energy
Forecasting Competition 2012. International Journal
of Forecasting, 2013.

[7] R. J. Hyndman and A. B. Koehler. Another look at
measures of forecast accuracy. International Journal
of Forecasting, 22(4):679–688, 2006.

[8] V. Kostylev and A. Pavlovski. Solar Power Forecasting
Performance–Towards Industry Standards. In 1st Int.
Workshop on the Integration of Solar Power into
Power Systems, Aarhus, Denmark, 2011.

[9] E. Lorenz, J. Remund, S. C. Müller, W. Traunmüller,
G. Steinmaurer, D. Pozo, J. A. Ruiz-Arias, V. L.
Fanego, L. Ramirez, M. G. Romeo, and Others.
Benchmarking of different approaches to forecast solar
irradiance. In 24th European Photovoltaic Solar
Energy Conference, pages 1–10. Hamburg, Germany,
2009.

[10] S. Makridakis and M. Hibon. The M3-Competition:
results, conclusions and implications. International
Journal of Forecasting, 16:451–476, 2000.

[11] C. Monteiro, R. Bessa, V. Miranda, A. Botterud,
J. Wang, G. Conzelmann, and Others. Wind power
forecasting: state-of-the-art 2009. Technical report,
Argonne National Laboratory (ANL), 2009.

[12] R. Nambiar, M. Poess, A. Masland, H. R. Taheri,
M. Emmerton, F. Carman, and M. Majdalany. TPC
Benchmark Roadmap 2012. In Selected Topics in
Performance Evaluation and Benchmarking, pages
1–20. Springer Berlin Heidelberg, 2013.

[13] H. T. C. Pedro and C. F. M. Coimbra. Assessment of
forecasting techniques for solar power production with
no exogenous inputs. Solar Energy, 86(7):2017–2028,
2012.

[14] L. Tashman and J. Hoover. Diffusion of Forecasting
Principles through Software. In J. Armstrong, editor,
Principles of Forecasting, volume 30 of International
Series in Operations Research & Management Science,
pages 651–676. Springer US, 2001.

[15] R. Ulbricht, U. Fischer, W. Lehner, and H. Donker.
First Steps Towards a Systematical Optimized
Strategy for Solar Energy Supply Forecasting. In Proc.
of the Joint ECML/PKDD 2013 Workshops, 2013.

[16] L. Wyatt, B. Caufield, and D. Pot. Principles for an
ETL Benchmark. In TCPCTC 2009, LNCS 5895,
pages 183–198. Springer Berlin Heidelberg, 2009.

155

Energy Data Management: Where Are We Headed? (panel)

Torben Bach Pedersen
Aalborg University
tbp@cs.aau.dk

ABSTRACT
This panel paper aims at initiating discussion at the Third
International Workshop on Energy Data Management (EnDM
2014) about the important research topics and challenges
within Energy Data Management. The author is the panel
organizer, extra panelists will be recruited from the work-
shop audience.

Keywords
Energy Data Management, Architectures, Information Mod-
els

1. QUESTIONS AND CHALLENGES
The panel should try to answer (at least) the following

questions:

• What was already done within energy data manage-
ment, and what is still missing?

• What are the scientific challenges?

• What are the technical challenges?

• What are the challenges that necessitate an interdisci-
plinary approach?

Below, some of the panel organizer’s personal opinions on
these topics are listed.

One thing that is still missing is a broad range of open
benchmark datasets that can be used to develop robust and
effective methods for various energy data management tasks,
e.g., datasets that provide detailed measurements of device
usage and energy consumption at a fine-grained level for a
larger number of households.

Several scientific challenges are still open, including a) the
development of robust and effective methods and techniques
for prediction of energy production and consumption down
to the device level; b) the development of methods capa-
ble of extracting and predicting flexibilities in energy usage;

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

c) the development of scalable etchniques for aggregating,
scheduling, and disaggregating micro-level flexibilities, e.g.,
in individual device consumptions, to large-scale macro-level
units suitable for balancing energy supply and demand at
the higher levels;

On the technical level, there is still a lack of community-
wide agreed-upon common definitions of data and informa-
tion concepts, e.g., standardized ontologies specifying com-
mon concepts. Also, the standardization of communication
protocols, e.g., for communicating available flexibilities, is
very important.

Interdisciplinary challenges are perhaps the hardest to
meet, and include the interplay between computer scien-
tists developing scalable techniques for energy data man-
agement, human-computer interaction designers exploring
how and at which level of detail to interact with a smart
grid system, e.g., in the home, and economists developing
new business and energy taxation schemes that can ensure
the (financial) interest of all the many involved parties (con-
sumer, producers, distributors, traders, balance responsible
parties, etc.) while still generating a tax revenue at the
same level as current schemes. An example of these disci-
plines continuously interacting to develop viable solutions
for the truly smart grid is found in the Danish Totalflex
project www.totalflex.dk.

2. PANEL/WORKSHOP ORGANIZER

Prof. Torben Bach Pedersen is full professor of com-
puter science at Aalborg University, Denmark. He received
his Ph.D. in 2000. His research interests span Big Data
and business intelligence topics such as data warehousing,
multidimensional databases, OLAP, and data mining, with
a focus on non-traditional and complex types of data. He
has published more than 140 peer-reviewed papers on these
topics. He has served as PC Chair for DaWaK 2009+10,
DOLAP 2010, and SSDBM 2014, General Chair for SSTD
2009, and on numerous program committees, including SIG-
MOD, (P)VLDB, ICDE, and EDBT. He has worked on
energy data management since 2007, was involved in the
MIRABEL EU FP7 project on energy data management,
as is now leading the research in the large interdisciplinary
Danish project, TotalFlex.

156

Exploratory Search in Databases and the Web
(ExploreDB)

Georgia Koutrika (HP Labs, USA)
Laks V.S. Lakshmanan (University of British Columbia, Canada)

Mirek Riedewald (College of Computer and Information Science, USA)
Kostas Stefanidis (University of Crete & FORTH-ICS, Greece)

157

Exploratory Search in Databases and the Web

Georgia Koutrika
HP Labs, Palo Alto

koutrika@hp.com

Laks V.S. Lakshmanan
Department of Computer

Science, University of British
Columbia

laks@cs.ubc.ca

Mirel Riedewald
College of Computer and

Information Science,
Northeastern University
mirek@ccs.neu.edu

Kostas Stefanidis
ICS-FORTH, Heraklion
kstef@ics.forth.gr

Introduction
The traditional way a user interacts with a database sys-
tem is through queries. Structured query languages, such as
SQL for relational data, XQuery for XML, and SPARQL for
RDF data, allow users to submit queries that may precisely
capture their information needs, but users need to be famil-
iar with the underlying ontology and data structure and of
course the query language itself. Moreover, users need to
some extent be familiar with the content of the database
and have a clear understanding of their information needs.
These requirements stand as the weaknesses of this interac-
tion mode. As data stored in databases grows in unprece-
dented rates and becomes accessible to diverse and less tech-
nically oriented audience, new forms of data exploration and
interaction become increasingly more attractive.

The World Wide Web represents the largest and arguably
the most complex repository of content. Users seek infor-
mation on the web through two predominant modes: by
browsing or by searching. In the first mode, the interaction
between the user and the data repository is driven directly
by the user’s interpretation of their information need and
their information foraging constraints. In the latter mode, a
search engine typically mediates the user-data interactions
and the process starts with the user entering query-terms
that act as surrogates for the user information goals. Free-
text queries allow end-users a simple way to express their
information needs independently from the underlying data
model and structure, as well as from a specific query lan-
guage. Given a query, the most common strategy has been
to present the results as a ranked list. Users have to sub-
sequently peruse the list to satisfy their information needs
through browsing the links and/or by issuing further queries.

However, the information in the web gets rapidly diversi-
fied both in terms of its complexity as well as in terms of the
media through which the information is encoded, spanning
from large amounts of unstructured and semi-structured data
to semantically rich available knowledge. Increasing de-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

mands for sophisticated discovery capabilities are now being
imposed by numerous applications in various domains such
as social media, healthcare, telecommunication, e-commerce
and web analytics, business intelligence, and cyber-security.
Yet, many of these data are hidden behind barriers of lan-
guage constraints, data heterogeneity, ambiguity, and the
lack of proper query interfaces.

Furthermore, the complexity and heterogeneity of the in-
formation implies that the associated semantics is often user-
dependent and emergent. Individual aspects like age, gen-
der, profession or experience are often not taken into ac-
count, for example the difference in searching between chil-
dren and adults. In addition, most common systems still
assume that the user has a static information need, which
remains unchanged during the seeking process. Hence, they
are strongly optimized for lookup searches, expecting that
the user is only interested in facts and not in complex prob-
lem solving.

Consequently, there is a need to develop novel paradigms
for exploratory user-data interactions that emphasize user
context and interactivity with the goal of facilitating explo-
ration, interpretation, retrieval, and assimilation of infor-
mation. A huge number of applications need an exploratory
form of querying. Ranked retrieval techniques for relational
databases, XML, RDF and graph databases, text and mul-
timedia databases, scientific and statistical databases, social
networks and many others, is a first step towards this direc-
tion. Recently, several new aspects for exploratory search,
such as preferences, diversity, novelty and surprise, are gain-
ing increasing importance. From a different perspective, rec-
ommendation applications tend to anticipate user needs by
automatically suggesting the information which is most ap-
propriate to the users and their current context. Also, a
new line of research in the area of exploratory search is fu-
eled by the growth of online social interactions within social
networks and web communities. Many useful facts about
entities (e.g. people, locations, organizations, products) and
their relationships can be found in a multitude of semi-
structured and structured data sources such as Wikipedia1,
Linked Data cloud2, Freebase3, and many others. Therefore,
novel discovery methods are required to provide highly ex-
pressive discovery capabilities over large amounts of entity-
relationship data, which are yet intuitive for end-users.

1http://wikipedia.org
2http://linkeddata.org
3http://freebase.com

158

The ExploreDB Workshop
The purpose of the ExploreDB workshop is to bring together
researchers and practitioners that approach data exploration
from different angles, ranging from data management, infor-
mation retrieval to data visualization and human computer
interaction, in order to study the emerging needs and ob-
jectives for data exploration as well as the challenges and
problems that need to be tackled.

In this first workshop instance, we have put together a pro-
gram, comprising a keynote talk, six research papers, and a
panel, that examines data exploration from the standpoints
of data visualization, information retrieval, web search, data
mining, and database queries. We are grateful to all the au-
thors who submitted papers. We would also like to thank
Daniel Keim for accepting to be the keynote speaker, and
our reviewers who did their best in delivering thorough re-
views on time.

The ExploreDB Organization
The workshop co-chairs
Georgia Koutrika
HP Labs, Palo Alto, USA

Laks V.S. Lakshmanan
Department of Computer Science,
University of British Columbia, Canada

Mirek Riedewald
College of Computer and Information Science,
Northeastern University, USA

Kostas Stefanidis
Institute of Computer Science, FORTH, Hellas

Program committee
Ira Assent, Aarhus University, Denmark

Wolf-Tilo Balke, TU Braunschweig, Gernamy

Carlos Castillo, Qatar Computing Research Institute, Qatar

Nicola Ferro, University of Padua, Italy

Minos Garofalakis, Technical University of Crete, Greece

Melanie Herschel, University of Paris South, France

H. V. Jagadish, University of Michigan, Ann Arbor, USA

Haridimos Kondykakis, ICS-FORTH, Greece

Mohamed Mokbel, University of Minnesota, Minneapolis,
USA

Kjetil Kjetil Nørv̊ag, Norwegian University of Science and
Technology, Norway

Evaggelia Pitoura, University of Ioannina, Greece

Julia Stoyanovich, Drexel University, Philadelphia, USA

Letizia Tanca, Politecnico di Milano, Italy

Martin Theobald, University of Antwerp, Belgium

Panayiotis Tsaparas, University of Ioannina, Greece

Yannis Tzitzikas, University of Crete and ICS-FORTH,
Greece

Jun Yang, Duke University, Durham, USA

Demetris Zeinalipour, University of Cyprus, Cyprus

159

Exploring Big Data using Visual Analytics

Daniel A. Keim
Department of Computer and Information Science, University of Konstanz

Daniel.Keim@uni-konstanz.de

Abstract
Never before in history data is generated and collected at
such high volumes as it is today. For the exploration of large
data sets to be effective, it is important to include the human
in the data exploration process and combine the flexibility,
creativity, and general knowledge of the human with the
enormous storage capacity and the computational power of
today’s computers. Visual Analytics helps to deal with the
flood of information by integrating the human in the data
analysis process, applying its perceptual abilities to the large
data sets. Presenting data in an interactive, graphical form
often fosters new insights, encouraging the formation and
validation of new hypotheses for better problem-solving and
gaining deeper domain knowledge. Visual analytics tech-
niques have proven to be of high value in exploratory data
analysis. They are especially powerful for the first steps
of the data exploration process, namely understanding the
data and generating hypotheses about the data, but they
also significantly contribute to the actual knowledge discov-
ery by guiding the search using visual feedback.

In putting visual analysis to work on big data, it is not
obvious what can be done by automated analysis and what
should be done by interactive visual methods. In dealing
with massive data, the use of automated methods is manda-
tory - and for some problems it may be sufficient to only
use fully automated analysis methods, but there is also a
wide range of problems where the use of interactive visual
methods is necessary. The presentation discusses when it is
useful to combine visualization and analytics techniques and
it will also discuss the options how to combine techniques
from both areas. Examples from a wide range of application
areas illustrate the benefits of visual analytics techniques.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Short Bio
DANIEL A. KEIM is professor and head of the Informa-
tion Visualization and Data Analysis Research Group in the
Computer Science Department of the University of Kon-
stanz, Germany. He has been actively involved in data
analysis and information visualization research for about
20 years and developed a number of novel visual analysis
techniques for very large data sets. He has been program
co-chair of the IEEE InfoVis and IEEE VAST as well as the
ACM SIGKDD conference, and he is member of the IEEE
VAST as well as EuroVis steering committees. Dr. Keim got
his Ph.D. and habilitation degrees in computer science from
the University of Munich. Before joining the University of
Konstanz, Dr. Keim was associate professor at the Univer-
sity of Halle, Germany and Senior Technology Consultant
at AT&T Shannon Research Labs, NJ, USA.

160

On the Suitability of Skyline Queries for Data Exploration

Sean Chester, Michael L. Mortensen, and Ira Assent
Data-Intensive Systems, Aarhus Universitet

Åbogade 34 8200-Århus N, Denmark
{schester, illio, ira}@cs.au.dk

ABSTRACT

The skyline operator has been studied in database research
for multi-criteria decision making. Until now the focus has
been on the efficiency or accuracy of single queries. In
practice, however, users are increasingly confronted with
unknown data collections, where precise query formulation
proves difficult. Instead, users explore the data in a sequence
of incrementally changing queries to the data to match their
understanding of the data and task. In this work, we study
the skyline operator as a tool in such exploratory querying
both analytically and empirically. We show how its results
evolve as users modify their queries, and suggest using our
findings to guide users in formulating reasonable queries.

1. INTRODUCTION
Say you have never been to America and you find yourself

in Manhattan searching for a restaurant. Where do you
even begin? Probably, you want something close, but quite
what is “close” may not be clear. If you might go to a show
later, several locations can be equally valid reference points
for “close.” Perhaps you prefer something inexpensive, but
having never been to Manhattan, what really is“expensive”?
Search sites can help, but only if you know for what to look.

The skyline operator is said to be useful in this context,
because it identifies the data points (restaurants) that ex-
press the best trade-offs between the dimensions of interest
(proximity, rating, and price). But what if the user wants to
explore the data, and may evolve new preferences through-
out the process? He/she may decide that price, afterall, is
no concern, or not to look at any more pizzerias. For the
skyline to be useful in this interactive process, it is crucial
that one can continually add constraints and change dimen-
sions of interest without completely changing the results that
he/she sees. If the skyline filters too many points that it did
not filter before, the user will likely be as mystified as the
users in the skyline user study of Magnani et al. [8].

An interactive skyline has been assumed in several con-
texts (e.g., skycube computation [5], dynamic skylines [4],
visualization [8], anytime computation [9], and preference
elicitation [1, 7]), but how the interaction affects the skyline

c© 2014, Copyright is with the authors. Published in the Workshop Pro-

ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this

paper is permitted under the terms of the Creative Commons license CC-

by-nc-nd 4.0.

Figure 1: Example of a skyline. The black points are in the
skyline because no other points have, relative to them, both
a higher rating and proximity.

is not well understood. If a small query changes produce rad-
ically different skylines, which is theoretically possible (Sec-
tion 3), then an interactive skyline would not make sense.

Nevertheless, if the skyline accomodates making incre-
mental changes to a query formulation, it has potential to
help an exploratory user. So, in this paper, we take a first
look at how suitable the skyline is when repeatedly executed
on slightly different views of the data. In particular, we ask:

1. What can theoretically happen to the results of a sky-
line when a query is incrementally vs. arbitrarily re-
formulated (Section 3)?

2. Does being in one skyline make being in a skyline for
similar queries more likely? Or is one query’s result
uninteresting once the user’s preferences evolve?

3. How often are the theoretical effects in Section 3 empir-
ically observed in real and synthetic data (Section 4)?

2. BACKGROUND
Figure 1 illustrates the skyline [2], a filtration tool. Given

a set D of n points p = (p0, . . . , pd−1) in d dimensions, the
skyline consists of all points p ∈ D that are not dominated
by any other points q ∈ D. A point q dominates another
point p if ∀0 ≤ i < d, qi ≥ pi and ∃0 ≤ i < d, qi > pi.

1

That is to say, for any pair of non-equal points, if one is in
the skyline it must have a higher value than the other on

1The assumption of preferring larger values is WLOG: one
can multiply any attribute by −1 in preprocessing.

161

some attribute. The skyline consists of all points that are
not inferior to some other point.

However, the number of skyline points can be quite large [3]
and a user may find only some dimensions and values to be
interesting; so, the skyline operator should be combined with
subspace projections (then called a subspace skyline [12])
and with range constraints (then called a constrained sky-
line [10]). Our general form of a skyline query is then:

select <subspace>
from <tables>
where <range constraints>
skyline <min/max specifications>

A user specifies dimensions are of interest (the subspace),
min and max values for those dimensions (range constraints),
and whether he/she prefers smaller or larger values on each
attribute (the specifications). To (logically) execute such a
query, one first applies the constraints and projections, and
then computes the skyline of the resultant, filtered dataset.

In an exploratory context, the skyline is not the termi-
nus of the process. After observing the results, the user will
reformulate the query to match evolved understanding in
an incremental manner. That is to say, subsequent queries
in an exploratory process are not disjoint, because if they
were, that would imply that the user is completely dissat-
isfied with the results of the first search, since he/she de-
liberately excluded them from the second search. This is
effectively restarting. We will focus on largely overlapping
queries, which suggest some successful interactivity.

More precisely, we define an incremental change as ad-
ditions or removals of subspace dimensions or an edit to
one range constraint. Such incremental changes can pro-
duce query results similar to the ones before. Any larger
changes can be decomposed into a sequence of incremental
ones. However, while the points satisfying the constraints
likely are similar after an incremental change, the extent to
which the skyline changes is not well known.

Problem statement

Given a baseline query, consisting of a subspace projection
and a set of range constraints, and an incremental change to
that query, how many points do the skyline of the baseline
and the skyline of the modified query have in common?

3. THEORETICAL EFFECTS
In this section, we look at what can happen to the results

of a skyline query after an incremental change.

3.1 Effect of varying constraints
Consider a skyline query applied to some baseline con-

straints (Figure 2). The results are very specific to the con-
straints posed; for example, although points p and l would
be part of the skyline if there were no constraints, neither
match any user constraints. On the other hand, whereas g
and h are not part of the unconstrained skyline, they become
skyline points if l is eliminated by the constraints.

In fact, every point can be part of the skyline for some
set of constraints and no point is guaranteed to always be a
skyline point. Therefore, an arbitrary change in constraints
can have unpredictable consequences to the skyline: possibly
adding new skyline points, removing existing ones, or both.

What we show here, however, is that if a user makes only
an incremental change, the behaviour is predictable. There

are four effects that can be observed, two types of skyline
point addition and two types of skyline point removal:

1. Addition (A): A point only satisfies the new con-
straints and so becomes a skyline point;

2. Removal (R): An existing skyline point only satisfies
the old constraints and so is removed from the skyline;

3. Promotion (P): A point becomes a new skyline point
because all the points that dominated it are removed
by the new constraints;

4. Demotion (D): An existing skyline point is removed
from the skyline because it becomes dominated by
some point that only satisfies the new constraints, but
not the old ones.

Although an arbitrary change to constraints can induce
any or all effects, an incremental change cannot. On a given
attribute, there can be both an upper (U) and a lower (L)
constraint, either of which can be increased (I) or decreased
(D). We analyze each of these four cases:

LD. In Figure 2(b), the lower constraint is decreased. This
adds a to the skyline, which has a high y-value but had an
x-value outside the constraints. An LD change to dimension
D can add points to the skyline if they are in the subspace
skyline on the remaining dimensions, but it can never re-
move or promote points. New points have lower D-values
than, and so could never dominate, existing skyline points.

LI. In Figure 2(c), the lower constraint is increased. This
removes d from the skyline: it no longer matches the con-
straints. LI changes to dimension D consider no new points
(so cannot add) and remove those smallest on D. Their re-
moval cannot result in a promotion, because points satisfy-
ing the new constraints must have a higher D-value so can-
not have been previously dominated by the removed points.

UD. In Figure 2(d), the upper constraint is decreased. The
points n and k are removed, but point i, which was dom-
inated by k, is promoted. The add effect cannot occur,
because all points matching the new constraints matched
the old constraints. Therefore, for a point q to become a
new skyline point subject to the new constraints, the point
that dominated q in the old constraints must be eliminated.

UI. In Figure 2(e), the upper constraint is increased. Con-
sequently, points l and m are added and points {g, h, k, n}
are all demoted because they are dominated by l. Exist-
ing skyline points cannot be simply removed, because they
necessarily match the new constraints: they can only be
eliminated from the skyline by becoming dominated.

A user can control which of the effects could happen by
making an incremental change (one constraint), e.g., LU to
decrease the skyline size. Composing constraint modifica-
tions on different attributes is only predictable if the modi-
fications are all of the same type. How much each of these
effects is observed we evaluate empirically (Section 4).

3.2 Effect of varying subspace projections
Incremental changes to subspace projections can also cre-

ate four effects. As with the constrained skylines, there are
two types of skyline addition and two types of removal:

162

(a) Dec. lower const. (LD) (b) Inc. lower const. (LI) (c) Dec. upper const. (UD) (d) Inc. upper const. (UI)

Figure 2: The four incremental constraint changes. The solid rectangle shows the baseline constraints and the dotted lines
indicate the modification to the constraints. Solid points are in the skyline and hollow points are not. A plus indicates an
addition; a minus, a removal; an upwards arrow, a promotion; and a downwards arrow, a demotion.

1. Addition (A): A point dominated in the old subspace
becomes incomparable to the points that dominated it,
and thus becomes a skyline point in the new subspace;

2. Removal (R): A skyline point in the old subspace
is now dominated in the new subspace, so no longer
belongs to the skyline;

3. Homogenization (H): A point not in the skyline in
the old subspace becomes a skyline point because it is
identical to some skyline point in the new subspace;

4. Differentiation (D): A skyline point that was iden-
tical to another skyline point in the old subspace is
dominated by that skyline point in the new subspace.

For an example, consider the dataset, Dex, below, and the
incremental addition of subspace dimensions, from {x0} to
{x0, x1} to {x0, x1, x2} (i.e., just the first value of each point,
then the first two, then all three).

Dex =

p = (1, 2, 2)

q = (1, 1, 2)

r = (0, 2, 3)

To begin, the skyline in x0 is {p, q}, since p and q both
have higher values than r on x0, but not than each other. By
adding dimension x1, the skyline becomes {p}, an instance
of differentiation. Point q is removed from the skyline be-
cause it is no longer identical to point p, instead now domi-
nated by it. Finally, adding the last dimension, the skyline
becomes {p, r}, an instance of addition. Point r is added
to the skyline because it has a higher value than the other
skyline point, p, on x2; so, they have become incomparable.

In the other direction, we observe the inverse effects, first
the removal of r and then then homogenization of q.

So, whether one adds or removes a dimension, points can
be both added or removed from the skyline. Therefore,
theoretically at least, one cannot anticipate how the sky-
line might change going from one subspace to a neighbour
without using sophisticated preprocessing techniques, such
as those in [11]. So, we will determine the actual frequency
of these effects empirically (Section 4).

A note about Distinct Value Condition

Effects H and D create unpredictability when changing sub-
spaces. Thus the motivation for Distinct Value Condition [11],
which ensures monotonicity. In particular, if no value ap-
pears twice in the dataset for the same attribute, then a
point in the skyline for some subspace will always remain in
the skyline after adding any number of other dimensions.

4. EMPIRICAL INVESTIGATION
In the previous section, we investigated what theoreti-

cally happens to the result of a skyline query if one makes
incremental changes to the subspace or constraints. In this
section, we investigate how often each of these effects em-
pirically occur. Our strategy with these experiments is to
execute an initial subspace or constrained query, modify the
query formulation by a variable extent, and measure the
occurrences for each effect defined in Section 3.

4.1 Setup
To observe incremental changes, we conduct one suite of

experiments in which we adjust constraints (Section 4.2.1)
and one in which we add dimensions to a subspace (Sec-
tion 4.2.2). We briefly describe implementation details (Sec-
tion 4.1.1), the datasets that we use (Section 4.1.2), and the
methodology (Section 4.1.3).

4.1.1 Implementation Details

We first apply the contraints/subspace projections onto
the data with a short awk program, and then apply a known
skyline algorithm. When applying constraints, we use the
state-of-the-art skyline algorithm, BSkyTree [6] (implemented
by the original authors). As the BSkyTree algorithm does
not handle duplicate points–which occur quite frequently in
some subspaces–we use our own implementation of BNL [2]
when applying subspace projections.

4.1.2 Datasets

For the experiments with constraints, we primarily use the
standard skyline synthetic data generator [2],2 with parame-
ters we discuss in Section 4.1.3. The synthetic data permits
drawing general conclusions with respect to the specific data
distributions. To also observe behaviour on real data, we
choose the nba3 dataset, a standard benchmark for skyline
research, consisting of statistics for 21961 basketball player-
seasons. We use eight of the statistics, gp, pts, asts, pf, fga,
fgm, fta, and ftm, because others contain frequent NULLs.

The behaviour between subspaces is only interesting with-
out Distinct Value Condition (Section 3.2); so, we again use
the nba dataset, which has duplicate values, but not the
synthetic data, which does not. We add the automobiles
dataset,4 which has 406 points and 8 dimensions (although
we only use the first seven, because origin is non-ordered).

2http://http://pgfoundry.org/projects/randdataset
3http://www.databasebasketball.com
4http://stat-computing.org/dataexpo/1983.html

163

50

100

150

200

250

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Removals
Promotions

(a) Correlated

0

400

800

1200

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Removals
Promotions

(b) Independent

0

2000

4000

6000

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Removals
Promotions

(c) Anti-correlated

Figure 3: Decreasing an upper constraint - UD. (n = 100K, d = 6)

200

400

600

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Additions
Demotions

(a) Correlated

0

500

1000

1500

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Additions
Demotions

(b) Independent

0

2500

5000

7500

10000

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Additions
Demotions

(c) Anti-correlated

Figure 4: Increasing an upper constraint - UI. (n = 100K, d = 6)

We choose this dataset to observe behaviour with many
duplicate maximum values: 27% of the cars have the max.
number (8) of cylinders, 7.5% of the cars have the max.
year (1982), and 4.5% of the cars have the max. displace-
ment (98.0). Non-maximal values are duplicated, too (e.g.,
6 cylinders). All datasets are normalized to the range [0, 1]
to make the interpretation of our plots easier.

4.1.3 Methodology

There are many ways to reformulate a query, so many
variables to consider empirically. We focus on those most
natural for a user to tune and containing polar cases that
demonstrate the range of skyline behaviour.

Studying constraints, we use synthetic data, introducing
more variables but more generalizable findings. We hold the
number of (and ergo density of) points constant at 100K
and dimensionality at 6. As typical in skyline literature,
we vary the distribution (correlated, indepedent, and anti-
correlated), since the skyline size varies with correlation.

We pose a constant initial seed constraint that prunes 75%
of the data (≥ 0.75 or ≤ 0.25). This is a reasonable first con-
straint, equivalent to asking only for restaurants with rat-
ings of at least 4.0 (on a range of 1 to 5). We then compare
the skyline result to that for constraints in 50 increments of
0.0025. We vary the direction of these changes (as per Sec-
tion 3), both increasing and decreasing the constraint. We
place the initial constraint in two different, extreme loca-
tions: one in the maximal direction (a lower constraint) and
one in the minimal direction (an upper constraint). We do
this for every dimension. In total, this produces 72 combina-
tions on synthetic data, each for which we plot the 50 com-
parisons between the baseline and the modified constraint.

We do the same with the nba dataset to produce 48 combi-
nations (not varying correlation, using all 8 attributes).

For the subspace investigation, there are fewer variables.
As discussed above, we use only real datasets. We iter-
ate each of the (2d − 2) proper, non-empty subspaces and,
for each, compare the skyline result to that produced after
adding 1 or 2 dimensions. We only add dimensions, because
removal is symmetric. This produces 6050 and 1932 combi-
nations for the nba and automobiles datasets, respectively.

4.2 Discussion
In this section, we describe the salient observations on

skyline behaviour when adjusting constraints (Section 4.2.1)
and adding dimensions to subspaces (Section 4.2.2).

4.2.1 Effects of constraints

We present here our findings on the effects of incremental
constraint changes. We present, first, for upper constraint
changes (UD and UI, in the terminology of Section 3.1), and,
second, for lower constraint changes (LD and LI).

Upper constraints. Figures 3a-3c show the skyline size,
along with the number of removals and promotions for
a representative UD case on synthetic datasets. We do not
show additions nor demotions, since, in agreement with
Section 3.1, there are none.

In all distributions, we see that as the size of change in-
creases, the removals increase steadily and the promo-
tions vary throughout. This is especially apparent for cor-
related data, where about 80% of the original skyline is re-
moved after a 0.065 decrease of the upper constraint and
about 80 promotions occur after a slight change of 0.020.

164

This corresponds to a user, say, decreasing his/her budget
for a restaurant, so the large and variable number of pro-
motions implies he/she will see plenty new options when
filtering out that which is most expensive. We also see the
skyline size has a net decrease; so, as the user would expect,
narrower ranges produce fewer results. Consequently, a UD
change is appropriate for a user who wants to see new points
without substantially changed the baseline constraints.

Figures 4a-4c show the skyline size, additions and de-
motions for the UI case, where a user is, say, increasing
his/her budget. The overall trend is an increasing skyline
size with only slight drops on account of demotions. Again,
the correlated data shows large changes to the skyline even
on very slight changes to constraints: minute changes induce
over 100 demotions, creating an immediate local drop in
skyline size. To an exploratory user most of the original
results will seemingly be no longer valid.

Overall, on upper constraint modifications, we see dra-
matic changes for correlated data because the skyline will
generally be located around the upper boundary of the data
space for all of the correlated dimensions. Thus when one
upper constraint is changed, it is likely to affect every sky-
line point and the change is more immediate than we see for
other distributions. For all distributions, we see that small
changes to constraints can yield significant changes to the
skyline result. Assuming rational users want to predict the
outcome of their input actions, a viable strategy for inter-
actively using the skyline is to only make especially small
changes to upper constraints. If changes are too large, the
skyline may seem unpredictable and uncontrollable.

Lower constraints. We omit plots for the additions caused
by an LD change and for the removals induced by an LI
change for space. In agreement with Section 4.2.1, we only
observe one type of effect for each of these changes and any
additions or removals have a proportionate effect on the
skyline size. The effect grows linearly with the size of the
change in constraints. A user adjusting a lower constraint
is probably trying to filter the results, because it is con-
trary to the direction of his/her preferences. The results
confirm that this is a viable strategy: lowering (raising) the
constraint increases (limits) the output.

100

200

300

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Removals
Promotions

Figure 5: NBA - UD. (n = 21961, d = 8)

Real data. To investigate the effects from constraints on
real data, we conducted the same experiments for the nba
dataset. Figures 5 and 6 show the effects of decreasing the
upper constraint on the fgm attribute and of increasing the
upper constraint on the fta attribute, respectively. As was

50

100

150

200

250

0.000 0.025 0.050 0.075 0.100 0.125
Increment to constraints

N
um

be
r

of
 p

oi
nt

s

Skyline size
Additions
Demotions

Figure 6: NBA - UI. (n = 21961, d = 8)

1

10

100

1 2 3 4 5 6
Dimensionality of baseline subspace

N
um

be
r

of
 s

ky
lin

e
re

m
ov

al
s

Figure 7: Scatterplot of skyline removals compared to di-
mensionality of the baseline subspace - Automobiles

the case with the synthetic data, we see a steady stream of
removals and demotions. What is novel here is that while
most of the skyline has been replaced after only a 0.04 de-
crease of the upper constraint in Figure 5 the skyline neither
increases nor decreases heavily. The same trend is visible in
Figure 6, where the skyline size has minimal variance.

This trend is interesting for an interactive analysis, since
it shows a dataset like nba provides different skylines of com-
parable sizes, depending on the user’s needs and expressed
conveniently in the constraints. This further supports the
strategy of using UD and UI cases to explore different sky-
line points in an incremental manner.

Results for the LD and LI cases are omitted due to space
constraints, but confirm the trends shown in the synthetic
experiments, supporting the strategy of using the LD and
LI changes to regulate the skyline size.

4.2.2 Adding dimensions to subspace projections

In these experiments, we add dimensions to baseline sub-
space projections to observe how often the effects analyzed
in Section 3.2 empirically occur. We only add dimensions,
because the behaviour is symmetric (can be interpreted by
reading the plots right-to-left) when removing dimensions.
To a user, Differentiations (and homogenizations) are
counter-intuitive, because they request more (less) data and
then obtain fewer (more) results. So, we investigate under
what circumstances this will impact the exploratory process.

On the nba dataset, we never observe differentiations
for any configuration of experiment parameters. This is an
interesting result because it shows that even in the presence
of many duplicate values, one may not see any differen-
tiations if those duplicates do not occur on the maximum

165

0

50

100

0 30 60 90
Number of skyline removals

N
um

be
r

of
 s

ky
lin

e
ad

di
tio

ns
1 dim added
2 dims added
3 dims added

Figure 8: Scatterplot of skyline additions and removals
caused by adding to baseline subspace - Automobiles

values. For the nba dataset, for example, there is seldom a
tie for a record statistic such as most points scored in a single
NBA season. So it is not surprising that competitive players
do not have identical statistics in subspaces. Exploring the
subspaces in this dataset will be quite intuitive.

On the automobiles dataset, we observe diffentiations.
Figure 7 shows their frequency with respect to the the base-
line subspace dimensionality when one dimension is added.
Even with all dimensions, differentiations occur (points
exist, albeit only 1). Beyond one dimension, all cases in-
clude the cylinders attribute, which has the most duplicated
maximum values. On other attributes, there are no differ-
entiations if the baseline has at least two dimensions. This
illustrates that while diffentiations are rare when the base-
line projection is on several dimensions, they do occur, and
should be illustrated to the user so the results appear stable.

The second plot, Figure 8, shows how common are simul-
taneous additions and differentiation. The simultane-
ity is less desirable for exploring data, because it makes it
harder to contrast subsequent queries. We see that if only
one dimension is added (the triangular points), the effect
can be predominantly additions or predominantly differ-
entiations (on the axes), but not both (in the middle).
This is because differentiations pre-suppose a high de-
gree of homogeneity on maximal values, only one of which
needs a high value on the new dimension in order to con-
tinue dominating all the points that are not in the base-
line skyline. As the number of dimensions added goes up,
there is a trend towards more mixed effects, because homo-
geneous points need to continue dominating non-baseline-
skyline points over more new dimensions. By adding 3 di-
mensions, it is quite common to see roughly equal addi-
tions and differentiations; then, the result size has not
changed (and thus is not easier to interpret), but the mix-
ture of points has (which is counter-intuitive).

In summary, differentiations (homogenizations) are
uncommon when adding (removing) one dimension, espe-
cially if starting with several dimensions. They are unlikely
to occur at all if the duplicated values in the dataset are
not on the maximal values. Nevertheless, they occur, even
in high dimensional subspaces, and need to be illustrated to
an exploratory user who would otherwise be confused.

5. CONCLUSION
In this work, we investigated how the skyline performs

as a tool for exploratory data analysis. We analyzed how
the skyline is affected by incremental changes with standard
database operators (projection and selection) by defining the
theoretical effects that one can observe, and measuring the
frequency with which these effects are observed empirically.

A central motivation for the skyline is to disencumber the
user from having to specify query parameters, and this re-
search helps advance that objective. We envision that query
recommendation can benefit from understanding the effects
that incremental changes will have. If the goal is to pro-
duce new results, one can suggest some UD/UI changes or
a dimension to remove. If the goal is to control the out-
put size, UD/UI changes or additional dimensions can be
automatically recommended. Future work can investigate
strategies for producing these recommendations. Learning
the consequences of manipulating query parameters is only
a first step in exploring the expansive possibilities for how
users and skyline-based systems can interact and in guiding
exploration of new data in a principled manner.

6. ACKNOWLEDGEMENTS
This work has been supported in part by the Danish Coun-

cil for Strategic Research, grant 10-092316.

7. REFERENCES
[1] W.-T. Balke, U. Güntzer, and C. Lofi. Eliciting

matters – controlling skyline sizes by incremental
integration of user preferences. In DASFAA, pages
551–562, 2007.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[3] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H.
Tung, and Z. Zhang. On high dimensional skylines. In
EDBT, pages 478–495, 2006.

[4] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. A
safe zone based approach for monitoring moving
skyline queries. In EDBT, pages 275–286, 2013.

[5] J. Lee and S. Hwang. Qskycube: Efficient skycube
computation using point-based space partitioning.
PVLDB, 4(3):185–196, 2010.

[6] J. Lee and S. Hwang. Scalable skyline computation
using a balanced pivot selection technique.
Information Systems, 39:1–21, January 2014.

[7] J. Lee, G.-w. You, S. Hwang, J. Selke, and W.-T.
Balke. Interactive skyline queries. Information
Sciences, 211:18–35, 2012.

[8] M. Magnani, I. Assent, K. Hornbæk, M. R. Jakobsen,
and K. F. Larsen. Skyview: a user evaluation of the
skyline operator. In CIKM, pages 2249–2254, 2013.

[9] M. Magnani, I. Assent, and M. L. Mortensen.
Anytime skyline query processing for interactive
systems. In DBRank, 2012. No. 7.

[10] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
TODS, 30(1):41–82, 2005.

[11] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu,
W. Wang, Y. Tao, J. X. Yu, and Q. Zhang. Towards
multidimensional subspace skyline analysis. TODS,
31(4):1335–1381, 2006.

[12] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient
computation of skylines in subspaces. In ICDE,
page 65, 2006.

166

Hippalus: Preference-enriched Faceted Exploration

Panagiotis Papadakos and Yannis Tzitzikas
Institute of Computer Science, FORTH-ICS, GREECE, and

Computer Science Department, University of Crete, GREECE
{papadako|tzitzik}@ics.forth.gr

ABSTRACT
In this work we describe and evaluate Hippalus, a system
that offers exploratory search enriched with preferences. Hip-
palus supports the very popular interaction model of Faceted
and Dynamic Taxonomies (FDT), enriched with user actions
which allow the users to express their preferences. The un-
derlying preference framework allows expressing preferences
over attributes (facets), whose values can be hierarchically
valued and/or multi-valued, and offers automatic conflict
resolution. To evaluate the system we conducted a user
study with a number of tasks related to a“car selection” sce-
nario. The results of the comparative evaluation, with and
without the preference actions, were impressive: with the
preference-enriched FDT, all users completed all the tasks
successfully in 1/3 of the time, performing 1/3 of the actions
compared to the plain FDT. Moreover all users (either plain
or expert) preferred the preference enriched interface. The
benefits are also evident through various other metrics.

1. INTRODUCTION
Users access large amounts of information resources (doc-

uments or data) mainly through search functions, where the
user types a few words and the system (web search engine,
query engine) returns a linear list of hits. While this is often
satisfactory for focalized search, it does not provide enough
support for recall-oriented (exploratory) information needs.
As several user studies have shown, a high percentage of
search tasks are exploratory ([1]), the user does not know
accurately his information need (e.g. in WSE users provide
in average 2.4 words [4]), and such needs cannot be satisfied
by a single ‘hit’.

A highly prevalent model for exploratory search is the
interaction of Faceted and Dynamic Taxonomies (FDT),
which allows the user to get an overview of the information
space (e.g. search results) and offers him various group-
ings of the results (based on their attributes, metadata,
or other dynamically mined information). These group-
ings enable the user to restrict his focus gradually and in

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

a simple way (through clicks, i.e. without having to formu-
late queries), enabling him to locate resources that would
be difficult to locate otherwise (especially the low ranked
ones). This model is currently used in various domains:
e-commerce (e.g. eBay), booking applications (e.g. book-
ing.com), library and bibliographic portals (e.g. ACM Digi-
tal Library), museum portals like Europeana, mobile phone
browsers, and many others.

The enrichment of search mechanisms with preferences
could be proved useful for recall-oriented information needs,
because such needs involve decision making. However the
current approaches for preference-based access [13], mainly
from the area of databases, seem to ignore that users should
be acquainted with the information space and the available
choices for describing effectively their preferences. On the
other hand, the available personalization services over FDT,
do not allow the explicit expression of preferences, but try to
automatically suggest the most preferred facets and values
according to a number of different criteria. In this way the
user somehow “loses” the control of the interaction.

In this work, we describe and evaluate Hippalus, a pref-
erence enriched FDT system, for exploratory browsing. Its
functionality is founded on the preference framework de-
scribed in [15], whose distinctive features is the ability to
express preferences over attributes whose values can be hier-
archically organized, and/or multi-valued, while scope-based
rules resolve automatically the conflicts. We conducted a
user study of the Hippalus system, over a number of tasks,
with and without the preference actions. The gathered re-
sults were impressive. Even though the available choices
were few (50 cars), with the preference-enriched FDT all
users completed all the tasks successfully in 1/3 of the time,
performing 1/3 of the actions compared to the plain FDT.
Moreover all of the users (either plain or expert) preferred
the preference enriched interface.

2. BACKGROUND & RELATED WORK
Faceted and Dynamic Taxonomies
Modern environments should guide users in exploring the
information space and in expressing their information needs
in a progressive manner. Systems supporting FDT offer
a simple, efficient and effective way for exploratory tasks
[12]. Dynamic taxonomies (faceted or not) is an interac-
tion framework based on a multi-dimensional classification
of may heterogeneous data objects allowing users to browse
and explore the information space in a guided, yet uncon-
strained way through a simple visual interface. Features
of this framework include: (a) display of current results in

167

multiple categorization schemes (called facets - or just at-
tributes), (b) display of facets and values leading to non-
empty results only, (c) display of the count information for
each value (i.e. the number of results the user will get by
selecting that value), and (d) the user can refine his focus
gradually, i.e. it is a session-based interaction paradigm in
contrast to the stateless query-and-response dialogue of most
search systems. Moreover, and as shown in [10, 7], this inter-
action paradigm can act complementarily to the traditional
query-and-response dialogue, by post-processing and post-
exploring the results returned by a classical search system.

In any case, the user explores or navigates the informa-
tion space (either the entire information base, or the search
results), by setting and changing his focus. The notion of
focus can be intensional or extensional. Specifically, any
conjunction of values (or any boolean expression of values
in general) is a possible focus. For example, the initial focus
can be the empty, or the top term of a facet. However, the
user can also start from an arbitrary set of objects, e.g. the
search results returned by a common WSE. In that case we
can say that the focus is defined extensionally.

FDT and Preferences
Most FDT systems output facets and zoom-points in lex-
icographical order, or order facets and zoom-points based
on the number of indexed documents. Other systems, like
eBay, only present a manually chosen subset of facets to the
users, and the zoom-points are again ranked based on the
number of indexed documents.

Recently, various approaches try to automatically present
the most “useful” facets and zoom-points according to var-
ious criteria like set-cover ranking of indexed objects [2],
interestingness over a number of criteria [3], or use col-
laborative [8] and content filtering [14] to rank facet-values
pairs. Minimum-effort driven navigational techniques for
enterprise databases, that rapidly drill down to the most
prominent tuples are described in [11]. In the same manner,
but for zoom-points, [5] propose a system for faceted navi-
gation using a cost model of user navigation. A browsing-
oriented approach for facet ranking and grouping of facets
and their values according to different intuitions and metrics
is provided in [16]. There are various other works, discussed
in [9]. But none of them allows users to explicitly express
their preferences during the exploration process.

To the best of our knowledge the only model that allows
users to define explicitly the desired preference structure in
a gradual and flexible manner, also exploiting attributes with
hierarchically organized values and possibly set-valued, is the
one proposed in [15]. In this paper we describe and evaluate
the Hippalus system, which supports the above framework.

3. THE HIPPALUS SYSTEM
Hippalus is a publicly accessible web system1 demonstrat-

ing a preference-enriched FDT-based exploratory process. It
offers actions that allows the user to order facets, values,
and objects using best, worst, prefer to actions (i.e. rela-
tive preferences), around to actions (over a specific value),
or actions that order them lexicographically, or according to
their values or count number. Furthermore, the user is able
to compose object related preference actions, using Priority,

1http://www.ics.forth.gr/isl/Hippalus

Pareto, Pareto Optimal (i.e. skyline), and Combination (i.e.
order according to priority; the rest actions are the least pri-
oritized and use Pareto composition) compositions. All the
above functionality is offered in an efficient way, by using
the algorithms described in [15].

The information base that feeds Hippalus is represented
in RDF/S (using a schema adequate for representing ob-
jects described according to dimensions with hierarchically
organized values). For loading and querying such informa-
tion Hippalus uses Jena2, a Java framework for building
Semantic Web applications. Hippalus offers a web inter-
face for FDT exploration, enriched with the aforementioned
preference actions through HTML 5 context menus3. The
performed actions are internally translated to statements of
the preference language described in [15], and are then sent
to the server through HTTP requests. The server parses
the preference statements and if they are valid, computes
the respective preference bucket order. Finally, the result-
ing according to preference ranked list of facets, terms or
objects is sent to the user’s browser.

3.1 Interaction and User Interface Design
The most widely adopted approach or policy for FDT vi-

sualization (evidenced by the UI design of global systems like
booking.com, eBay), is to use a left bar for the facets and
the corresponding zoom points. This is also the case for the
Hippalus system (Figure 1.a4). Hippalus displays the pref-
erence ranked list of objects in the central part of the screen,
while the right part is occupied by information that relates
to the information thinning process (object restrictions),
preference actions history and preference composition. It
offers the preference related action through right-click acti-
vated pop-up menus (through HTML5 context menus). This
policy does not require allocating permanent screen space for
these actions. However the user should be aware that these
options exist. The design of the preference actions, includes
actions that are anchored to one element, and this makes
the right-click activated actions straightforward. Moreover,
the proposed preference-based framework supports also ac-
tions that concern two elements, i.e. relative preferences like
Korean ≻ European. Figure 1(c) shows how such state-
ments can be expressed through a context menu: the action
is anchored to Korean and the available menu options guide
the user through the options that are valid in this specific
situation and the specific user focus. Notice the icon in the
European option in the right most menu. By pressing it, the
preference is recorded.

At any time the user can restrict his focus to any hard
constraint (i.e. the information thinning process), and his
soft constraints (i.e. expressed preferences) will be applied
to the current restriction of the object set.

Finally, since the number of objects can be very large,
the user can specify a threshold, so that preferences are
applied only when the number of objects is reduced under
this threshold5. Options and parameters regarding the sys-
tem functionality can be set through a drop-down menu (i.e.
simple or full support of preference menus, threshold, etc.)

2http://jena.apache.org/
3Available only to firefox 8 and up.
4In the following screens, the underlying information base
contains data about 50 cars, as described in Section 4.
5The user can reduce the number of objects by selecting
facets and zoom-points, restricting his focus.

168

Regarding the description of the current state, the user is
able to view not only the intentional description of his cur-
rent state, but also the accumulated preferences that he has
formulated. Finally, the user is able to store and load his
preferences, since exploration is a time depth process.

3.2 Interaction Example
Here we describe a more complete scenario demonstrating

how hard and soft constraints can be specified by the user, in
an easy and gradual manner. It also aims at making clear the
merits of the underlying preference framework (preference
inheritance and scope-based conflict resolution). A video
showcasing this scenario is available online6.

The first screen (Fig. 1.a) shows the 50 cars and the left
bar shows the attributes, their values (which can be hier-
archically organized), accompanied by the number of their
occurrences. Figure 1.b shows that one can expand broad
values, like Asian (from the attribute Manufacturer), and
that by clicking on the value Korean the focus is restricted
on three Korean cars. Notice that the left bar has been
updated, i.e. only the values that appear in the restricted
set are presented (all attributes have count up to 3). With
additional clicks the user can further reduce the focus, e.g.
from the attribute Fuel Type we can see that one of the
cars consumes Diesel and two cars Gasoline. By clicking
on Gasoline we see these two cars and by mouse over one of
them the user gets its “Object Card” showing all attributes
of that car. At the right bottom frame the user can see the
history of his clicks and can undo any click.

Preferences are activated through right-click menus. Sup-
pose we cancel all clicks and assume that we want to express
that we prefer Korean cars to European. This means that
we do not want to see only Korean; we just want to get
them ranked higher than European. This is shown in Fig-
ure 2.a(top) where we see that now the user is getting a
linear list of blocks of equally preferred objects, here the
first contains Korean cars, the next one European (thanks
to inheritance the user does not have to say anything about
German, Italian, French, etc).

It is important that preferences can be expressed incre-
mentally and at any point during the interaction. For exam-
ple suppose that in addition the user prefers prices around
12,000. He can use the action around 12,090 as shown in
Figure 2.a(bottom). We can see that the object order now
becomes more refined (the figure shows 14 blocks). Notice
that the first block contains one Korean (Hyundai) and one
Fiat. This happens because both of his preference actions
have the same priority (and Fiat is closer to 12090). If the
user wants to give higher priority to one preference he can
use preferences composition tool at the right frame. Figure
2(b) shows the object order obtained after expressing that
the preferences over manufacturers have higher priority than
the preferences over prices.

At any time the user can click on a value from a facet to
restrict the current focus, which is now a preference-based
list of cars. For instance, if the user wants to see only cars
having two doors, he can click on 2 in the attribute Doors.
We can see that now he gets only 8 cars, which are ranked
according to his preferences so far. The user could cancel
this extra restriction from the object restriction history.

In general the user can combine object restriction (or re-
laxation) actions and preference actions in any order.

6http://www.youtube.com/watch?v=Cah-z7KmlXc

4. EVALUATION
The objective was to investigate whether even in a small

dataset (50 cars), the addition of preferences to FDT would
make the users more effective and satisfied, without mak-
ing the interaction complex to use or learn. To this end we
compared two different UIs: a) Hippalus system with ex-
ploration and browsing capabilities only, where preference
functionality was disabled (UI1) and b) Hippalus system
with exploration and browsing capabilities and preference
functionality enabled (UI2). Regarding UI2, we configured
Hippalus to provide only preference actions affecting objects
(i.e. users were not able to express preferences regarding at-
tributes and their values).

Information Base
We used an information base of 50 cars, where each car is
described by 23 attributes, as shown in Fig. 1.a. A num-
ber of attributes have hierarchically organized values like
Manufacturer and Drive System, while the rest like Doors

Year, Price, etc. are flat.

Tasks
We created two variations of equal tasks for the plain and
two equal variations for the expert users of the evaluation.
In our context task equality is defined as tasks that consist
of the same kind of preference actions and criteria. For
each task, the first subtask was designed around prioritized
composition of preference actions, while the second one over
Pareto composition. Plain users tasks used only 3 criteria,
while the expert ones were more difficult and complicated,
using a total of 6 different criteria. The tasks that users
completed are available in [9, Chapter 6].

Participants
26 males and females of varying age (i.e. between 23-43
years) and expertise (i.e. tertiary education - PhD level)
participated in this study. We formed two groups. The
first group, named plain users, consisted of 20 regular users,
while the second one, expert users, consisted of 6 people with
a prior experience in using multi-dimensional browsing and
access systems that support preferences. Before starting the
evaluation, users were given a simple tutorial of 15 minutes.
In more details, initially users were given a description of
the information base (domain, attributes). In the next five
minutes they were described the interactive process of infor-
mation thinning and finally the rest of the tutorial demon-
strated the preference actions by showing specific examples.
Finally, users were allowed to get acquainted with the UI
and complete a number of simple tasks.

Evaluation
The users were asked to evaluate UI1 and UI2 using the pre-
viously described tasks. Regarding UI1, users completed the
tasks by using the available information thinning function-
ality to restrict their focus and by inspecting the available
cars. For UI2, on top of the information thinning function-
ality they could also submit preference actions. For both
UIs, the users provided the set of cars which they believed
fulfilled the needs of each task, by drag-&-dropping cars into
the “Interesting Objects” frame in the right middle part of
the system (Fig. 1.a).

In order to control for order effects and to increase the
chance that results can be attributed to the experimental

169

(a)

(b)

(c)

Figure 1: (a) Initial screen, (b) Value expansion - object restriction, (c) Relative preference Korean ≻ European

170

(a)

(b)

Figure 2: (a) Expressing preferences, (b) Object restrictions after preference expression

treatments and conditions, we used rotation and counter-
balancing [6]. Specifically, we used a Graeco-Latin Square
Design, rotating both the order of tasks and the order in
which subjects experience the interfaces. For each task, an
expert user provided the ordering of the collection according
to preference by using the Hippalus system. The order was
a bucket order (i.e. two cars can be equally preferred).

The users provided scores for the two UIs regarding Ease
of use, Usefulness, Preference and Satisfaction, using a psy-
chometric Likert scale from 1 to 5. We also calculated Recall
(i.e task completeness), Precision, and Average Precision of

the answer set, along with Efficiency (time to complete a
task) and Number of Actions per each task using the logged
data. Finally, users were asked explicitly if they prefer U2

over U1. In case the answer was ‘Yes’, they were asked how
much more useful they found U2 over U1 (very much, much,
enough, or little).

Results
Here we synopsize the main results. All plain and expert
users preferred the preferences UI over the plain one. Specif-
ically, 75% of the 20 plain users found the UI2 to be very

171

Figure 3: Average values in last step of each task
for Recall (R), Precision (P) and Average Precision
(AP)

much , 20% much and only 5% enough more useful than UI1.
The respective results for the 6 expert users are 50% very
much and the other 50% much more useful. The preference-
enabled UI, allowed users to complete all the tasks success-
fully, in average less than a third of the time and with a third
of user interactions compared to the plain FDT UI (Fig. 3
and 4). Furthermore, none of the users was able to com-
plete both of the tasks successfully with the plain UI. As a
result we verify the conclusions of the theoretical user effort
analysis in [15], since the preference-based UI helps users to
find the desired results in less time and with fewer actions
and less decisions. More details and a theoretical analysis
of the user effort, decision cost and the gathered results are
available in [9, Chapter 6].

5. CONCLUSION
In order to support decision making tasks, exploratory

search requires a session-based behaviour that provides in-
formative overviews. FDT is a widely used interaction model
and in this paper we have presented an extension of this
model with preferences. The enriched interaction is sim-
ple for the users, since it is mainly based on clicks over
the presented values. In addition, the underlying prefer-
ence framework is perfectly suited to FDT since it exploits
the semantics of hierarchically organized values and auto-
matically resolves any conflicts. This reduces the number of
preference actions the users have to express and the dialogue
is kept simple and clean (from technicalities). The Hip-

palus system demonstrates the feasibility of this extension.
The results of the conducted user study were very satisfy-
ing: with the preference-enriched FDT all users completed
all the tasks successfully in 1/3 of the time, performing 1/3
of the actions compared to the plain FDT.

Acknowledgments
This research has been co-financed by the European Union (Eu-
ropean Social Fund - ESF) and Greek national funds through
the Operation Program ”Education and LifeLong Learning” of
the National Strategic Reference Framework (NSRF) - Research
Funding Program: Herakleitus II. Investing in knowledge society
through the European Social Fund.

It was also partially supported by the PlanetData NoE (FP7:ICT-
2009.3.4, #257641).

6. REFERENCES
[1] D. Crawford, editor. Supporting Exploratory Search,

volume 49. ACM, New York, NY, USA, 2006.

Figure 4: Average timings (T) and actions (A) per
task

[2] W. Dakka, P. Ipeirotis, and K. R. Wood. ”Automatic
Construction of Multifaceted Browsing Interfaces”. In Procs
of CIKM’05, pages 768–775, Nov. 2005.

[3] D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and
G. Lohman. ”Dynamic Faceted Search for Discovery-Driven
Analysis”. In Procs of CIKM’08, 2008.

[4] H. Inan. ”Search Analytics: A Guide to Analyzing and
Optimizing Website Search Engines”. Book Surge
Publishing, 2006.

[5] A. Kashyap, V. Hristidis, and M. Petropoulos. ”FACeTOR:
Cost-Driven Exploration of Faceted Query Results”. In
Procs of CIKM’10, pages 719–728. ACM, 2010.

[6] D. Kelly. ”Methods for Evaluating Interactive Information
Retrieval Systems with Users”. Foundations and Trends in
Information Retrieval, 3(1-2):1–224, 2009.

[7] I. Kitsos, K. Magoutis, and Y. Tzitzikas. Scalable
entity-based summarization of web search results using
mapreduce. Distributed and Parallel Databases, 2013.

[8] J. Koren, Y. Zhang, and X. Liu. ”Personalized Interactive
Faceted Search”. In WWW’08: Procs of the 17th
International Conference on World Wide Web, pages
477–486, New York, NY, USA, 2008. ACM.

[9] P. Papadakos. ”Interactive Exploration of
Multi-Dimensional Information Spaces with Preference
Support”. PhD thesis, University of Crete, November 2013.
Available at http://www.ics.forth.gr/ publications/
Papadakos Dissertation.pdf.

[10] P. Papadakos, N. Armenatzoglou, S. Kopidaki, and
Y. Tzitzikas. ”On Exploiting Static and Dynamically Mined
Metadata for Exploratory Web Searching”. Knowledge and
Information Systems, 30(3):493–525, 2012.

[11] S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania.
”Minimum-Effort Driven Dynamic Faceted Search in
Structured Databases”. In Procs of CIKM’08, pages 13–22,
2008.

[12] G. M. Sacco and Y. Tzitzikas, editors. ”Dynamic
Taxonomies and Faceted Search: Theory, Practise and
Experience”. Springer, 2009.

[13] K. Stefanidis, G. Koutrika, and E. Pitoura. ”A Survey on
Representation, Composition and Application of
Preferences in Database Systems”. ACM Transactions on
Database Systems, 36:19:1–19:45, August 2011.

[14] M. Tvarožek, M. Barla, G. Frivolt, M. Tomša, and
M. Bieliková. ”Improving Semantic Search Via Integrated
Personalized Faceted and Visual Graph Navigation.”. In
SOFSEM, volume 4910 of Lecture Notes in Computer
Science, pages 778–789. Springer, 2008.

[15] Y. Tzitzikas and P. Papadakos. Interactive exploration of
multi-dimensional and hierarchical information spaces with
real-time preference elicitation. Fundamenta Informaticae,
122(4):357–399, 2013.

[16] A. Wagner, G. Ladwig, and T. Tran. ”Browsing-Oriented
Semantic Faceted Search”. In DEXA (1), pages 303–319,
2011.

172

The DisC Diversity Model∗

Marina Drosou
Computer Science & Engineering Dept.

University of Ioannina, Greece
mdrosou@cs.uoi.gr

Evaggelia Pitoura
Computer Science & Engineering Dept.

University of Ioannina, Greece
pitoura@cs.uoi.gr

ABSTRACT
In this paper, we summarize our work on diversification
based on dissimilarity and coverage (DisC diversity) by pre-
senting our main theoretical results and contributions.

1. DISC DIVERSITY
Diversification has attracted considerable attention, often

as a means of enhancing the quality of the query results
presented to users [3]. Most diversification approaches rely
on assigning a diversity score to each data item and then
selecting as diverse either the k items with the largest score
for a given k (e.g., [1]), or the items with score larger than
some predefined threshold (e.g., [9]).

In our work [4, 5], we address diversity through a different
perspective and aim at selecting a representative subset that
contains items that are both dissimilar with each other and
cover the whole result set.

Let P be a set of items. We define similarity between
two items using a distance metric d. For a real number r, r
≥ 0, we use Nr(pi) to denote the set of neighbors (or, the
neighborhood) of an item pi ∈ P, i.e., the items lying at
distance at most r from pi:

Nr(pi) = {pj | pi �= pj ∧ d(pi, pj) ≤ r}

We use N+
r (pi) to denote the set Nr(pi)∪{pi}. Items in the

neighborhood of pi are considered similar to pi, while items
outside its neighborhood are considered dissimilar to pi. We
define an r-DisC diverse subset as follows:

Definition 1. (r-DisC Diverse Subset) Let P be a
set of items and r, r ≥ 0, a real number. A subset S of P
is an r-Dissimilar-and-Covering diverse subset, or r-DisC
diverse subset, of P, if the following two conditions hold:
(i) (coverage condition) ∀pi ∈ P, ∃ pj ∈ N+

r (pi), such that
pj ∈ S and (ii) (dissimilarity condition) ∀ pi, pj ∈ S with
pi �= pj, it holds that d(pi, pj) > r.

∗This work was supported by “Epirus on Android” a research
project co-financed by the European Union (European Regional
Development Fund-ERDF) and Greek national funds through the
Operational Program“THESSALY-MAINLAND GREECE AND
EPIRUS-2007-2013” of the National Strategic Reference Frame-
work (NSRF 2007-2013)

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

The first condition ensures that all items in P are rep-
resented by at least one similar item in S and the second
condition that the items in S are dissimilar to each other.
We call every item pi ∈ S an r-DisC diverse item and r the
radius of S. Instead of specifying a required size k of the
diverse set or a threshold, our tuning parameter r explic-
itly expresses the degree of diversification and determines
the size of the diverse set. Increasing r results in a smaller,
more diverse subset, while decreasing r results in a larger,
less diverse subset.

There may be more than one dissimilar and covering di-
verse subsets for the same set of items P. Since we want a
concise representation of P, we select the smallest one:

Definition 2. (Minimum r-DisC Diverse Subset Pro-
blem) Given a set P of items and a radius r, r ≥ 0, find an
r-DisC diverse subset S∗ of P, such that, for every r-DisC
diverse subset S of P, it holds that |S∗| ≤ |S|.

It has been shown that any r-DisC diverse subset S of P
is at most B times larger than any minimum r-DisC diverse
subset S∗, where B is the maximum number of independent
(i.e., dissimilar to each other) neighbors of any item in P [4].
B depends on the distance metric used and on the dimen-
sionality of the data space. In many cases, B is a constant,
e.g., for the 2D Euclidean plane, B = 5.

Comparison with Other Models. Let us now compare
DisC with two widely used diversification models, namely
MaxMin and MaxSum, that aim at selecting a subset S of
P so as the minimum or the average pairwise distance of the
selected items is maximized (e.g., [7, 8, 2]). We also compare
DisC with k-medoids, a widespread clustering algorithm. In
this case, the located medoids constitute the representative
subset S. Input in all the above approaches is the size k
of the diverse subset S. Figure 1 shows the corresponding
sets attained by first locating an r-DisC diverse subset for
a given r and then using the size of the produced diverse
subset as the input k of the other approaches. Here, r =
0.15 and k = 12.

MaxSum and k-medoids fail to cover all areas of the
dataset; MaxSum focuses on the outskirts of the dataset,
whereas k-medoids reports only central items, ignoring items
that are further away. MaxMin performs better in this as-
pect. However, since MaxMin seeks to retrieve items that
are as far apart as possible, it fails to retrieve items from
dense areas. DisC avoids most of these problems.

Multiple Radii. There may be cases in which we want
different parts of the data space to be represented with more

173

(a) r-DisC. (b) MaxSum. (c) MaxMin. (d) k-medoids.

Figure 1: Diverse subsets of size k = 12 produced by different diversification methods for a clustered dataset.
Selected items are shown as (red) solid circles. Circles around items of the DisC solution denote the radius
r of the selected items.

p1

p3p2 p4

p6

p7

p5

(a)

v1

v3

v2

v4

v6

v5

v7

(b)

v1

v3

v2

v4

v6

v5

v7

(c)

Figure 2: (a) A set of items associated with
different radii and their graph representation for
the (b) Covering and (c) CoveredBy problems.
A directed edge from vi to vj indicates that
d(pi, pj) ≤ r(pi) and d(pi, pj) ≤ r(pj) respectively.

or less items. Thus, we consider the more general case where
each item pi is associated with a different radius r(pi).

The problem now loses its symmetry, since an item pi

may be in the neighborhood of an item pj , while pj is not
in the neighborhood of pi. This gives rise to two different
interpretations of radius. One interpretation is that pi can
represent all items in its neighborhood. The other interpre-
tation is that pi can be represented by all items its neigh-
borhood. We call the first problem Covering DisC diverse
subset problem and the second one CoveredBy DisC diverse
subset problem.

Definition 3. (Covering (resp. CoveredBy) DisC
Diverse Subset) Let P be a set of items and r : P → R+

be a function determining the radius of each item in P. A
subset S of P is a Covering (resp. CoveredBy) Dissimilar-
and-Covering diverse subset, or Covering (resp. CoveredBy)
DisC diverse subset, of P, if the following two conditions
hold: (i) (coverage condition) ∀pi ∈ P, ∃ pj with d(pi, pj) ≤
r(pj) (resp. d(pi, pj) ≤ r(pi)), such that pj ∈ S and (ii) (dis-
similarity condition) ∀ pi, pj ∈ S with pi �= pj, it holds that
d(pi, pj) > max{r(pi), r(pj)}.

Figure 3 presents a qualitative view of various options of
assigning radii to items. We present three different scenaria.
The first one corresponds to the case where some parts of the
dataset are considered more important than others and we
want them to be represented with more items. In Figure 3a,

items in each of the four quadrants are assigned increasing
radii as we move clockwise. The second scenario corresponds
to the case in which we want to take into account density,
so that dense areas are not under-represented in the diverse
subset. In this case, we assign smaller radii to items in
denser areas (Figure 3b). The third scenario corresponds to
the case in which we want to relate representation with rel-
evance. For example, for the CoveredBy problem, we assign
smaller radii to items wither larger relevance (Figure 3c and
Figure 3d). This ensures that each item can be covered only
by items that have a larger relevance than it.

Graph Representation and NP-hardness. Besides the
geographical interpretation of DisC diversity, there is also
a corresponding graph representation. We define next the
corresponding graph models for both the single and the mul-
tiple radii cases.

For a single radius r, let GP,r = (V , E) be an undirected
graph such that there is a vertex vi ∈ V for each item pi ∈ P
and an edge (vi, vj) ∈ E, if and only if, d(pi, pj) ≤ r for
the corresponding items pi, pj . Considering multiple radii,
let GP,r(.) = (V , E) be a directed graph such that there
is a vertex vi ∈ V for each item pi ∈ P and a (directed)
edge (vi, vj) ∈ E, if and only if, for the corresponding items
pi, pj , it holds that d(pi, pj) ≤ r(pi) (Covering problem)
or d(pi, pj) ≤ r(pj) (CoveredBy problem). An example is
shown in Figure 2.

It turns out that DisC diverse subsets correspond to inde-
pendent and dominating sets of the corresponding graphs.
A dominating set D for a graph G is a subset of vertices of
G such that every vertex of G not in D is joined to at least
one vertex in D by some edge when G is undirected and
by an incoming edge when G is directed. An independent
set I for a graph G is a set of vertices of G such that for
every two vertices in I, there is no edge connecting them.
Intuitively, a dominating set of GP,r satisfies the covering
condition of the DisC diverse subset, whereas an indepen-
dent set of GP,r satisfies the dissimilarity condition of the
DisC diverse subset.

Lemma 1. Finding a DisC diverse subset for a set P is
equivalent to finding an independent dominating set of the
corresponding graph G.

Finding a minimum independent dominating set of a graph
has been proven to be NP-hard (e.g., [6]).

Computing DisC Diverse Subsets. Next, we present
a general algorithm for locating DisC diverse subsets (Al-
gorithm 1). For presentation convenience, let us call black
the items of P that are in the diverse subset S, grey the

174

(a) Areas. (b) Density. (c) Uniform relevance. (d) Clustered relevance.

Figure 3: Using multiple radii. Selected items are shown as (red) solid circles.

Algorithm 1 Locating DisC diverse subsets.

Input: A set of items P, a radius function r(.) and a selection
criterion C(.).

Output: A DisC diverse subset S of P.

1: S ← ∅
2: for all pi ∈ P do
3: color pi white
4: end for
5: while there exist white items do
6: select the white item pi with the largest value of C(pi)
7: S = S ∪ {pi}
8: color pi black
9: for all pj ∈ NW

r(pi)
(pi) (Covering) or pj s.t. pi ∈

Nr(pj)(pj) (CoveredBy) do

10: color pj grey
11: end for
12: end while
13: return S

items covered by some item in S and white the items that
are neither black nor grey. NW

r (pi) denotes the set of white
neighbors of pi. Initially, S is empty and all items are white.
Items are selected for inclusion in S in rounds based on some
selection criterion C.

For the single radius case, selecting at each round any
white item will result in a DisC diverse subset. In addition,
the greedy algorithm that selects at each round the white
item pi with the largest white neighborhood NW

r (pi) results
in DisC diverse subsets with size close to the minimum one
[4]. For the multiple radii case, to attain DisC diverse items,
we need to select white items in decreasing order of their
radius for the Covering problem and in increasing order of
their radius for the CoveredBy problem.

Zooming. We also consider a zooming operation where,
after being presented with an initial set of results for some
radius r, a user asks to see either more or less results by
correspondingly decreasing or increasing the radius. For
simplicity, we shall focus on zooming in the case of a sin-
gle radius. Formally, given a set of items P and an r-DisC
diverse subset S of P for some specific radius, we want to
compute an r′-DisC diverse subset S′ of P. There are two
cases: (i) r′ < r (zooming-in) and (ii) r′ > r (zooming-out).
Ideally, S′ ⊇ S, for r′ < r and S′ ⊆ S, for r′ > r.

To study the relationship between S and S′, for two radii
r1, r2, r2 ≥ r1, we define the set NI

r1,r2
(pi), as the set of

items at distance at most r2 from pi which are at distance
at least r1 from each other. |NI

r1,r2
(pi)| can be bounded for

specific distance metrics and dimensionality [4].
When zooming-in, we construct diverse sets that are su-

persets of S by adding items to S. It holds that:

Lemma 2. For zooming-in: (i) S ⊆ S′ and (ii) |S′| ≤
|S| +

∑
pi∈S |N I

r′,r(pi)|

When zooming-out, it may not be possible to construct a
DisC diverse subset S′ that is a subset of S. Thus, we pro-
ceed in two passes. In the first pass, we examine all items
of S in some order and remove their diverse neighbors that
are now covered by them. At the second pass, items from
any uncovered areas are added to S′. It holds that:

Lemma 3. For zooming-out: (i) There are at most
∑

pi∈S

|N I
r,r′(pi)| items in S\S′, (ii) For each item of S not included

in S′, at most B − 1 items are added to S′.

2. SUMMARY AND FUTUREWORK
In a nutshell, we introduced a new, intuitive definition of

diversity based on using a radius r rather than a size limit k.
We presented both a geometrical and an equivalent graph-
based interpretation of our model. We introduced incre-
mental diversification through zooming-in and zooming-out,
showed that locating DisC diverse subsets is an NP-hard
problem and provided efficient algorithms for their compu-
tation. Directions for future work include extending our ap-
proach to the budgeted r-DisC problem, that is, computing
DisC subsets of a specific size that maximize coverage and
also studying different variations of our zooming operations.

3. REFERENCES
[1] A. Angel and N. Koudas. Efficient diversity-aware search. In

SIGMOD Conference, 2011.

[2] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification,
monotone submodular functions and dynamic updates. In
PODS, pages 155–166, 2012.

[3] M. Drosou and E. Pitoura. Search result diversification.
SIGMOD Record, 39(1):41–47, 2010.

[4] M. Drosou and E. Pitoura. Disc diversity: result
diversification based on dissimilarity and coverage. PVLDB,
6(1):13–24, 2012.

[5] M. Drosou and E. Pitoura. Poikilo: A tool for evaluating the
results of diversification models and algorithms. PVLDB,
6(12):1246–1249, 2013.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[7] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In WWW, pages 381–390, 2009.

[8] M. R. Vieira, H. L. Razente, M. C. N. Barioni,
M. Hadjieleftheriou, D. Srivastava, C. T. Jr., and V. J.
Tsotras. On query result diversification. In ICDE, pages
1163–1174, 2011.

[9] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes
variety to make a world: diversification in recommender
systems. In EDBT, pages 368–378, 2009.

175

Exploring RDF/S Evolution using Provenance Queries
Haridimos Kondylakis

kondylak@ics.forth.gr

Institute of Computer Science, FORTH

Vasilika Vouton, Heraklion
Greece

Dimitris Plexousakis

dp@ics.forth.gr

ABSTRACT

The evolution of ontologies is an undisputed necessity in current

research community. The problem of understanding this evolution

is a fundamental problem as, based on this understanding,

maintainers of depending artifacts need to take a decision about

possible changes. Moreover, as ontologies are often developed by

several ontology engineers, it is also important for them to

understand what changes have been made by each other. Recent

research focuses on just identifying and presenting the changes

from one ontology version to another. In this paper, we argue that

this is not enough and that we need more fine-grained methods for

understanding how the ontology evolved. To this direction, we

present a module, named ProvenanceTracker, which gets as input

the list of changes between two or more RDF/S ontology versions

and can answer fine-grained provenance queries about ontology

resources. Our module can identify when a resource was created

and how. The sequence of changes that led to the creation of that

specific resource can be identified and presented to the user. We

evaluate the time complexity of our approach and show that it can

possibly reduce the human effort spent on understanding ontology

evolution.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval

General Terms

Algorithms, Experimentation, Languages, Theory.

Keywords

Ontology Evolution, Provenance

1. INTRODUCTION
Ontologies are defined as formal, explicit specification of a shared

conceptualization of a domain of interest [1]. However ontologies

are not static but they are living artifacts and subject to change

[2]. Due to the rapid development of research, ontologies are

frequently changed to depict the new knowledge that is acquired.

Since ontologies are usually managed independently from each

other they can be used and extended without the explicit

permission of the owner. In several cases, the owner of an

ontology is completely unaware of who uses or extends his

ontology.

It is therefore vital to be able to support the ontology engineers

and the maintainers of the dependent artifacts in this complex

process of ontology evolution [3]. Several approaches so far deal

with problems such as consistency maintenance, backward

compatibility, ontology manipulation, change propagation, etc.

[2]. In the field of a posteriori understanding ontology evolution

most of the approaches use different representation languages to

model ontology evolution [4] that they just present to the users.

However, although the languages of changes used have become

more concise and compact - by employing high-level change

operators (operators that can describe complex updates, e.g. the

insertion of an entire sub-sumption hierarchy) - still ontology

understanding relies on just presenting to the users a huge list of

changes between ontology versions.

In this paper, we argue that only listing the changes between two

versions is insufficient for the purpose of understanding ontology

evolution. Moreover, we provide a solution to this problem by

answering provenance queries concerning both the data and the

schema information of an ontology. To that direction, we present

a module, named ProvenanceTracker that gets as input two or

more ontology versions and it is able to answer queries requesting

fine-grained provenance information. In order to do that, a

preprocessing step is required that automatically generates the

“on-the-fly” the sequence of changes between those versions. This

is accomplished by employing an external module, described

extensively in [4], which gets as input subsequent ontology

versions and produces automatically the sequence of changes

between them.

In our approach we define the notions of how and when

provenance and we present the corresponding algorithms. Using

our module a user can identify with which change operation a

resource was introduced (how) and in which ontology version

(when). Moreover, the list of change operations that led to the

creation of that specific resource can be computed and presented

to the user (extended-how) allowing further exploration. This

knowledge can be used to drive developer’s understanding on

ontology evolution for that specific resource. The simplicity of

our approach makes it a valuable tool for ontology engineers and

provides a unique vantage point on long and complex evolution

histories.

Finally, we describe our implementation and we present our

experimental analysis using two well-known ontologies CIDOC-

CRM [5] and Gene Ontology [6]. Experiments performed show

the feasibility of our approach and the considerable advantages

gained.

The rest of the paper is organized as follows: Section 2 presents

related work and Section 3 provides preliminaries and introduces

the problem by an example. Then, Section 4 presents the

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

176

algorithms for answering provenance queries about ontology

evolution. Section 5 describes the implemented system and our

experimental analysis. Finally, Section 6 provides a summary and

an outlook for further research.

2. RELATED WORK
Management of provenance information has been extensively

studied in the literature, using different methods and approaches.

Different authors define different provenance management

techniques (e.g. Why-provenance [7], Trio-Provenance [8],

provenance semi-rings [9]) that either try to provide annotations

at the tuple level or to extract provenance information by

analysing queries. Other works such as [10] try to describe the

relationship between source and target data in a data integration

scenario. However our approach differs in both methods and

goals. To the best of our knowledge, there is no other approach

that tries to answer provenance queries on ontology evolution.

Other works that could be employed to understand ontology

evolution focus on change detection. Those systems can be

classified under two basic dimensions, namely the level of

changes they support (low-level or high-level) and the underlying

representation language assumed (Description Logic [3], RDF/S

[4] etc.). In its simplest form, a language of changes consists of

only two low-level operations, Add(x) and Delete(x), which

determine individual constructs (e.g., triples) that were added or

deleted [11, 12]. However, a significant number of recent works

[4, 12-15] imply that high-level change operations should be

employed instead, which describe more complex updates, as for

instance the insertion of an entire subsumption hierarchy. A high-

level language is preferable than a low-level one [16], as it is

more intuitive, concise, closer to the intentions of the ontology

editors and captures more accurately the semantics of change.

However, there is no agreed-upon list of changes that are

necessary for any given context. In our case, we do not redefine

such a language but we only use one of them. Moreover, our

results are not limited to this specific language as we shall see

later in this paper.

A similar approach to ours, is in [3] where a change is defined and

detected using temporal queries over a version log that contains

recordings of the applied changes. However, the version log must

be updated whenever a change occurs. This overrules the use of

this approach in non-curated or distributed environments. In our

approach, on the other hand, the changes can be produced a

posteriori and no temporal queries are used.

In [17] the authors provide a mechanism to document schema

evolution of relational DBs, by presenting automatically the

changes (called SMOs) between those versions. However, those

changes are not detected fully automatically. Moreover, they offer

a schema evolution history analysis tool, but this tool only

provides coarse-grained results.

Finally, in [18] the authors present a tool to allow several

developers to make changes concurrently and remotely to the

same ontology, track changes, and manage ontology versions.

However, this tools focuses on conflict resolution and cannot

provide answers to fine-grained provenance queries.

3. PRELIMINARIES & MOTIVATING

EXAMPLE
RDF is a language for describing web resources [19]. Information

in RDF is represented using triples of the form (subject, predicate,

object) which record that subject is related to object via predicate.

RDF datasets have attached semantics through RDFS schemas

[19]. RDFS is a vocabulary description language that includes a

set of inference rules use to generate new, implicit triples from

explicit ones. Most of the Semantic Web Schemas (85,45%) are

expressed in RDF/S [20] and RDF/S offers, in our case, an

optimum trade-off between expressive power and efficient

reasoning support. In this paper we restrict ourselves to valid

RDF/S knowledge bases. The validity constraints [4] that we

consider in this work concern mostly the type uniqueness, i.e., that

each resource has a unique type, the acyclicity of the subClassOf

and subPropertyOf relations and that the subject and object of the

instance of some property should be correctly classified under the

domain and range of the property, respectively. Those constraints

are enforced in order to enable unique and non-ambiguous

detection of the changes among the ontology versions as we shall

later discuss.

Now as an example, consider an ontology shown on the left of

Figure 1 (ontology version O0). This ontology is used as a point of

common reference, describing people and their contact points.

Assume now that at some point in time, the ontology evolves and

we get O1 by adding the class “Cont.Point” describing contact

points and the property “has_cont_point” between the class

“Actor” and the class “Cont.Point”. Moreover, the domain of the

literals “street” and “city” is changed to the class “Cont.Point”.

Then the ontology designer decides to evolve again the ontology

and to produce O2. So, the domain of the “has_cont_point”

property is moved from the class “Actor” to the class “Person”,

and the property “gender” is deleted. Moreover, the “street” and

the “city” properties are merged to the “address” property as

shown on the right of Figure 1. For modeling this evolution we

use the language of changes and the corresponding detection

algorithm as proposed in [4]. The language contains over 70 types

of change operations and three of them are described in Figure 2.

Figure 1. Example Ontology Evolution

177

A change operation is defined as follows:

Definition 3.1 (Change Operation): A change operation u over an

RDF ontology O, is any tuple (δa, δd) where δa ⋂ O = ø and δd ⊆
O. A change operation u from O1 to O2 is a change operation

over O1 such that δa ⊆ O2\O1 and δd ⊆ O1\O2.

Obviously, δa and δd are sets of triples. For simplicity we will

denote δa(u) the added and δd(u) the deleted triples of a change u.

From the definition, it follows that δa(u) δd(u)= ø and

δa(u) δd(u)≠ø if O1≠O2. The application of a change u over an

ontology version O, denoted by u(O), is defined as u(O) =

(O δa(u))\δd(u)). Moreover the application of a sequence of

change operations us to an ontology, i.e. us(O), is defined as the

sequential application of the change operation in us to O. An

important note for those change operations is that for any two

changes u1, u2 in such a sequence it holds that δa(u1) δa(u2)= ø

and δd(u1) δd(u2)= ø. As a consequence the sequence of

changes between two ontology versions is unique. The interested

reader is forwarded to [4] for more information on the

aforementioned language of changes.

In our example the change log between O0 and O1, i.e. the EO0,O1,

consists of the following change operations:

u1: Add_Class(Cont.Point, ø, ø, ø, ø, ø,)

u2:Add_Property(has_cont_point, ø, ø ,ø ,ø, Actor,

 Cont.Point, ø, ø)

u3: Move_Property(town, Person, Cont.Point))

u4: Move_Property(street, Person, Cont.Point))

u5: Rename_Property(town, city)

Moreover, the change log EO1,O2 consists of the following change

operations:

u6: Delete_Property(gender, ø, ø ,ø ,ø, Person, xsd:String,

 ø, ø)

u7: Generalize_Domain(has_cont_point, Actor, Person)

u8: Merge_Properties({street, city},address)

u9: Rename_Property(name, fullname)

Obviously, EO0,O2= EO0,O1EO1,O2. In this paper we argue that

only presenting the above sequence of changes is not enough for

understanding how ontology evolved. Especially in real world

scenarios, the large number of change operations makes it

impossible for ontology developers to understand ontology

evolution based solely on those. In our experiments for example,

we had 4175 changes for Gene Ontology and 726 changes for

CIDOC-CRM.

To overcome this problem we designed and implemented the

ProvenanceTracker module. This module augments the

understanding of ontology evolution by answering a range of

provenance queries, including the following ones: How was a

resource added to the ontology? By which change operation was

the “Address” literal added? What are the change operations that

had some influence on the creation of the “Address” literal? When

was the “Address” literal added to the ontology?

Similar terminology [21] is widely used in relational

environments. However, to the best of our knowledge it is the first

time that we use this terminology to capture provenance

information on ontology evolution. Moreover, although our

ontology and change operations can be used on instance level as

well, in this paper we will focus only on schema level without loss

of generality.

4. QUERIES ON SCHEMA PROVENANCE
As already mentioned, presenting only the list of changes between

ontology versions in not adequate for understanding ontology

evolution. To answer queries about how a specific resource was

added we define the notion of an affecting change operation.

Definition 4.1 (Affecting Change Operation). Let r be a resource

of an ontology version Om and EOk,Om (k<m) the sequence of

changes between Ok and Om. A change operation uEOk,Om

affects the resource r, denoted by aff(r), if rOm and rδa(u).

An affecting change operation captures the way a resource was

introduced in the ontology. Assuming that we have EOk,Om already

constructed it is quite easy to identify the affecting change

operation by just scanning the change log once. We have to note

that the affecting change operation if it exists is unique. This is

due to the fact that for our languages of changes it holds the

following: for any two changes u1, u2, δa(u1) δa(u2)= ø and

δd(u1) δd(u2)= ø as described in Section 2. In our example the

query how(“Address”) when applied in EO0,O2 it will return the

change operation u8:Merge_Properties({street, city},address). In

the case that no affecting change operation is found, no answer

will be returned. This means that the aforementioned resource was

added before Ok and we have no information about it.

Now we would like to know in which ontology version the

“Address” resource was introduced. The idea is similar to

answering how provenance queries. We only have to scan once

the change log EOk,Om= EOk,Ok+1 … EOm-1,Om. If aff(r)

EOk,Om then obviously rOm so we can conclude that r was

introduced in Om. In our example the query when(“Address”) will

return O2 as an answer.

Presenting only the affecting change operations and the ontology

version that a resource has been introduced does not necessarily

provide insights on the corresponding ontology evolution. When

drastic evolution occurs, those are not enough and we would like

to get more information about which part of the ontology evolved

to produce the specific resource. So, instead of providing just the

affecting change operation and the ontology version, our idea is to

present the history of the evolution of the specific parts of the

ontology as an answer to extended-how provenance queries.

For example, by checking the change log EO0,O2 presented on

Section 3, we can easily identify that the operations shown in

Figure 3, describe the evolution of the “address” resource.

Presenting such a graph to the ontology engineers, their

understanding on the ontology evolution is focused on the specific

parts that evolved to produce the aforementioned resource. Such a

sequence of change operations that depict the history of the

ontology with respect to a specific resource r is called a change

path for that resource. However, before defining the change path

Change Generalize_Domain(a,b,c) Rename_Property(a,b) Merge_Properties(A,b)

Intuition Change the domain of prop. a from b to superclass c Rename property a to b Merge properties contained in A into b

δa [(a, domain, c)] [(b, type, property)] (b, type, property)

δd [(a, domain, b)] [(a, type, property)] ∀ a A : (a, type, property)

Inverse Specialize_Domain(a,c,b) Rename_Property(b,a) Split_Property(b, A)

Figure 2. Example change operations

178

for a given resource we will define the change path for a change

operation first.

Figure 3. The change path for the “Address” resource

visualized as a tree.

Definition 4.2 (Change path for a change operation). A change

path for the change operation uEOk,Om, (k<m) denoted by

uspath
u, is the minimal sequence of change operations in EOk, Om

such that uuspath
u and that uspath

u (Ok) Om.

A change path is minimal in the sense that one cannot remove any

of the change operations in it and still uspath
u (Ok) Om. The

change path presents the history of the evolution of the specific

part of the ontology for a specific change operation. For example,

the change path for the change u8: Merge_Properties({street,

city},address) is uspath
u8

 =[u3, u4, u5, u8] as shown in Figure 3 and

uspath
u8 (O0) O2.

Proposition 2 (Uniqueness): The change path uspath
u over EOk,Om

is unique.

Proof: Assume uspath
u is not unique. This would mean that we can

have two change paths uspath1
u and uspath2

u
. Since they are both

change paths it should hold that size(uspath1
u)=size(uspath2

u) since

they both have to be minimal. Now let uspath1
u

 = [uk1, …, ukn

] and

uspath1
u

 = [um1, …, umn

]. Since they are both change paths u= ukn=

umn. For i<n, each one of the uki, umi deletes a part of the ontology

and adds another part. Since the two change paths have the same

minimal size and u= ukn= umn in order to be different there must

exist two change operations uki , umj such that uki ≠ umj and

δd(uki) δd(umi) ≠ ø since they should delete a common part of

the ontology. However, this is impossible since δd(u1) δd(u2)=

ø for our change operations▪

Figure 4. Computing the change path for a given change

operation.

Now, we will present an algorithm that given a change log

produces the change path for a change operation u. The algorithm

is shown in Figure 4. The idea is the following: The algorithm

starts from the input change operation and identifies the triples

that are added to the ontology, possibly by deleting other triples.

Then it searches for the change operations that delete that added

information in order to add new information and so on. After the

execution the change path for u will be stored in usꞌ.

Theorem 1: The algorithm ComputeChangePath computes uspath
u

over EOk,Om.

Proof: In order to prove that algorithm ComputeChangePath

computes the change path for a given change operation u over a

change log EOk,Om we have to prove that (a) u usꞌ, (b) usꞌ (O1)

O2 and that (c) usꞌ is minimal.

(a) From line 1 of the algorithm indeed uusꞌ.

(b) Let’s assume that usꞌ (Ok) is not a subset of Om. This would

mean that there exists at least one triple, assume tꞌ in usꞌ (Ok) such

that it does not exist in Om. So, to reach Ok, there should be a

change operation uꞌ such that tꞌ δd(uꞌ) such that tꞌδa (usꞌ) not

identified by our algorithm. However this is impossible from line

3 of our algorithm.

 (c) Now we prove minimality. Let’s assume that usꞌ is not

minimal. This would mean that there is uspath with size(uspath)<

size(usꞌ). This would mean that there exist uꞌ usꞌ such that uꞌ
uspath. Of course this would mean from lines 3 and 4 that there

exist tꞌ such that tꞌ δd(uꞌ) and tꞌ δa(usꞌ). However, this would

mean that tꞌ does not belong to Om, and should be deleted by

another change operation. However for our change operations it

holds that δd(u1) δd(u2)= ø which makes the previous statement

impossible. So usꞌ is minimal as well▪

The time complexity of the algorithm is O(N*M*S) where N is the

number of change operations, M the maximum size of triples in a

change operation u and S the number of triples in δa(usꞌ).

Moreover, it is easy to change Algorithm 4.1 in order to retrieve

the change path for a given resource. This will allow the

developers to examine the evolution of the ontology concerning a

specific resource:

Definition 4.3 (Change path for a resource). The change path

uspath over EOk,Om for the resource rOm is uspath
r= uspath

ui ,

rui.

The algorithm is shown in Figure 5. The idea is that we would

like to retrieve the history of the evolution of resource r.

However, r might appear in several triples so we need to identify

all change paths that have to do with it.

Theorem 2: The algorithm ComputeChangePathTriple computes

the change path for a given resource r over EOk,Om.

Figure 5. Computing the change path for a given resource.

The algorithm is immediately proved by construction. Algorithm

4.2 needs to scan the change log one time per triple containing the

resource r in order to identify the change operation that inserts the

given resource. So the complexity of the algorithm becomes

O(T*N*M*S) where T is the number of triples containing r, N is

the number of change operations, M the maximum size of triples

in a change operation u and S the number of triples in δa(usꞌ).

Algorithm 4.1: ComputeChangePath(EOk,Om, u)

Input: A sequence EOk,Om= [u1, …,un] and one change

operation u

Output: a sequence of change operations usꞌ

1. usꞌ := u

2. For i=n to 1

3. if there exists tδd(ui) such that tδa(usꞌ)

4. usꞌ := usꞌ ui

5. Return usꞌ

Move_Property(street, Person, Cont.Point))

Merge_Properties({street, city},address)

Algorithm 4.2: ComputeChangePathResource (EO1,O2, r)

Input: A sequence EO1,O2= [u1,…,un] and one resource r

Output: a sequence of change operations usꞌ

1. usꞌ := ø

2. For i=n to 1

3. If tδa(ui) such that r t

4. usꞌ:=usꞌComputeChangePath(EO1,O2, ui)

5. Return usꞌ

Rename_Property(town, city)

Move_Property(town, Person, Cont.Point))

179

5. IMPLEMENTATION & EVALUATION
The ProvenanceTracker module described in this paper is

implemented as a module of our Exelixis plarform

(http://139.91.183.29:8080/exelixis/). The platform uses JAVA

for the algorithms and HTML/JQuery for the presentation layer.

Using the Exelixis platform, a user is able to load an RDF/S

ontology, to visualize and explore it. Furthermore, as more

ontology versions become available, the change logs between

them are automatically constructed and stored to the system.

Then, a user can issue queries - denoting the ontology version that

those queries are using- which are being forwarded to the

underlying data integration engines to be answered. The system

automatically identifies registered data integration systems that

might use different ontology versions and tries to produce

equivalent query rewritings for them. If this is not possible, the

reasons for this are reported and approximate query rewritings are

used. The theory behind query answering can be found in [22]

whereas a demo of the core components was presented at [23].

The module for automatically generating the sequence of changes

among two ontology versions was presented at [4] whereas [24]

and [25] report on other modules that try to respond to massive

number of queries that might need to be changed by producing

possible rewritings as well.

In order to evaluate the algorithms reported in this paper, we used

a workstation with an Intel Core i7 processor running at 3.4 Ghz,

and 4GB memory, using Windows 7x64. Moreover, we used two

well-known ontologies: One medium-size ontology (CIDOC-

CRM [6]) from the cultural domain which is rarely changed and

one large-size ontology (Gene Ontology [6]) from the

bioinformatics domain which is heavily updated daily.

CIDOC-CRM is an ISO standard which consists of nearly 80

classes and 250 properties. For our experiments we used versions

dated from 02.2002 (v3.2.1) to 06.2005 (v4.2). The detected

change log that was automatically produced identified 726 total

changes from v3.2.1 to v.4.2. Gene Ontology (GO) on the other

hand, is composed of about 28000 classes and 1350 property

instances. GO is updated on a daily basis and for our experiments

we used the change log from 25.11.08 to 26.05.09. The change

log that was automatically produced contained 4175 changes.

5.1 Answering provenance queries
Next, we present experiments concerning the scalability of the

algorithms for answering provenance queries. We measured the

average execution time for computing answers to how/when and

extended-how provenance queries. To do that we exhaustively

queried for how/when and extended-how all resources in the latest

ontology versions and the results are presented in Figure 6 and

Fig. 7.

As shown in the figures, for both ontologies the average time to

produce a change path increased linear to the number of changes

we had to search. This is in line with the complexity of our

algorithms as we presented previously. Moreover, the time to

compute answers to extended-how provenance queries is greater

than computing answers to how/when queries. This is reasonable

since in the first case more triples are being added to the list of

triples that we are looking for in the sequence of changes.

However, we can see that the overhead for searching the added

triples in the change path has little impact in the total execution

time since the dominant factor is the number of change

operations. So, for CIDOC-CRM after 726 change operations we

only need 275 msec in average to compute how/when provenance

whereas for why provenance we need 280 msec. On the other

hand, for Gene Ontology after 4175 changes we need 4611 msec

for how/when queries and 4967 msec for extended-how queries.

Figure 6. The average execution time compared to the number

of changes for CIDOC-CRM

Fig. 7. The average execution time compared to the number of

changes for Gene Ontology

Obviously, the time to compute a change path is greater for the

Gene Ontology than for CIDOC-CRM. This is reasonable since

for the Gene Ontology we have to search 4175 changes, whereas

for CIDOC-CRM we only have to search 726 changes.

Moreover, we‘ve identified that the biggest number of changes in

a change path in the case of Gene Ontology was 8 whereas for

CIDOC-CRM it was 5. So, independent of the number of changes

between ontology versions the interested user needs to check at

most 8 change operations (including change operations in

comments) to understand how the specific part of the ontology

has been evolved. We have to note here that the average number

of change operations that a user had to examine was 2 for

CIDOC-CRM and 4 for GO which shows the added value of our

approach even for ontologies that change often.

Finally, trying to understand the provenance queries, we made

several interesting observations. One of them for example, was the

following: We identified that in the evolution of the CIDOC-

CRM ontology from version v3.2.1 to version v3.3.2, one

ontology engineer renamed the class “E11 Modification” to “E11

Modification Event”. A few years later another ontology engineer

was employed to evolve the ontology. So in v4.2 we can see that

the class “E11 Modification Event” was again renamed to “E11

Modification”. If the second ontology engineer had an indication

of the previous renaming he would avoid cycles, he would be able

to identify possibly the reasons behind each renaming since we

are also able to show comments from the ontology evolution. So,

using provenance queries to explore ontology evolution can be a

valuable tool reducing greatly the time spent on understanding

evolution.

6. CONCLUSION & DISCUSSION
In this paper, we argue that ontology evolution is a reality and that

the problem of understanding ontology evolution is a fundamental

problem in the area. Ontology engineers should have proper tools

to help them understand the choices of the past. To that direction,

 ex.-How

 How/When

How/When

ex.-How

180

we presented a novel module that assists ontology evolution as the

reality that ontology model changes.

Instead of just identifying and presenting the changes from one

ontology version to another, our module can answer fine-fine

grained provenance queries for a specific resource. It can identify

when a resource was created, how it was introduced and it can

present the change operations that lead to the creation (or

deletion) of that resource and its evolution history. This greatly

minimizes the total time for understanding ontology evolution.

Experiments performed, show the potential impact of our

approach. For example, for CIDOC-CRM provenance answers

can be retrieved at most within 280 msec and for GO at most

within 5sec even if there are more than 4000 changes that have to

be examined. Moreover, ontology engineers have to examine at

most 5 change operations for CIDOC-CRM and 8 change

operations for GO to understand how the ontology evolved.

We need to note that we selected the specific language of changes

for several reasons. One of them is because it is a high-level

language of changes as already described in Section 2. Moreover,

the language possesses nice properties such as uniqueness,

composition and inversion. Uniqueness is a pre-requisite for our

system whereas composition and inversion are desirable but not

obligatory properties. So, instead of the specific language of

changes other languages (and the corresponding detection

algorithm) could be also used as long as they preserve uniqueness.

As future work, several challenging issues need to be further

investigated. An interesting topic would be to extend our

approach for OWL ontologies. Another interesting topic would be

to present summaries of the evolved change path if they become

too big. Ontology evolution is becoming more and more

important topic and several challenging issues remain to be

investigated in near future.

7. ACKNOWLEDGMENTS
This work was partially supported by the PlanetData NoE

(FP7:ICT-2009.3.4, #257641), the eHealthMonitor (FP7-287509)

and the MyHealthAvatar (FP7-600929) EU projects.

8. REFERENCES
[1] Gruber, T.R. 1993. A translation approach to portable

ontology specifications. Knowl. Acquis. 5, pp. 199-220.

[2] Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis,

D., Antoniou, G.: Ontology change, 2008. Classification and

survey. Knowl. Eng. Rev. 23, pp. 117-152.

[3] Plessers, P., Troyer, O.D., Casteleyn, S. 2007. Understanding

ontology evolution: A change detection approach. Web

Semantics: Science, Services and Agents on the World Wide

Web, 5, pp. 39-49.

[4] Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D.,

Christophides, V. 2013. High-Level Change Detection in

RDF(S) KBs. Transactions on Database Systems, 38.

[5] Doerr, M., Ore, C.-E., Stead, S. 2007. The CIDOC

conceptual reference model: a new standard for knowledge

sharing. Tutorials, posters, panels and industrial

contributions at the ER, vol. 83, pp. 51-56.

[6] Gene Ontology Consortium, 2004. The Gene Ontology (GO)

database and informatics resource. Nucl. Acids Res. 32,

D258-261.

[7] Buneman, P., Khanna, S., Tan, W.C. 2001. Why and Where:

A Characterization of Data Provenance, ICDT, pp. 316-330.

[8] Benjelloun, O., Sarma, A.D., Halevy, A., Theobald, M.,

Widom, J. 2008. Databases with uncertainty and lineage. The

VLDB Journal, 17, pp. 243-264.

[9] Green, T.J., Karvounarakis, G., Tannen, V. 2007.

Provenance semirings. ACM SIGMOD-SIGACT-SIGART

PODS. pp. 31 - 40 ACM, Beijing, China

[10] Chiticariu, L., Tan, W.-C. 2006. Debugging schema

mappings with routes. VLDB , pp. 79-90.

[11] Volkel, M., Winkler, W., Sure, Y., Kruk, S.R., Synak, M.

2005. Semversion: A versioning system for rdf and

ontologies. ESWC.

[12] Zeginis, D., Tzitzikas, Y., Christophides, V. 2007. On the

Foundations of Computing Deltas Between RDF Models.

ISWC/ASWC, pp. 637-651.

[13] Noy, N.F., Chugh, A., Liu, W., Musen, M.A. 2006. A

Framework for Ontology Evolution in Collaborative

Environments ISWC, pp. 544-558.

[14] Plessers, P., Troyer, O.D. 2005. Ontology Change Detection

Using a Version Log. ISWC, pp. 578-592.

[15] Rogozan, D., Paquette, G. 2005. Managing Ontology

Changes on the Semantic Web. IEEE/WIC/ACM

International Conference on Web Intelligence, pp. 430-433.

[16] Stojanovic, L. 2004. Methods and Tools for Ontology

Evolution. Phd. Univ. of Karlsruhe.

[17] Curino, C., Moon, H., Deutsch, A. and Zaniolo, C. 2013.

Automating the database schema evolution process. The

VLDB Journal, 22, 1, pp. 73-98.

[18] Jim, E., Ruiz, N., Grau, B. C., Horrocks, I. and Berlanga, R.

2011. Supporting concurrent ontology development:

Framework, algorithms and tool. Data Knowl. Eng., 70, 1,

pp. 146-164.

[19] RDF Primer, W3C Recommendation:

http://www.w3.org/TR/rdf-primer/

[20] Theoharis, Y., 2007. On Graph Features of Semantic Web

Schemas. IEEE Transactions on Knowledge and Data

Engineering, 20, pp. 692-702.

[21] Cali, A., Gottlob, G., Lukasiewicz, T. 2009. Datalog+-: a

unified approach to ontologies and integrity constraints.

ICDT, pp. 14-30. ACM, St. Petersburg, Russia.

[22] Kondylakis, H., Plexousakis, D. 2013. Ontology evolution

without tears. Journal of Web Semantics: Science, Services

and Agents on the World Wide Web, 19, pp. 42-58.

[23] Kondylakis, H., Plexousakis, D. 2011. Exelixis: Evolving

Ontology-Based Data Integration System. SIGMOD, pp.

1283-1286.

[24] Kondylakis, H., Plexousakis, D. 2011. Ontology Evolution in

Data Integration: Query Rewriting to the Rescue. ER, pp.

393-401.

[25] Kondylakis, H., Plexousakis, D. 2012. Ontology Evolution:

Assisting Query Migration. ER, vol. 7532, pp. 331-344

181

Skyline Ranking à la IR

George Valkanas
Dept. of Informatics and

Telecommunications
University of Athens

Athens, Greece
gvalk@di.uoa.gr

Apostolos N. Papadopoulos
Dept. of Informatics

Aristotle University of
Thessaloniki

Thessaloniki, Greece
papadopo@csd.auth.gr

Dimitrios Gunopulos
Dept. of Informatics and

Telecommunications
University of Athens

Athens, Greece
dg@di.uoa.gr

ABSTRACT
Skyline queries have emerged as an expressive and informative
tool, with minimal user input and thus, they have gained widespread
attention. However, previous research works tackle the problem
from an efficiency standpoint, i.e., returning the skyline as fast
as possible, leaving it to the user to manually inspect the entire
skyline result. Clearly, this is impractical, even with a few dozen
points. The techniques addressing this issue are computationally
expensive, mapping to NP-Hard problems or having exponential
complexity O(2d) with respect to data dimensionality d. Moreover,
the result is a set, lacking any quality-based ranking. In this pa-
per, we propose a novel IR-style ranking mechanism for skyline
points, based on the renowned tf-idf weighting scheme. We present
efficient algorithms to compute the quality of a skyline point ac-
cording to our technique, and induce a total ordering of the skyline
set. Finally, we empirically evaluate the efficiency of our method
with real-life and synthetic data sets.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process; H.2.8
[Database Applications]: Data Mining; H.2.4 [Systems]: Query
Processing

Keywords
Skyline, Ranking, TF-IDF, Top-k

1. INTRODUCTION
Skyline queries were initially proposed in the context of databases

in [2]. Their ability to empower multi-criteria decision making,
with minimum user input, and their applicability in a series of do-
mains has gained them considerable attention from the database
community. Assuming w.l.o.g. that smaller values are preferred,
we say that point p = (p.x1, p.x2, ..., p.xd) ∈ D dominates point
q = (q.x1, q.x2, ..., q.xd) ∈ D (and write p ≺ q), when: ∀i ∈
{1, ..., d}, p.xi ≤ q.xi ∧ ∃j ∈ {1, ..., d} : p.xj < q.xj . Simply
put, p dominates q, if p is at least as good as q in every dimension,
and it is strictly better than q in at least one. The skyline of D,

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
.

denoted as S, is composed of all d-dimensional points that are not
dominated by any other point.

Related Work and Motivation. Skyline queries are a well stud-
ied problem in the area of Computational Geometry [6], but have
attracted considerable attention in the context of databases, when
Börzsönyi et al introduced the skyline operator [2].

Several algorithms have been presented for skyline computation,
with BBS [9] being the most preferred when using an index, due
to its progressiveness and I/O optimality. Efficient algorithms have
also been proposed in [5] and [10] for such cases where indexing
cannot be applied. These works (as many more) focus on efficiency,
i.e., retrieving the skyline as quickly as possible, and the result is a
set, i.e. all points are equally important. In other words, there is no
discrimination between the points, leaving it entirely to the user to
select. Unfortunately, the skyline may contain far too many points:
the skyline of randomly generated points is Θ(logd−1(n)) [1]. In
an era when “ten blue links” seem too many [7], returning approx-
imately 103 skyline points from a dataset with 109 points, immedi-
ately negates the advantages of skyline queries.

To address the skyline cardinality explosion problem, the gen-
eral direction is to return a subset of k skyline points, where k is a
user- or application-defined parameter. The subset has some spe-
cific properties, e.g., collectively maximizes coverage [8], captures
the contour of the skyline [11], diversifies the skyline [12, 11], etc.
Nevertheless, these techniques fail to differentiate between the re-
turned points based on some importance measure. Moreover, they
are mapped to NP-Hard problems, so we can only efficiently ap-
proximate the solutions, unless P=NP.

Researchers have also investigated ranking of skyline points. We
identify two categories, depending on the amount of information
used to rank the points: In the first case, the entire dataset is used,
and the importance of a skyline point is given by the number of
points it dominates [9, 14]. The major shortcoming of the first cat-
egory is that all dominated points are equally important. For exam-
ple, a point p1 dominated by 10 skyline points and another one p2

dominated by 100 contribute the same weight to their dominators.
Taking into account that skyline queries have an inherent relation
to sorting [1], and that distance measures for sorted lists heavily
rely on the relative positions of items, it feels counter-intuitive to
use the same weight for all dominated points.

The second category relies on the skyline S alone, and typically
uses dominance relations in subspaces [13, 4]. Consequently, such
techniques ignore dataset characteristics. They are also generally
inefficient, as they need to consider O(2d) non-empty subspaces.
Moreover, they favor skyline points with extreme values in a sin-
gle dimension and have been shown to produce correlated results,
whereas some of them [13] have not been sufficiently evaluated.

Contributions. To address these shortcomings, we present a novel

182

ranking scheme for skyline points. We argue that a point’s im-
portance should be inversely proportional to the number of sky-
line points that dominate it. Additionally, our model distinguishes
dominated points, based on their relative positions. For instance, if
sp1 ≺ a, sp1 ≺ b, and a and b do not dominate each other, they
contribute equally to sp1. Otherwise, if a ≺ b, then score(a) >
score(b). Therefore, our technique promotes skyline points that
dominate genuine points, i.e., points which are not dominated by
many others, and is a hybrid approach.

To capture both aspects in a single scoring function, we apply
a modified version of the renowned tf-idf weighting scheme and
present efficient algorithms that rank the skyline according to this
scheme. Our contributions are briefly described as follows:

• We define a novel, generic and intuitive measure of impor-
tance for skyline points. Inspired by the renowned tf-idf weight-
ing scheme from information retrieval, our method promotes
skyline points that dominate genuine points.

• We present efficient algorithms that compute the top-k most
important skyline points, given our measure.

• We provide an extensive experimental evaluation, in terms of
efficiency using both real-life and synthetic datasets.

Roadmap. The rest of the paper is organized as follows. Section 2
gives the details of our scoring model and the algorithms proposed
for the task at hand. In Section 4 we evaluate our techniques. Fi-
nally, Section 5 summarizes our findings and concludes the paper
by discussing briefly future work in the area.

2. DP-IDP WEIGHTING SCHEME
Our proposed measure, dp-idp, which stands for dominance power

- inverse dominance power, is inspired by the renowned tf-idf weight-
ing scheme from Information Retrieval. The general rationale is
that dominated points are not equally important, and that they im-
pact skyline point differently. Therefore, their contribution depends
on some local (per skyline point) and some global characteristics
(the entire skyline), much like tf-idf uses local and global infor-
mation to find important keywords in a document corpus. In the
following paragraphs we present our ranking scheme.

2.1 Inverse Dominance Power
We will start with inverse dominance power (idp), which is eas-

ier to define, due to its more global view. The inverse dominance
power of a point p ∈ (D\S) is the number of skyline points which
dominate p. This factor is similar to idf in the sense that the more
frequently p appears in a skyline point’s dominated set, the lower
the importance of p. More formally:

idp(p) = log
|S|

|{sp ∈ S : sp ≺ p}|
An interesting property of idp is the following: Assume a set of

points q1, q2, ..., qm dominated by all skyline points, i.e., ∀sp ∈ S,
sp ≺ qj , j = 1, ..,m. The contributing score of the qi’s will be 0,
due to the log in the idp factor. Such points do not alter the ranking
of S, either with ours or simpler models (e.g., |Γ(sp)|), because
they affect all skyline points the same.

2.2 Dominance Power
There are several ways we could define the dominance power

of a dominated point. Given that we want to measure this factor
with respect to a skyline point sp, we argue that its relative position

B / 6

D / 5

C / 7

A / 3

1

1

3

2

B1

B2

C1

C2

3

2

2

3

4

Figure 1: Example for the Dominance Power

to sp should matter. As a result, the same dominated point may
contribute differently to different skyline points.

To avoid introducing more artifacts in our model, we choose the
dominance relation as our building block. More specifically, we
find the layer of minima 1 lm(p, sp) where the dominated point p
falls in, with respect to sp. The dominance power of that point is
then given by the inverse of the layer where it lies, i.e.,

dp(p, sp) =
1

lm(p, sp)

Figure 1 portrays the skyline of a dataset, and the dominance
region for each skyline point. Moreover, it shows the layers of
minima for skyline points B and C, in dotted green and purple
respectively. We observe that the red-filled point, dominated by
bothB andC, lies at different minima layers. Being easier to reach
it from C, should render it more important for C. On the contrary,
there is an additional layer for skyline point B prior to reaching
that point, that decreases its importance. This is similar to term
frequency, where the same term is weighted differently, depending
on its occurrence in each document.

2.3 Putting it all together
Given our previous discussion, we can now formally introduce

how we compute the importance of a skyline point sp. We use
an additive model, because i) it is monotonous (dominating more
points increases the overall importance) ii) it is comprehensive and
iii) it leads to efficient computations, as we followingly discuss.
Therefore, the importance of a skyline point sp is given by:

score(sp) =
∑

p:sp≺p

1

lm(p, sp)
× log

|S|
|{sp′ ∈ S : sp′ ≺ p}|

The additive model also favors skyline points that dominate more
genuine points, i.e., points dominated by few others in general (not
just skyline points). This is important, because those skyline points
are the reason why the dominated ones cannot be part of the sky-
line. For example, if we remove B from the skyline in Figure 1
(e.g., a hotel being fully booked), the point next to it will enter the
skyline at once (similarly for the closest point dominated by A).
Additionally, points dominated by the entire skyline still have no
effect. Finally, note that the sum of tf − idf values is also used in
IR systems, to score the entire document against a query.

3. RANKING THE SKYLINE
Algorithm 1 gives the baseline approach to rank the skyline S

with our proposed scheme. For each skyline point sp (line 1),
1In the literature, the term layer of maxima is more common. Here,
we use the term layer of minima because we assume that small
values are preferable.

183

Algorithm 1 Baseline
Input: Skyline S, Dataset D, Integer k
Output: Ranked List

1: for every sp ∈ S do
2: score(sp)← 0; layer← 1; lm← NextLayer(sp, ∅);
3: while (lm 6= ∅) do
4: for every p ∈ lm do
5: score(sp) += 1

layer
× log |S|

|{sp′:sp′≺p}| ;

6: lm← NextLayer(spi, lm); layer++;
7: Order by descending score(sp);
8: Return k highest skyline points;

we extract one-by-one its minimal layers (lines 2–6). NextLayer
uses BBS [9] internally. For every point in each layer (line 4), we
find how many in S dominate it, and together with the layer’s in-
dex, we update the score of sp (line 5). After ordering the skyline
in decreasing score order (line 7), we return the top-k ranked items.

Unfortunately, this approach is computationally expensive, due
to repeated evaluations. It also computes the score of all skyline
points, despite our interest in the top-k results. Finally, it lacks
any notion of progressiveness, as we need to rank the entire skyline
first. For all these reasons, we present an alternative approach, that
relies on bounding the score of a skyline point.

3.1 Bounding the score
Bounding the score of a skyline point sp will help us reduce

computations, by pruning away those that will not make it to the
top-k positions. To achieve this, we use the number of points that
sp dominates, |Γ(sp)|. We can then derive lower and upper bounds
of the score of a skyline point, as shown in the next paragraphs.

Loose Bounds. The simplest bounds consider each skyline point
independently of the rest, and are derived as follows. A skyline
point obtains its maximum score when all the points it dominates
are in the same (first) layer, and they are not dominated by any other
skyline point. In that case, the upper bound is:

score(sp) = |Γ(sp)| × log |S|
On the other hand, the lower bound is obtained when every point
is dominated by the entire skyline S. In that case, the score is 0,
due to the idp(sp) factor. However, this bound only holds for the
skyline point spmin with the minimum |Γ(spmin)|. The rest of
the skyline dominates some points, which can not be dominated
by spmin. Consider, for instance, that |Γ(spmin)| = 3 and that
|Γ(sp′)| = 5. By definition, the 2 additional points dominated by
sp′ can not be dominated by spmin, otherwise |Γ(spmin)| = 5.
Therefore, the surplus will be dominated by |S| − 1 skyline points,
and a correlated distribution 2 will give the lowest score value. This
gives a slightly better lower bound:

score(sp) = log
|S|
|S| − 1

×
n−minΓ∑

1

1

i

Collaborative Bounds. Despite their simplicity, the above bounds
have limited pruning capability. Assume, for instance, a dataset
D, with |D| = 1M and |S| = 800. If |Γ(sp)| = 300K, then
score(sp) ' 871K, and score(sp) ' 3× 10−3. Note that a sky-
line point sp′ with |Γ(sp′)| = 1, has an upper bound of∼2.9, mak-
ing it eligible for consideration in the second round! Apparrently,
the computational gains of such bounds are easily swept away.
2In a correlated distribution, each point is a minimal layer

1

3
4

3

1

2 3

2

2
B / 6

D / 5

C / 7

A / 3

(a) Motivating Example

A / 3

B / 6

C / 7

D / 5

p1

p2

p3

p4

p5

p6

p7

p8

p9

(b) Bipartite Form

Figure 2: Example of skyline and bipartite domination graph

To address this issue, we derive stricter bounds, through addi-
tional information from other skyline points. To better understand
this approach, we visualize the problem as a bipartite graph. Fig-
ure 2 shows a dataset, with its skyline and dominance regions on
the left, and the resulting bipartite graph on the right. The left hand
side of the graph contains the skyline, whereas the right hand side
has the dominated points. We add an edge between a skyline point
sp ∈ S and a dominated point p ∈ D \ S, iff sp ≺ p.

We start with the upper bound. Due to the additive model, the
score of a skyline point is maximized when the contribution of each
dominated point is maximized. It is easy to see that dp is max-
imized when the dominated point is at the earliest possible layer.
To maximize idp, we rely on the Pigeonhole Principle. For any
two skyline points sp1, sp2, if Γ(sp1) + Γ(sp2) > |D|, then at
least |D|− (Γ(sp1) + Γ(sp2)) dominated points are shared by sp1

and sp2. Having more common points reduces idp(), so we only
consider the minimum overlap. The question now becomes “How
should we assign the common edges to maximize the score of a
skyline point”? Lemma 1 answers this question.

LEMMA 1. Let sp be a skyline point, px and py two dominated
points, where sp ≺ px and sp ≺ py and lm(px) = lm(py) = l.
Assigning an edge to the point dominated by more skyline points
gives a higher score(sp).

PROOF. Let Sx, Sy be the current sets of skyline points domi-
nating px and py , respectively. Assigning an edge to either px or
py gives two different bipartite graphs, with S ′x and S ′y being the
new dominating sets of these points. It holds that |S ′x| = |Sx|+ 1
(same for S ′y), due to the new edge, i.e., one more dominating sky-
line point. The resulting bipartite graphs differ only in the assign-
ment of this edge, which impacts the weights of px and py . The
weights of all other dominated points remain unchanged. Assume
that adding the edge to px yields a higher score. It so holds:

1

l
× log

|S|
|S ′x|

+
1

l
× log

|S|
|Sy|

>
1

l
× log

|S|
|Sx|

+
1

l
× log

|S|
|S ′y|

⇒

A / 3

B / 6

C / 7

D / 5

p1

p2

p3

p4

p5

p6

p7

p8

p9

(a) Dominance set

A / 3

B / 6

C / 7

D / 5

p1

p2

p3

p4

p5

p6

p7

p8

p9

(b) Upper Bound for B

Figure 3: Collaborative upper bound

184

log(
|S|
|S ′x|
× |S||Sy|

) > log(
|S|
|Sx|
× |S||S ′y|

)⇒ |Sx|·|S ′y| > |S ′x|·|Sy| ⇒

|Sx| · (|Sy|+ 1) > (|Sx|+ 1) · |Sy| ⇒ |Sx| > |Sy|

The above result tells us that a higher score is achieved by adding
the extra edge to the dominated point with the higher indegree!
Such a result can also be efficiently integrated in an algorithm to
compute the upper bound of a skyline point’s score. Figure 3(b)
shows the edge assignment for the upper bound of skyline points
B, using the above result.

A naive implementation of the upper bound can be very ineffi-
cient 3, because it requires too many counter updates for the com-
monly dominated points. Since we must compute the bound of
each skyline point sp independently and repeatedly, as new lay-
ers are extracted, we need a more efficient approach. Algorithm 2
presents this improved technique.

Algorithm 2 Score Upper Bounding

Input: D, S, Skyline Point poi, minIDP , layer
Output: Upper bound of poi

1: vidp.push(minIDP); vpnd.push(pending(poi));
2: Sort S, in decreasing |Γ(sp)|;
3: for every sp ∈ S, sp 6= poi do
4: surplus = |Γ(poi)| - seen(poi) + |Γ(sp)| > |D|
5: if (surplus > 0) then
6: vpnd[last] = vpnd[last] - surplus;
7: vpnd.push(surplus);
8: vidp.push(vidp[last] + 1);
9: ub← 0;

10: for (i = 0; i < vidp.size(); i++) do
11: ub← 1

layer+1
∗ vpnd[i] ∗ log |S|

vidp[i]

12: Return ub;

The improved algorithm takes as input the datasetD, the skyline
S, the skyline point of interest poi, and two values minIDP and
layer. As we extract more layers for poi, we must compute the
number of skyline points dominating each of the extracted points,
which we need for the idp value. The minimum value that we have
seen this far is stored inminIDP , and is different for each skyline
point. This value practically tells us that any point in subsequent
layers will be dominated by at least minIDP skyline points, due
to dominance being a transitive relation. The layer tells us which
was the index of the last layer of minima extracted for poi.

The algorithm uses two vectors, storing the minIDP value and
the number of unseen points, that have not yet been extracted for
poi (line 1). For example, if |Γ(poi)| = 100, and we have extracted
30 points, then unseen(poi) = 70. The vectors practically store
how many points (vPND) can be dominated by that many skyline
points (vIDP). We sort the skyline points in decreasing order of
their dominance power (line 2). We iterate over them (line 3), and
select those points that will share common edges with poi, using the
Pigeonhole Principle (lines 4–5). The surplus of points is removed
from the last position (line 6) and is appended, incremented by 1
(lines 7–8). With these values, we can compute the upper bound
according to the DP-IDP scheme (lines 10-11).

To better explain lines 5–7, assume vpnd[last] = 60, vidp[last]
= 4, and surplus = 25. This means that 60 points will be dom-
inated by 4 skyline points and the current sp will share at least
3Our experiments showed that this step alone can make up for up
to 10 seconds of CPU processing time.

25 dominated points with poi. As a result, we must add an edge
(i.e., increment the idp) for an equal number of unseen points from
poi. These must be selected from the points with maximum current
idp, due to Lemma 1. Processing the skyline in decreasing order
of dominance power ensures that we are properly assigning edges,
and that the maximum idp is in the last positition. Given these val-
ues, 25 points will be computed with an idp of 5, which we append,
whereas 60-25=35 will remain with an idp of 4, which we update.

For the lower bounds we could follow a similar reasoning. Un-
fortunately, the edge assignment problem in this case is not as easy.
Although certain properties are self-evident, e.g., dp decreases with
a correlated distribution, they do not necessarily result in the lowest
possible score for a point. Consequently, we may have to reassign
edges, and, possibly, reconsider the layer where some points are
(i.e., break the correlated distribution). Therefore, in our current
work, we will not pursue the collaborative lower bounds further,
but plan to actively investigate it in our ongoing work.

3.2 Skyline Ranking with IR-style
Now that we have shown how we can efficiently bound the score

of a skyline point, using easily extracted information, we turn our
focus to finding the top-k most important skyline information, ac-
cording to our DP-IDP weighting scheme. Algorithm 3 shows the
general idea of execution of our technique, to efficiently compute
the top-k skyline points. Our algorithm processes the points ac-
cording to a prioritization scheme, and employs pruning of skyline
points that will certainly not be in the final top-k result.

Algorithm 3 SkyIR
Input: Skyline S, Dataset D, Integer k
Output: Top-k list

1: for every sp ∈ S do
2: spΓ ← |Γ(sp)|
3: spscore ← 0;
4: priorityQueue.enqueue(spprior , sp);
5: kScore← 0;
6: while (!priorityQueue.empty()) do
7: poi← priorityQueue.dequeue();
8: if (UpperBound(poi)) < kScore) then
9: Discard poi;

10: continue;
11: if (pending(poi) > 0) then
12: lm← NextLayer(poi, lm);
13: poiscore ← updateScore(poi, lm);
14: added← topk.insert(poi, poiscore);
15: if (!added AND pending(poi) == 0) then
16: Discard poi;
17: continue;
18: if (topk[k] > kScore) then
19: kScore← topk[k]
20: if (pending(poi) > 0) then
21: priorityQueue.enqueue(spprior , sp);
22: Return topk;

The algorithm starts by initializing appropriate information on
the skyline points (lines 1-4), such as their dominance count, known
score, and priority value, according to the prioritization scheme that
we use (see below). We add each skyline point to a priority queue,
using its priority value (line 4). We also initialize the k-th value,
i.e., the value of the k-th ranked skyline point, to 0. We then enter
a loop, each time extracting the top-most item from the queue poi

185

(line 7). If the upper bound of that point’s score is below the k-th
value, there is no need for further examination (lines 8 – 10). So
we discard it and proceed with the next one from the priority queue.
Otherwise, we extract the next layer of poi, provided there is one
(lines 11–12). We update the point’s score using this layer (line 13)
and try to add poi in the top-k result. If the point was not added,
and it can not be further updated, we discard it and proceed with
the next point from the priority queue (lines 14–17). If the point
was added, we keep track of the k-th value in the top-k result. If
we can further update it, we compute its new priority and add it
back in the priority queue (lines 20–21). The loop ends when the
priority queue becomes empty, meaning no other points can update
their score. The top-k list contains the final result.
Priority Schemes. Our SkyIR algorithm relies on a prioritization
scheme to process the skyline points. In our current work we ex-
periment with the following prioritization schemes.

• Round Robin (RRB): Items are processed in a round robin
fashion. According to this scheme, we can not process the
same skyline point twice, unless we have processed every
skyline point first. This scheme also allows for an imple-
mentation that relies on arrays rather than the general priority
queue, leading to faster (main memory) acceses.

• Pending (PND): The priority of an item is the number of
points that it has not yet processed. For example, if a skyline
point dominates 100 points, and it has already “seen” 30, its
priority will be 70. Therefore, the more dominated points it
has yet to see, the higher the priority of the skyline point.

• Upper Bound (UBS): The priority of a skyline point is given
by the upper bound of its score. In other words, its priority
is its potential to achieve a high final score. Similarly to the
previous scheme, a higher upper bound results in a higher
priority for the skyline point. Given that the upper bound can
be used as a point’s priority, it is even more important to have
an efficient technique to compute it, like Algorithm 2.

4. PERFORMANCE EVALUATION
In this section, we report on the results of our experimental eval-

uation. The experiments were run on a Quad-Core @2.5GHz ma-
chine, with 8Gb RAM, running Linux. The code was written in
C++ and compiled with g++ 4.7.2, with -O3 optimization. The
datasets we consider were indexed by an aggregate R*-tree, with a
4Kb page size. An associated cache with 20% of the correspond-
ing R*-tree’s blocks was used with every experiment. Unless stated
otherwise, the reported timings are in seconds, measured as CPU
processing time and assuming a default value of 8ms per page fault.
Datasets and Algorithms. We generated datasets with indepen-
dent (IND) and anticorrelated (ANT) distributions, as in [2], and
also use Forest Cover 4. Table 1 shows their basic properties. Al-
though the datasets may seem rather small in size (up to 500K), one
should keep in mind that our weighting scheme extracts all of the
minimal layers for each skyline point. This problem is known to be
difficult for high dimensionality even in the RAM model [3].

The algorithms that we evaluate are Baseline and SkyIR. For
SkyIR we want to compare the performance of the Loose (LS)
and Collaborative (CB) bounds, and how the three prioritization
schemes affect the results. We use the abbreviations as suffixes to
indicate what we compare each time.
Runtime. Figure 4(a) shows the total runtime for the indepen-
dent distribution, when varying the dataset cardinality, with k=5.
4http://kdd.ics.uci.edu

Table 1: Dataset Statistics
Data set Cardinality Dimensionality

Independent (IND) 100K, 200K, 500K 2,3,4
Anticorrelated (ANT) 100K, 200K, 500K 2,3,4

Forest Cover (FC) 580K 2,3,4

The naive approach is the worst, whereas SkyIR with collaborative
bounds performs the best of the techniques, and we have obtained
similar results when varying dimensionality and k.

As seen in Figure 4(b), the UBS prioritization scheme outper-
forms all others, resulting in up to 3× improvement compared to
the baseline. Similar results are obtained for different priorities
with the loose bounds, but the differences are less pronounced. An
important observation from these plots is that the problem we are
solving is not linear with the cardinality of points. The reason is
that as the cardinality increases, there are more minimal layers to
extract, and the computational costs are increased a lot, as a result
of both more CPU processing and page faults.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

100K 200K 500K

T
im

e
 (

s
e

c
)

Cardinality

Baseline
SkyIR-LS-RRB

SkyIR-CB-RRB

(a) Techniques

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

100K 200K 500K

T
im

e
 (

s
e

c
)

Cardinality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(b) Prioritization for CB

Figure 4: Total runtime versus cardinality for IND, k=5
Figures 5(a)-(b) demonstrate how each prioritization scheme per-

forms with the collaborative bounds. Figure 5(a) shows the perfor-
mance when varying the data dimensionality. We observe that UBS
performs the best for d = 3, 4, while being slightly worse for d=2.
The reason for that is our array-based implementation, which is
faster than the reordering of the priority queue maintained by PND
and UBS. However, as seen in Figure 5(b) there is a huge improve-
ment with UBS for d>2. The improvement increases with lower
values of k, going up to 40%, because the collaborative bounds can
prune away more points, reducing the computational costs.

Figures 6(a) and (b) demonstrate how the prioritization schemes
perform for the ANT, versus dimensionality and k, respectively.
Once again, UBS is better than PND. The loose bounds appear to
be slightly better than the collaborative, but not considerably. The
difference comes from the fact that the loose bounds are less com-
putationally intensive. The more interesting fact, however, is that
ANT appears to be easier when compared to IND. In particular, for
d=4, it takes ∼6000 seconds for CB to compute the top-5 for IND,
whereas it takes ∼4000 seconds for ANT. The reason is again that
IND has more layers to extract, and is more CPU hungry. Even
though ANT has a lot of page faults, its CPU time is minimal.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 3 4

T
im

e
 (

s
e

c
)

Dimensionality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(a) VS Dimensionality (k=5)

 500

 600

 700

 800

 900

 1000

 1100

 1200

3 5 10

T
im

e
 (

s
e

c
)

K

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(b) VS k (d=3)

Figure 5: Total runtime for various prioritization with IND, CB

186

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 3 4

T
im

e
 (

s
e

c
)

Dimensionality

SkyIR-LS-PND
SkyIR-LS-UBS

SkyIR-CB-PND
SkyIR-CB-UBS

(a) VS Dimensionality

 1800

 1820

 1840

 1860

 1880

 1900

 1920

 1940

 1960

3 5 10

T
im

e
 (

s
e

c
)

K

SkyIR-LS-PND
SkyIR-LS-UBS

SkyIR-CB-PND
SkyIR-CB-UBS

(b) VS k

Figure 6: Total runtime for ANT distribution

Finally, Figure 7 compares the loose and collaborative bounds,
when applying the UBS technique on the real dataset FC. We ob-
serve that the CB technique performs better than LB for all tested
dimensions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 3 4

T
im

e
 (

s
e
c
)

Dimensionality

SkyIR-LS-UBS SkyIR-CB-UBS

Figure 7: Forest cover

Memory Consumption. Finally, we compute the maximum num-
ber of items that we must maintain in memory while computing
the top-k result. Figures 8(a) and (b) show this for IND and ANT,
respectively, using the CB technique. We observe that the number
of maintained items increases as the cardinality of IND also in-
creases. On the other hand, increasing the dimensionality of ANT,
does not have a similar effect: the number of memory points in-
creases as we go from 2D to 3D, but drops again as we proceed to
4D. This may be explained again by the fact that ANT has less lay-
ers of minima to retrieve. For a fixed cardinality, more dimensions
spread the points more, increasing the points retrieved with each
layer. This decreases the information we must store to proceed to
the next layer, giving as the plot of Figure 8(b).

Generally speaking, the schemes RRB and UBS behave almost
the same (with the exception of ANT). We should stress the fact,
however, that the pending scheme (PND) always results in less
memory utilization. This is because the scheme will stick to a sin-
gle point and try to reduce its number of pending points as much as
possible, whereas the other schemes will rotate more over different
points. This is an interesting outcome, because PND would be a
good alternative in systems with limited resources.

5. CONCLUSIONS
In this paper, we proposed a novel model for ranking skyline

points, based on the renowned tf-idf weighting scheme from In-
formation Retrieval domain. We presented efficient techniques for
finding the top-k result, by bounding the maximum score of a sky-
line point and employing pruning, combined with different visiting
orders. We also experimentally evaluated the proposed bounding
and prioritization schemes in terms of efficiency.

Since the layers of minima problem is a difficult one (especially
for the external memory model) as future work we plan to inves-
tigate the alternative to check only the first few layers of minima
instead of computing the whole set. This is expected to improve
performance at the cost of result accuracy. A second direction is to

 0

 500K

 1M

 1.5M

 2M

 2.5M

 3M

100K 200K 500K

M
e

m
o

ry
 (

it
e

m
s
)

Cardinality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(a) IND

 0

 1M

 2M

 3M

 4M

 5M

 6M

 7M

2 3 4

M
e

m
o

ry
 (

it
e

m
s
)

Dimensionality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(b) ANT

Figure 8: Maximum memory consumption for CB, k=5

study the application of collaborative lower bounds in combination
with the upper bounds studied in this work. Finally, we will work
on the theoretical aspects of the problem in order to provide closed-
form formulae for the cost of our algorithms. A potential starting
point could be the application of a recurrence equation to estimate
the number of layers combined with the cost of the BBS algorithm.
Acknowledgements: This work has been co-financed by EU and
Greek National funds of the NSRF - Research Funding Programs:
Heraclitus II fellowship, THALIS - GeomComp, THALIS - DIS-
FER, ARISTEIA - MMD" and the EU funded project INSIGHT.

6. REFERENCES
[1] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D.

Thompson. On the average number of maxima in a set of
vectors and applications. J. ACM, 25(4):536–543, Oct. 1978.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[3] A. L. Buchsbaum and M. T. Goodrich. Three-dimensional
layers of maxima. Algorithmica, 39:275–286, July 2004.

[4] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. On high dimensional skylines. In EDBT, pages
478–495, 2006.

[5] A. Das Sarma, A. Lall, D. Nanongkai, and J. Xu.
Randomized multi-pass streaming skyline algorithms. Proc.
VLDB Endow., 2(1):85–96, Aug. 2009.

[6] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. Journal of the ACM, 22:469–476,
1975.

[7] C. Kwok, O. Etzioni, and D. S. Weld. Scaling question
answering to the web. ACM Trans. Inf. Syst., 19(3):242–262,
2001.

[8] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:
The k most representative skyline operator. In ICDE, pages
86–95, 2007.

[9] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Trans.
Database Syst., 30(1):41–82, 2005.

[10] C. Sheng and Y. Tao. On finding skylines in external
memory. In PODS, pages 107–116, 2011.

[11] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based
representative skyline. In ICDE, pages 892–903, 2009.

[12] G. Valkanas, A. N. Papadopoulos, and D. Gunopulos.
Skydiver: A framework for efficient skyline diversification.
In EDBT, pages 406–417, 2013.

[13] A. Vlachou and M. Vazirgiannis. Ranking the sky:
Discovering the importance of skyline points through
subspace dominance relationships. Data Knowl. Eng.,
69(9):943–964, 2010.

[14] M. L. Yiu and N. Mamoulis. Multi-dimensional top-k
dominating queries. VLDB J., 18(3):695–718, 2009.

187

Multi-Engine Search and Language Translation
Steven J. Simske
Hewlett-Packard Labs

3404 E. Harmony Rd. MS 36
Fort Collins CO 80528 USA

+1 970 898 1359

Simske@hp.com

Igor M. Boyko
Cisco Inc.

Cisco Bldg 8, 3750 Zanker Rd
San Jose CA 95134 USA

+1 650 892 9924

Igboyko@cisco.com

Georgia Koutrika
Hewlett-Packard Labs

1501 Page Mill Rd., MS 1157
Palo Alto CA 94304 USA

+1 650 857 2181

Koutrika@hp.com

ABSTRACT

Two of the most important elements in user interaction with a

database are search and language translation. Search is used to

access a database system through queries, for which the accuracy

and completeness of response are key challenges. Language

translation re-purposes content for a different audience, and the

accuracy of translated text can be directly evaluated using search

output similarity. In this paper, we summarize previously

unpublished approaches to improving the quality of both search

and translation, with an aim of improving the accuracy of both of

these tasks. Specifically, multi-engine and related meta-

algorithmic approaches are shown to be promising means of

improving the performance of both search and translation. We

then describe the vision of how search and translation can be

combined to create a more robust overall text mining project.

Categories and Subject Descriptors

G.2.1 [Mathematics of Computing]: Discrete Mathematics –

combinatorics. G.4 [Mathematics of Computing]: Mathematical

Software. H.3.3 [Information Systems]: Information Storage and

Retrieval – information search and retrieval. I.2.7 [Computing

Methodologies]: Artificial Intelligence – natural language

processing.

General Terms

Algorithms, Experimentation, Languages

Keywords

Expert Feedback, Synonym, Meta-Algorithmics, Meta-Analytics,

Search, Language Translation

1. INTRODUCTION
Automated search has been a research challenge of high interest

to the data mining, knowledge generation and machine

intelligence communities for the past several decades. Search

queries are comprised of individual textual terms or multiple text

terms associated with each other through, for example, a Boolean

expression. These queries are often unreliable methods of

obtaining the optimal set of documents (or other logical elements)

from a corpus. This is due in part to the fact that no default search

engine response to a query will provide a customized set of

documents matching what a particular user desired in entering the

search query. In this paper, we review previous (and unpublished)

work on providing the means to (a) extend the search capabilities

of a search engine by increasing the likelihood that related

documents are found for a particular search query; (b) increase

the search efficacy when the user has only a vague idea about

what she is trying to find; and (c) provide a means to optimize for

several factors how to select documents associated with a query

within any corpus. The methods used were part of the body of

research to underpin the concepts in a recent book describing

meta-algorithmics [1], but were not incorporated into the book.

Meta-algorithmics are a series of approaches to intelligent system

design that describe how to combine two or more algorithms or

systems into a single system for machine intelligence. Search is a

form of machine intelligence associated with filtering; that is,

narrowing down a larger body of data into a topic-specific body

of data; that is, search output information. Language translation is

a form of machine intelligence associated with conversion, or

transduction, of one type of data into another.

The basis of the meta-algorithmic, multi-engine approach to

search adopted in this paper was described earlier in patent

application [2] which was not exercised. Thus, the research

represents previous unpublished research with promising results

suggestive of a useful future search research area. The meta-

algorithmic approach considered is termed “synonymic search”,

which allows a single search query to be expanded into a set of

queries representing synonymic expressions for the original

query. The approach also allows tuning of the amount of

synonymic broadening to be applied to the received query for

constructing the set of synonymic search queries. Identification of

resulting documents responsive to each of the plurality of queries

is received, and such received documents are ranked based at least

in part on a weighting assigned to each of the plurality of queries.

Language translation, like search, is an important tool for data

mining and knowledge generation. In this paper, we present a

simple meta-algorithmic approach that combines the output of

multiple language translations and uses “expert feedback” in the

form of a dictionary in the target language of the translation.

2. SEARCH
Expanding a single search query into a series of related searches

is known as query expansion. In this paper, query expansion is

incarnated through the use of term synonyms. That is, each term

in a query that has one or more synonyms triggers the expansion

of the query into a set of parallel queries, each one including only

one of this set of synonyms. This process is repeated for every

one of NS terms in the query having one or more synonyms,

resulting in a total number of queries, NQ, given by Equation 1,

where Si is the number of synonyms for term i.

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

188

SN

i

iQ SN
1

1

 Equation 1

A set of synonymic queries is generated. Many commercially-

available, freely-available and proprietary synonym lists exist.

WordNet [3], for example, provides the means to generate such a

list, and thesaurus options within many word processor engines

provide the means to augment the list. Nouns, verbs and

adjectives are the common parts of speech used for synonymic

queries. In fact, many common articles (“the”, “a”, and “an”),

prepositions (“of”, “with”, etc.) and conjunctions (“but”, “and”,

and “or”, except when the latter two are used in Boolean

searching capacity) are ignored altogether in most search engines.

Many existing search engines, moreover, separate notions

(idioms) consisting of two words into two separate terms, such as

in the case of “take off” and “put up” (in which they are treated as

“take” and “off” and “put” and “up”).

The synonymic search set is typically limited to proximate (and

not associated) synonyms in order to keep the number of searches

manageable, per Equation 1. Moreover, expressions such as “take

off” and “put up” are treated as single candidates for synonyms,

resulting in synonyms such as “launch” & “elevate”, or “erect” &

“construct”, rather than synonyms for the individual words in

these idioms. Further control over the total number of searches

generated is obtained by limiting the number of proximate

synonyms, denoted P, to an absolute maximum of, for example,

five synonyms (P=5). If there are N terms for which synonyms

are found in the original query, there are NP total searches

possible. However, to prevent an open-ended number of queries,

the total number of queries may be limited to an absolute

maximum Q of, for example, 25 queries (most search engines are

fast enough nowadays, at several hundredths of a second per

query, that this value will typically limit the total search time to <

1 second of searching). The user may also be allowed to limit the

total number of searches via a UI device.

Now, if NP > Q, the Q-1 additional searches (the original query is

always used) are pruned based on the relative synonymic

relationship between each of the terms. An example illustrates

this point. Suppose the user types in the query “class list for

Stanford”. For the term “class”, the user will get the following

synonyms: set, group, division, grade, rank, category, order (etc.).

For the term “list”, the user will get the following synonyms:

catalog, inventory, register, record, roll, directory (etc.). Already,

the number of possible synonymic queries is 56 (that is, 8 x 7),

but no more than 25 are allowed (fortunately, “Stanford” is a

relatively unique term – although “Stanford University” can be

considered a synonym for it, this synonym does not expand the

search, and so is ignored). The obvious solution is simply to

accept 5 terms for “class” and 5 terms for “list”, but this is in

general an unsatisfactory solution. Instead, the preferred

implementation is to have the synonym database structured such

that the synonyms are rated for their “closeness” or “proximity”

to the original word. Let us suppose these rates for “class” are 0.9

(set), 0.85 (group), 0.72 (division), 0.65 (grade), 0.51 (rank), 0.42

(category) and 0.23 (order); and for “list” are 0.95 (catalog), 0.9

(inventory), 0.88 (register), 0.85 (record), 0.84 (roll) and 0.46

(directory). The highest 25 combinations are then found by

multiplying the synonymic rates together, and so the highest

ranking is for “class list Stanford” (1.0), followed by “class

catalog Stanford” (0.95), continuing to #24 (“grade catalog

Stanford” at 0.6175) and #25 (“division record Stanford” at

0.612).

Note that the “weights” or “proximities” defined above can be

further weighted/treated by the “semantics” of the query—i.e. if a

query asks, as in the example below, for a “ball sport” then any

synonyms of “ball” denoting “dancing” rather than “sports

equipment” should be discarded. Such semantic weighting is, in

general, quite difficult, and so weighted synonyms such as those

demonstrated here help work around this problem. Note that the

weights can be defined (a) manually; (b) automatically based on

the co-occurrence of such terms in web sites, documents,

corpuses, etc. – for instance, reference [4] has a statistical

database generated from the British National Corpus, a 100

million word electronic databank sampled from the whole range

of present-day English, spoken and written; and (c) automatically

based on the order the synonyms occur in a linguistic engine such

as WordNet. Almost the same statistical approach can be used for

determining the parts of speech (POS) at the front end of query

analysis. For example, the word “class” may be a noun, verb or

adjective. Using the statistical results from [4], the word “class” is

found to be most commonly typed as a noun, and so the

appropriate noun synonyms can be used. If, however, a POS

analysis of the query indicates that the word “class” is a verb,

verb synonyms are found for “class”. This is also true of the word

“list”, which can be both a noun and verb. Since even the best

POS engines make mistakes, the user can be allowed to change

the POS at the UI level, if available, if they think the engine may

have misinterpreted the query.

It is clear from the above that there are numerous approaches to

query expansion associated with synonymic proximity along with

likely synonymic relevance of the term. After all the search

queries have been defined, they are actually run on one or more

search engines. On the internet, these search engines can be

commercially available ones. On intranets and specific corpuses,

they can be whatever search engine the user has available. In this

step, all of the queries are provided as input for the search engine

and the search engine returns the web sites, documents, etc. that it

determines to be best matches. These matches are typically

presented in order of relevance, utility, hit frequency, or other

reasonable metric, and are presented to the user ranked from 1 to

M, where M is the number of “hits” or “matching pages” found.

This approach, “by priority”, can use the following types of

weighting to combine the search output of multiple engines (note

that this is a separate weighting from the query weighting

described above): (1) the engines themselves may be weighted by

the confidence in the engines; and (2) the order of the results may

be weighted, according to their rank in the output set provided by

the search engine. It is worth noting, however, that even if a

single search engine is used, the synonymic approach effectively

provides a multi-engine output. Each is consistent with a meta-

algorithmic Weighted Voting pattern [1]. A second means of

presenting search output options to users is “by query”. This is

simple, and has many possible incarnations. For example, each of

the original and synonymic searches is presented as a link to the

user, and the user can select any of them to find the highest

priority sites presented. Another example is to present a tree of

the original and synonymic searches [5]. These two approaches

have different advantages. The “by priority” approach tends to

smooth over biases of a search engine, providing averaging, while

the “by query” approach provides quick alternative lists to the

user. A preferred motif may be to present the results from the “by

189

priority” approach with links to the original and synonymic

queries in an adjacent column.

An additional presentation mode is possible. In this mode, the

overall relevance of all the search results is determined by

comparing its keywords to those in the original query. For

example, suppose the following two web page descriptions result:

(a) a list of people suing Stanford for copyright infringement, and

(b) a directory of classes in the Stanford biology program. The

first search has “list” at 1.0, “Stanford” at 1.0 and no synonym for

class. Its total synonymic weight (using the simplest weighting

schema) is thus 2.0. The second search has “directory” for 0.46,

“class” (lemma for classes) for 1.0, and “Stanford” for 1.0, for a

total weighting of 2.46. Thus, the second search is deemed “more

semantically similar” to the original query and is presented higher

up in the results. This is the “by semantic weight” approach.

A real example is overviewed here. On one of the major internet

search engines, the following query was entered: “ball sport in

New Zealand” for which we were trying to find the name of a

sport in which you get inside a large plastic double-walled ball

and roll down a hill (called “zorbing”, a New Zealand invention)

and the name for a sport similar to basketball played by women

there (“netball”). Both are quite literally ball sports in New

Zealand, but they are quite different from the set of top ten results

that result for this query in most search engines (almost all are

rugby, with basketball or volleyball occasionally making an

appearance). The chief synonyms were sphere, globe & orb for

ball; game, activity, team game & hobby for sport. The original

search “ball sport New Zealand” found chiefly rugby sites, with

some hockey and water sports interspersed in the top 10 priority

sites. Ditto for “sphere sport New Zealand”. When the synonymic

search “globe sport New Zealand” was performed, more water

sports sites showed up. When “orb sport New Zealand” was

queried, zorbing made its first appearance in the high priority list

of sites. Water polo appeared when “ball activity New Zealand”

was queried; croquet & volleyball when “ball team game New

Zealand” was queried; and netball when “ball game New

Zealand” was queried. This example illustrates the diversity of

returns possible with the use of synonymic query.

3. LANGUAGE TRANSLATION
As a brief introduction to the use of multi-engine translators to

increase overall translation accuracy, we used the meta-

algorithmic pattern of Expert Feedback [1] where the “expert”

was an English language dictionary [4] and the sources to be

translated were either in Italian and Russian. Two 500-word

documents were hand ground-truthed by the authors and three

translation services were deployed (References [6], [7], [8] and

[9] for the Italian-English translation).

Table 1. Italian-English Translation

Translator 1 2 3 Combined

Matching % 89.5 91.4 94.1 97.7

Table 2. Russian-English Translation

Translator 4 5 6 Combined

Matching % 80.5 84.9 93.4 96.2

The multi-engine approach for language translation used was

straightforward. The words associated with the output of the

multiple translations were directly aligned so that the terms could

be matched directly for all three translations. Where the

translation resulted in non-English words for one or more of the

translators, the English word of another translator was used

instead. If different English words were identified by the

translations, then either the most commonly selected word or else

the word provided by the engine with the greatest overall number

of successes (English words) was used. This simple multi-engine

scheme (Tables 1-2) resulted in reduction of the error rate by 61%

(Italian) and 50% (Russian) in comparison to the error rate of the

best single engine. Thus, as for search, a multi-engine approach to

language translation showed considerable promise.

4. DISCUSSION
Several multi-engine approaches to search and language

translation have been demonstrated in this paper. Synonymic and

part-of-speech query expansions, in addition to a meta-

algorithmic Weighted Voting approach, were shown to provide

distinct advantages for customizing search output. Multi-engine

alignment and best output acceptance was shown to significantly

improve the quality of language translation for two short

documents using two distinct languages. Obviously, further

quantitative evaluation of the approaches outlined herein will be a

useful next set of experiments. This paper only highlights the

large set of possibilities in this space. In the future, validation of

the techniques with IR datasets from TREC (queries and qrel

ground truth) will be performed. The approaches outlined here

will also be compared to relevant similar approaches, including

query expansion, exploitation of synonyms and cross-language

IR. Finally, it should be noted that there is a logical link between

these two fields of text data filtering and transduction. Namely,

the accuracy of the language translation approach can be directly

gauged by comparing the search results on the un-translated and

subsequently translated corpora. If the translation is accurate, then

the documents should respond very similarly to un-translated and

translated queries against the corpora. This type of functional

testing of un-translated and translated corpora also warrants

further, quantitative investigation. This will be a focus of future

research for our team and, hopefully, others.

5. REFERENCES
[1] Simske, S.J. 2013. Meta-algorithmics: patterns for robust,

low cost, high quality systems. Wiley & Sons, Hoboken, NJ,

USA, 386 pages.

[2] Simske, S.J. and Boyko, I. 2002. System and method for

management of synonymic searching. US Patent Application

10/256,674 (20040064447).

[3] Word Net, http://www.cogsci.princeton.edu/~wn/.

[4] British National Corpus, http://www.natcorp.ox.ac.uk/.

[5] Vivisimo, http://www.vivisimo.com.

[6] http://inews.tecnet.it/show.asp?f=articoli/2002/04/IN0204_F

ocus_Kids.htm.

[7] Free Translation, http://www.freetranslation.com/.

[8] LinguaTec, http://www.linguatec.net/online/.

[9] WorldLingo, http://www.worldlingo.com/wl/Translate.

190

Querying Graph Structured Data (GraphQ)

Federica Mandreoli (University di Modena and Reggio Emilia, Italy)
Riccardo Martoglia (University di Modena and Reggio Emilia, Italy)

Wilma Penzo (University of Bologna, Italy)

191

An Event-Driven Approach for Querying Graph-Structured
Data Using Natural Language

Richard A. Frost, Wale Agboola, Eric Matthews and Jon Donais
School of Computer Science

University of Windsor, Canada
richard@uwindsor.ca

ABSTRACT
An ideal way for people to query graph-based knowledge, in-
cluding triplestores in the semantic web, would be for them
to ask questions in a natural language (NL). However, ex-
isting NL query interfaces to graph-based data have lim-
ited expressive power and cannot accommodate arbitrarily-
nested quantification (i.e. phrases such as “a gangster who
joined every gang”) together with multiple complex prepo-
sitional phrases, such as “in a city located in Illinois in 1918
using a set of keys that was stolen from a gangster”. It
would appear that the commonly-used “entity-based” triple-
stores, together with what has become the de-facto approach
of converting NL queries to SPARQL queries before being
evaluated, hinders the development of expressive NL query
processors. The reason is that entity-based triples are not
conducive to the development of semantic theories of com-
plex prepositional phrases, and the development of such the-
ories is made considerably more complex when translation
to SPARQL has to be taken into account. An alternative ap-
proach, which uses “event-based” triplestores, treats (brack-
eted) English queries as expressions of the lambda calculus
which can be evaluated directly with respect to the triple-
store. This approach facilitates the development of a formal
denotational semantics of English queries which easily ac-
commodates complex prepositional phrases. The approach
described here could be used to develop a denotational se-
mantics for a highly-expressive NL query language, and then
that semantics could be used to guide the design of an NL
query to SPARQL translator, thereby taking advantage of
SPARQL optimizations.

Categories and Subject Descriptors
H.2.4 [database management]: Query processing; H.5.2
[user interfaces]: Natural language

General Terms
Theory

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

1. INTRODUCTION
The fact that Al Capone joined the Five Points Gang can

be represented by the following triple:

(.../capone, .../joined, .../fpg)

where .../ are Uniform Resource Identifiers (URIs) for name-
spaces, and .../capone is a URI for a person. However, there
is a problem with this approach. It is difficult to add related
data such as the fact that Capone joined the FPG gang in
1914. It is insufficient to simply add the triple:

(.../capone,.../year_joined_gang, .../1914)

as this does not provide the necessary link between the two
facts (the link is necessary because Capone joined several
gangs). Various approaches are available to overcome this
problem, only one of which concerns us in this paper. The
aproach in which we are interested is one which uses events
rather than entities as subjects in the triples. For example,
the fact that Al Capone joined the Five Points Gang can be
represented as follows (note that from now on, we use ENT
”capone” in place of “.../capone” etc.

{(EV 1001, REL "type", TYPE "join_ev"),
(EV 1001, REL "subject", ENT "capone"),
(EV 1001, REL "object", ENT "fpg")}

We can add the fact that Capone joined the Five Points
Gang in 1914, with:

(EV 1001, REL "year", ENTNUM 1914)

A particular advantage of this approach is that the use
of events facilitates the creation of a powerful denotational
semantics for NL queries to graph-based data. In partic-
ular, use of events enables us to create an NL semantics
with the following six properties: 1) the semantics is deno-
tational in the sense that English words and phrases have
a well-defined mathematical denotation (meaning), 2) the
meaning of a composite phrase can be created by applying
simple operations to the meanings of its components, 3) it
is referentially transparent in the sense that the meaning
of a word or phrase (after syntactic disambiguation) is the
same no matter in what context it appears. 4) there is a
one-to-one correspondence between the semantic rules de-
scribing how the meaning of a phrase is computed from its
components and the syntactic rules describing the structure
of the phrase, 5) it is computationally tractable, and 6) the
meanings of words are defined directly in terms of primitive
triple-store retrieval operations.

192

These six properties enable NL triple-store query proces-
sors to be implemented as highly modular syntax-directed
interpreters. The advantage of this is that processors for
individual language constructs can be built and tested sep-
arately. Consequently, the query processors can easily be
extended to accomodate new language constructs such as
prepositional phrases.

The semantics that we have developed is complex and
is the result of two revisions that we have made to a well-
known formal semantics of English, called Montague Seman-
tics (MS) [6]. We first modified MS to create a computation-
ally tractable form called FLMS which is suitable as a basis
for NL query interfaces to relational databases. We then
modified FLMS to a form which we call EV-FLMS which
is suitable as a basis for querying event-based triple stores.
Owing to the complexity of these modifications, this paper
describes the two revisions in two separate sections.

The paper is structured as follows: in 2.1 we introduce
Montague Semantics. In 2.2 and 2.3 we show how MS can
be extended and converted to a computationally tractable
form which can be used as a basis for NL query interfaces
to conventional relational databases. In section 3 we discuss
in more detail how knowledge can be represented in triple
stores. In 4 we introduce some primitive retrieval operators
for triple stores. In 5 we introduce a new event-based version
of FLMS, called EV-FLMS and show how the meaning of
words and phrases can be defined in terms of the triple-
store retrieval operators. In 5.2 we show how the semantics
accommodates prepositional phrases, thereby achieving all
six of the properties listed above. In 6 we give examples of
how complex queries such as“which gangster who stole a car
in 1908 or 1918 in Manhattan joined a gang that was joined
by Torrio?” are answered. In 7, we briefly discuss the use of
a parser to disambiguate queries. In 8 we mention related
work. We conclude in 9 with work yet to be done.

2. A COMPOSITIONAL SEMANTICS FOR
NL RELATIONAL DB QUERIES

We begin by discussing MS and show how the meaning of
a sentence in English can be composed from the meanings
of its component words and phrases. We then show how
MS can be extended and modified for use as a basis for NL
query interfaces to conventional relational databases.

2.1 Montague Semantics
If we ignore that part of MS which deals with inten-

sional and modal aspects of language, common nouns such
as “thief” and intransitive verbs such as “smokes” can be
thought of as denoting predicates over the set of entities in
the “universe of discourse”, i.e. characteristic functions of
type entity → bool, where x → y denotes the type of func-
tions whose input is a value of type x and whose output is
of type y. One of Montague’s many insights is that proper
nouns (i.e. names) do not denote entities directly. Rather,
they denote functions defined in terms of entities. For ex-
ample, the proper noun “Capone” denotes the function λp

p cap where cap represents the entity associated with the
name “Capone”. (For readers not familiar with the lambda
calculus, the expression λx e denotes a function which, when
applied to an argument y, returns as result the expression e

with all instances of x in it replaced by y.) According to the
rules proposed by Montague, the phrase “Capone smokes”

(ignoring temporal aspects) is interpreted as shown below,
where a => b indicates that b is the result of evaluating a, ‖x‖
represents the denotation (meaning) of the word or phrase
x, and x_pred is the predicate associated with the word x.

‖Capone smokes‖ => ‖Capone‖ ‖smokes‖
=> (λp p cap) smokes_pred
=> smokes_pred cap

Quantifiers such as “every”, and “a” denote higher-order
functions of type: (entity→bool)→((entity→bool)→bool)

For example:

‖every‖ = λpλq ∀x (p x) → (q x)

where → denotes logical implication in this context. Ac-
cordingly, the phrase “every thief smokes” is interpreted as:

(λpλq ∀x(p x)→(q x))thief_pred smokes_pred
=>(λq ∀x thief_pred (x) → q(x)) smokes_pred
=> ∀x thief_pred (x) → smokes_pred(x)

There are many advantages to MS including the fact that
phrases of the same syntactic type, e.g. “Capone” and “ev-
ery thief” have denotations of the same type i.e. (entity →
bool) → bool, making the semantics highly compositional
with respect to the syntactic structure of the phrase. Con-
sequently, the semantics is easy to implement in a syntax di-
rected interpreter as there is a one-to-one correspondence be-
tween the syntactic rules of the grammar defining the query
language and the semantic rules defining how the meaning
of a compound construct is computed from the meaning of
its components). There are, however, two disadvantages of
directly implementing MS as the basis for a database query
processor, as discussed in the next two sub-sections.

2.2 An explicit denotation for transitive verbs
MS is not fully compositional as it does not have an ex-

plicit denotation for transitive verbs. Instead it leaves tran-
sitive verbs uninterpreted throughout the rewriting of the
lambda expression denoting the sentence or phrase, and only
deals with the transitive verb at the very end through a syn-
tactic rewrite rule (see page 216 in [6] for the details). In
earlier work [11] we developed a method for defining the
denotation of transitive verbs explicitly. Accordingly, the
denotation of “join” (as in “join a gang”) is as follows:

‖join‖ = λz z(λxλy join_pred (y, x))

Where join_pred is the two place predicate corresponding
to the word “join”. Note that this is similar to, but not
exactly the same as, that proposed by Hendricks [18], Main
and Benson [22], Blackburn and Bos [2] (who attribute it to
Robin Cooper at the University of Goteborg), and Clifford
[4]. The following shows the use of this denotation:

‖Did Capone join the Five Points Gang?‖
by parsing
=> ‖Capone‖(‖join‖ ‖Five Points Gang‖)
=> (λp p cap) ((λz z(λxλy join_pred(y,x)))(λq q fpg))
=> (λp p cap) ((λq q fpg)(λxλy join_pred(y,x)))
=> (λp p cap) ((λxλy join_pred(y, x)) fpg)
=> (λp p cap) (λy join_pred(y, fpg))
=> (λy join_pred (y, fpg)) cap
=> join_pred(cap, fpg)

which returns True if Capone joined the Five Points Gang.

2.3 An efficient version of MS
Another disadvantage of MS as a basis for database query

processors is that a direct implementation of the denotations

193

of phrases which include the word“every” is computationally
intractable. This is due to the fact that the function which
denotes the word “every” requires all entities in the universe
of discourse to be examined. For example:

∀x thief_pred(x) → smokes_pred(x)

In order to overcome this problem, MS can be converted to
a semantics called FLMS that is based on sets and relations
rather than on their corresponding predicates. In this ap-
proach, which was first suggested and partially implemented
by Frost and Launchbury [9] and further developed by Frost
and Fortier, [15], sets and relations are used in the deno-
tations of common nouns, intransitive verbs, and transitive
verbs, rather than their corresponding predicates, and all
other denotations are modified appropriately:

‖thief‖ = {capone, torrio, moran ..
‖gang‖ = {bowery, fpg ..
‖smoke‖ = {capone, torrio, moran ..
‖Capone‖ = λp capone ∈ p
‖Moran‖ = λp moran ∈ p
‖Torrio‖ = λp torrio ∈ p
‖Five Points Gang‖ = λp fpg ∈ p
‖every‖ = λsλt s → t
‖a‖ = λsλt s ∩ t 6= {}
‖and‖ = λfλg λs ((f s) & (g s))
‖join‖ = λq {x|(x,image_x) ∈ collect(join_rel)

& q(image_x)}
join_rel = {(capone, bowery),(capone, fpg),

(torrio, fpg),etc.}

The definition of ‖join‖ uses relative set notation: infor-
mally, {a | b1 ∈ s1 etc., & c1 etc.} is read as the set of
all a such that b1 is a member of the set s1, etc. and c1 is a
condition, etc. The function collect is defined such that it
returns a new binary-relation, containing one binary tuple
(x, image_x) for each member of the projection of the left-
hand column of join_rel, where image_x is the mathematical
image of x under the relation join_rel. For example:

collect join_rel
=> {(capone, {bowery,fpg}),(torrio, {fpg}), etc.

As example of the use of the denotation of the word“join”,
consider: ‖join‖ ‖Five Points Gang‖

=> λq{x|(x,image_x) ∈ collect(join_rel) & q(image_x)}
(λp fpg ∈ p)

=> {x|(x,image_x) ∈ collect(join_rel) &
(λp fpg ∈ p)(image_x)}

=> {x|(x,image_x) ∈ collect(join_rel) &
(fpg ∈ image_x)}

=> {capone, torrio}

The resulting semantics is highly compositional: denota-
tions of compound phrases and sentences are created using
function application, according to the syntactic structure of
the query. It should be noted that syntactic ambiguity is ac-
commodated by having the parser generate more than one
syntax tree each of which determines an order of application
of the functions which are denoted by the words and phrases
in the query. For example: one of the two syntactic parses
of the query “Did Capone and Torrio join a gang?” would
result in the following expression, which has the same mean-
ing as the query“Did Capone join a gang and did Torrio join
a (not necessarily the same) gang?”

(‖and‖‖Capone‖‖Torrio‖) (‖join‖ (‖a‖‖gang‖))

which evaluates to True w.r.t. the definitions given above.
We discuss ambiguity further in section 7.

The set-based FLMS semantics has the first five of the six
properties discussed earlier. It can be implemented directly
as part of a syntax-directed query processor for conventional
relational databases in any programming language, but most
easily in languages such as LISP, Miranda, Haskell, Scheme,
ML or Python which support higher-order functions. De-
notations of common nouns such as “thief” and intransitive
verbs such as “smokes” are defined directly in terms of unary
relations in the database. Relations such as join rel, which
are used in the denotations of transitive verbs, are defined
directly in terms of binary-relations.

3. EVENT-BASED TRIPLE STORES
Before we discuss how to convert FLMS to a form that

can be used with event-based triple stores, it is helpful to
consider further how knowledge can be represented in such
stores. First, we consider how to represent facts associated
with intransitive verbs. For example, the fact that Capone
was known to smoke. This can be represented as:

{(EV 1005, REL "type", TYPE "smoke_ev"),
(EV 1005, REL "subject", ENT "capone")}

Next, set membership which is the result of an action, e.g.
the fact that Capone became a thief, can be represented by
treating set membership as an event:

{(EV 1002, REL "type", TYPE "membership"),
(EV 1002, REL "subject", ENT "capone"),
(EV 1002, REL "object", ENT "thief")}

Now we can add the fact that he became a thief in 1908:

(EV 1002, REL "year", ENTNUM 1908)

Finally, consider set membership which is a consequence of
an intrinsic property of an entity, e.g. the triples represent-
ing the fact that “Capone stole a car in 1918 in Manhattan”
are:

{(EV 1004, REL "type", TYPE "steal_ev"),
(EV 1004, REL "subject", ENT "capone"),
(EV 1004, REL "object", ENT "car1"),
(EV 1004, REL "year", ENTNUM 1908),
(EV 1004, REL "location", ENT "Manhattan")}

In the above, we have not represented the fact that car1 is
a car. To be consistent, this fact should be represented in a
way that is similar to the way in which event 1002 represents
the fact that Capone was a thief:

{(EV 1006, REL "type", TYPE "membership"),
(EV 1006, REL "subject", ENT "car1"),
(EV 1006, REL "object", ENT "car")}

It is somewhat burdensome to have to treat membership
of a set (e.g. car) which results from the “core” essence of
an entity (e.g. car1) in a similar way to membership of a
set which is contingent on an action. However, this allows
us define denotation of all common nouns in the same way.

From the examples given above, one can see that when set
membership (e.g. the set thief) is contingent on an action
(e.g. steal), there could be some redundancy in the triple
store. For example, the data represented by event 1002 could
be derived from event 1004 data. We do not address this
concern in this paper, as it has to do with how data from
other data structures is converted to triple store data, and
what deductive machinery accompanies the triple store.

194

4. RETRIEVING DATA FROM AN EVENT-
BASED TRIPLE STORE

Before we introduce the new event-based semantics, we
define some basic triple store retrieval operators. Given the
limitations of space, rather than define the retrieval oper-
ators and our new semantics using the notation of lambda
calculus and set theory, and then show how they can be
implemented in a programming language, we give the defi-
nitions directly using the notation of the programming lan-
guage Miranda. We choose Miranda for four reasons: 1) It
has built-in list operators and a list comprehension construct
which corresponds to the“relative set notation”that we used
in denotations in FLMS (section 2.3). 2) Similar to MS and
FLMS, our new semantics uses higher-order functions which
can be defined directly in Miranda. 3) Miranda has a sim-
pler syntax than other higher-order functional languages. 4)
Given the declarative nature of Miranda, the definitions are
executable specifications which allow us to test our ideas.

In Miranda:

- [x1,..,xn] is a list of n elements of the same type.

- #s is the length of the list s.

- f a1..an returns the result of applying f to a1..an

- member s x returns True if x is in the list s.

- (x1,..,xn) is a tuple of n values of different type.

- Lists are created using list-comprehensions which
have the general form:[values|generators;conditions]
For example: [(x^2 | x <- [1..10], odd x]

=> [1, 9, 25, 49, 81]

- f a1..an = e defines f to be a function of n arguments
whose value is the expression e.

- n $f m allows f to be used as an infix operator.

- Functions can be composed with the . operator:
(f . g) x = f (g x)

- map f s applies f to every member of the list s.

- New types can be defined using type constructors,e.g.

field ::= EV num | ENT [char] | ENTNUM num
TYPE [char] | REL [char] | ANY

then EV 1000 is a value of type field

Note in function application brackets are used to establish
the order of application, not to enclose arguments, e.g. sqrt

9 + sqrt (2 + 2) => 5. We begin by defining a triple store
called data which we use as an example throughout the rest
of the paper. Note that we have used type constructors
EV, REL etc. (which we earlier referred to as “tags”) in the
definition of the triple store. Note also that the definition
of data is part of the Miranda program that we built to test
our semantics.

data =
[(EV 1000, REL "type", TYPE "born_ev"),
(EV 1000, REL "subject", ENT "capone"),
(EV 1000, REL "year", ENTNUM 1899),
(EV 1000, REL "location", ENT "brooklyn"),
(EV 1001, REL "type", TYPE "join_ev"),
(EV 1001, REL "subject", ENT "capone"),

(EV 1001, REL "object", ENT "fpg"),
(EV 1002, REL "type", TYPE "membership"),
(EV 1002, REL "subject", ENT "capone"),
(EV 1002, REL "object", ENT "thief"),
(EV 1002, REL "year", ENTNUM 1908),
(EV 1003, REL "type", TYPE "join_ev"),
(EV 1003, REL "subject", ENT "capone"),
(EV 1003, REL "object", ENT "bowery"),
(EV 1004, REL "type", TYPE "steal_ev"),
(EV 1004, REL "subject", ENT "capone"),
(EV 1004, REL "object", ENT "car_1"),
(EV 1004, REL "year", ENTNUM 1918),
(EV 1004, REL "location", ENT "manhattan"),
(EV 1005, REL "type", TYPE "smoke_ev"),
(EV 1005, REL "subject", ENT "capone"),
(EV 1006, REL "type", TYPE "membership"),
(EV 1006, REL "subject", ENT "car_1"),
(EV 1006, REL "object", ENT "car"),
(EV 1007, REL "type", TYPE "membership"),
(EV 1007, REL "subject", ENT "fpg"),
(EV 1007, REL "object", ENT "gang"),
(EV 1008, REL "type", TYPE "membership"),
(EV 1008, REL "subject", ENT "bowery"),
(EV 1008, REL "object", ENT "gang"),
(EV 1009, REL "type", TYPE "join_ev"),
(EV 1009, REL "subject", ENT "torrio"),
(EV 1009, REL "object", ENT "fpg"),
(EV 1010, REL "type", TYPE "membership"),
(EV 1010, REL "subject", ENT "capone"),
(EV 1010, REL "object", ENT "person"),
(EV 1011, REL "type", TYPE "membership"),
(EV 1011, REL "subject", ENT "torrio"),
(EV 1011, REL "object", ENT "person")]

We now define a basic retrieval function getts which re-
turns triples from data which match given field value(s):

getts (a,ANY,ANY) = [(x,y,z) | (x,y,z) <- data; x = a]
getts (ANY,ANY,c) = [(x,y,z) | (x,y,z) <- data; z = c]
etc.
Example uses are:

getts (ANY, "subject", "torrio")
=> [(1009, "subject", "torrio"),

(1011, "subject", "torrio"),
etc.]

getts (1009, "type", ANY) => [(1009, "type", join_ev)]

Operators to extract one or more fields from a triple in-
clude:

first (a,b,c) = a
second (a,b,c) = b
third (a,b,c) = c
thirdwithfirst (a,b,c) = (c, a) etc.

Operators which return sets of fields from sets of triples
can be defined using the functions above and the function
map:

firsts trips = map first trips
thirds trips = map third trips
thirdswithfirsts trips = map thirdwithfirst trips etc.

We can now define more complex operators, such as:

get_subj_for_event ev
= thirds (getts (ev, REL "subject", ANY))

get_subjs_for_events evs
= concat (map get_subj_for_event evs)

195

Such that:

get_subjs_for_events [EV 1000, EV 1009]
=> [ENT "capone",ENT "torrio"]

The function get_members returns all entities which are
members of a given set:

get_members set = get_subjs_for_events events
where
events_for_type_membership
= firsts (getts (ANY,REL "type",TYPE "membership"))

events_for_set_as_object
= firsts (getts (ANY,REL "object", ENT set))

events
= intersect events_for_type_membership

events_for_set_as_object

An example use of this operator is:

get_members "person" => [ENT "capone",ENT "torrio"]

Another useful operator is one which returns all of the
subjects of an event of a given type:

get_subjs_of_event_type event_type
= get_subjs_for_events events
where
events
= firsts (getts (ANY, REL "type", TYPE event_type))

For example:

get_subjs_of_event_type "smoke" => [ENT "capone"]

5. A NEW SEMANTICS BASED ON
TRIPLES AND EVENTS

5.1 Denotations of words
We begin with nouns. As in FLMS, the denotation of

a noun is the set of entities which are members of the set
associated with that noun. The get_members function re-
turns that set as a list. Note that in the Miranda program,
sets are implemented as lists. We use the term “set” when
discussing the semantics and “list” when discussing the im-
plementation of the triple-store operators. Note also, that
from now on, instead of representing denotaions as, for ex-
ample: ‖person‖, we define denotations as functions with an
appropriate name, e.g. person. These denotations can then
be applied to each other in the program, as shown on the
next page, to create the meanings of more complex phrases.

person = get_members "person"
gang = get_members "gang"
car = get_members "car"
thief = get_members "thief"

e.g. gang => [ENT "fpg", ENT "bowery"]

Next, we consider intransitive verbs. The denotation of
an intransitive verb is the set of entities which are subjects
of an event of the type associated with that verb:

smoke = get_subjs_of_event_type "smoke_ev"

e.g smoke => [ENT "capone"]

Intransitive use of transitive verbs are similar:

steal_intrans = get_subjs_of_event_type "steal_ev"
steal_intrans => [ENT"capone"]

As in FLMS, proper nouns denote functions which take a
set of entities as argument and which return True if a par-
ticular entity is a member of that set, and False otherwise:

capone setofents = member setofents (ENT "capone")
torrio setofents = member setofents (ENT "torrio")
car_1 setofents = member setofents (ENT "car_1)
fpg setofents = member setofents (ENT "fpg")
year_1908 setofents = member setofents (ENTNUM 1908)
etc.
An example application: capone smoke => True

The quantifiers, “a”, “one” , “two”, “every”, etc. and the
conjoiners are defined in the same way as in FLMS:

a nph vbph = #(intersect nph vbph) ~= 0
one nph vbph = #(intersect nph vbph) = 1
two nph vbph = #(intersect nph vbph) = 2
every nph vbph = subset nph vbph

nounand s t = intersect s t
nounor s t = mkset (s ++ t)
that = nounor

termand tmph1 tmph2
= f where

f setofevs = (tmph1 setofevs) & (tmph2 setofevs)
termor tmph1 tmph2
= f where

f setofevs = (tmph1 setofevs)\/(tmph2 setofevs)

An example application of the above is:

(capone $termor torrio) thief => True

Transitive verbs are more complex. We need something
similar to the image in the FLMS approach. We can create
“images” for an event et using the following:

make_image et
= collect
(concat [(thirdswithfirsts . getts)

(ev, REL "subject", ANY)| ev <- events])
where
events = (firsts . getts) (ANY, REL "type", TYPE et)

An example application:

make_image "join_ev"
=> [(ENT "capone", [EV 1001, EV 1003]),

(ENT "torrio", [EV 1009])]

We can now use make_image to define the denotation of a
transitive verb associated with an event of a given type:

join
= f where

f tmph
= [subj|(subj,evs)<- make_image "join_ev";

tmph(concat[(thirds.getts)
(ev, REL "object", ANY)| ev <- evs])]

This definition is somewhat complex. We begin by not-
ing that a termphrase is a syntactic category that includes
proper nouns and determiner phrases such as“fpg”, “a gang”,
“a gang that was joined by torrio”, etc. The denotation
of “join” is a function f such that when f is applied to a
termphrase tmph (which is itself a function) it returns a list

196

of subjects each of which is associated with a set of events
evs in the image of the join_ev, such that when tmph is ap-
plied to the list of objects of the events evs, the result is
True, e.g.:

join (a gang) => [ENT "capone",ENT "torrio"]

ENT capone is in the result owing to the fact that the de-
notation of the termphrase (a gang) is a function which re-
turns True when applied to the list of objects of the set of
events associated with ENT "capone" in the image of event
type join_ev. Similarly for ENT "torrio".

We can define the passive form of transitive verbs by re-
placing subject by object in the definition of make_image and
use it to create a function make_passive_trans. For example:

joined_by = make_passive_trans "join_ev"

Example use:
joined_by (capone $termand torrio) => [ENT "fpg"]

We conclude this sub-section by defining some “query”
words:

which nph vph = intersect nph vph
how_many nph vph = intersect nph vph
did tph vbph = "yes",if tph vbph = True

= "no", otherwise
who vph = which person vph

5.2 Prepositional phrases
Complex prepositional phrases, such as “in 1908 or 1918

in a city in Illinois”have typically been somewhat difficult to
integrate into a compositional NL query semantics which al-
lows arbitrarily-nested quantification (which our semantics
does). We do not have any problems and can easily accom-
modate multiple prepositional phrases by having the parser
convert the list of prepositional phrases to a possibly empty
list of “prepositional pairs”. Each pair consists of a REL
value and a termphrase. For example, the phrase “in 1908
or 1918, in Manhattan” which consists of two prepositional
phrases is converted to:

[(REL "year", year_1908 $termor year_1918),
(REL "location", "manhattan")]

The definition of each transitive verb is redefined to make
use of this list to filter the events which are in the image
of the event-type associated with that transitive verb before
the termphrase which is the argument to the denotation of
the transitve verb is applied to the set of objects associated
with the event. A recursive function called filter_ev applies
each prepositional phrase in turn as a filter to each event:

steal’ tmph preps
= [subj | (subj, evs) <- image_steal;

tmph (concat
[(thirds.getts) (ev, REL "object", ANY)
| ev <- evs; filter_ev ev preps])]

filter_ev event [] = True
filter_ev event (prep:list_of_preps)

= ((snd (prep)) ((thirds.getts)
(event,fst (prep),ANY)))

& filter_ev event list_of_preps

for example:

steal’ (a car)
[(REL "year", year_1908 $termor year_1918),
(REL "location", "manhattan")]

=> [ENT "capone"]

6. DEFINING WORDS INDIRECTLY AND
EXAMPLE QUERIES

The meaning of some words can be defined in terms of
words and phrases whose meanings are known. For example:

gangster = join (a gang)

Our EV-FLMS semantics has the six properties mentioned
earlier. The answers to complex queries can be obtained
from the meanings of their components by simple function
application. For example, the query “Which gangster who
stole a car in 1908 or 1918 in Manhattan, joined a gang which
was joined by Torrio?” would be converted to the following
functional expression by the parser, and then evaluated di-
rectly by the programming language in the same way as the
expression 3 + (2 * 4) would be evaluated:

which
(person $that
(steal’ (a car)

[(REL "year", year_1908 $termor year_1918),
(REL "location", "manhattan")]))

(join (a (gang $that (joined_by torrio))))

=> [ENT"capone"]

The conversion, by the parser, of the word “in” to (REL

"year") and (REL "location") in the two different contexts
is clumsy and contravenes Montague’s notion that words do
not denote entities directly. We will improve this approach
in futue work.

In our semantics, queries can contain arbitrarily-nested
quantification. Termphrases with quantifiers (“a”, “every”,
“some”, “one” ”two”, etc.) can also appear in prepositional
phrases. For example, if the data store held the appropriate
triples, the following query can be processed ”Who broke
into a bar using a jimmy or a brick in two cities located in
Illinois?”

7. USING A PARSER TO DISAMBIGUATE
Our new semantics has a one-to-one correspondence be-

tween the syntax rules defining the syntactic structure of
the queries, and the semantic rules determining the order of
application of the functional denotations. All phrases and
words of a syntactic category have denotations (meanings)
of the same semantic type, simplifying integration of the se-
mantics with a parser to create a syntax-directed interpreter.
We have already done this for the FLMS semantics and we
are currently doing this for the semantics presented here.

There is insufficient space in this paper to discuss am-
biguity in detail. In summary, our parser generates more
than one syntax tree for ambiguous queries. For example,
the query “Did Capone and Torrio join a gang?” would be
parsed in two ways, resulting in the two expressions:

(capone $termand torrio) (join (a gang))
(a gang) (joined_by (capone $termand torrio))

197

The first returns True if Capone and Torrio both joined
a, not necessarily the same, gang, and the latter would only
return True if at least one gang was joined by both Capone
and Torrio.

8. RELATED WORK
Triple stores have been used in binary-relational databases

since the 70’s. A comprehensive survey of research on binary
relational databases and triplestores, up to and including
that carried out in the early 1980’s, is provided in [10]. That
paper also includes a description of a triple-based query lan-
guage called WAROUT which appears to be one of the first
SPARQL like query languages to have been developed.

Since the 80’s, various attempts have been made to cre-
ate user-friendly query interfaces to binary-relational triple-
stores. Early attempts include WAROUT mentioned above,
pseudo natural-language interfaces [26], Prolog interfaces
[29], and graphical visual interfaces [28], [24] and [25].

More recent interfaces to triplestores include the system
of Mandreoli et al [23] on flexible query answering which re-
turns best approximations to a query; the four systems (Se-
mantic Crystal, Ginseng, NLP-reduce and Querix) of Kauf-
mann and Bernstein [1], [20], [19]; the AquaLog system of
Lopez et al. [21]; the ORAKEL system of Cimiano et al. [3]
which also uses a Montague-like semantics; the NQ system
of Ran and Lencevicius [27]; the Pythia system of Unger and
Cimiano which converts the NL query to an FLogic query
[30]; the SQUALL system of Ferre [8] which is also based
on Montague’s linguistic approach; the system of Yahya et
al [32]; the system of Damova et al. [5] which is also based
on a formal lagic and which which converts NL queries to
SPARQL using the Grammatical Framework (GF); the sys-
tem of Hakimov et al [17] and the Metafrastes system of
Embregts et al. [7].

The approach that we have presented in this paper is dif-
ferent from the work mentioned above in that we regard
bracketed NL (e.g. English) queries as functional expres-
sions using a formal denotational semantics, and then eval-
uate those expressions through direct reference to the triple-
store using basic triple retrieval operators. We do not trans-
late the NL query to any intermediate language such as
SPARQL or FLogic.

This paper describes work which is part of a research
project that has extended over several years [9], [13], [15],
[11], [16] and [12]. The major contributions of this pa-
per include 1) a detailed explanation of the development
of the new semantics, 2) the method for dealing with mul-
tiple and complex prepositional phrases, and 3) Miranda
program code showing how the event-based semantics can
be implemented.

9. CONCLUSION AND FUTURE WORK
We have argued that 1) using events rather than entities as

the subject of triples, and 2) treating (bracketed) NL queries
as expressions of the lambda calculus that can be evaluated
directly with respect to the triplestore, allows the creation
of a denotational semantics for a wide range of NL queries,
and also the construction of query processors as modular
syntax-directed interpreters.

The semantics described in this paper is only a proof of
concept and much remains to be done.

We have already started work on interfacing our semantics

to remote semantic-web event-based triplestores and have
built an on-line query interface. That work is described in
an unpublished paper [14].

Our research group is planning to do the following over
the next year: 1) improve our approach to prepositional
phrases, 2) extend the semantics to accommodate aggrega-
tion and negation, 3) integrate the semantics with a parser
using the SAIGA attribute grammar programming environ-
ment [16], 4) investigate the use of our query processor with
existing (conventional) entity-based triple stores in the se-
mantic web. This will require converting, as needed, some
of the entity-based triples to event-based triples, 5) inves-
tigate the integration of the method of Walter et al [31]
for mapping query words to appropriate URIs and build-
ing the denotations of words in real-time when the query is
parsed, and 6) create a denotational semantics for Japanese
and investigate the use of event-based triple stores as an
intermediate knowledge representation format for language
translation between English and Japanese.

We hope that this paper prompts discussion of the relative
advantages and disadvantages of “entity-based” and “event-
based” triplestores, and also prompts discussion of the pros
and cons of converting NL queries to SPARQL before they
are evaluated.

A possible way forward might be to have a 2-stage ap-
proach to the development of a powerful NL query proces-
sor: Stage I: use the approach described in this paper to
develop a formal denotational semantics for a wide range of
NL constructs including nested quantifiers, complex chained
prepositional phrases, aggregation, negation, modality (such
as “who believes that ...”, aggregates, and temporal phrases
(such as for what period of time...) Stage II: after the NL
semantics has been developed, a translater could be built,
based the semantics, to convert NL queries to SPARQL
queries. Stage I would facilitate the development of the
complex denotational semantics necessary to accommodate
a wide range of NL queries, and STAGE II would allow the
query processor to make use of the many methods that have
been developed to optimize SPARQL queries.

10. ACKNOWLEDGMENTS
The authors acknowledge the support of the Natural Sci-

ence and Engineering Council (NSERC) of Canada, and the
reviewers for their comprehensive review and comments on
this paper.

11. REFERENCES
[1] A. Bernstein, E. Kaufmann, and C. Kaiser. Querying

the semantic web with ginseng: A guided input
natural language search engine. In Proceedings of the
15th Workshop on Information Technology and
Systems (WITS 2005), pages 45–50, 2005.

[2] P. Blackburn and J. Bos. Representation and Inference
in Natural Language. CSLI Publications, 2005.

[3] P. Cimiano, P. Haase, and J. Heizmann. Porting
natural language interfaces between domains: an
experimental user study with the orakel system. In
Proceedings of the 12th international conference on
Intelligent user interfaces, pages 180–189. ACM, 2007.

[4] J. Clifford, S. Abramsky, and C. van Rijsbergen.
Formal Semantics and Pragmatics for Natural
Language Querying. Cambridge Tracts in Theoretical

198

Computer Science 8. Cambridge University Press,
Cambridge, 1990.

[5] M. Damova, D. Dannelles, R. Enache, M. Mateva, and
A. Ranta. Natural language interaction with semantic
web knowledge bases and lod. In Towards the
Multilingual Semantic Web. Springer, 2013.

[6] D. Dowty, R. Wall, and S. Peters. Introduction to
Montague Semantics. D. Reidel Publishing Company,
Dordrecht, Boston, Lancaster, Yokyo, 1981.

[7] H. Embregts, V. Milea, and F. Frasincar. Metafrastes:
A news ontology-based information querying using
natural language processing. In The 8th International
Conference on Knowledge Management in
Organizations, pages 313–324. Springer, 2014.

[8] S. Ferre. Squall: A controlled natural language for
querying and updating rdf graphs. In Proceedings of
CNL 2012, pages 11–25. LNCS 7427, 2012.

[9] R. Frost and J. Launchbury. Constructing natural
language processors in a lazy functional language. The
Computer Journal, 32(2):108–121, 1989.

[10] R. A. Frost. Binary-relational storage structures. The
Computer Journal, 25(3):358–367, 1982.

[11] R. A. Frost. Realization of natural language interfaces
using lazy functional programming. ACM Comput.
Surv., 38(4):1–54, 2006.

[12] R. A. Frost, B. S. Amour, and R. Fortier. An event
based denotational semantics for natural language
queries to data represented in triple stores. In
Proceedings of ICSC 2013. IEEE, Sept. 2013.

[13] R. A. Frost and P. Boulos. An efficient compositional
semantics for natural-language database queries with
arbitrarily-nested quantification and negation. In
Conference Proceedings of Advances in Artificial
Intelliegence, the 15th Conference of the Canadian
Society for Computational Studies of Intelligence, AI
2002, pages 252–267. LNCS 2338, 2002.

[14] R. A. Frost, J. Donais, E. Matthews, and R. Stewart.
A denotational semantics for natural langauge query
interfaces to semantic web triplestores. In Submitted
for publication, 2014.

[15] R. A. Frost and R. Fortier. An efficient denotational
semantics for natural language database queries. In
Proceedings of Natural Language Processing and
Information Systems, 12th International Conference of
Applications of Natural Langauge to Information
Systems, NLDB 2007, pages 12–24. LNCS 4592, 2007.

[16] R. Hafiz and R. Frost. Lazy combinators for
executable specifications of general attribute
grammars. In Proceedings of the 12th International
Symposium on Practical Aspects of Declarative
Languages (PADL), pages 167–182. ACM-SIGPLAN,
Jan. 2010.

[17] S. Hakimov, H. Tunc, M. Akimaliev, and E. Dogdu.
Semantic question answering system over linked data
using relational patterns. In Proc. of the Joint
EDBT/ICDT 2013 Workshops, pages 83–88. ACM,
2013.

[18] H. Hendricks. Studied Flexibility: catgeories and types
in syntax and semantics. Doctoral Dissertation,
Universiteit van Amsterdam, 1993.

[19] E. Kaufmann and A. Bernstein. Evaluating the
usibility of natural language query languages and

interfaces to semantic web knowledge bases. Web
Semantics - Science, Services and Agents on the
World Wide Web, 8(4):377–393, Nov 2009.

[20] E. Kaufmann, A. Bernstein, and R. Zumstein. Querix:
A natural language interface to query ontologies based
on clarification dialogs. In Proceedings of the 5th
International Semantic Web Conference, Nov 2006.

[21] V. Lopez, V. Uren, E. Motta, and M. Pasin. Aqualog:
An ontology-driven question answering system for
organizational semantic intranets. Web Semantics:
Science, Services and Agents on the World Wide Web,
5(2):72–105, 2007.

[22] M. G. Main and D. Benson. Denotational semantics
for a natural language question answering program.
Computational Linguistics, 9(1):11–21, 1983.

[23] F. Mandreoli, R. Martoglia, W. Penzo, and G. Villani.
Flexible query answering on graph-modeled data. In
Proceedings of the 12th International Conference on
Extending Database Technology, pages 216–227.
EDBT, March 2009.

[24] J. A. Mariani and R. Lougher. Triplespace an
experiment in 3d graphical interface to a
binary-relational database. Interacting with
Computers, 4:147–162, 1992.

[25] N. Memon and H. Larson. Investigative data mining
toolkit: a software prototype for visualizing, analyzing
and destabilizing terrorist networks. In Proceedings
Visualizing Network Information, RTO-MP-IST,
pages 1–24, 2006.

[26] N.Nicholson. The design of a user-interface to a
deductive database: a sentence based approach. PhD
thesis Dept. of Computer Science - Birkbeck College,
University of London, 1988.

[27] A. Ran and R. Lencevicius. Natural language query
system for rdf repositories. In Proceedings of the 7th
International Symposium on Natural Language
processing, pages 1–6. SNLP, 2007.

[28] Smith and King. Incrementally visualizing criminal
networks. In Proceedings of the Sixth International
Conference on Information Visualisation, 2002.

[29] S. Todd. An interface from prolog to a binary
relational database. Prolog and databases -
implementations and new directions, pages 108–117,
1989.

[30] C. Unger and P. Cimiano. Pythia: Compositional
meaning construction for ontology-based question
answering on the semantic web. In NLDB 2011, LNCS
6716, pages 153–160, 2011.

[31] S. Walter, C. Unger, P. Cimiano, and D. Bär.
Evaluation of a layered approach to question
answering over linked data. In The Semantic
Web–ISWC 2012, pages 362–374. Springer, 2012.

[32] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, , and G. Weikum. Natural language
questions for the web of data. In The 2012 Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 379–390. ACL, July 2012.

199

GraphMCS: Discover the Unknown in Large Data Graphs

Elena Vasilyeva1 Maik Thiele2 Christof Bornhövd3 Wolfgang Lehner2

1SAP AG 2Database Technology Group 3SAP Labs, LLC
Dresden, Germany Technische Universität Dresden, Germany Palo Alto, USA

elena.vasilyeva@sap.com firstname.lastname@tu-dresden.de christof.bornhoevd@sap.com

ABSTRACT
Graph databases implementing the property graph model
provide schema-flexible storage and support complex, ex-
pressive queries like shortest path, reachability, and graph
isomorphism queries. However, both the flexibility and ex-
pressiveness in these queries come with additional costs:
queries can result in an unexpected, empty answer. To un-
derstand the reason of an empty answer, a user normally
has to create alternative queries, which is a cumbersome
and time-consuming task.

To address this, we introduce diff-queries, a new kind
of graph queries, that give an answer about which part of
a query graph is represented in a data graph and which
part is missing. We propose a new algorithm for process-
ing diff-queries, which detects maximum common subgraphs
between a query graph and a data graph and computes
the difference between them. In addition, we present seve-
ral extensions and optimizations for an established maxi-
mum common subgraph algorithm for processing property
graphs, which are the foundation of state of the art graph
databases.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

Keywords
Maximum Common Subgraph, Flexible Query Answering

1. INTRODUCTION
New kinds of data and their analysis increase the demand

for flexible data models supporting data of different degrees
of a structure. Graph databases implementing the property
graph model [11] are a reasonable answer to this demand.
They support diverse data with different degrees of a struc-
ture in the form of a graph. A diverse schema of vertices and
edges is represented by an arbitrary number of attributes,

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

which can differ between vertices or edges of the same se-
mantic type. A major advantage is that such systems do
not require a predefined rigid database schema.

However, the flexibility provided by graph databases and
the property graph model comes with additional costs. A
user of graph databases typically has only limited knowledge
about stored data, which complicates the creation of queries.
He can overspecify queries that can result in an empty an-
swer. Any empty response causes confusion on the user side,
since its reason is unclear: was the query overspecified or are
some data missing in the database? To answer this question,
a user needs a possibility for explorative queries and guid-
ance through the query answering process. To provide this,
a system has to be able to give intermediate points in query
processing, which describe the already discovered and still
missing parts of a query graph. As a result, a user could
discover overspecified query parts or conclude that some in-
formation is missing in a dataset and, therefore, has to be
obtained from external data sources [8, 15].

Related Work.
If the result of a query does not meet the user’s expecta-

tions, he can conduct “Why Not?” queries [3] to determine
why the result set does not include the items of interest. It
is assumed that a user cannot process the data manually be-
cause of their large volume and complexity. A user specifies
items of interest with attributes or key values. Then a “Why
Not?” query could be “Why are the items with predicate P
not in the result set?”

There are several ways of answering “Why Not?” queries.
On the one hand, the causes for an empty answer can be
found, as done in [3], where a “Why Not?” query applies a
set of manipulations to the original query. As an answer, the
system provides an operator from the original query, which
removes required items from the result set. This approach
relies on manipulations of operators and derives an answer
for a specific item. On the other hand, a provenance-based
explanation can be delivered by computing the provenance
of possible answers for SPJ queries, like for example in [9].
This is also possible to refine the query in such a way, that
the items of interest appear in the result set. In this case,
the explanation for a “Why Not?” query is based on an
automatically generated query, which response consists of
the original results and the items of interest [13].

In contrast, our problem is to find missing structural parts
of a query that prevent the system from delivering a non-
empty answer. At this point, we are not interested in specific
attributes and items (which is done in the relational case).

200

To the best of our knowledge, the question of discovering a
missing query part in a data graph has not been addressed
in graph database research.

Contributions.
In graph databases, a query can be understood as a pat-

tern that has to be seeked in a large data graph. To tell a
user which query parts were discovered in a data graph and
which are missing, we propose (1) to find maximum common
subgraphs in a data graph for a given query, and (2) to cal-
culate the difference between them and a query graph. As a
result, the system yields a list of discovered maximum com-
mon subgraphs as starting points and undiscovered parts of
a query graph as a subject for the future explorative search.

As our contributions we present in this paper diff-queries,
a new kind of graph database queries, which give an ans-
wer about existing and missing query parts. Diff-queries
deliver discovered maximum common subgraphs of a data
graph and corresponding missing parts of a query graph.
We introduce an all-covering spanning tree allowing for the
processing of a whole query graph and weakly connected
graphs. This tree allows us to get larger subgraphs than the
standard solutions for connected graphs. We also provide
several optimizations for diff-queries to deliver a final result
faster and to reduce the number of intermediate subgraphs.

The rest of the paper is structured as follows. We intro-
duce the property graph model and basic algorithms for dis-
covering maximum common connected subgraphs between
two graphs in Section 2. We outline the processing of diff-
queries in a graph database in Section 3. In Section 4 we
describe challenges of multiple starts and weakly connected
graphs for the standard algorithm and their solutions. We
provide several optimizations for our proposed algorithm in
Section 5 and evaluate our approach in Section 6.

2. MAXIMUM COMMON CONNECTED
SUBGRAPH DETECTION

As an underlying data model we use the property graph
model [11]. It represents a graph as a directed multigraph,
where vertices are entities and edges are relationships bet-
ween them. Each edge and vertex can be described by mul-
tiple attributes and their values. The attributes can differ
concerning edges and vertices – even if they are of the same
semantic type. We define a property graph as a directed
graph G = (V,E, u, f, g) over attribute space A = AV ∪̇AE ,
where: (1) V,E are finite sets of vertices and edges; (2)
u : E → V 2 is a mapping between edges and vertices; (3)
f(V) and g(E) are attribute functions for vertices and edges;
and (4) AV and AE are their attribute space.

A graph G′ = (V ′, E′, u′, f ′, g′) is a connected sub-
graph of G, if V ′ ⊆ V,E′ ⊆ E, u′ |u, f ′ |f , and g′ |g.

Given a data graph Gd and a query graph Gq, the graph
G′

d = (V ′
d , E

′
d, u

′
d, f

′
d, g

′
d) is a common connected sub-

graph of graphs Gd and Gq, if G′
d is a connected subgraph

of Gd and G′
d is a connected subgraph of Gq. There may be

multiple common connected subgraphs in a data graph Gd

for a query graph Gq.
For property graphs, a maximum common connected

subgraph G′
d is a common connected subgraph of a data

graphGd for a query graphGq such that there exists a match
Smax in Gd for Gq such that for any match S in Gd for Gq,
S ≤ Smax : V ≤ Vmax ∪ E ≤ Emax.

Finding Maximum Common Connected Subgraphs.
To tell, which part of a query can be found in a data

graph, we have to find maximum common subgraphs in a
data graph Gd for a query graph Gq. This can be done
by maximum common connected subgraph algorithms. The
computation depends on how a graph is stored and pro-
cessed. A commonly used adjacency matrix or adjacency
list allow the compact storing of graphs and their efficient
processing [5]. For example, a matrix M consists of n × n
elements, where n is the number of vertices in a graph. Each
element of a matrix aij with a value 1 represents an edge
between vertices i and j. A maximum common connected
subgraph can be calculated by linear algebra operations. If
a graph is a property graph, then its attributes can be stored
in separated structures and can be used during prefiltering.

Ullmann in [14] describes a brute-force tree-search enu-
meration procedure, which efficiently eliminates successor
vertices. It excludes some elements from a matrix M and,
thereby, reduces the search space. The algorithm is com-
monly used for exact graph matching. Another backtrack-
ing algorithm – the McGregor algorithm [10] – also works
on matrices and provides extension points for pruning tech-
niques and prefiltering options.

Both methods rely on labeled graphs, which differ from
our underlying property graph model [11]. To apply them
to our use case, these algorithms have to be adapted to work
on properties on edges and vertices.

� ��

��

�� ��

�� ��

��

��

�

(a) All edges processed

� ��

��

�� ��

��

�

(b) A few edges processed

Figure 1: Depth-first search

Ullmann’s [14] and McGregor’s [10] algorithms are back-
tracking algorithms, which are a base for traversal opera-
tions in graph databases. Both methods implement a depth-
first search that begins at the root and traverses the graph
as far as possible along each branch before backtracking. As-
suming the search starts from the grey vertex, in the examp-
le shown in Figure 1(a) we begin then from vertex A and exp-
lore all edges of the graph as follows: e1, e2, e3, e4, e5, e6. If
we start from vertex C like in Figure 1(b), then only edges
e3, e4, e5 are traversed. To ensure the discovery of all maxi-
mum common connected subgraphs, the search is conducted
for each vertex of a query, and a data graph is treated as
undirected. This makes the search NP-complete.

A maximum common connected subgraph problem can
also be modified for the search of a maximum clique like in
the Durand-Pasari algorithm [7] and in the Balas Yu algo-
rithm [1]. These algorithms are also tree-search algorithms.
Some of them work better with sparse graphs, others with
dense graphs. According to [4], the McGregor algorithm
shows good results in all cases and has the best space comp-
lexity. Based on these observations, we have chosen it as
the base for our discovery of maximum common connected
subgraphs.

201

����

����	���

����

����	���

����

����

(a) Diff-query

����

����	���

����

������

����

	���
�����

�����

�������

����

(b) Maximum common connected
subgraph

���������

���	

���

���������	�

�����

��	�����

���

������������

�������������

���������������

���	

(c) Missing part of an answer

Figure 2: A diff-query and its answer: which two vertices play in the same national team and club?

Difference Graphs.
With a maximum common connected subgraph algorithm

we can determine, which query part has an answer in a data
graph. To detect, which structural part is missing we need
to compute the difference graph – the difference between dis-
covered maximum connected subgraphs and a query graph.

A difference graph includes those query vertices and edges,
which were not discovered during query processing, and the
instances of query vertices adjacent to a maximum common
connected subgraph.

For property graphs we define a difference graph as
a graph G′

q = (V ′
q , E

′
q, u

′
q, f

′
q, g

′
q, V

′
d(adj), C), where V ′

q ⊆
Vq, E

′
q ⊆ Eq, u

′
q |uq , f

′
q |fq , g′q |gq , V ′

d(adj) are adjacent ver-
tices, and C is a set of non-adjacent discovered vertices to
be excluded from the further explorative search.

In [6] the authors compute difference graphs from concep-
tual graphs. The first graph is transformed into one of its
large common subgraphs and the set of applied operations
is stored. Then the large common subgraph is transformed
into the second graph, and the set of applied operations is
stored. Finally, both stored sets are concatenated in a differ-
ence graph. Operations include standard insert and remove
operations and specific operations for conceptual modeling
like a generalization or a specialization of a concept.

In our work we do not provide any conceptual analysis
and reasoning for “non-existing” edges from a hierarchical
taxonomy. Moreover, the first step is redundant: we record
the discovered parts of a graph during the graph traversal.

Diff-queries.
If a user gets an empty response to his query, he can con-

duct a diff-query that shows, which query part is addressed
in data and which part is missing. For this purpose, it de-
tects maximum common connected subgraphs and computes
their corresponding difference graphs, which prevent a sys-
tem from the delivery of a non-empty answer to a user.

Assuming we search for two soccer players from the same
national team and the same club. Then the query graph
could be represented as in Figure 2(a). A possible answer
to this diff-query would consist of a maximum common con-
nected subgraph G′

d as shown in Figure 2(b), and a miss-
ing part of a query with constraints G′

q as in Figure 2(c).
The first part includes all discovered instances of vertices
and edges like “Gareth Bale”, “Real Madrid”, and “Wales
national team”. The second part consists of instances of dis-
covered adjacent vertices (dark grey), missing query vertices
and edges (grey), and constraints for vertices (grey).

3. PROCESSING OF DIFF-QUERIES IN
GRAPH DATABASES

In this section we shortly describe the graph database we
use in our prototype and outline the diff-query computation
process. The processing of diff-queries consists of two steps:
the detection of a maximum common connected subgraph by
using an extended version of the McGregor algorithm [10]
for property graphs, and the computation of a difference
graph between the discovered maximum common connected
subgraph and a query graph.

3.1 Storage Representation
In our prototype system the property graph model is im-

plemented as a graph abstraction on top of a RDBMS, which
uses separate tables for vertices and edges. Vertices are desc-
ribed by a set of columns for their attributes, and edges are
stored as simplified adjacency lists in a table. Each edge can
have multiple attributes, which are stored together with its
description. All edges and vertices have unique identifiers.

To process such a graph efficiently, we use an in-memory
column database, which supports optimized flexible tables
(new attributes can efficiently be added and removed) and
provides advanced compression techniques for sparsely po-
pulated columns like in [2, 12]. This abstraction allows us to
store graphs with an arbitrary number of attributes without
a predefined rigid schema.

The graph database provides the following operations: in-
sert, delete, update, filter based on attribute values, aggrega-
tion, and graph traversal in a breadth-first manner. Traver-
sal along directed edges is possible in both directions with
the same performance.

Queries to the database are represented via graphs, where
vertices describe entities and edges describe connections bet-
ween them. Each description of vertices and edges can in-
clude predicates for attribute values. A specific vertex is
represented by its identifier in a query graph.

3.2 Detection of Maximum Common
Connected Subgraphs

To detect the maximum commonality between a query
and a data graph, we have chosen the McGregor maximum
common connected subgraph algorithm [10] presented in Al-
gorithm 1, which uses a depth-first search (Figure 1).

To leverage the McGregor algorithm for property graphs,
the edges and vertices tables of our graph database have to
be processed. First, the projection on a vertices table re-
duces the number of start vertices at line 4. Second, each

202

Algorithm 1 The MCCS algorithm for a property graph

1: function mccsSearch(query graph Gq)
2: graphs, tmp
3: for all edge qi in Gq do
4: sourcesi = getSourceV ertices(qi)
5: graph = DFS(sourcesi, qi, true, graphsi)
6: graphs.addGraph(graph)

7: for all graphsi do
8: if graphsi > tmp then tmp = graphsi

9: return tmp

10: /*depth-first search*/
11: function dfs(sources, edge, isStart, graph)
12: for all sourcesj do
13: if !isStart then edge = getNextEdge(edge)

14: if noNextEdge then return graph

15: targets = traverse(edge)
16: filterTargets(targets)
17: for all targetsd do
18: graph.addEdge(edge, sourcesj , targetsd)
19: graph = DFS(targetsd, edge, false, graph)

20: return graph

step is traversed by the graph traversal operator at line 15.
Finally, the target vertices are filtered according to their
predicates (see line 16). To ensure that the algorithm finds
a maximum common connected subgraph, it is started multi-
ple times from all query vertices as starting points at line 5.
The maximum common connected subgraph is stored for
each starting point in a set. After all runs the best sub-
graph is chosen from the collected set (see lines 7-9).

3.3 Computation of a Difference Graph
To compute a missing part of a query, we use a query

graph and a discovered maximum common connected sub-
graph. The process consists of two steps: (1) the split of
discovered and undiscovered vertices and edges, and (2) the
completion of an undiscovered part with attributes or ver-
tices conditions.

In our first step, during processing we store the mapping
between data edges and query edges, data vertices and query
vertices in temporary tables. The difference graph consists
of query edges and vertices, which are not presented in these
temporary tables. Some edges in the difference graph will
have only single vertices at their ends, because other end
vertices have already been traversed. Therefore, we have to
include the discovered edges’ ends into the difference graph
in the second step – the completion of the difference graph
with attributes or vertices conditions.

In the second step we detect, which conditions have to be
applied to the graph discovered in the first step. We study
the table with discovered vertices and a query description
and assign conditions to the difference graph according to
several rules: If a query edge is not discovered, but at least
one of its end vertices has already been found, then this is
a positive condition. It means we include a discovered end
vertex into the difference graph. In the example presented
above the two dark grey vertices represent such conditions
(see Figure 2(c)). Such vertices are included into a differ-
ence graph and can be used as starting points for a future
explorative search. If a query vertex and all its query edges

� �

�

��� ��

�� �	

� �

�

��� ��

�� �	

Figure 3: Weakly connected graphs

(incoming and outgoing) are discovered in a data graph, then
this vertex is a negative condition, and its instance has to
be excluded from the non-discovered query vertices. In our
example this can be “Gareth Bale” (see Figure 2(c)), which
does not have to be considered in a future explorative search.

4. PROBLEMS OF MULTIPLE STARTS
AND WEAKLY CONNECTED GRAPHS

The general version of the McGregor algorithm [10] takes
all vertices of a query as starting points and iterates through
them. So, the system traverses the same data edges multiple
times. On the one hand, this ensures that no edge is left out
and all maximum common connected subgraphs are disco-
vered. On the other hand, this generates large intermediate
results and increases the response time dramatically.

We figure out two problems, which solution can increase
the performance of the algorithm, find larger graphs, and
reduce the number of runs. First, the algorithm works only
with connected graphs, therefore, only one-directed search
for directed graphs is done. This can be solved by the exten-
sion of the search for weakly connected graphs. Second, we
can miss some maximum common connected subgraphs by
start from a single vertex. This can be solved by a restart
strategy for non-traversed edges.

Processing of Weakly Connected Graphs.
The McGregor maximum common connected subgraph al-

gorithm, which is a base for our algorithm, processes the di-
rected graph only in a forward direction. This can limit the
size of discovered subgraphs and deliver subgraphs of poten-
tially smaller size than could be determined. To ensure the
discovery of a maximum subgraph, we have to choose that
vertex as a root, where all vertices can be reached from. Be-
cause the algorithm works only in a forward direction, it is
not always possible to find the best root vertex.

For example, the query presented in Figure 3 does not
have any ideal root. This is a weakly connected graph: it
is connected, if directions of edges are not considered. For
this query the McGregor algorithm can discover subgraphs
only with two edges and three vertices (ABC or BCD).
Therefore, we need to modify the algorithm to also consider
unreachable components.

To process queries with unreachable components, we int-
roduce an all-covering spanning tree that has the following
characteristics. If the whole query graph is available in data,
then the all-covering spanning tree is able to cover all query
vertices and edges in a single run. An edge can be included
into the search in forward or backward directions. In case of
a backward direction, an edge is marked with a flag “back”.
This can be done without additional effort because of the
underlying data model and the graph traversal operator pro-
vided by the database like in [12]. Another way would be to
make a graph basically undirected with duplicated data or
double table scans, which is less efficient.

203

������� ��

�	������

���� ������ 	�
�

� � �

�
 �	

�	 � ��

�� � ��

�

�

��

Figure 4: All-covering spanning tree and the back-
tracking procedure

We adapt Algorithm 1 to work with an all-covering span-
ning tree. From now on, we consider all edges for each ver-
tex. Outgoing edges have priority over incoming edges and
are processed first. After all outgoing edges are traversed,
incoming edges are considered.

To guarantee a correct search, we maintain the all-cove-
ring spanning tree as a temporary table and refer to it during
the backtracking procedure. It records the mapping between
previously traversed and next edges. The all-covering span-
ning tree has three columns: a previous edge, a source ver-
tex, and a next edge. To save space, we can use a Boolean
identifier of a traversed edge instead of an identifier for a
source vertex. For ensuring the simplicity of explanation,
we use vertices in the following example.

Assuming the search for a query presented in Figure 4
begins from vertex A. At initialization, the spanning tree
is empty. Vertex A has two outgoing edges. After we have
followed edge e1, we add the following entry into the table:
no previous edge, source vertex is A, next edge is e1 (-;A;e1).
Now we are at vertex B without any outgoing edges. We
take incoming edge e2, mark it with “back”, and add an
entry into the table (e1; B; e2). We repeat the process and
traverse edges e4, e3. Finally, we are at vertex A without
any non-traversed edges and start the backtracking.

The backtracking procedure is done according to the cre-
ated all-covering spanning tree. The last traversed edge is
e3. We check its entry (column “Next”) in the mapping ta-
ble, take its previous edge e4 and go to source vertex C.
There are no other non-traversed edges for vertex C, and
so we continue the backtracking. The predecessor of e4 is
e2 with vertex D, so we move to it. The procedure con-
tinues until it gets to source vertex A, where no further
non-traversed edges exist.

A graph database gives the possibility of changing the
direction through suitable storing and processing of edges.
All edges are stored in a forward direction – “from a source
to a target”. In case of the backward traversal, the graph
traversal operator changes the order of columns to be sear-
ched: “from a target to a source”. Therefore, we need only
to change the direction of an edge in the query description
and pass it to the traversal operator.

Restart Strategy.
With the all-covering spanning tree, we can construct a

traversal path, which includes all vertices and edges, and
process weakly connected graphs. Hereby, we solve the first
problem of the one-directed search. Now we do not need
to iterate through all vertices multiple times. We just take
one vertex and search from it. This approach works well if
all edges are represented in a data graph. The absence of
some edges in the data graph can split a query graph into
several subgraphs, which are unreachable from each other.

� �

�

� �

�

�
�� ��

��

��
�� ��

�� �	

Figure 5: Only white or grey part is traversed

In this case if we start with a vertex from a smaller subgraph,
we will miss a maximum common connected subgraph from
another subgraph. Thereby, we come to the second problem
of the algorithm, which can be solved by a restart strategy.

If we start a search from a single node that is located in
the smaller connected subgraph of a query graph, we can
potentially miss the larger subgraph, provided by another
subgraph. The problem can be explained with a query graph
containing a bridge. If a query has a bridge (see Figure 5),
which is not addressed in the data graph, then only a subset
of vertices and edges is traversed. In our example query edge
e4 does not have any matching data edges. In this case, a
maximum common connected subgraph found by our algo-
rithm would be the white or the dark-grey part. Therefore,
if we do a single run in the dark area the maximum com-
mon connected subgraph will be missing, which is located
in the white area. To solve this problem, we can resume
the search with the edges, which were not traversed. The fi-
nal maximum common subgraph would be unconnected and
would contain all discovered maximum common connected
subgraphs.

We maintain a list of traversed edges of a query graph.
After the first set of maximum common connected subgraphs
is returned, we remove those edges from the list that have
already been traversed. The next step is taken from this set.
This strategy ensures the discovery of a maximum common
subgraph for a given start vertex, if an all-covering spanning
tree was constructed.

For example, at the beginning a query graph in Figure 5
has an empty list of traversed edges. Assuming we start from
the edge e1 and find edges e1, e2, e3, but the edge e4 is mis-
sing from a data graph. We add all four edges into the list of
traversed edges and remove them from the list of start edges.
We choose the next start among the edges e5, e6, e7, e8. The
search from any of them will find the same subgraph of four
edges. This is the maximum common connected subgraph.
If we concatenate it with the first discovered maximum com-
mon connected subgraph, then we will get a maximum com-
mon unconnected subgraph. So, as a maximum common
subgraph we will get a set of unconnected parts. This re-
duces the number of intermediate results and gives a notion
to a user about which edges should exist to complete the
graph. Such a methodology can potentially return larger
subgraphs than the strategy for connected subgraphs.

Therefore, with all-covering spanning trees and restart
strategies we can limit the number of restarts and find a
maximum common unconnected subgraph, which then can
be used for the further explorative search and the integra-
tion of missing data. In the following we use maximum
common connected and unconnected subgraphs and refer to
them jointly as maximum common subgraphs.

5. OPTIMIZATION STRATEGIES

204

Experiment Configuration Topology: Path Topology: Zigzag Topology: Star Optimization

Figure Figure 6 Figure 7(a) Figure 7(b) Figures 7(c)-7(d) Figures 7(e)-7(f)

Query

��

�� ��

����

�� ��

�� ��
�� �� �� ��

��

�� ��

����

�� ��

Edge Types e4, e6, e7 e3 e4, e5 e1 e4, e6, e7

Table 1: Diff-query templates used in the evaluation

To increase the efficiency of the proposed algorithm, we
have developed several optimizations for start and restart
vertices, and early termination conditions.

5.1 Choice of Start and Restart Edges
The general McGregor algorithm [10] processes a graph

from all query vertices, and then the biggest graph is chosen
and delivered as a maximum common connected subgraph.
With all-covering spanning tree and multiple restarts as pro-
posed in Section 4, we can ensure that from each query ver-
tex the whole query can potentially be traversed in the best
case. The question is: Which query vertex should be taken
as a start? The size of the intermediate results strongly de-
pends on the cardinality of the processed edges and vertices.
If a query graph is described very generally, then it will re-
sult in a large amount of intermediate results. To decrease
it, we extend our algorithm with several strategies to select
a start vertex, a start edge, and a next branch to traverse.
For example, we can make decisions based on the cardinality
of predicates or on the degree of a vertex.

Number of Incoming/Outgoing Edges.
The order of edges can be chosen according to the number

of their previous or next edges. A vertex with the maximal
degree is selected as the starting point. For a vertex with a
higher degree, more edges need to be processed, and, there-
fore, we can discover a maximum common subgraph earlier.
This strategy can potentially reduce the number of restarts.

Edge and Vertex Cardinality.
Before executing a query, the system calculates the cardi-

nality for all vertices and edges in a query. It then sorts them
separately according to the number of items, which should
be returned by a system in an ascending order. We choose
the edge with the lowest cardinality as the start edge. If we
use an all-covering spanning tree, then we can also choose
a search direction, based on the cardinality of a source and
a target. Otherwise, we use forward processing as default.
The same strategy can be applied to restarts, but only the
cardinality for edges is considered. In addition, this method
has the advantage that if an edge has cardinality = 0 then
it is discarded from the search. This reduces the number of
table scans and makes the search more efficient.

5.2 Threshold-based Termination Condition
In general, the search stops when no more edges are found

and a backtracking procedure returns to start. In addition,
there can be cases, when a system can stop the search earlier.

A threshold can be an estimated size of a maximum common
subgraph or the number of discovered maximum common
subgraphs, which could be derived from a data graph. To
calculate these numbers, we can reuse the above presented
cardinality of a query. If a query graph has N edges, and
for M edges the cardinality(M) > 0, where M ∈ N , then
the maximum common subgraph can have only M edges.
After M edges are found, the search can be savely stopped.
Similar rules can be formulated for sources and targets.

Assuming we have a query with four vertices and three
edges with the following predicate cardinalities: cardedge1 =
5, cardedge2 = 2, cardedge3 = 0, then the maximum common
subgraph can only consist of up to two edges, and we can
have a maximum of five graphs like this. We can terminate
our search, after the first subgraph with two edges has been
discovered .

6. EVALUATION
In this section we evaluate diff-queries and proposed op-

timization techniques. We describe the evaluation setup in
Section 6.1. Then we discuss the scalability of the best con-
figuration, derived in Section 6.2, for different query topolo-
gies in Section 6.3. Finally, we evaluate start and restart
strategies in Section 6.4.

6.1 Evaluation Setup
We have implemented our algorithm and its optimizations

in an in-memory column database, which provides the graph
abstraction as described in Section 3.1. We have created a
property graph from DBpedia RDF triples, where labels rep-
resent attribute values of entities. It has about 20K vertices
and 100K edges. The evaluated queries are presented in
Table 1. We have tested each case for each query ten times
and have taken the average as a measure.

6.2 Configuration
In this section we study several configurations of the algo-

rithm: multiple starts from all edges without the all-covering
spanning tree (only for connected components), with the all-
covering spanning tree (for weakly connected components),
and restart strategy (also for unconnected components).

As we can see in Figure 6, the restart strategy discovers
larger graphs with shorter response times and less interme-
diate and final results. Although the method with the all-
covering spanning tree has a longer response time (because
of the tree construction), it discovers larger graphs. The
response time and the size of the maximum common sub-
graph (MCS) are the best for the restart strategy with the
tree construction.

205

��

��

��

��

��

�

��

��

��

��

	�

� � � � � � 	 �
 ��

��
�
�
��
��

������� ��������

����������	
��������������������

�
�
��
�
�
�

(a) Topology: path

���

���

���

���

���

���

�

�

��

��

��

��

��

� � � � � � 	
 � ��

��
�
�
��
��

��������� ��������

�
�
�
��
�
�
�

����������	
��������������������

(b) Topology: zigzag

�

�

�

�

�

��

���

����	

�

�

���

�
�

���

� � � �
 �

��
�
�
��
��

����������	
��������������������

������� �������

�
�
�
��
�
�
�

(c) Topology: star

�

�

�

�

�

� � � � � �

�

�

�

�

�

��

���

�	�
�

�
�
��
��
��
�	
�

��

�
�

����������������� �����������

�
�
�
��
��
�	
�

��
�

�

����������	
��������������������

(d) Intermediate results for a star

�

��

��

��

���

���

�

��

��

��

��

��

��
�
�
��
��

	
������������������ ��	���������������

	
����������
��� ��	�������
���

�
�
��
�
�
�

(e) Optimization: response time evaluation

�

�

�

�

�

�

��

���

���

���

���

���

���
�
��
��
��
��
	

�
�
��
��
�
	�
�
�
� ��	
����	���
���� ����������
����

��	
����	���	��������� ����������	���������

�
�
�
��
��
�	
�

��
�

�

(f) Optimization: intermediate results

Figure 7: Evaluation of different topologies and optimization strategies

�

�

�

�

�

���	
����	��	�

��	���

���	
����	��	�

�
	�	���

���	��	�
	�

	���

�

��

��

��

��

���

��
�
�
��
��

�����
������� 	
�� �!

�
�
�
��
��
�	
�

��
�

�

Figure 6: Evaluation of configurations

6.3 Topology
In this section we use the best configuration of the pre-

vious step: restart with the all-covering spanning tree. For
its evaluation on different graph topologies, we have const-

ructed several queries, which consist of the edges of simi-
lar semantic (for a specific topology). The star and path
topologies use a single type of edges, while the zigzag evalu-
ates queries with two edge types. The evaluation results are
presented in Figures 7(a)-7(d).

In the path each second edge is missing, so the number
of MCS decreases. The star tends to increase the number
of solutions, because all edges have the same starting point
and larger graphs are combined from smaller graphs. The
number of MCS for the zigzag evolves dramatically, because
we use edges of two types, otherwise, the behavior would
be similar to behavior of the path. With the size of a query
graph, the response time is growing linearly, except the star,
which is explained by the growing intermediate results (see
Figures 7(c)-7(d)).

Comparing the results of the evaluation on three topolo-
gies, we conclude that, first, the response time dependency
on the number of MCS is linear. Second, for the star topo-
logy, the size of a result set grows if edges of the same se-
mantic type are used. Third, the response time depends on
both factors: size of intermediate results and size of a query

206

graph. Fourth, to ensure the linear dependency, optimiza-
tion strategies have to be used, which reduce the number of
intermediate results.

6.4 Optimization Strategies
We evaluate start strategies for a single start and for

restart (see Figures 7(e)-7(f)). We observe that with the
restarts we can increase the average size of MCS. Regard-
less of the strategy, we get MCS of the same size by using
the restart configuration. The response time for the search
can be reduced by using an appropriate optimization stra-
tegy. For example, the “maximum cardinality” strategy re-
duces the number of intermediate results, the number of
MCS, and the processing time. Although the “random stra-
tegy” gives less intermediate results, on average it discovers
smaller MCS.

Comparing the results of this evaluation, we conclude that
with the restart strategy we can find bigger common sub-
graphs without starting with each edge multiple times. Op-
timizations can reduce the number of intermediate results,
the number of MCS, and the response time. If characte-
ristics of edges (degree, predicate) are similar, all strategies
provide similar results. The strategies of cardinality can be
even more efficient, if after the edge selection the direction of
its processing is chosen according to the vertices’ cardinality.

With the evaluation we show that the restart configura-
tion and all-covering spanning tree can be used without the
start from each query edge. They facilitate to find bigger
maximum common unconnected subgraphs with less res-
ponse time. Optimizations can also decrease the response
time, but they will give less MCS.

7. CONCLUSION
To express graph queries correctly is a complicated task,

because of the diversity and schema flexibility of a data
graph. If a query derives an empty answer, a user requires
support to understand, what the reason was: an overspeci-
fied query or missing data. In this paper we introduce diff-
queries, a new kind of graph queries, that support a user
in such cases. The response to a diff-query describes the
parts of a query graph that are addressed and those that
are missing in a data graph. The processing of a diff-query
consists of two steps: the discovery of a maximum common
subgraph and the computation of a difference graph. As a
base algorithm we take the McGregor maximum common
connected subgraph algorithm. We adapt it for directed
weakly-connected property graphs with an all-covering span-
ning tree and reduce the number of lookups with the restart
strategy, which searches from a single edge, does restarts, if
some of the edges were not processed, and delivers a maxi-
mum common unconnected subgraph. We show that this
can be improved by the choice of a start and restart vertex
and edge. After the answer is delivered to a user, he can
do explorative search of missing data in external sources or
modify the query according to the derived difference graph.

Although our method shows good results for our use case,
there is an open challenge for the future: the number of in-
termediate and final results is still very large. We want to de-
velop strategies for reducing and ranking them. In addition,
we did not study, how to present and to rate answers accord-
ing to a given specification. For this purpose, we propose
assigning priorities to specific subgraphs of a diff-query and
conducting a user study to qualify solutions. Also, we would

like to introduce a similarity measure to quantify vertices,
edges and their predicates, and to enhance the algorithm by
discarding the backtracking part and by introducing more
sophisticated strategies for the choice of a start vertex to
decrease the number of restarts.

8. ACKNOWLEDGMENT
This work has been supported by the FP7 EU project

LinkedDesign (grant agreement no. 284613).

9. REFERENCES
[1] E. Balas and C. S. Yu. Finding a maximum clique in

an arbitrary graph. SIAM J. Comput.,
15(4):1054–1068, Nov. 1986.

[2] C. Bornhövd, R. Kubis, W. Lehner, H. Voigt, and
H. Werner. Flexible Information Management,
Exploration and Analysis in SAP HANA. In DATA,
pages 15–28, 2012.

[3] A. Chapman and H. V. Jagadish. Why not? In Proc.
of ACM SIGMOD, pages 523–534, New York, NY,
USA, 2009. ACM.

[4] D. Conte, P. Foggia, and M. Vento. Challenging
complexity of maximum common subgraph detection
algorithms: A performance analysis of three
algorithms on a wide database of graphs. J. Graph
Algorithms Appl., 11(1):99–143, 2007.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction To Algorithms. MIT Press, 2001.

[6] H. S. Delugach and A. D. Moor. Difference graphs. In
In Contributions to ICCS 2005, pages 41–53, 2005.

[7] P. J. Durand, R. Pasari, J. W. Baker, and C.-c. Tsai.
An efficient algorithm for similarity analysis of
molecules. Internet Journal of Chemistry, 2(17):1–16,
1999.

[8] J. Eberius, M. Thiele, K. Braunschweig, and
W. Lehner. DrillBeyond: enabling business analysts to
explore the web of open data. Proc. VLDB Endow.,
5(12):1978–1981, 2012.

[9] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On
the provenance of non-answers to queries over
extracted data. Proc. VLDB Endow., 1(1):736–747,
Aug. 2008.

[10] J. J. McGregor. Backtrack search algorithms and the
maximal common subgraph problem. Software:
Practice and Experience, 12(1):23–34, 1982.

[11] M. A. Rodriguez and P. Neubauer. Constructions from
dots and lines. Bulletin of the American Society for
Inf. Science and Technology, 36(6):35–41, 2010.

[12] M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner.
The Graph Story of the SAP HANA Database. In
BTW, pages 403–420, 2013.

[13] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In Proc of ACM SIGMOD, pages 15–26,
New York, NY, USA, 2010. ACM.

[14] J. R. Ullmann. An algorithm for subgraph
isomorphism. J. ACM, 23(1):31–42, Jan. 1976.

[15] E. Vasilyeva, M. Thiele, C. Bornhövd, and W. Lehner.
Leveraging flexible data management with graph
databases. In GRADES, pages 12:1–12:6, New York,
NY, USA, 2013. ACM.

207

Graph-driven Exploration of Relational Databases for
Efficient Keyword Search

Roberto De Virgilio
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

dvr@dia.uniroma3.it

Antonio Maccioni
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

maccioni@dia.uniroma3.it

Riccardo Torlone
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

torlone@dia.uniroma3.it

ABSTRACT
Keyword-based search is becoming the standard way to ac-
cess any kind of information and it is considered today an im-
portant add-on of relational database management systems.
The approaches to keyword search over relational data usu-
ally rely on a two-step strategy in which, first, tree-shaped
answers are built by connecting tuples matching the given
keywords and, then, potential answers are ranked accord-
ing to some relevance criteria. In this paper, we illustrate a
novel technique to this problem that aims, rather, at gener-
ating directly the best answers. This is done by representing
relational data as graph and by combining progressively the
shortest join paths that involve the tuples relevant to the
query. We show that, in this way, answers are retrieved in
order of relevance and can be then returned as soon as they
are built. The approach does not require the materializa-
tion of ad-hoc data structures and avoids the execution of
unnecessary queries. A comprehensive evaluation demon-
strates that our solution strongly reduces the complexity of
the process and guarantees, at the same time, an high level
of accuracy.

1. INTRODUCTION
Today, everyone can access an incredibly large quantity

of information and this requires to rethink the traditional
methods and techniques for querying and retrieving data,
because the vast majority of users has little or no familiar-
ity with computer technology. This need has originated a
large set of proposals of non-conventional methods for ac-
cessing structured and semi-structured data. Among them,
several studies have focused on the adoption of a keyword-
based strategy for retrieving information stored in relational
databases, with the goal of freeing the users from the knowl-
edge of query languages and/or the organization of data [12,
13, 15].

Example 1. Let us consider the relational database in
Figure 1 in which employees with different skills and respon-
sibilities work in projects of an organization. A keyword-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

R1:Employee
ename department

t1 Zuckerberg CS

t2 Brown CS

t3 Lee CS

t4 Ferrucci IE

R2: WorksIn
employee project

t5 Zuckerberg x123

t6 Brown cs34

t7 Lee cs34

t8 Ferrucci m111

R3: Project
id pname leader

t9 x123 Facebook Zuckerberg

t10 cs34 Watson Ferrucci

t11 ee67 LOD Lee

t12 m111 DeepQA Ferrucci

R4: SkilledIn
person skill

t13 Brown Algorithms

t14 Lee Java

R5: Skill
sname type

t15 Algorithms theoretical

t16 Java technical

Figure 1: An example of relational database:
schema and its data

based query over this database searching for experts of Java
in the CS department could simply be: Q1 = {Java,CS}. A
possible answer to Q1 is the set of joining tuples {t3, t14, t16},
which involve the given keywords.

Usually, keyword-based search systems over relational
data involve the following key steps: (i) generation of tree-
shaped answers (commonly called joining tuple trees or
JTT) built by joining the tuples whose values match the
input keywords, (ii) ranking of the answers according to
some relevance criteria, and (iii) only the top-k answers are
selected and returned to the users. The core problem of
this approach is the construction of the JTT’s. In this re-
spect, the various approaches proposed in the literature can
be classified in two different categories: schema-based [2,
16, 17, 19] and schema-free [13, 14, 6]. Schema-based ap-
proaches usually implement a middleware layer in which:
first, the portion of the database that is relevant for the
query is identified, and then, using the database schema and
the constraints, a (possibly large) number of SQL statements
is generated to retrieve the tuples matching the keywords of
the query. Conversely, schema-free approaches first build
an in-memory, graph-based, representation of the database,
and then exploit graph-based algorithms and graph explo-
ration techniques to select the subgraphs that connect nodes
matching the keywords of the query.

In this paper, we present a novel technique to keyword-
based search over relational databases that, taking inspira-

208

Employee	

department	 ename	

WorksIn	

employee	 project	

Project	

leader	 pname	

id	
SkilledIn	

person	 skill	

Skill	

sname	

type	

Figure 2: An example of schema graph SG
tion from both the schema-based and the schema-free ap-
proaches, aims at generating progressively the most rele-
vant answers, avoiding the selection of bunches of potential
answers followed by their ranking, as it happens in other
approaches. A relevant feature of our approach is that, as
suggested in [18], it exploits only the capabilities of the un-
derlying RDBMS and does not require the construction and
maintenance of ad-hoc, in-memory data structures. More-
over, by avoiding redundant accesses to data, we are able
to keep the computational complexity of the overall pro-
cess linear in the size of the database. In a graph-oriented
vision of the database, the basic idea is to search and com-
bine incrementally the shortest paths of joining tuples that
are relevant to the query. This is done by first identifying
all the paths in the relational schema involving attributes
linked by primary and foreign keys. Then, without build-
ing in-memory graph-shaped structures, such paths are en-
riched with data by traversing them backward. This step
only requires simple selection and projection operations. If
the backward navigation is not able to generate an answer,
the paths are navigated forward using all the information
retrieved in the backward phase, without further accessing
the database. We show that, in this way, answers are re-
trieved in order of relevance. This eliminates the need to
compare answers and allows us to return the results to the
user as soon as they are built.

To validate our approach, we have developed a tool for
keyword-based search over relational databases that imple-
ments the technique described in this paper. This tool has
been used to perform several experiments over an available
benchmark [4] that have shown a marked improvement over
other approaches in terms of both effectiveness and effi-
ciency.

The rest of the paper is organized as follows. Section 2 in-
troduces a graph-based data model that we use throughout
the paper. In Section 3, we describes in detail our incre-
mental method for building top-k answers to keyword-based
queries. The experimental results are reported in Section 4
and, in Section 5, we discuss related works. Finally, in Sec-
tion 6, we sketch conclusions and future work.

2. PRELIMINARIES

2.1 A graph data model over relational data
In our approach, we model a relational database d in

terms of a pair of graphs 〈SG,DG〉 representing the schema
and the instance of d, respectively. We point out however
that only SG will be materialized while DG is just a concep-
tual notion.

Definition 1 (Schema Graph). Given a relational

Employee

department ename

t1 Zuckerberg CS t1

t2 Brown CS t2

t3 Lee CS t3

t4 Ferrucci IE t4

WorksIn	

employee	 project	

t5! Zuckerberg! x123! t5!
t6! Brown! cs34! t6!
t7! Lee! cs34! t7!

t8! Ferrucci! m111! t8!

Project

leader pname id

t9 x123 Facebook t9

t10 cs34 Watson t10

t11 ee67 LOD t11

t12 m111 DeepQA t12

t9 Zuckerberg

t10 Ferrucci

t11 Lee

t12 Ferrucci

SkilledIn	

person	 skill	

t13! Brown! Algorithms! t13!
t14! Lee! Java! t14!

Skill	

sname	 type	

t15! t15!
t16! t16!

theoretical!

technical!

Algorithms!

Java!

Figure 3: An example of data graph DG
schema RS = 〈R,A〉, where R is a set of relation schemas
and A is the union of all attributes of R, a schema graph
SG for RS is a directed graph 〈V,E〉 where V = R∪A and
there is an edge (v1, v2) ∈ E if one of the following holds:
(i) v1 ∈ R and v2 is an attribute of v1, (ii) v1 ∈ A belongs
to a key of a relation R ∈ R and v2 is an attribute of R,
(iii) v1 ∈ A, v2 ∈ A and there is a foreign key between v1
and v2.

For instance, the schema graph for the relational database
in Figure 1 is reported in Figure 2. In a schema graph the
sources represent the tables of a relational database schema
(grey nodes) and the paths represent the relationships be-
tween attributes according to primary and foreign keys. The
double-marked nodes denote the keys of a relation.

Definition 2 (Schema Path). A schema path in a
schema graph SG = {V,E} is a sequence v1 → v2 → . . .→ vf
where (vi, vi+1) ∈ E and v1 is a relation node.

An example of schema path for the schema graph in Fig-
ure 2 is SkilledIn→ skill→ sname.

Let us now fix an injective function denoted by idx that
maps each tuple to a tuple-id (tid for short).

Definition 3 (Data Graph). Given a relational
database instance I = 〈R, A, I,D〉, where I is the set of
all tids and D is the set of all data values occurring in the
database, a data graph DG on I is a directed graph 〈V,E〉
where V = R∪A∪ I ∪D and there is an edge (v1, v2) ∈ E if
one of the following holds: (i) v1 ∈ R and v2 is an attribute
of v1, (ii) v1 ∈ A belongs to a key of a relation R and v2
is the tid of a tuple for R, (iii) v1 is a tid in I and v2 is a
value of a tuple t such that v1 = idx(t).

Figure 3 shows the data graph on the database of Figure 1.
Note that we assume, for the sake of simplicity, that each
relation has an explicit attribute for its tids.

We now introduce the notion of data path. Intuitively,
while a schema path represents a route to navigate relational
data for query answering, a data path represents an actual
navigation through data to retrieve the answer of a query.

209

[clJava] :

dp1 : SkilledIn → SkilledIn.skill → t14 → Java
dp2 : Skill → Skill.sname. → t16 → Java
dp3 : SkilledIn → SkilledIn.person → x1 → SkilledIn.skill → t14 → Java
dp4 : SkilledIn → SkilledIn.skill → x2 → Skill.sname → t16 → Java
dp5 : SkilledIn → SkilledIn.person → x3 → SkilledIn.skill → x4 → Skill.sname → t16 → Java

[clCS] :

dp6 : Employee → Employee.department → t1 → CS
dp7 : Employee → Employee.department → t2 → CS
dp8 : Employee → Employee.department → t3 → CS
. . .
dp9 : SkilledIn → SkilledIn.person → x5 → Employee.ename → x6 → Employee.department → t3 → CS
. . .

Figure 4: Clusters of data paths for Q1 = {Java,CS}

Definition 4 (Data Path). Given a schema path sp
= R→ A1 → A2 → . . .→ Ak the data path dp following sp is
the path R→ A1 → τ1 → . . . Ak → τk → v, where: (i) each τi
denotes either a variable denoting a tid or the tid of a tuple
belonging to the relation involving Ai and (ii) v is a value
belonging to the tuple with tid τk.

Let us consider again the example in Figure 3. The data
path that follows the schema path sp = SkilledIn → skill →
sname is the following:

dp1 : SkilledIn→ skill→ x1 → sname→ t15 → Algorithms

Basically, this path describes the fact that the sname of
the tuple with tid t15 is related to the skill of a tuple x1 in
relation SkilledIn.

An instance of a data path dp is a function φ that as-
sociates a tid with each variable occurring in dp. As an
example, an instance of the data path dp1 above associates
t13 with x1.

2.2 Answers to a keyword-based query
We consider the traditional Information Retrieval ap-

proach to value matching adopted in full text search and
we denote the matching relationship between values with ≈.
We have used standard libraries for its implementation and
since this aspect is not central in our approach, it will not
be discussed further. Given a tuple t and a value v, we then
say that t matches v, also denoted for simplicity by t ≈ v, if
there is a value v′ in t such that v ≈ v′.

Definition 5 (Answer). An answer to a keyword-
based query Q is a set of tuples S such that: (i) for each
keyword q of Q there exists a tuple t in S that matches q
and (ii) the tids of the tuples in S occur in a set of data
path instances having at least one tid in common.

An example of answer, with reference to the query Q1 =
{Java,CS}, is the set of tids {t3, t14, t16} that are contained
in the instances of the set {dp5, dp9} of data path in Figure 4.

Note that we assume the AND semantics for the keywords
in Q. Note also that our notion of answer basically corre-
sponds to the notion of joining tuple tree (JTT) [11].

As usual, an answer S1 is considered more relevant than
another answer S2 if S1 is “more compact” than S2 since,
in this case, the keywords of the query are closer between
each other [5]. This is captured by a scoring function that
simply returns cardinality of S.

Brown
person

Lee
Algorithms
skill

Java

SkilledIn

theoretical
type

technical
Algorithms
sname

Java

Skill

!skill="Java"(SkilledIn)

t13
t14

t15
t16

skill sname JavaSkilledIn person ?x3 ?x4 t16

dp5

P = { (t16 , 1) }

Figure 5: Backward exploration at work for dp5 (se-
lection)

Problem Statement. Given a relational database d and
a keyword search query Q = {q1, q2, . . . , q|Q|}, where each
qi is a keyword, we aim at finding the top-k ranked answers
S1, S2, . . . , Sk.

3. PATH-ORIENTED SEARCH
Given a keyword-based query Q, our technique consists of

two main phases, clustering and building. They guarantee
a monotonic construction of the answers (i.e. the answer
generated in the i-th step is always more relevant than that
of the i + 1-th step) and a linear time complexity with re-
spect to the size of the input. This makes possible to return
answers as soon as they are computed.

3.1 Clustering
In the first phase all the data paths having an ending node

that matches one of the keywords in Q are generated and
grouped in clusters. There is one cluster for each keyword
qi ∈ Q. In particular, we start from each data path R →
A → tid → v such that qi ≈ v. Then we generate the data
paths following the route of each schema path sp ending into
the attribute A. The clusters are kept ordered according to
the length of the data paths, with the shortest paths coming
first. As an example, given the query Q1 = {Java, CS} and
the relational database in Figure 1, we obtain the clusters
shown in Figure 4.

3.2 Building
The second phase aims at generating the most relevant

answers by combining the data paths generated in the first
step. This is done iteratively by picking, in each step, the
shortest data paths from each cluster: if there is an instance
of these data paths having a tuple in common, we have found

210

Brown
person

Lee
Algorithms
skill

Java

SkilledIn

theoretical
type

technical
Algorithms
sname

Java

Skill

t13
t14

t15
t16

skill sname JavaSkilledIn person t16t14t14

dp5

P = { (t14 , 1)
 (t16 , 1) }

Figure 6: Backward exploration at work for dp5 (pro-
jection)

Algorithms
skill

Java

SkilledIn

CS
department

CS
Zuckerberg
ename

Brown

Employee

ename depart
ment CSt3

t13
t14

IEFerrucci
Lee

Brown
person

Lee

CS

t1
t2
t3
t4

SkilledIn person ?x5 t3

P = { (t3 , 1)
 (t14 , 1)

 (t16 , 1) }

πename (!tid=t3
(Employee))

dp9

Figure 7: Backward exploration at work for dp9 (pro-
jection)

an answer. The search proceeds in this way with longer data
paths that follow in the clusters. In detail, following the Al-
gorithm 1, we extract all top data paths (i.e. the shortest
ones) from each cluster into a set DP (lines 5-6). This task
is supported by the procedure dequeueTop. Then we gen-
erate all possible combinations C of paths within DP (line
12) in order to find the best candidates to be answers (i.e.
the task is performed by the procedure validCombinations).
Each combination c is a connected directed graph that has to
contain exactly one data path from each cluster: two paths
from the same cluster cannot belong to the same combina-
tion and all clusters have to participate in each combination,
i.e. AND-semantics of answers. We try to combine paths
with the same length. However two clusters could provide
their longest paths with different length. In this case, to sat-
isfy the AND-semantics, if a cluster cli becomes empty then
we re-enqueue those data paths dp ∈ DP such that dp B cli
(lines 9-11). Note that, given a cluster cli corresponding to
a keyword qi, if qi ≈ last(dp) then we denote dp B cli. In
this case we combine also data paths with different length.

For instance referring to our example with the clusters in
Figure 2, at the first running of the algorithm we have to
combine dp1, dp2 from clJava with dp6, dp7, dp8 from clCS .
To avoid a possible exponential number of combinations
and useless path processing, we check, through the proce-
dure validCombinations, before combining paths if all those
paths cross a common table. This is a necessary condition
for finding a common tid node. Intuitively the best answer
contains tuples strictly correlated, e.g., a tuple containing
all the keywords or tuples directly correlated by foreign key
constraints.

Referring to our example there is no valid combination
in the first two runs of the algorithm. Therefore we have
to extract longer data paths from CL and we find the first
valid combination that is c = {dp5, dp9}. Now we have
to verify if c brings an answer: if the test is positive, we
extract all tids of c, i.e. the answer Si, to include in the

Algorithm 1: Building

Input : The clusters CL, a query Q, the number k.
Output: The set of answers S.

finished← false;1

S ← ∅;2

while ¬finished do3

DP ← ∅;4

foreach cli ∈ CL do5

DP ← DP ∪ dequeueTop(cli);6

if CL = ∅ then finished← true;7

else8

foreach cli ∈ CL: cli = ∅ do9

foreach dp ∈ DP : dp B cli do10

cli.enqueue(dp);11

C ← validCombinations(DP);12

foreach c ∈ C do13

P ← ∅; Cd ← ∅;14

foreach dp ∈ c do15

is sol←16

backward_exploration(dp, Q, P, Cd);

if is sol then17

S.enqueue(P.keys);18

else if forward_exploration(P, Cd) then19

S.enqueue(P.keys);20

if |S| = k then21

return S;22

return S;23

set S. This means to instantiate a set set of data paths
DP = {dp1, . . . , dpn} and verifying if the results have a
tuple in common. This evaluation is performed by the pro-
cedures backward_exploration and forward_exploration,
as follows. Such procedures keep a map P where the key is
a tid and the value is the number of occurrences of the tid in
the combination c. If c brings an answer, then Si is the set
of keys extracted from P (line 18 and line 20). The building
ends when we computed k answers (line 22) or the set CL is
empty (line 7).

Backward Exploration. Each data path dp of a combi-
nation is analysed independently from the others, i.e. in
our example dp5 and dp9. They are navigated backward
starting from the last node. In other terms we follow the

Algorithms
skill

Java

SkilledIn

CS
department

CS
Zuckerberg
ename

Brown

Employee

ename depart
ment CSt3

t13
t14

IEFerrucci
Lee

Brown
person

Lee

CS

t1
t2
t3
t4

SkilledIn person t3

!person="Lee"(SkilledIn)

t14

P = { (t3 , 1)
 (t14 , 2)

 (t16 , 1) }

S = { (t3 , t14 , t16) }

dp9

Figure 8: Backward exploration at work for dp9 (se-
lection)

211

[clBrown] :

dp1 : Employee → Employee.name → t2 → Brown
dp2 : WorksIn → WorksIn.employee → t6 → Brown
dp3 : SkilledIn → SkilledIn.name → t13 → Brown
. . .
dpi : WorksIn → WorksIn.project → x1 → WorksIn.employee → x2 → Employee.ename → t2 → Brown
. . .

[clFerrucci] :

dp4 : Employee → Employee.ename → t4 → Ferrucci
dp5 : WorksIn → WorksIn.employee → t8 → Ferrucci
dp6 : Project → Project.leader → t10 → Ferrucci
. . .
dpj : WorksIn → WorksIn.project → x3 → Project.id → x4 → Project.leader → t10 → Ferrucci
. . .

Figure 9: Clusters of data paths for Q2 = {Brown, Ferrucci}

foreign and primary key constraints contrariwise. The back-
ward_exploration procedure takes as input a data path dp
to analyse, the query Q, a map P and a set Cd of conditions,
whose functionality will be described in the forward explo-
ration. Given dp5, we start from the node Java, we meet
the tid t16 and the algorithm updates P inserting the pair
{t16, 1}. Then, we proceed until the variable x4 is encoun-
tered (Figure 5).

According to the information carried by this data path,
the only possible substitution for x4 is t14, that is the tid of
the tuple that has as SkilledIn.skill the same value oc-
curring in Skill.sname of the tuple with tid t16, i.e. Java.
In this case we are following a foreign key constraint and we
extract the new tid by a simple selection. As shown in Fig-
ure 6, it turns out that x3 = t14 as well, since x4 and x3 refer
to the same tuple in the SkilledIn relation. In this case we
are following a primary key constraint and the procedure
extracts the data value associated to the attribute A of the
same tuple with a simple projection. The exploration of dp5
terminates. Similarly we explore dp9. In Figure 7, we start
from the data value CS, we insert t3 in P and then we meet
the variable x6. It belongs to the same relation Employee of
t3. Therefore x6 corresponds to t3 and it is extracted by a
projection.

Finally, we meet the variable x5 as depicted in Figure 8.
Since we are following a foreign key constraint, we execute
the selection σperson=“Lee′′(SkilledIn) and we retrieve the
tid t14. In this case t14 exists in P: we have to increment
the value associated to t14 in P. If P contains a pair {t, n},
where n = |Q|, then ty represents the tuple able to reach
all tuples matching the keywords of Q: in this case the tids
in P represent an answer to insert in S; in our example we
have the answer {t3, t14, t16}.
Forward Exploration. If in the backward exploration we
find a multiple substitutions for some variable the analysis
of the current data path stops. In this case we would need
to fork the exploration for each retrieved result: we could
trigger a large number of branches and consequently explore
all the database d more times, similarly to schema free ap-
proaches.

Therefore, the backward exploration determines a condi-
tion γ in terms of a triple 〈R,A, v〉. The condition says that
a tuple in the relation R having the data value v associated
to the attribute A is desired. All the conditions are kept
in a set Cd. Starting from the information captured by the
conditions we use a forward strategy, where data paths are

employee ename Brownt2WorksIn project

dpi

x123
project

WorksIn

CS
department

CS
Zuckerberg
ename

Brown

Employee

t5
t6

IEFerrucci
Lee

Zuckerberg
employee

CS

t1
t2
t3
t4

P = { (t2 , 1)
 (t6 , 1) }

cs34Lee
cs34Ferrucci

t7
t8

Brown

t6

cs34

t6

(a)

id leader Ferruccit10WorksIn project ?x3

dpj

!project="cs34"(WorksIn)

x123
project

WorksIn

Zuckerberg
leader

x123
id
Project

t5
t6

Ferruccim111
ee67

Zuckerberg

employee

Lee

t9
t10
t11
t12

P = { (t2 , 1)
 (t6 , 1)

 (t10 , 1) }

Lee
cs34Ferrucci

t7
t8

Brown

t10

Facebook

pname

Watson

DeepQA
LOD

cs34cs34
cs34

C = { <WorksIn, project, cs34> }

Ferrucci

(b)

Figure 10: Backward exploration at work for Q2

navigated forward using all the tids retrieved in the first step
as substitutions for the remaining variables.

For instance, let us consider a second query Q2 =
{Brown, Ferrucci}. In this case we would retrieve infor-
mation about Brown and how he is related to Ferrucci. We
obtain the two clusters depicted in Figure 9. In this case the
first desired answer should be S1 = {t2, t6, t10}, i.e. Brown
works in the CS department and he works in the Watson
project with id cs34 whose director is Ferrucci. In Figure 10
we depict the backward exploration at work to process the
query Q2.

The first combination c useful to generate S1 is (dpi, dpj).
However, in this case the backward exploration is not able
to provide an answer. Through the selection

σemployee=“Brown′′(WorksIn)

it is possible to instantiate the variables x1 and x2 with t6
in dpi, as shown in Figure 10.(a). In dpj the variable x4 is
trivially instantiated with t10, but the procedure stops when
it tries to resolve the variable x3. This is due to perform the

212

selection σproject=“cs34′′(WorksIn), resulting more than one
tid, i.e. t6 and t7. At the end of the backward exploration
we have P = {(t2, 1), (t6, 1), (t10, 1)} and the condition γ1 =
〈WorksIn, project, “cs34′′〉 in the set Cd. To retrieve S1 the
forward exploration has to disambiguate between t6 and t7.
Since t7 is not in P, we do not consider it. Incrementing the
value associated to t6 in P we obtain the pair (t6, 2), i.e. we
find the first answer S1 = {t2, t6, t10}.

In general, the projection step could fail: a single condition
γ is not able to disambiguate tuples, i.e. @ty ∈ P : ty |= γ.
In this case we have to retrieve new tids from d. Therefore
the forward exploration provides the selection step. In Cd,
we search multiple conditions involving the same relation R,
i.e. γ1 = 〈R,A1, v1〉, γ2 = 〈R,A2, v2〉, . . ., γn = 〈R,An, vn〉,
and then we check if these multiple conditions can retrieve
a new tid ty in R.

Note that the forward navigation has been already ex-
ploited in data graph algorithms [9, 12] to improve backward
explorations individuating connections from potential root
nodes to keyword nodes. Similarly, our forward exploration
supports the backward navigation, still preserving our com-
petitive advantages: it does not require to keep extra infor-
mation of the exploration and it only exploits selection (σ)
and projection (π) operations.

4. EXPERIMENTAL RESULTS
We developed our approach in YaaniiR, a system for

keyword search over relational databases. YaaniiR is im-
plemented entirely with a procedural language for SQL.
In particular PL/pgSQL since we used PostgreSQL 9.1 as
RDBMS. In our experiments we used the only available
benchmark, which is provided by Coffman et al. [4]. It sat-
isfies criteria and issues [3, 20] from the research community
to standardize the evaluation of keyword search techniques.
In [4], by comparing the state-of-the-art keyword search
systems, the authors provide a standardized evaluation on
three datasets of different size and complexity: IMDb (1,67
million tuples and 6 relations), Wikipedia (206.318 tuples
and 6 relations), and a third ideal counterpoint (due to its
smaller size), Mondial (17.115 tuples and 28 relations). For
each dataset, we run the set of 50 queries (see [4] for details
and statistics). Experiments were conducted on a dual core
2.66GHz Intel Xeon, running Linux RedHat, with 4 GB of
memory, 6 MB cache, and a 2-disk 1TB striped RAID array,
and we used PostgreSQL 9.1 as RDBMS. We remark that
we keep schema and instance of all datasets.

Implementation. The implementation plays an essen-
tial role in our framework. Here we provide some tech-
nical details in order to show the feasibility to implement
keyword-based search functionality in a RDBMS and conse-
quently to introduce an SQL keyword search operator. We
implemented the algorithms of the paper by using only a
procedural language for SQL and the RDBMS data struc-
tures. Similarly to all the approaches we employ inverted
indices and full-text queries to have direct access to the tu-
ples of interest. Modern RDBMSs already integrate general
purpose full-text indices and related query operators. In
some case they can be customized by the DB administrator
and applied on a limited number of attributes, i.e. usually
the attributes relevant to the user or containing text data.
We implement schema and data paths as integer arrays, i.e.
text values are encoded by hash functions provided by the
RDBMS. Each element of the array corresponds to a node

1	

10	

100	

1000	

10000	

Ya
an
iiR
	

DIS
CO
VE
R	

DIS
CO
VE
R-‐I
I	

SP
AR
K	

EA
SE
	

BL
IN
KS
	

BA
NK
S	

DP
BF
	 ex

ec
u%

on
	 %
m
e	
(s
)	 -‐
	 lo
g	
sc
al
e	 IMDB	

1	

10	

100	

1000	

10000	

Ya
an
iiR
	

DIS
CO
VE
R	

DIS
CO
VE
R-‐I
I	

SP
AR
K	

EA
SE
	

BL
IN
KS
	

BA
NK
S	

DP
BF
	 ex

ec
u%

on
	 %
m
e	
(s
)	 -‐
	 lo
g	
sc
al
e	 Wikipedia	

Figure 11: Performance comparison with schema-
free approaches

in the path. Schema paths are retrieved by the computa-
tion of the metadata (schema) of d. The management of
tuple-ids is already implemented in many RDBMSs. In our
case, we use the PostgreSQL clause WITH OIDS updating the
definition of a table, in case. It creates a column named OID

containing the identifiers of the tuples. Each cluster is in
practice a priority queue where the priority decreases with
the increasing length of a path. A cluster is implemented
with a table, having the length of the paths as indexed at-
tribute. All the loops of the algorithms are supported by
the definition and usage of cursors. In our implementation
we apply a straightforward cache mechanism for the tuples.
In the cache we trace the already accessed tuples. So before
executing an access to the disk we search within the cache.
In this way a tuple is accessed only once. Such simple mech-
anism speeds-up significantly the execution time.

Our algorithms have been implemented in terms of
PL/pgSQL procedures to add in d. Such procedures
exploit a simple index based on the permanent table
SG(attribute,path) and the procedure DG. The former stores
all schema paths while the latter retrieve all data paths at
runtime. In SG, path implements a schema path in terms
of an array of hash numbers (i.e. hashing of table and at-
tributes names in the schema) while attribute is the value
of the ending node of the path implemented as a hash value
(i.e. on attribute we define a B-tree index). An efficient im-
plementation of a BFS traversal supports the computation
of all schema paths (i.e. we compute all paths between tables
and attributes, not only the shortest ones). The procedure
DG, similarly, implements a data path in terms of an array
of hash numbers and defines a tsvector value on all text
attributes of d on which imposes a GIN index for full-text
search. Such pre-configuration (e.g., the building of the SG
table) is built efficiently: from few milliseconds on Mondial
to a couple of minutes on IMDb and Wikipedia. The last
datasets, i.e. IMDb and Wikipedia, present 516MB and
550 MB of size, respectively. The resulting index increases
the starting data size of few MBs.

Performance. For query execution evaluation, we
compared our system (YaaniiR), with the most related

213

1	

10	

100	

1000	

YaaniiR	 POWER	 (CT)	 POWER	 (DC)	 POWER	 (DR)	 META	

ex
ec
u%

on
	 %
m
e	
(s
)	 -‐
	 lo
g	
sc
al
e	 IMDB	

1	

10	

100	

1000	

YaaniiR	 POWER	 (CT)	 POWER	 (DC)	 POWER	 (DR)	 META	

ex
ec
u%

on
	 %
m
e	
(s
)	 -‐
	 lo
g	
sc
al
e	 Wikipedia	

Figure 12: Performance comparison with schema-
based approaches

schema-free approaches: SPARK [16], EASE [14], and
Blinks [9], DPBF [7], DISCOVER [11] and the refined
version DISCOVER-II [10]. Moreover we made a compar-
ison with schema-based approaches: Power [18], using all
the algorithms under the three semantics – connected tree
(CT), distinct core semantics (DC), distinct root semantics
(DR)1 – and Meta [2].

We evaluated the execution time that is the time elapsed
from issuing a query until an algorithm terminates. Such
execution computes the top-100 answers. We performed
cold-cache experiments (by dropping all file-system caches
before restarting the systems and running the queries) and
warm-cache experiments (without dropping the caches). We
repeated all the tests three times and measured the mean
execution times. For space constraints, we report only cold-
cache experiments, but warm-cache experiments follow a
similar trend. As in [4], we imposed a maximum execution
time of 1 hour for each technique (stopping the execution
and denoting a timeout exception). Moreover we allowed
≈5 GB of virtual memory and limit the size of answers to 5
tuples.

Figure 11 and Figure 12 show box plots of the execu-
tion times for all queries on each dataset w.r.t schema-free
approaches and schema-based approaches, respectively. In
general our system outperforms consistently all approaches.
In particular the range in execution times for schema-free
approaches is often several orders of magnitude: the per-
formance of these heuristics varies considerably (i.e. the
evaluation of the mean execution time cannot report such
behavior). In the figures, we do not report box plots for
Blinks since it always required more than one hour or en-
countered an OutOfMemoryError. Similarly, DISCOVER,
BANKS, DPBF failed many queries due to time out excep-
tion. Spark and EASE perform worse but they completed
most of the queries. Our system completed all 50 queries
in each dataset without computing useless answers or set
of tuples to combine. This is due to our incremental strat-
egy reducing the space overhead and consequently the time
complexity of the overall process w.r.t. the competitors that

1We refer to the most efficient version of both DC and DR

0 

0,2 

0,4 

0,6 

0,8 

1 

0,1  0,2  0,3  0,4  0,5  0,6  0,7  0,8  0,9  1 

Pr
ec
is
io
n 

Recall 

YaaniiR  schema‐free  schema‐based 

Figure 13: Precision-Recall curves

spend much time traversing a large number of tuples (nodes)
and computing and ranking the candidates to be (in case)
answers.

With respect to schema-based approaches, we imple-
mented the three algorithms of Power in Java 1.6 and
JDBC to connect to PostgreSQL. In particular we used the
same parameters for IMDb testing as described in [18] for
all datasets. On the other hand, we used the implementa-
tion of Meta offered by the same authors. Also in this case,
the results confirm the significant speed-up of our approach
with respect to the others. In this case the number of tuples
generated by the join operations is effective to generate the
answers of interest, i.e. the cost to evaluate each candidate
network is limited. The DC and DR algorithms perform
worse due to the more complex technique to evaluate the
candidate networks. In some queries, a larger number of key-
words in Q increases the complexity to evaluate a candidate
network and consequently the number of tuples to evaluate.
In this context the CT algorithm and Meta are compara-
ble while our system performs significantly better due to the
lowest (or missing) overhead introduced in our incremental
strategy. However schema-based approaches completed all
50 queries in each dataset and provide a more regular be-
havior in the execution time.

Effectiveness. We have also evaluated the effectiveness
of results. We measured the interpolation between preci-
sion and recall to find the top-10 answers, on the queries
on all datasets. We compare our curve with the interpo-
lated precision curves averaged over both schema-free and
schema-based approaches. Figure 13 shows the results. As
to be expected, the precision of the other systems dramati-
cally decreases for large values of recall. The overhead intro-
duced by all competitors damages the quality of the results.
On the contrary our strategies keeps values on the range
[0.6,0.9]. Such result confirms the discussion of Section 3,
that is the feasibility of our system that produces the top-k
answers in linear time.

5. RELATED WORK
The common assumption made by the various proposals to

keyword search over relational databases is that an answer is
a joining tuple tree(JTT) in which the nodes represent tuples
and the edges represent references between them, according
to the foreign keys defined on the database schema. The
various approaches to keyword-based query answering are
commonly classified into two categories, schema-based and
schema-free, even if some recent works have questioned the
state of the art and suggested alternative techniques to solve

214

the problem. We discuss all of them in order.

Schema-based approaches. Schema-based ap-
proaches [11, 16, 17] make use, in a preliminary phase,
of the database schema to build trees called candidate
networks (CNs) whose nodes represent subsets of the tuples
in a relation. CNs must be complete (i.e., involving all
the keywords in the query) and duplicate-free. Duplicate
elimination relies on graph isomorphisms, which requires a
high computational cost. For this reason, in [17] the authors
have proposed an approach to CN duplicate elimination
that does not rely on graph isomorphism. CNs are then
evaluated by means of a (possible large) number of SQL
queries that, once submitted to the RDBMS, return the final
JTTs. Unfortunately, it has been shown that finding the
best execution plan from a set of CNs is an NP-Complete
problem [11]. Moreover, empty results can occur and this
can make the process inefficient and introduce noise in the
final result. Our approach fits in this category in that we
take advantage from database schema and constraints to
build the data paths (see Definition 4) without accessing
the database.

Schema-free approaches. Schema-free approaches [6, 7,
13, 14] first build a graph-based representation G of the
database in which the nodes of G represent the tuples of the
database and its edges represent primary or foreign key con-
straints. Then, they make use of graph algorithms and graph
exploration techniques to select the subgraphs of G that con-
nect nodes matching the keywords of the query. Usually,
apart from [6], all of them materialize G in main memory,
which is clearly hard to scale. Query evaluation usually con-
sists in finding a set of (minimal) Steiner trees [8] of G. This
problem is known to be NP-Complete [8]. Therefore, the
various proposals rely on complex heuristics aimed at gen-
erating approximations of Steiner trees. We actually took
inspiration from these approaches by modeling the prob-
lem in terms of graph search. However, we do not build
in-memory graph-based structures and resort on a simple
technique for building the answers that is linear in the size
of the database and does not require complex graph algo-
rithms of high computational cost.

New approaches. As observed by several authors (e.g., [1,
4]), the solutions proposed so far are not efficient and reliable
enough for a spread usage. Indeed, it should be mentioned
that none of them has been implemented in a commercial
system. The authors in [18] argue that the main drawback
of existing approaches is the limited use of the functionality
of the RDBMS in which data is stored. The work in [1]
proposes to compute the answers within a time limit and
to show to the user the unexplored part of the database, so
that she can refine the results. We have indeed followed this
clue in that our approach only relies on the capabilities of
the underlying RDBMS.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel approach to keyword

search query over relational databases, by providing a linear
strategy for top-k query answering. Such strategy enables
the search to scale seamlessly with the size of the input.
Experimental results confirmed our algorithms and the ad-
vantage over other approaches. This work now opens several
directions of further research. From a theoretical point of
view, we are investigating algorithms to keyword search over

distributed environments, retaining the results achieved in
this paper. From a practical point of view, we are widening
optimization techniques to speed-up the query evaluation
and to improve the effectiveness of the result, implementing
an SQL operator.

7. REFERENCES
[1] A. Baid, I. Rae, J. Li, A. Doan, and J. F. Naughton.

Toward scalable keyword search over relational data.
PVLDB, 3(1):140–149, 2010.

[2] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and
Y. Velegrakis. Keyword search over relational databases: a
metadata approach. In SIGMOD, pages 565–576, 2011.

[3] Y. Chen, W. W. 0011, Z. Liu, and X. Lin. Keyword search
on structured and semi-structured data. In SIGMOD, pages
1005–1010, 2009.

[4] J. Coffman and A. Weaver. An empirical performance
evaluation of relational keyword search techniques. TKDE,
99(PrePrints):1, 2012.

[5] J. Coffman and A. C. Weaver. Learning to rank results in
relational keyword search. In CIKM, pages 1689–1698,
2011.

[6] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword
search on external memory data graphs. VLDB,
1(1):1189–1204, 2008.

[7] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.
Finding top-k min-cost connected trees in databases. In
ICDE, pages 836–845, 2007.

[8] M. R. Garey, R. L. Graham, and D. S. Johnson. The
complexity of computing Steiner minimal trees. SIAM
Journal on Applied Mathematics, 32(4):835–859, 1977.

[9] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked
keyword searches on graphs. In SIGMOD, pages 305–316,
2007.

[10] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-style keyword search over relational databases.
In VLDB, pages 850–861, 2003.

[11] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
search in relational databases. In VLDB, pages 670–681,
2002.

[12] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. In VLDB, pages
505–516, 2005.

[13] B. Kimelfeld and Y. Sagiv. Finding and approximating
top-k answers in keyword proximity search. In PODS,
pages 173–182, 2006.

[14] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an
effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In SIGMOD, pages
903–914, 2008.

[15] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. In SIGMOD, pages
563–574, 2006.

[16] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k
keyword query in relational databases. In SIGMOD, pages
115–126, 2007.

[17] A. Markowetz, Y. Yang, and D. Papadias. Keyword search
on relational data streams. In SIGMOD, pages 605–616,
2007.

[18] L. Qin, J. X. Yu, and L. Chang. Keyword search in
databases: the power of RDBMS. In SIGMOD, pages
681–694, 2009.

[19] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying
communities in relational databases. In ICDE, pages
724–735, 2009.

[20] W. Webber. Evaluating the effectiveness of keyword search.
IEEE Data Eng. Bull., 33(1):54–59, 2010.

215

Implementing Iterative Algorithms with SPARQL

Robert W. Techentin,
Barry K. Gilbert

Mayo Clinic
Rochester, MN

{techentin.robert,
gilbert.barry}@mayo.edu

Adam Lugowski, Kevin
Deweese, John Gilbert

UC Santa Barbara
Santa Barbara, CA

{alugowski,kdeweese,
gilbert}@cs.ucsb.edu

Eric Dull, Mike Hinchey,
Steven P. Reinhardt

YarcData LLC
Pleasanton, CA

{edull,mhinchey,spr}
@yarcdata.com

ABSTRACT
The SPARQL declarative query language includes innova-
tive capabilities to match subgraph patterns within a seman-
tic graph database, providing a powerful base upon which
to implement complex graph algorithms for very large data.
Iterative algorithms are useful in a wide variety of domains,
in particular in the data-mining and machine-learning do-
mains relevant to graph analytics. In this paper we describe
a general mechanism for implementing iterative algorithms
via SPARQL queries, illustrate that mechanism with im-
plementation of three algorithms (peer-pressure clustering,
graph diffusion, and label propagation) that are valuable for
graph analytics, and observe the strengths and weaknesses
of this approach. We find that writing iterative algorithms
in this style is straightforward to implement, with scalability
to very large data and good performance.

Keywords
graph analysis, SPARQL, data mining, iterative algorithms,
clustering, query languages, performance

1. OVERVIEW
The SPARQL declarative query language [7] implements

innovative capabilities to match subgraph patterns within
a semantic graph database, providing a powerful base upon
which to implement complex graph algorithms for very large
semantic (or heterogeneous) data. SPARQL has major ad-
vantages for practical problem-solving, including its built-in
support for semantic graph querying, its status as an emerg-
ing standard from the W3C along with its companion Re-
source Description Framework (RDF) [12] data format, and
its implementation by numerous providers of both databases
and tools, including Jena [1], Sesame [10], AllegroGraph
[3], TopBraid Composer [18], and Urika [19]. The use of
SPARQL is growing, so understanding its current capabili-
ties and limitations is valuable, so it can be used to address
the widest practical range of graph-analytic problems.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Iterative algorithms are useful in a wide variety of domains
related to graph analytics, esp. data mining and machine
learning, so having such algorithms readily implementable
in SPARQL extends the range of practical algorithms con-
siderably. We present one approach for implementing itera-
tive algorithms in SPARQL, consisting of a) a set of initial
queries that establishes a baseline state, b) a set of itera-
tive queries that updates the state (typically via SPARQL
Update constructs) and calculates the current value of con-
vergence criteria, and c) a set of final queries that creates
final results and cleans up intermediate state.

We illustrate this method via the implementation of three
algorithms that calculate per-vertex metrics that depend on
the structure of the graph. Peer-pressure clustering [15]
groups vertices into clusters based on the cluster to which
most of a vertex’s neighbors belong. Graph diffusion [5] cal-
culates the diffusion of an effect from seeded nodes through-
out the graph, identifying both vertices that are likely to
be related as well as pathways that contribute to the rela-
tionship. Label propagation [11] propagates known outcomes
from a set of labeled data through a set of unlabeled data,
tagging vertices with their likely outcomes based on the in-
formation latent in the graph.

We find that writing iterative algorithms in this style is
straightforward to implement, with scalability to very large
data and good performance. Though there are algorithms
for which the iterative queries are so simple that the over-
head of executing any query may be a performance issue,
initially implementing such algorithms in this style delivers
correct answers quickly, with an optimized implementation
possible via other means if needed.

While there are other approaches to this problem, notably
the work on recursive database queries with Datalog [16],
our focus is on SPARQL because of its intended audience of
subject-matter experts, not professional programmers.

2. THE SPARQL 1.1 LANGUAGE
SPARQL is a query language for semantic-graph databases

containing data represented in the Resource Description
Framework (RDF) [12] , with its name being a recursive
acronym for SPARQL Protocol and RDF Query Language.
It comes from the semantic web community and is a recom-
mendation of the World Wide Web Consortium [4]. The
primary goal for RDF was to make web pages machine-
readable, and the goal for SPARQL was to enable higher-
level querying of the semantic web. The resulting capabili-
ties proved to be valuable for graphs that did not necessarily
originate as web pages; i.e., queries on highly heterogeneous

216

and richly interconnected data, data that reflected the Open
World Assumption [5] that one’s set of data is never com-
plete and so tools must be built expecting to easily incorpo-
rate new data and new types of data. Readers who use SQL
[6] will find many SPARQL constructs familiar.

RDF defines data in terms of triples consisting of a sub-
ject, a predicate or relationship, and an object. For example,
the triple ”Ruth works-for Mayo-Clinic” has ”Ruth” as the
subject, ”works-for” as the predicate, and ”Mayo-Clinic” as
the object. Well-defined RDF data will use Universal Re-
source Identifiers (URIs, [9]) for subjects, predicates, and
most objects. An RDF graph is a collection of these triples.

An example of SPARQL graph matching comes from the
Lehigh University Benchmark (LUBM) query #2 [6]:
(SPARQL keywords are shown in upper case for clarity)

1 PREFIX rdf: <http ://www.w3.org /1999/02/22 -

rdf -syntax -ns#>

2 PREFIX ub: <http ://www.lehigh.edu/~zhp2

/2004/0401/ univ -bench.owl#>

3 SELECT ?student ?faculty ?course

4 WHERE {

5 ?student rdf:type ub:Student .

6 ?faculty rdf:type ub:Faculty .

7 ?course rdf:type ub:Course .

8 ?student ub:advisor ?faculty .

9 ?faculty ub:teacherOf ?course .

10 ?student ub:takesCourse ?course

11 }

SPARQL variables are denoted by an initial ? or $ charac-
ter, e.g, ?student in the example above. The statements
within the WHERE clause, known as a basic graph pat-
tern, can be interpreted as ”find all triples (?student, ?fac-
ulty, ?course) where (lines 5-7) ?student, ?faculty, and
?course are of the corresponding types, and there exists
(8) an edge of type ub:advisor from the ?student vertex
to the ?faculty vertex, (5) an edge of type ub:teacherOf

from the ?faculty vertex to the ?course vertex, and (6) an
edge of type ub:takesCourse from the ?student vertex to
the ?course vertex.” In natural language, the query can be
stated ”find triples of Student, Faculty, and Course where
the student takes a course taught by her advisor.”

Once a graph pattern has been matched, the interme-
diate solution can be further processed or combined with
other intermediate solutions. E.g., LUBM query #2 could
be modified as follows. The inner SELECT query (lines 4-
14 below) matches the basic graph pattern in the WHERE,
groups those results first by ?faculty and then within a sin-
gle ?faculty value by ?student; then those groups are ag-
gregated by selecting the (unique, per group) distinct value
of ?faculty and ?student and by COUNTing the instances
of ?course per group, and then keeping only the results
that have a ?courseCount greater than 2. The outer query
takes the results of the inner query, groups them by ?fac-

ulty and COUNTs the number of students (per faculty) who
have taken more than one course from their advisor. The
full result is faculty members who have advisees who have
taken more than one course from them, sorted in descend-
ing order of the count of such advisees per faculty member.

1 SELECT ?faculty

2 (COUNT(? student) AS ?studentCount)

3 WHERE {

4 SELECT ?faculty ?student

5 (COUNT(? course) AS ?courseCount)

6 WHERE {

7 ?student rdf:type ub:Student .

8 ?faculty rdf:type ub:Faculty .

9 ?course rdf:type ub:Course .

10 ?student ub:advisor ?faculty .

11 ?faculty ub:teacherOf ?course .

12 ?student ub:takesCourse ?course

13 } GROUP BY ?faculty ?student

14 HAVING (? courseCount > 1)

15 } GROUP BY ?faculty

16 ORDER BY DESC(? studentCount)

We note other SPARQL constructs, including named graphs,
each of which segregates a set of triples from the main body
(default graph) of the graph database, enabling its simple
identification for a specific use. SPARQL also supports ag-
gregate functions and mathematical operators sufficient for
basic computations on query results. FILTER limits results
by various function comparisons rather than graph pattern.
MINUS, EXISTS, and NOT EXISTS offer different ways of
reducing results by graph pattern matching. OPTIONAL is
like SQL’s LEFT JOIN, allowing bindings that may not be
present for some results.

SPARQL 1.1 also includes a set of Update capabilities [4],
including INSERT, which adds triples to the database based
on matching within the existing data (like the WHERE basic
graph patterns above); DELETE, as the converse; LOAD,
which reads data from a disk file or other source into the
graph database; and DROP, which deletes a graph.

The execution flow of a (sub)query is (1) the basic graph
pattern in the WHERE, (2) any GROUP BY or HAVING
and any aggregation or projection (i.e., the operations after
the SELECT keyword), and (3) any trailing solution modi-
fiers, such as ORDER BY or LIMIT.

3. ITERATIVE ALGORITHMS IN SPARQL
SPARQL 1.1 as a language does not support iteration,

so iterative algorithms will need a construct external to
SPARQL to implement iteration. We have used JavaScript
and Python scripts to implement the iterative code that calls
SPARQL queries. The coarse structure is captured in the
following pseudocode, where any of lines 1, 3, 4, or 6 could
consist of multiple SPARQL queries.

1 establish initial state

2 do {

3 update state

4 measure convergence criteria

5 } while (convergence criteria not met)

6 establish final state and clean up

This structure reflects the assumptions that a) the interme-
diate state updated in line 3 is large enough that we want
to retain it within the SPARQL endpoint for performance
reasons, rather than transmitting it back to a client system
for processing, and b) that the convergence criteria can be
summarized to no more than a few scalars (e.g., the number
of vertices changing cluster assignment on this iteration, for

217

peer-pressure clustering). In the algorithmic implementa-
tions described here, we have chosen to place intermediate
state (e.g., cluster assignment) in a named graph for sim-
plicity (i.e., ease of finding inserted triples for debugging
and other purposes) and performance (i.e., eliminating a set
of intermediate values via DROP of a named graph is fast
compared with finding all the appropriate triples intermin-
gled with other data), but placing the intermediate state
in the default graph may be appropriate in some circum-
stances. Another degree of freedom for the algorithm devel-
oper is whether to preserve all intermediate named graphs
until the algorithm completes (at the cost of more memory)
or to delete intermediate named graphs just after their last
use (at the cost of debuggability). Preserving intermediate
graphs requires emitting a query where the intermediate-
graph name changes from iteration to iteration.

A similar choice for the algorithm developer is whether to
place the final results in the default graph or a named graph.
Given the extreme flexibility of RDF and SPARQL, an itera-
tive algorithm could be called with different parameters, for
example propagating labels through vertices of types A-C on
one call and types B-G on a later call; the ability to name a
graph with this information simplifies the other URIs within
that data (e.g., avoiding the need to express in the predicate
(in this example) the specific set of vertex types considered).

A programming note is that nothing in the SPARQL end-
point precludes multiple instances of an iterative algorithm
running simultaneously, each sending queries to the end-
point, so some means of avoiding collisions in intermediate
graph names will be warranted for general use.

4. PEER-PRESSURE CLUSTERING
Peer-pressure clustering belongs to the class of algorithms

that are effective by calculating simply on very large data.

4.1 The Algorithm
Peer-pressure clustering takes as its input a set of edges,

each between a pair from a set of vertices, and calculates
each vertex’s assignment to a cluster. The number of clus-
ters to be found need not be specified. For heterogeneous
graphs, even for clustering vertices of homogeneous type,
creating links between the vertices is an initial step whose
definition is problem-dependent; see Section 4.6.1 below for
details.

Reprising the structure from the figure above, peer-pressure
clustering can be expressed via the following pseudocode.

1 assign each vertex to an initial cluster

2 do {

3 (re -) assign each vertex to the cluster

to which a plurality of its

neighbors belong

4 count the number of vertices that

changed cluster in the prior step

5 } while (enough vertices changed or other

criteria)

In our implementation the initial assignment is to a cluster
with the same name as the vertex.

4.2 Relevant Use Cases
Clustering can be useful to understand the group struc-

ture of a set of homogeneous vertices. Use cases include the
spread of influence in online social networks [8, 2].

4.3 Implementation via SPARQL Queries
We chose to place intermediate assignments in named

graphs whose names have a common quasi-random seed,
”xjz” in the examples below, to avoid collisions.

The first initial query assigns each vertex to a default
cluster (named by the vertex name).

1 DROP GRAPH <urn:ga/g/xjz0 >

2 CREATE GRAPH <urn:ga/g/xjz0 >

3 INSERT {

4 GRAPH <urn:ga/g/xjz0 >

5 {?s <urn:ga/p/inCluster > ?s }

6 } WHERE {

7 SELECT DISTINCT ?s

8 WHERE {

9 ?s <urn:ga/p/hasLink > ?o .

10 }

11 }

Line 1 DROPs (deletes from the database) any existing
graph of the same name and thus any triples in such a graph.
Line 2 CREATEs a new (empty) graph of the same name,
which is not strictly necessary before the INSERT but can
aid in debugging. The SELECT clause on lines 7-10 finds
all vertices in the default graph that are the subject of a
hasLink predicate and, for each unique such vertex, then on
lines 3-5 INSERTs into the named graph a new triple of the
same subject, the inCluster predicate, and the subject (as
the cluster assignment). (We omit the text of a trivial initial
query that counts the number of vertices to be clustered.)

The update query works as follows. Lines 13-20, for each
vertex, return the vertex, the cluster assignments of its neigh-
bors, and the per-cluster count of neighbor vertices. Lines
10-22 calculate the maximum cardinality of the clusters of
the neighbors of each vertex. Lines 23-31 calculate the clus-
ter assignment of that maximum-cardinality cluster. (SPARQL
lacks a construct that returns the maximum value of one in-
termediate result and the corresponding element of another
intermediate result.) Lines 8-30 join the maximum cardinal-
ity with the cluster name and also, in the case of a tie in
maximum cardinality, break any tie by SAMPLEing a clus-
ter assignment for each cluster. Lines 3-6 INSERT the new
cluster-assignment triples into the named graph. (For all
graph names, the non-SPARQL ”[i] ” and ”[i+1] ” syntax
denotes that the appropriate iteration count is placed into
the string by the code that creates the SPARQL query.)

218

1 DROP GRAPH <urn:ga/g/xjz[i+1]>

2 CREATE GRAPH <urn:ga/g/xjz[i+1]>

3 INSERT

4 {

5 GRAPH <urn:ga/g/xjz[i+1]>

6 { ?s <urn:ga/p/inCluster > ?clus3 }

7 } WHERE {

8 { SELECT ?s (SAMPLE (?clus) AS ?clus3)

9 WHERE {

10 { SELECT ?s

11 (MAX(? clusCt) AS ?maxClusCt)

12 WHERE {

13 SELECT ?s ?clus

14 (COUNT(?clus) AS ?clusCt)

15 WHERE

16 {

17 ?s <urn:ga/p/hasLink > ?o .

18 GRAPH <urn:ga/g/xjz[i]>

19 {?o <urn:ga/p/inCluster > ?clus}

20 } GROUP BY ?s ?clus

21 } GROUP BY ?s

22 }

23 { SELECT ?s ?clus

24 (COUNT(?clus) AS ?clusCt)

25 WHERE

26 {

27 ?s <urn:ga/p/hasLink > ?o .

28 GRAPH <urn:ga/g/xjz[i]>

29 {?o <urn:ga/p/inCluster > ?clus}

30 } GROUP BY ?s ?clus

31 } FILTER (? clusCt = ?maxClusCt)

32 } GROUP BY ?s

33 }

34 }

The second query executed in each iteration (below) counts
the number of vertices that changed cluster assignment in
the just-completed iteration.

1 SELECT (COUNT(?oNew) as ?vccCt)

2 WHERE {

3 GRAPH <urn:ga/g/xjzi >

4 {?s <urn:ga/p/inCluster > ?oOld}

5 GRAPH <urn:ga/g/xjzi+1>

6 {?s <urn:ga/p/inCluster > ?oNew}

7 FILTER (?oOld != ?oNew)

8 }

The JavaScript code that constructs the queries and calls
the SPARQL endpoint is straightforward and hence omitted.

4.4 Validation
We initially validated the implementation with synthetic

data. The first phase of this was with predictable cluster-
ing characteristics, generated with the number of clusters
set to log(n)1.5 where n is the number of vertices. The gen-
erator then considers all edge pairs and adds inter cluster
edges with probability X (0.02 in this case) and intracluster
edges with probability Y (0.1). This data contained 100,000
vertices and 15,736,484 triples.

The second phase of validation with synthetic data was
block two-level Erdős–Rényi (BTER) data created by the
MATLAB generator by Pinar et al [14], whose output we
converted into RDF. The parameters we used, in addition

to power-law degree distribution, were γ = 2, maxdegree =
100, ρinit = 0.99, and ρdecay = 0.8. This data contained
1,643,915 vertices and 7,322,102 triples.

4.5 Performance
For the initial set of synthetic data (100,000 vertices and

15.7M edges), on a 64-processor, 2TB Urika appliance, peer-
pressure clustering converged after 5 iterations, consuming
200.2 seconds in total. For the BTER synthetic data (1.6M
vertices and 7.3M edges) it executed for 3h:09m, though it
did not converge after 20 iterations, which was the maxi-
mum iteration setting. We also tried to apply the algorithm
to the Smackdown data created by Mayo Clinic, both small
portions and the full 2G (2 billion triples) dataset, where
we encountered the quadratic issue described in the follow-
ing section. We had wondered whether per-query overhead
might be a performance issue, but with the overhead far
below 1 second, it proved not to be an issue in practice.

4.6 Issues Encountered

4.6.1 Creating links for clustering
Peer-pressure clustering uses predicates of a given type

(hasLink in our implementation) as the edges to consider,
which can be viewed as similarity links between the vertices.
For heterogeneous data, the data must typically be prepared
by deciding the similarity criteria, and for vertex pairs which
pass the criteria or threshold, creating the edge. We exper-
imented with different similarity functions, mirroring what
subject-matter experts may do in practice, tweaking the sim-
ilarity function until the resulting clusters are useful in the
context of the subject matter.

If this approach is used to calculate the edges, the simple
approach of comparing all vertices to all other vertices is
difficult to scale to large numbers of vertices, as the O(n2)
cost of this step becomes prohibitively time-consuming for
databases containing O(100M) or more vertices. The clus-
tering algorithm doesn’t require all similar vertices to have
similarity links, but can work with a more sparsely con-
nected graph, and a sparse pre-processing step would be
appropriate for large-scale use. Note that this cost is in the
pre-processing step, and that limiting the number of edges
created would keep the core peer-pressure clustering algo-
rithm relevant for very large data.

4.6.2 SPARQL constructs
Careful readers may note that the inner SELECTs at lines

13-21 and 23-30 in the iterative update query are identical.
While developing a complex nested query like this, needing
to keep the same code in two spots identical is cumbersome.
SPARQL 1.1 contains no good mechanism to define this code
once and reuse it, like a function in a procedural language.
The SQL WITH clause defines by name such a code block
that can be executed wherever its results are needed.

The second and third queries above both have minor changes
from one instance to the next (e.g., substituting ”xjz2”, and
”xjz3” into the graph name). While these are not hard to
cope with in JavaScript code that creates the queries, it
does mean that the query is literally different each time it
is executed, and hence the SPARQL endpoint will have to
reinterpret and re-optimize the query each time, which could
at some point become time-consuming. SQL?s placeholder
capability enables the passing of a value (of a given type) at

219

execution time that is inserted at the placeholder’s position
in the query, avoiding reinterpretation.

5. GRAPH DIFFUSION
Graph diffusion is an algorithm that models natural trans-

port phenomena on the connectivity of the graph, much like
random walk approaches, but simultaneously moving across
all possible edges. Diffusion can be used to characterize
semantic data in several ways. It can be used to compute
neighborhoods of ”close”connectivity or find nodes with sim-
ilar features. Some applications are models for cascading be-
haviors such as social network analysis, virus propagation,
parallel load balancing, and chemical compound classifica-
tion [5] [13] [17].

5.1 The Algorithm
The graph diffusion algorithm propagates values (typically

numeric scores) from specific initial vertices, through con-
necting edges to neighboring vertices, and by iteration, to
the rest of the graph. Each vertex accumulates values as
the expanding wavefront propagates through it. Semantic
graphs, with named edges, can have a propagation weight
assigned to each edge type, increasing or decreasing the dif-
fusion values. In general matrix notation, graph diffusion
can be characterized as an iterative update process accord-
ing to the equation, N t+1

i =
∑

j EijWijN
t
j , where N is a

node (vertex), E is the binary adjacency matrix (represent-
ing edges between nodes), and W contains the edge weights
associated with diffusion. In this formulation, E and W are
static and can be combined. The diffusion algorithm can run
a fixed number of iterations, or (with edge weights < 1.0)
can continue until a steady state is reached. There are many
algorithm parameters which can be adjusted, including ini-
tial conditions, treatment of edges as directed or undirected,
and computation of aggregate scores.

A simple implementation of graph diffusion is character-
ized by this pseudocode.

1 assign edge weights by type

2 seed initial diffusion value(s)

3 do {

4 for each vertex with a value {

5 save value as accumulated score

6 propagate value to neighbors

7 }

8 } until completion criteria met

5.2 Relevant Use Cases
One potential use case for diffusion in healthcare is finding

patients with similar clinical features. For example, patients
are admitted into a hospital for a variety of different clinical
conditions; however, once admitted, apparently dissimilar
patients develop common presentations of disease. We ap-
plied diffusion to a semantic graph of two years of hospital
records for 114,943 patient stays. Diffusion seed values were
attached to sub-populations of patients with known condi-
tions of interest. Diffusion values propagated over 74 differ-
ent edge types (representing demographic, clinical, nursing,
and lab measurements) from the initial patients to all others
in the dataset. The resulting diffusion values represent each
patient’s similarity to the initial patient sub-population.

5.3 Implementation via SPARQL Queries
Edge (predicate) weights and diffusion values were stored

in named graphs, separating them from each other and the
patient data in the default graph. Propagation values were
stored in numbered named graphs (e.g., iter_0). Propaga-
tion values were accumulated for each patient at the end of
the process, avoiding per-iteration updates to vertex coun-
ters. The SPARQL code for the first diffusion iteration uses
values in iter_0 to create values in named graph iter_1 .

1 PREFIX diff: <urn:diffusion/>

2 DROP GRAPH diff:iter_[i+1];

3 CREATE GRAPH diff:iter_[i+1];

4 INSERT {

5 GRAPH diff:iter_[i+1]

6 {? vertex diff:cntr ?value .}

7 } WHERE {

8 SELECT ?vertex (SUM(? edgeVal) AS ?value)

9 WHERE {

10 GRAPH diff:iter_[i]

11 {? otherVertex diff:cntr ?otherCntr}

12 GRAPH diff:weights

13 {?edge diff:weight ?weight .}

14 { {? otherVertex ?edge ?vertex .}

15 UNION

16 {? vertex ?edge ?otherVertex .} }

17 BIND(? otherCntr *? weight AS ?edgeVal)

18 } GROUP BY ?vertex

19 }

The graph pattern in lines 10-11 matches diffusion values
from the previous iteration; lines 12-13 identify edge weights
in a separate named graph; and the UNION operation at
line 15 matches both incoming and outgoing edges of the
vertex, making diffusion bidirectional. The BIND on line
17 computes the edge-weighted diffusion value, and the sub-
query on line 9 aggregates the values. For this implemen-
tation, both incoming and outgoing edges of the same type
are weighted equally, but a straightforward extension would
provide different weights based on edge direction.

All iterations use identical SPARQL code, save for incre-
menting the graph number on lines 2, 3, 5, and 10. Note that
due to the nature of intermediate solution sets and group-
ing by ?vertex, this code computes a new diffusion value
for a vertex from its neighbors, as opposed to propagating a
vertex’s value to its neighbors as shown in the pseudocode.

After diffusion is complete, the per-patient similarity scores
are found in the final iteration’s named graph, iter_4. More
generally, aggregate diffusion scores are computed by sum-
ming vertex counters in all iteration-named graphs.

5.4 Validation
This implementation of graph diffusion, applied to this

in-hospital patient care dataset, generates a score ranking
all patients’ similarity to the seed patient. The similarity
score is computed over all 74 dimensions (edge types) in the
semantic model. Inspection of the values for ”similar” and
”dissimilar” patients, one dimension at a time, reveals that
the most similar patients do, in fact, have characteristics
similar to the seed patient.

5.5 Performance
We ran four iterations of the diffusion algorithm on a se-

mantic dataset of 89 million vertices and 1.8 billion edges

220

on a 64 processor Urika appliance with 2 TB of main mem-
ory. The first two iterations, propagating from the initial
patient URIs to all associated values recorded for those pa-
tients, took 202 and 207 seconds, respectively. The third
and fourth iterations, propagating back to all other patient
URIs, took 1,302 seconds and 1,124 seconds, respectively.

5.6 Issues Encountered
For this RDF dataset, extracted from tabular data, the

basic structure and relationships between patient URIs, mea-
surement events, and associated data values were well known.
This structure allowed us to determine that four iterations
of diffusion were sufficient to propagate from the initial pa-
tient URI to all other patient URIs. In the more general
case, a scoring query would be needed after every UPDATE
iteration to determine if the diffusion had completed.

6. LABEL PROPAGATION
Label propagation [11] is a clustering algorithm similar to

peer-pressure clustering whose purpose is to find clusters of
vertices where the clustering is based on the edges linking
to neighboring vertices.

6.1 The Algorithm
Clustering via label propagation takes as its input a set of

edges, each between a pair of vertices, and calculates each
vertex’s assignment to a cluster based on its neighbors.

Reprising the structure from the figure above, label prop-
agation can be expressed via the following pseudocode:

1 assign each vertex to a distinct cluster

2 (cluster label might be some integer

primary key of the vertex)

3 do {

4 re-assign each vertex to a cluster based

on neighbors in the previous step

5 - choose cluster to which a plurality

of first -degree neighbors belong

6 - optional self -voting

7 - tie -breaking rule: sort order of

label

8 } while not stopping conditions

6.2 Implementation via SPARQL Queries
In this implementation, the intermediate assignments are

placed in the same (default) graph, but with a distinct predi-
cate name. This makes little difference functionally, and the
SPARQL queries are easier to only a minor degree because
the syntax for specifying multiple different graphs is more
verbose.

The initial cluster label is denoted by the grouping0 pred-
icate, and assigned the integer primary key of the vertex.
The predicate pkey is specific to the source data model.

The p:similar predicate is also specific to the data model;
it represents the network linking the vertices (?entity),
analogous to hasLink in the peer-pressure clustering section.

1 INSERT {

2 ?entity lprop:grouping0 ?initial_group

3 } WHERE {

4 ?entity p:similar ?x .

5 ?entity p:pkey ?initial_group .

6 } ;

In each iteration, the grouping predicate is incremented to
keep them distinct, lprop:grouping0 in the WHERE to look at
the previous iteration, and INSERTing into lprop:grouping1.

The query consists of the INSERT and a WHERE with nested
sub-queries. Sub-queries are joined on bindings of the same
names, in the same way as simple basic graph patterns. (The
query is shown below broken into multiple code listings.)

1 INSERT { ?entity lprop:grouping1 ?group .

2 } WHERE {

The sub-query selects the entity and group. The GROUP BY

at the end is on ?entity because the query needs one so-
lution for each entity. The MIN of the group is chosen to
break ties in popularity. That is, if multiple groups have
the same popularity, the lowest pkey value wins. This is an
arbitrary rule, but consistent.

1 {

2 SELECT ?entity

3 (MIN(?groupx) AS ?group)

4 WHERE {

The first sub-sub-query measures the popularity of the la-
bels of each entity’s first-degree neighbors. The GROUP BY

includes ?entity to find results per entity; and ?group so it
can COUNT the neighbors (?first).

In addition, we’ve chosen to use self-voting, adding 1 to
the popularity score for the entity’s group (?self). Note
that this query alone might have multiple binding-sets for an
entity, one for each group, and that multiple groups might
have the same popularity.

1 {

2 SELECT ?entity ?groupx

3 ((COUNT(?first) +

4 IF(?self = ?groupx , 1, 0))

5 AS ?popularity)

6 WHERE {

7 ?entity p:similar ?first .

8 ?entity lprop:grouping0 ?self .

9 ?first lprop:grouping0 ?groupx .

10 } GROUP BY ?entity ?self ?groupx

11 }

The next sub-sub-query contains another sub-query which
is the same popularity query as above, with the binding
names changed so the outer query can use the correct names.
The outer query selects the MAX popularity for each entity.
However, SPARQL does not have a direct mechanism to se-
lect the group(s) that have that popularity. This is the rea-
son for duplicating the popularity query. This query below
and the one above are joined on ?entity and ?popularity,
which leaves the ?groupx in the results.

(Closing out the query is the GROUP BY explained above.)

1 {

2 SELECT ?entity

3 (MAX(?popularityx) AS ?

popularity)

4 WHERE {

5 {

6 SELECT ?entity ?groupx

7 ((COUNT(?first) +

8 IF(?self = ?groupx , 1,

0))

221

9 AS ?popularityx)

10 WHERE {

11 ?entity p:similar ?first .

12 ?entity lprop:grouping0 \\?

self .

13 ?first lprop:grouping0 \\?

groupx .

14 }

15 GROUP BY ?entity ?self ?

groupx

16 }

17 } GROUP BY ?entity

18 }

19 } GROUP BY ?entity

20 }

21 }

A variation would be to count second-degree (or greater)
neighbors instead of (or besides) first-degree neighbors.

There are a number of conditions for stopping the itera-
tion. As with the peer-pressure algorithm above, the percent
or number of vertices changed, and simply the maximum
number of iterations are considered. There is also a property
to the algorithm such that one iteration can make numerous
changes, but the next iteration will reverse them, resulting in
oscillation that only ends with the max number of iterations.
Our implementation detects this by counting the differences
between each iteration (below grouping0 and grouping1),
then also the previous iteration (which would be grouping0

and grouping2). If either of these group_diff_counts are
0, the algorithm halts.

1 SELECT (COUNT(?entity) AS ?

group_diff_count)

2 WHERE {

3 ?entity lprop:grouping0 ?label .

4 ?entity lprop:grouping1 ?next .

5 FILTER(?label != ?next)

6 }

6.3 Validation
We generated synthetic, semi-random data, with some

number of groups expected, and some links fully random,
not belonging to the expected groups.

When run on real data, reports were generated by SPARQL
queries (not shown) to show the averages and modes of var-
ious attributes for each group, from which we could see that
the groups did have distinct sets of attributes.

6.4 Performance
Generation of synthetic data was done in Python, but

all other processing of big data was performed by SPARQL
within the Urika database. A 64-processor, 2TB Urika ap-
pliance was used for running label propagation.

Using a semi-random network of 1.8M vertices and 8M
edges, the process stopped after 20 iterations, in 16 min-
utes, resulting in 48 groups. With 3.6M vertices and 16M
edges, the process stopped after 20 iterations, in 26 minutes,
resulting in 49 groups.

Calculating the same “popularity” sub-query twice in each
iteration is redundant and expensive. The alternative is to
first insert the results of that once, then use the results twice.

The trade-off is the cost of inserting a very large result set,
which may take more time than building it twice.

6.5 Issues Encountered
Long SPARQL queries with repeated (and slightly modi-

fied) sections are difficult to maintain. The program driving
the iteration and calls to the SPARQL endpoint was imple-
mented in Python. A simple module was written to templa-
tize SPARQL text to make portions reusable within a query
and across queries, while avoiding the need to mix Python
and SPARQL code.

Manually debugging any algorithm like this can be chal-
lenging, especially with large data. Since the data never
leaves the database during processing, the usual practices
for debugging software (such as a Python script) do not ap-
ply. In addition, the algorithm operates differently from how
many scripts are written: breadth first rather than depth
first. Using a smaller dataset makes the manual inspection
approachable, but this changes the results. Also, to under-
stand the results of each iteration requires more SPARQL
queries to inspect or count the results.

Running this type of algorithm can take many hours. If
the process stops early because of error, or because the user
needs it stopped, starting over from the beginning wastes a
lot of time. Inserting metadata into the database itself as
each step is completed, allows for the process to be restarted,
continuing where it was stopped.

7. DISCUSSION
SPARQL as a query language possesses several positive

features that lend to rapid prototyping of graph analysis
workflows. These features include easy graph preparation,
the expressibility of algorithms in the language, and the ac-
cessibility of the language to individuals who possess rele-
vant domain expertise but may not possess sufficient knowl-
edge of lower-level graph languages to effectively use them.

Building graphs from real world data on which to apply
these algorithms tends to require graph preparation. This
graph preparation step is expressible in SPARQL. This step
serves to focus analyst and developer attention on ques-
tions about which types of data and aspects of that data
are most relevant to the domain-specific problem being an-
alyzed. This focusing is an important part of the graph
workflow prototyping process as it forces critical thought to
the practicalities of the data representation and associated
algorithms.

The three algorithms have different execution speeds, mea-
sured in edges/second, reflecting the different natures of the
algorithms and the newness of these results. In future work,
we will explore how much of these speed differences are in-
herent to the algorithms and how much could be overcome
by query changes or query-engine optimizations.

Iterative algorithms are a valuable component of graph
analysis workflows. These algorithms produce analytically
relevant results, as shown in the rest of the paper, and they
are expressible in SPARQL.

Developing, prototyping, and evaluating graph analysis
workflows tend to be laborious, human-intensive processes.
This development and prototyping requires expertise in graph
analysis and the specific domain under analysis. Practition-
ers with these experiences tend to have less knowledge and
familiarity with lower-level graph processing frameworks and
languages. SPARQL as a high-level graph query language is

222

more approachable to these practitioners and requires less
time to learn than C++ or another lower-level language.
This smaller ramp-up time translates to a faster idea-to-
functioning-workflow when using SPARQL than other graph-
workflow development languages.

8. SUMMARY
We present a method of mapping iterative algorithms on

to a combination of SPARQL queries and code in a proce-
dural language (Python and JavaScript, in our examples)
that calls the SPARQL queries. We find that writing itera-
tive algorithms in this style is straightforward to implement,
with scalability to very large data and good performance.
Though there are algorithms for which this approach may
be problematic (e.g., when iterative queries are so simple
that query overhead is a performance issue, or the interme-
diate state between iterations is prohibitively large), initially
implementing such algorithms in this style delivers correct
answers quickly, with an optimized implementation possible
via other means if needed.

9. ACKNOWLEDGMENTS
The authors from UC Santa Barbara were supported in

part by DOE Office of Science contract DE-AC02-05-CH-
11231, NSF grant CNS-0709385, a contract from Intel Corp.,
and a gift from Microsoft Corp.

10. REFERENCES
[1] Apache Jena Project. Java framework for building

linked data applications., 2011-2013.
http://jena.apache.org/.

[2] M. Cha, A. Mislove, and K. P. Gummadi. A
measurement-driven analysis of information
propagation in the Flickr social network. In
Proceedings of the 18th International Conference on
World Wide Web, pages 721–730. ACM, 2009.

[3] Franz, Inc. AllegroGraph ontology modeling
capabilities, 2013. http://www.franz.com/agraph/.

[4] P. Gearson, A. Passant, and A. Polleres. SPARQL 1.1
update (W3C recommendation 21 march 2013).
Technical report, World Wide Web Consortium, 2013.
http://www.w3.org/TR/sparql11-update/.

[5] D. Gruhl, R. Guha, D. Liben-nowell, and A. Tomkins.
Information diffusion through blogspace. In In WWW
’04, pages 491–501. ACM Press, 2004.

[6] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web
Semantics, 3(2-3), 2005.

[7] S. Harris and A. Seaborne. SPARQL 1.1 query
language (W3C recommendation 21 march 2013).
Technical report, World Wide Web Consortium, 2013.
http://www.w3.org/TR/sparql11-query/.

[8] P. Hui and S. Buchegger. Groupthink and peer
pressure: Social influence in online social network
groups. In Proceedings of International Conference on
Advances in Social Network Analysis and Mining
(ASONAM). IEEE, 2009.

[9] Network Working Group. Uniform resource identifier
(URI): Generic syntax (RFC 3986). Technical report,
Internet Engineering Task Force, 2005.
http://tools.ietf.org/html/rfc3986.

[10] OpenRDF Project Team. OpenRDF.org ... home of
sesame, 1997-2012. http://www.openrdf.org/.

[11] U. N. Raghavan, R. Albert, and S. Kumara. Near
linear time algorithm to detect community structures
in large-scale networks. Physical Review E, 76(3),
March 2007.

[12] RDF Working Group. Resource Description
Framework (RDF). Technical report, World Wide
Web Consortium, 2004. http://www.w3.org/RDF/.

[13] S. Schamberger. On partitioning fem graphs using
diffusion. In Proceedings of 18th International Parallel
and Distributed Processing Symposium, 2004.

[14] C. Seshadhri, T. G. Kolda, and A. Pinar. Community
structure and scale-free collections of Erdős-Rényi
graphs. Physical Review E, 85(5), May 2012.

[15] V. B. Shah. An Interactive System for Combinatorial
Scientific Computing with an Emphasis on
Programmer Productivity. PhD thesis, University of
California, Santa Barbara, 2007.

[16] A. Shkapsky, K. Zeng, and C. Zaniolo. Graph queries
in a next-generation datalog system. In Proceedings of
IEEE Conference on Very Large Databases. IEEE,
2013.

[17] A. Smalter, J. Huan, Y. Jia, and G. Lushington. Gpd:
A graph pattern diffusion kernel for accurate graph
classification with applications in cheminformatics.
Computational Biology and Bioinformatics,
IEEE/ACM Transactions on, 7(2):197–207, 2010.

[18] TopQuadrant. TopBraid Composer modeling
environment, 2013.
http://www.topquadrant.com/products/TB Composer.html.

[19] YarcData LLC, a Cray Company. Urika graph-analytic
appliance, 2013. http://yarcdata.com/Products/.

223

A Map-Reduce algorithm for querying linked data based on
query decomposition into stars∗

Christos Nomikos
Department of Computer Science and Engineering

University of Ioannina, Ioannina, Greece
cnomikos@cs.uoi.gr

Manolis Gergatsoulis, Eleftherios Kalogeros, Matthew Damigos
Database & Information Systems Group (DBIS)

Department of Archives, Library Science and Museology
School of Information Science and Informatics

Ionian University, Corfu, Greece
manolis@ionio.gr

ABSTRACT
In this paper, we investigate the problem of efficient query-
ing large amount of linked data using Map-Reduce frame-
work. We assume data graphs that are arbitrarily parti-
tioned in the distributed file system. Our technique focuses
on the decomposition of the query posed by the user, which
is given in the form of a query graph into star subqueries. We
propose a two-phase, scalable Map-Reduce algorithm that
efficiently results the answer of the initial query by comput-
ing and appropriately combining the subquery answers.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—Query Process-
ing ; C.2.4 [Distributed Systems]: Distributed Databases;
D.1.3 [Concurrent Programming]: Distributed program-
ming

General Terms
Algorithms, Theory, Experimentation

Keywords
Linked Data, Graph Querying, Map-Reduce, Distributed
Processing, Cloud Computing, Semantic Web

∗This research was supported by the project “Handling Un-
certainty in Data Intensive Applications”, co-financed by the
European Union (European Social Fund - ESF) and Greek
national funds, through the Operational Program “Educa-
tion and Lifelong Learning”, under the research funding pro-
gram THALES.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

1. INTRODUCTION
Linked data is a widespread method for publishing in-

terlinked data, built upon a standard model used for data
interchange, called RDF. As the amount of linked data is
rapidly increasing the efficient management, analysis, and
hence querying of large amount of linked data has become a
significant challenge in many areas, such as learning analyt-
ics, digital libraries, and other applications analyzing linked
open data. The efficient querying of large amount of data is
also a significant challenge in many other information man-
agement areas, where parallel processing has been proved
particularly effective in manipulating such an amount of
data.

A well-established programming framework used for pro-
cessing and managing large amount of data, in parallel, us-
ing a cluster of commodity machines is Map-Reduce [8].
A popular, open-source implementation is Apache Hadoop
[1]. Boasting a simple, fault-tolerant and scalable paradigm,
Hadoop has been established as dominant in the area of mas-
sive data analysis.

In this paper, we investigate the problem of efficient query-
ing large amount of linked data using Map-Reduce frame-
work, and extend our approach presented in [10]. In particu-
lar, we focus on the decomposition of the query posed by the
user, which is given in the form of a query graph, into star
subqueries and propose a two-phase, scalable Map-Reduce
algorithm that efficiently results the answer of the initial
query. Furthermore, we assume data graphs that are arbi-
trarily partitioned in the distributed file system. The first
phase of our algorithm takes advantage of the star form of
the sub-queries and focuses on evaluating the star subqueries
over the input segments. The results of the sub-queries are
emitted to the second phase, which combines them properly
in order to produce the answers of the initial query.

2. RELATED WORK
During the last decade, the problem of efficiently querying

large data graphs using Map-Reduce framework has been
investigated in many research areas related to information
management [9, 2, 12, 11, 16, 15, 13, 18, 5, 6, 19].

Evaluating SPARQL queries over RDF graphs by paral-
lelizing the processing of the join and selection operators

224

has received much attention [14, 12, 16, 15, 18]. The RDF
triples can be either directly stored in files in the distributed
file system (DFS) or stored in a distibuted database (e.g.,
HBase [16]). In [14], the authors propose an approach where
the query plan is evaluated using a sequence of Map-Reduce
phases. Initially, the relevant RDF triples are selected and
then a sequence of joins is evaluated. Each operator in
the plan is performed within a Map-Reduce phase, while
the evaluation of the query requires multiple Map-Reduce
phases, according to the number of operators of the given
query. In [12] the RDF triples are stored in multiple DFS
files, according to their predicates and objects, while only
the relevant files are read from the DFS for each query. In
H2RDF system [16] data triples are stored in HBase. In or-
der to answer a query, a sequence of joins is executed, which
is obtained in a greedy manner. Other approaches have been
proposed, which translate SPARQL queries to other query
languages, such as JACL ([15]) and PigLatin ([13], [18]). In
addition, [7] provides a detailed experimental analysis and
comparison of the main NoSQL data stores for RDF process-
ing. The systems that are used for storing the data are the
following: Apache HBase, CumulusDB (a RDF data store
built upon Cassandra) and Couchbase; while the 4store was
used as a baseline, native and distributed RDF DBMS. Jena
was used as a SPARQL query engine over HBase and Couch-
base, Hive over HBase and Sesame for CumulusDB.

In [11] and [9], the RDF data has been initially partitioned
in a predefined manner. [11] assumes that the RDF graph is
vertex partitioned and its parts are stored with some triple
replication, to ensure that for small queries, each answer
can be computed using a single part of the graph. Larger
queries are decomposed and the answers to the subqueries
are joined by MapReduce jobs. In HadoopRDF [9], RDF
triples with the same predicate are placed in the same part
of the data graph, which is stored in a traditional triple store,
such as Sesame. Queries are divided in the same way, so that
each subquery can be answered by a single computer-node.
The answers to the subqueries are merged by MapReduce
jobs. The decomposition of the given query is also one of
the main characteristics of our Map-Reduce algorithm pre-
sented in [10]. In that approach, however, the triples could
be arbitrarily partitioned in the DFS and the queries are de-
composed into paths. The proposed Map-Reduce algorithm
evaluates the given query in two phases; one for evaluating
the path subqueries and one for finding the total answers by
combining the results of the subqueries.

The problem of querying large data graphs using Map-
Reduce is also investigated in [2, 19, 6]. J. Cohen in [6]
presents different approaches of finding subgraphs in large
data graphs using Map-Reduce. In [19], the authors focus
on the problem of querying triangles and propose one single-
phase and one two-phase Map-Reduce algorithm for finding
triangles in a graph whose edges have been arbitrarily dis-
tributed in DFS. Afrati et al. [2] investigate the cost of
evaluating query graphs on data graphs using Map-Reduce,
and proposed an approach of translating the graphs into con-
junctive queries which in turn are evaluated in Map-Reduce
using the approach proposed in [3].

Systems for quering RDF data that are distributed over
the web, which adopt query decomposition, have also been
proposed ([17], [4]). DARK [17] uses a service description
language to maintain information about the data stored in
various hosts, and uses these service descriptions for query

planning and optimization. Avalanche [4] has a preprocess-
ing phase that selects a set of candidate host, which are
queried for statistical information. Next, the query exe-
cution phase brakes down the given query into subqueries
(called molecules), which are bound to physical hosts by a
plan generator. This phase terminates, when an adequate
number of solutions have been found.

3. DATA AND QUERY GRAPHS
In this section we introduce the basic notions regarding

our data model. We start with the definition of data and
query graphs:

Definition 1. Let Uso and Up be two disjoint infinite sets
of URI references and let L be an infinite set of (plain) lit-
erals1. An element (s, p, o) ∈ Uso ×Up × (Uso ∪L) is called a
data triple. In a data triple (s, p, o), s is called the subject, p
the predicate and o the object. A data graph is a non-empty
set of data triples. A data graph G′ is a subgraph of a data
graph G if G′ ⊆ G.

Definition 2. Let Uso and Up be two disjoint sets of URI
references, let L be a set of (plain) literals and let V be a
set of variables. An element (s, p, o) ∈ (Uso ∪ V) × Up ×
(Uso ∪ L ∪ V) is called a query triple. A query graph (or
simply a query) is a non-empty set of query triples. The
output pattern O(Q) of a query graph Q is the sequence
(X1, . . . , Xn) of the variables appearing in Q. A query graph
Q′ is a subquery of a query graph Q if Q′ ⊆ Q.

Notice that, queries with variables in the place of pred-
icates are not allowed. The set of nodes nd(G) of a data
graph G consists of all the elements of Uso ∪L that occur in
the triples of G. The set of arc labels al(G) of a data graph
G consist of all the elements of Up that occur in the triples
of G. The set of nodes nd(Q) and the set of arc labels al(Q)
of a query Q are defined in an analogous way.

A class of queries of a special form (namely star queries)
play an important role in this paper.

Definition 3. A query Q is called a star query if there
exists a node c ∈ nd(Q) such that for every triple t ∈ Q it
is either t = (c, p, v) or t = (v, p, c) for some node v ∈ nd(Q)
and some predicate p ∈ al(Q). The node c is called the
central node of Q.

It is convenient to use a graphical representation for data
and query graphs. A node (subject or object) which is ei-
ther a URI or a variable is represented as a rounded rect-
angle while an object which is a literal is represented by a
rectangle. A triple (s, p, o) is represented by an arc from
s to o, labeled with p. Moreover, we adopt the following
conventions: strings with initial lowercase letters represent
predicates, while strings with initial uppercase letters de-
note URIs. Literals are represented as strings enclosed in
double quotes. Finally, variable names begin with the ques-
tion mark symbol (?).

Example 1. Fig. 1 depicts a data graph G and a query
graph Q. ✷

1In this paper we do not consider typed literals

225

(G) (Q)

hasAuthor

Person2

Article1

Person1
Person3

Article2

hasTitle

hasTitle

year year

Journal1

publishedIn
publishedIn

hasAuthor
hasAuthorhasAuthor

“Title1”

“2005”
“2008”

“Title2”

hasSupervisor

hasAuthor

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

“Title3”

year

“2008”

publishedIn

Journal2

?P1

Article1

?P2

hasTitle year

?J

publishedIn publishedIn

hasAuthor hasAuthorhasAuthor

?T “2008”

hasSupervisor

?A

n1

n2

n3

n4

n5

n6

n7

t1

t2

t3

t4

t5
t6t7 t8

Figure 1: An embedding of the query graph Q in the data graph G.

In order to compute the answers to a query Q for a given
data graph G, we need to find an appropriate correspon-
dence between the nodes of Q and the nodes of G. This is
formalized by the notion of embedding, defined as follows:

Definition 4. An embedding of a query graph Q in a data
graph G is a total mapping e : nd(Q) → nd(G) with the
following properties:

1. For each non-variable node v ∈ nd(Q), it is e(v) = v.

2. For each triple (s, p, o) ∈ Q, (e(s), p, e(o)) is in G.

The tuple (e(X1), . . . , e(Xn)), where (X1, . . . , Xn) is the out-
put pattern of Q, is said to be an answer to the query Q.

Example 2. Fig. 1 shows an embedding of the query Q in
data graph G. The answer obtained is (?P1, ?A, ?J, ?P2, ?T)
= (Person2, Article2, Journal1, P erson3, “T itle1”). ✷

4. DATA GRAPH PARTITIONING
Data graphs may consist of a huge number of data triples,

stored in numerous computer nodes. In this section we de-
fine the notion of the partition of a data graph.

Definition 5. A triple partition of a data graph G is a
tuple P = (G1, . . . , Gm) where G1, . . . , Gm ⊆ G, such that⋃

i Gi = G and Gi ∩Gj = ∅, for all i, j, with 1 ≤ i < j ≤ m.
Subgraphs G1, . . . , Gm are called the graph segments.

From the above definition it follows that graph segments
in a triple partition of a graph G cannot share data triples;
however, they may have common nodes.

Definition 6. Let P = (G1, . . . , Gm) be a triple partition
of a data graph G. Then, a border node v of Gi, is a node
that belongs to nd(Gi) ∩ nd(Gj) ∩ Uso for some j 6= i. We
denote by B(Gi) the set of border nodes of Gi.

Example 3. (Continued from Example 2). In Fig. 2 we
see a triple partition of the data graph G of Fig. 1. The
shaded nodes correspond to the border nodes between the
graph segments. Consider now the query graph Q appearing
in the right part of Fig. 2. It is easy to see that we cannot
obtain the solution appearing in Example 2 by finding an
embedding of Q in a segment of G appearing in Fig. 2 (as
such an embedding does not exist). ✷

5. QUERY DECOMPOSITION
In this section we define the notion of query decomposition

and we show how it can be used in order to compute all the
answers to a given query.

Definition 7. A query decomposition of a query graph Q
is a tuple F = (Q1, . . . , Qn) such that Q1, . . . , Qn ⊆ Q and⋃

i Qi = Q. A query decomposition is non-redundant if Qi ∩
Qj = ∅ for each pair i, j such that 1 ≤ i < j ≤ n. A
branching node in Q is a node that belongs to nd(Qi) ∩
nd(Qj) for a pair i, j, where i 6= j. By B(Q) we denote all
branching nodes of Q.

In this paper, our aim is to construct the embeddings of
a query Q in G, by appropriately combining embeddings
of its subqueries in G. Two embeddings can be combined
only in the case that they agree in the values of nodes that
are common in the corresponding subqueries. The above
requirement is formalized by the following definition:

Definition 8. Let Q1, Q2 be two query graphs and let e1,
e2 be embeddings of Q1, Q2 respectively in a data graph
G. We say that e1 and e2 are compatible if for every v ∈
nd(Q1) ∩ nd(Q2) it is e1(v) = e2(v). The join of e1 and e2

is the embedding e of Q1 ∪ Q2 in G defined as follows:

e(v) =

{
e1(v) if v ∈ nd(Q1)
e2(v) otherwise

It is not hard to see that the join operation is commutative
and associative. Therefore, we can refer to the embedding
resulting by the join of n mutually compatible embeddings
without ambiguity. The following theorem can be easily
proved by an induction on the number n of subqueries in
the decomposition of a query Q.

Theorem 1. Let F = (Q1, . . . , Qn) be a query decompo-
sition of a query graph Q and let G be a data graph. Then e
is an embedding of Q in G if and only if there exist mutually
compatible embeddings e1, . . . , en of Q1, . . . , Qn in G such
that the join of e1, . . . , en is e.

The above theorem implies that in order to compute the
answers to a given query for a data graph G, we can decom-
pose the query into subqueries that belong to a certain class

226

(G1)
Article1

hasTitle year

“Title1” “2005”

Person2

Article1

Person3

Article2

hasAuthor

hasAuthor

hasAuthor

hasSupervisor

Article1

Article2

hasTitle
year

Journal1

publishedIn

publishedIn

“2008”

“Title2”

(G2)

(G3)

(G)

hasAuthor

Person4
hasAuthor

Person2

Article1

Person1

Person3

hasTitle
hasTitle

year year

Journal1

publishedIn
publishedIn

hasAuthor
hasAuthorhasAuthor

“Title1”

“2005”
“2008”

“Title2”

hasSupervisor

hasAuthor

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

“Title3”

year

“2008”

publishedIn

Journal2

Article2

hasAuthor

Person1

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

“Title3”

year

“2008”publishedIn

Journal2

Figure 2: triple partition of the data graph G of Fig. 1.

C, compute the embeddings of the subqueries in G (which
may be an easier task due to the special form of the sub-
queries) and then join these embedding to obtain the desired
result. However, given a target class of queries C, it may not
be always possible to decompose an arbitrary query Q into
subqueries that belong to C (for example this is the case if
C is the class of path queries of length 3). Nevertheless, for
every query there exist a non-redundant decomposition into
star subqueries. This follows trivially from the fact that ev-
ery query that consists of a single triple is a star query (with
either the subject or the object being the central node). We
next present a more general result, relating the decompo-
sitions of a query graph into star subqueries to the node
covers of this query graph.

Definition 9. Let Q be a query graph. A set of nodes
V ⊆ nd(Q) is called a node cover of Q if for every triple
(s, p, o) ∈ Q, it is either s ∈ V or o ∈ V . A node cover V is
minimal if no proper subset of V is a node cover.

Lemma 1. Let Q be a query graph and let V = {v1, . . . vk}
be a minimal node cover of Q. For each vi define the star
query Qvi = {t ∈ Q | t = (s, p, vi)} ∪ {t ∈ Q | t =
(vi, p, o) and o /∈ V }. Then F = (Qv1 , . . . , Qvk) is a non-
redundant decomposition of Q.

Therefore, if a set of nodes is a minimal node cover of a
query Q, then its elements are the central nodes of the star
subqueries in some non-redundant decomposition of Q.

Conversely, in any decomposition (redundant or not) of a
query into stars, the set of the central nodes is a node cover
(not necessarily minimal).

Lemma 2. Let Q be a query graph, let F = (Q1, . . . , Qk)
be a decomposition of Q such that Q1, . . . , Qk are star queries
and let c1, . . . , ck be their central nodes. Then {c1, . . . , ck}
is a node cover of Q.

Example 4. In Fig. 3 we see a decomposition of the query
Q into three star queries Q1, Q2 and Q3, which is obtained
by the construction of Lemma 1, using the minimal node
cover {n4, n2, n5} of Q. ✷

To summarize, suppose that a data graph G is partitioned
into m segments G1, . . . , Gm, that are stored in different
computer nodes. The above discussion suggests the follow-
ing query evaluation strategy:
Step 1: Decompose query Q into star subqueries Q1, . . . , Qn.
Step 2: Compute all possible embeddings of each triple in
Q in every segment Gi of G.
Step 3: For each subquery Qj , collect the embeddings of all
triples in Qj and join compatible embeddings in all possible
ways to compute the embeddings of Qj in G.
Step 4: Join compatible embeddings Q1, . . . , Qn in all pos-
sible ways to compute the embeddings of Q in G.

6. A MAP-REDUCE ALGORITHM
We start this section with a brief presentation of the Map-

Reduce framework. Then, we give a detailed description of
our algorithm for quering linked-data using Map-Reduce.

6.1 The MapReduce framework
Map-Reduce is a programming framework for processing

large datasets in a distributed manner, using a cluster of
commodity machines. The storage layer for the Map-Reduce
framework is a Distributes File System (DFS), such as the
Hadoop Distributed File System (HDFS). The DFSs differ
from conventional file systems in three main aspects. First,
the data files are distributed across the nodes of the cluster.
Second, their block/chuck size (typically 16-128MB in most
of DFSs) is much larger than those in conventional file sys-
tems. Third, replication of chunks in relatively independent
locations ensures availability.

The framework is based on the definition of two functions,
the Map and the Reduce function. In particular, the user
defines the two functions, which run in each cluster node, in
isolation. The map function is applied to one or more files, in
DFS, and results [key,value] pairs. This process is called
Map process/task. The nodes that run the Map processes are
called Mappers, and may run multiple tasks over different
input files. The master controller is responsible to route the
pairs to the Reducers (i.e., the nodes that apply the reduce
function to the pairs) such that all pairs with the same key

227

(Q)

?P1

Article1

?P2

hasTitle year

?J

publishedIn publishedIn

hasAuthor hasAuthorhasAuthor

?T
“2008”

hasSupervisor

?A

n1

n2

n3

n4

n5

n6 n7

t1 t2

t3

t4

t5
t6t7 t8

(Q1)

?P1

Article1

hasTitle

?J

publishedIn

hasAuthor

?T

(Q2)

?P1

year

?J

publishedIn

hasAuthor

“2008”

?A

?P1

?P2

hasAuthor

hasSupervisor

?A

(Q3)

n1

n1 n1

n2

n2
n3

n3

n4

n5

n6

n7

t1

t7 t8

t2

t5 t6

t3

t4

Figure 3: Query decomposition.

initialize a single reduce process, called reduce task. The
reduce tasks apply the reduce function to the input pairs and
also results [key,value] pairs, which are eventually stored
in the DFS. This procedure describes one MapReduce phase.
Furthermore, the output of the reducer can be set as the
input of a map function, which gives the user the flexibility
to create workflows consisting of Map-Reduce phases.

6.2 The preprocessing phase
In this phase query Q is decomposed into a set of star sub-

queries Q1, . . . , Qn. For each subquery Qi, a query proto-
type of the form (bnF lags, nbnF lags, tF lags) is constructed,
where bnF lags, nbnF lags and tF lags have one place for
each branching node, non-branching node, and triple in Q,
respectively. If an element (node or triple) occurs in Qi, then
the corresponding place in the query prototype contains a
“+”, otherwise it contains a “-”. Moreover, an auxiliary list
NBL = [(bi, Qj)| bi ∈ B(Q) and bi 6∈ nd(Qj)] is constructed.

Preprocessing phase emits the above to the mappers of
Phase 1 with key the pair (subqueryID, SegmentID). NBL
is also emitted to all reducers of Phase 1.

For the presentation of the algorithm we assume an enu-
meration n1, n2, . . . , n|nd(Q)| of the nodes of a query Q, such
that n1, n2, . . . , n|B(Q)| are the branching nodes of Q and
n|B(Q)|+1, . . . , n|nd(Q)| are the non-branching nodes of Q.
We will denote by I the function that gives the index of a
node in nd(Q) with respect to the above enumeration (that
is, for every x ∈ nd(Q) it holds x = nI(x)). We also denote
by Inb the function from nd(Q) − B(Q) to {1, . . . , |nd(Q) −
B(Q)|}, with Inb(x) = I(x) − |B(Q)|. Similarly, we assume
a an enumeration t1, t2, . . . , t|Q| of the triples in Q.

An embedding e of a (sub)query is represented as a pair of
tuples (bn, nbn). If x is a branching (resp. non-branching)
node, then bn[I(x)] (resp. nbn[Inb(x)]) contains the value
e(x). If e is an embedding of a subquery Qi and x is a node
that does not occur in Qi, then an asterisk (’*’) is stored in
the place of e(x).

Example 5. Consider the query graph appearing in Fig.
3 decomposed into three star subqueries. The branching
nodes are n1, n2 and n3, while the non-branching nodes are
n4, n5, n6 and n7. The query prototypes are the following:
Q1: (〈+, ,+〉, 〈+, ,+, 〉, 〈+, , , , , ,+,+〉)
Q2: (〈+,+,+〉, 〈 , , ,+〉, 〈 ,+, , ,+,+, , 〉)
Q3: (〈+,+, 〉, 〈 ,+, , 〉, 〈 , ,+,+, , , , 〉)
The list NBL = [(n2, Q1), (n3, Q3)] is also constructed. ✷

6.3 Phase 1 of the algorithm
The first phase of the algorithm computes the embeddings

of the star subqueries Q1, . . . , Qn in G.

6.3.1 Mapper of Phase 1
Each mapper gets as input a graph segment Gj , a star

subquery Qi and the NBL list. We denote by ci the central
node of Qi (recall that this node appears in every triple
of Qi). The operation of the mapper is divided into two
parts. Observe that if for some embedding e of Qi in G
the value of ci is a non-border node of Gj (i.e., is e(ci) ∈
(nd(Gi) − B(Gi))), then it holds e(v) ∈ Gj for every node
v ∈ nd(Qi). This means that e is an embedding of Qi into
Gj and it can be computed locally. This computation is
performed by the second part of the mapper.

The first part of the mapper handles the information that
is relevant to the remaining embeddings: it computes all the
embeddings of each triple of Qi in Gj that map the central
node ci to a border node, and emits the results to appropriate
reducers. More specifically, let t = (s, p, o) be a triple that
belongs to subquery Qi and let e be an embedding of t into
Gj such that e(ci) is a border node of Gj . If the central
node of Qi is s then the mapper emits a pair (key, value),
where key = (Qi, e(s)) and value = (o, e(o)). Otherwise
(i.e., the central node of Qi is o) then key = (Qi, e(o)) and
value = (s, e(s)).

Notice that embeddings of triples in Qi that map ci to dif-
ferent nodes of the data graph are incompatible and cannot
be joined to obtain an embedding of Qi into G. Since the
value of ci is included in the key, incompatible embeddings
of triples are emitted to different reducers, while compatible
embeddings are emitted to the same reducer.

The second part of the mapper, computes all the embed-
dings of Qi in Gj , which map ci to a non-border node of
Gj . This can be achieved either by adding an appropriate
conjunct to Qi, or by computing all the embeddings of Qi

in Gj and then removing those that assign border nodes to
ci. The embedings computed in the second part of the map-
per are directly emitted to the mappers of Phase 2 (rather
than to the reducers of Phase 1). Similarly, the values of
branching nodes are emitted to the mappers of Phase 2.

mapper1((Qi, Gj), (GjData, B(GjData), subqueryInfo, NBL))
//(Qi,Gj): Qi/Gj is the ID of a subquery/data segment
// GjData: the content of the data graph segment Gj

// B(GjData): the set of border nodes of Gj

// SubqueryInfo: prototypes/branching & non-branching nodes
/triples of Q

// NBL: the list of missing branching nodes
begin

- ci := the central node of Qi

% Part 1
- for each triple t = (ci, p, o) in Qi do

begin
- compute E = {e | e is an embedding of {t} in GjData

228

and e(ci) ∈ B(GjData) };
- for each embedding e in E do

emit([(Qi, e(ci)),(o, e(o))])
end

- for each triple t = (s, p, ci) in Qi do
begin

- compute E = {e | e is an embedding of {t} in GjData
and e(ci) ∈ B(GjData) };
- for each embedding e in E do

emit([(Qi, e(ci)),(s, e(s))])
end

% Part 2
- compute E = {e | e is a embedding of Qi in GjData

and e(ci) /∈ B(GjData) }
- for each embedding e = (bn, nbn) in E do

begin
- emitToSecondPhase([Qi, (bn, nbn)]);
- for k = 1 to |bn| do

- if (bn[k] != ’*’) then
- for each (nk, Qj) in NBL do

- emitToSecondPhase([Qj , (nk, bn[k])]);
end

end.

Example 6. (Continued from Example 5). In this exam-
ple we see the application of the mapper1 on the pairs of
subqueries and graph segments:
Applying mapper1 on (Q1, G1) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q1, Article1), (n1, P erson4) (embedding of t1)
(Q1, Article1), (n6, “T itle1”) (embedding of t7)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q2, G1) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q2, Article1), (n1, P erson4) (embedding of t2)
Besides, the following key, value pairs are emitted directly
(see Part 2) to the mapper2 (mapper of Phase 2):
Q2, (〈Person4, Article3, Journal2〉, 〈∗, ∗, ∗, “2008”〉)
Q1, (n2, Article3)
Q3, (n3, Journal2)
Applying mapper1 on (Q3, G1) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q3, P erson4), (n2, Article1) (embedding of t4)
(Q3, P erson4), (n2, Article3) (embedding of t4)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q1, G2) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q1, Article1), (n1, P erson1) (embedding of t1)
(Q1, Article1), (n1, P erson2) (embedding of t1)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q2, G2) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q2, Article1), (n1, P erson1) (embedding of t2)
(Q2, Article1), (n1, P erson2) (embedding of t2)
(Q2, Article2), (n1, P erson2) (embedding of t2)
(Q2, Article2), (n1, P erson3) (embedding of t2)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q3, G2) results in no emission of
any key, value pair to the reducer1. However, the following
key, value pairs are emitted (see Part 2) to the mapper2 :
Q3, (〈Person4, Article1, ∗〉, 〈∗, P erson1, ∗, ∗〉)
Q3, (〈Person2, Article2, ∗〉, 〈∗, P erson3, ∗, ∗〉)
Q1, (n2, Article1)
Q1, (n2, Article2)
Applying mapper1 on (Q1, G3) results in emission of the
following key, value pair to the reducer1 :
(Q1, Article1), (n3, Journal1) (t8)

No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q2, G3) results in emission of the
following key, value pair to the reducer1 :
(Q2, Article1), (n3, Journal1) (t5)
(Q2, Article2), (n3, Journal1) (t5)
(Q2, Article2), (n7, “2008”) (t6)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q3, G3) produces no results. ✷

6.3.2 Reducer of Phase 1
For each key (Qi, v) the corresponding reducer computes

all the embeddings of Qi that map central node ci of Qi to
v. The input to this reducer is a list of pairs of the form
(nk, u), where nk is a node of Qi different from ci and u is
a possible values for nk in an embedding of Qi in G.

Suppose that nk1 , nk2 , . . . , nkm are the non-central nodes
in Qi. The reducer constructs for every j = 1, . . . , m a set
Lkj of all possible values for node nkj . Then for each element
(x1, x2, . . . , xm) of the cartesian product Lk1 × Lk2 × · · · ×
Lkm it constructs an embedding e = (bn, nbn) of Qi in G,
such that e(ci) = v and e(nkj) = xj and emits (Qi, (bn, nbn))
(see Subsection 6.2 for the representation of an embedding).

Moreover, if every list Lk1 , Lk2 , . . . , Lkm is non-empty
(that is, at least one embedding of Qi has been found), re-
ducer1 emits the values of missing branching nodes.

reducer1((Qi, v), values)
// Qi: a subquery ID
// v: the value of the central node of Qi

// values: contains a list of pairs (x, u) and the NBL list.
begin

- allNonEmpty := true
- for each non-central node x in Qi do

begin
- L[x] := {u | (x, u) ∈ values}
- if L[x] is empty then allNonEmpty := false

end
- if allNonEmpty then

begin
- create an embedding with undefined values

(bn, nbn) := (〈∗, . . . , ∗〉, 〈∗, . . . , ∗〉)
- ci := the central node of Qi

- L[ci] := {v}
- if ci is a branching node

then bn[I(ci)] := v
else nbn[Inb(ci)] := v

- E := {(bn, nbn)}
- for each non-central node x in Qi do

begin
- E′ := ∅
- for each e in E do

- for each u in L[x] do
begin

- create a copy e′ = (bn′, nbn′) of e
- if x is a branching node

then bn′[I(x)] := u
else nbn′[Inb(x)] := u

- insert (bn′, nbn′) in E′

end
- E := E′

end
- for each embedding e = (bn, nbn) in E do

- emit([Qi, (bn, nbn)])
- for each (x, Qj) in NBL do

- if x is a node in Qi then
- for each u in L[x] do emit([Qj , (x, u)])

end
end.

Example 7. (Continued from Example 6).
The reducer with key (Q1, Article1) receives the list of values

229

[(n1, P erson4), (n6, “T itle1”), (n1, P erson1), (n1, P erson2),
(n3, Journal1)]. It constructs the lists: Ln1 = {Person1,
P erson2, P erson4}, Ln3 = {Journal1}, Ln6 = {“T itle1”}.
It emits the following key, value pairs:
Q1, (〈Person1, ∗, Journal1〉, 〈Article1, ∗, T itle1, ∗〉)
Q1, (〈Person2, ∗, Journal1〉, 〈Article1, ∗, T itle1, ∗〉)
Q1, (〈Person4, ∗, Journal1〉, 〈Article1, ∗, T itle1, ∗〉)
Q3, (n3, Journal1)
The reducer with key (Q2, Article1) receives the list of values
[(n1, P erson4), (n1, P erson1), (n1, P erson2), (n3, Journal1)].
It constructs the lists: Ln1 = {Person1, P erson2, P erson4},
Ln3 = {Journal1}, Ln7 = {}. Nothing is emitted.
The reducer with key (Q2, Article2) receives the list of values
[(n1, P erson2), (n1, P erson3), (n3, Journal1), (n7, “2008”)].
It constructs the lists: Ln1 = {Person2, P erson3}, Ln3 =
{Journal1}, Ln7 = {“2008”}.
It emits the following key, value pairs:
Q2, (〈Person2, Article2, Journal1〉, 〈∗, ∗, ∗, “2008”〉)
Q2, (〈Person3, Article2, Journal1〉, 〈∗, ∗, ∗, “2008”〉)
Q1, (n2, Article2)
Q3, (n3, Journal1)
The reducer with key (Q3, P erson4) receives the list of values
[(n2, Article1), (n2, Article3)]. It constructs the lists: Ln1 =
{}, Ln2 = {Article1, Article3}. Nothing is emitted. ✷

6.4 Phase 2 of the algorithm
Phase 2 of the algorithm is similar to the Phase 2 of the

algorithm proposed in [10].

6.4.1 Mapper of Phase 2
Each mapper gets as input all the embeddings of a specific

subquery Qi; moreover for each branching node that does
not occur in Qi it gets as input the values assigned to this
node by the embeddings of the other queries. It fills in their
missing branching node values using the corresponding val-
ues in the input, and emits the resulted embeddings to the
reducers of Phase 2. The key is the tuple of the branching
node values, which implies that two embeddings are emitted
to the same reducer if and only if they are compatible.

mapper2(Qi, values)
// Qi: the ID of a subquery
// values: a set E of the parts (bn, nbn) of the embeddings
// of Qi and a set V of pairs (nk, v),
// where v is a candidate value for bn[k]
begin

- for each embedding e = (bn, nbn) in E do
- for each instance bn′ of bn using the values in V do

- emit([bn′, (Qi, nbn)])
end.

Example 8. (Continued from Example 7). The mapper
that works for the subquery Q1, gets a list of values that
contain the embeddings of Q1 in G:
Q1, (〈Person1, ∗, Journal1〉, 〈Article1, ∗, T itle1, ∗〉)
Q1, (〈Person2, ∗, Journal1〉, 〈Article1, ∗, T itle1, ∗〉)
Q1, (〈Person4, ∗, Journal1〉, 〈Article1, ∗, T itle1, ∗〉)
and the values of missing branching nodes:
(n2, Article1), (n2, Article2), (n2, Article3)
It emits the following key, value pairs to the reducers of
Phase 2:
〈Person1, Article1, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
〈Person1, Article2, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
〈Person1, Article3, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
〈Person2, Article1, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)

〈Person2, Article2, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
〈Person2, Article3, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
〈Person4, Article1, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
〈Person4, Article2, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
〈Person4, Article3, Journal1〉, (Q1, 〈Article1, ∗, T itle1, ∗〉)
The mapper that works for the subquery Q2, receives a list
of values containing the following embeddings
Q2, (〈Person4, Article3, Journal2〉, 〈∗, ∗, ∗, “2008”〉)
Q2, (〈Person2, Article2, Journal1〉, 〈∗, ∗, ∗, “2008”〉)
Q2, (〈Person3, Article2, Journal1〉, 〈∗, ∗, ∗, “2008”〉)
Notice that Q2 has no missing branching nodes. The mapper
emits the following key, value pairs to the reducers:
〈Person4, Article3, Journal2〉, (Q2, 〈∗, ∗, ∗, “2008”〉)
〈Person2, Article2, Journal1〉, (Q2, 〈∗, ∗, ∗, “2008”〉)
〈Person3, Article2, Journal1〉, (Q2, 〈∗, ∗, ∗, “2008”〉)
The mapper that works for the subquery Q3, get a list of
values that contain the embeddings of Q3 in G:
Q3, (〈Person4, Article1, ∗〉, 〈∗, P erson1, ∗, ∗〉)
Q3, (〈Person2, Article2, ∗〉, 〈∗, P erson3, ∗, ∗〉)
and the values of missing branching nodes:
(n3, Journal1), (n3, Journal2)
It emits the following key, value pairs to the reducers:
〈Person4, Article1, Journal1〉, (Q3, 〈∗, P erson1, ∗, ∗〉)
〈Person4, Article1, Journal2〉, (Q3, 〈∗, P erson1, ∗, ∗〉)
〈Person2, Article2, Journal1〉, (Q3, 〈∗, P erson3, ∗, ∗〉)
〈Person2, Article2, Journal2〉, (Q3, 〈∗, P erson3, ∗, ∗〉) ✷

6.4.2 Reducer of Phase 2
Each reducer gets as input embeddings for each sub-query

that are compatible (each one of them assigns the values in
the key of the reducer to the branching nodes of the query).
The embeddings (one for each subquery in (Q1, . . . , Qn)) are
joined to construct the final answers of Q:

reducer2(key, values)
// key: a tuple of branching node values
// values: pairs of the form

(Qi, partial embedding for non-branching nodes)
begin

- for each join obtained by using one
embedding for each subquery do

- Emit the result produced by this join
end.

Example 9. (Continued from Example 8). The reducer
with key 〈Person2, Article2, Journal1〉 receives the list of
values [(Q1, 〈Article1, ∗, T itle1, ∗〉), (Q2, 〈∗, ∗, ∗, ”2008”〉),
(Q3, 〈∗, P erson3, ∗, ∗〉)] and constructs the unique embed-
ding of Q in G:
(〈Person2, Article2, Journal1〉,
〈Article1, P erson3, T itle1, “2008”〉)

The remaining 11 reducers do not return any answer (they
don’t receive values for at least one subquery). ✷

6.5 Implementation of the algorithm and ex-
perimental results

In this section, we present a set of preliminary experi-
ments performed on a Hadoop cluster of 14 nodes of the
following characteristics: Intel Pentium(R) Dual-Core CPU
E5700 3.00GHz with 4GB RAM. We used five different
datasets of sizes 113.6MB, 231.6MB, 491.5MB, 1.2GB, and
2.5GB obtained and adapted from the Lehigh University
Benchmark (LUBM)2. These data sets are partitioned into

2http://swat.cse.lehigh.edu/projects/lubm/

230

four, nine or fourteen data segments in correspondence with
the number of the nodes of the cluster used in the exper-
iment. Data segments are stored in different nodes of the
cluster, in relational MySQL databases, whose schema con-
sists of two tables one containing the triples of the segment
and the other containing the border nodes.

The results of the first experiment are depicted in Table 1,
where we can see that the algorithm is scalable in terms of
the dataset size. In addition, the degree of the star (i.e. the
number of the triples in the star) also affects the execution
time: the larger the degree the smaller the execution time.
The results of the second experiment (depicted in Table 2)

Dataset stars of Stars of Stars of Num of
size degree 6 degree 3 degree 2 Answers

113.6MB 190 219 254 93
231.6MB 212 258 280 189
491.5MB 310 369 459 402
1.2GB 650 689 727 999
2.5GB 1149 1200 1261 2007

Table 1: Execution times (in seconds) for three dif-
ferent star-decompositions of a query in three dif-
ferent datasets, using a cluster of 14 nodes.

show that our algorithm scales well by increasing the number
of nodes in the cluster. In this experiment, the same queries
have been computed (using the same star-decompositions)
in 4, 9 and 14 computer nodes, for a fixed data set of size
231.6MB. Finally, the results of third experiment, depicted

nodes stars of stars of stars of
degree 6 degree 3 degree 2

4 278 322 343
9 271 309 316
14 212 258 280

Table 2: Execution times (in seconds) for three dif-
ferent star-decompositions of a query in a dataset of
size 231.6MB, using clusters of 4, 9, and 14 nodes.

in Table 3, show that the algorithm of this paper performs
better in most cases (depending on the form of the given
query) than the algorithm proposed in [10].

Alg. query1 query2 query3 query4 query5

[10] 8,24 9,44 9,03 10,37 5,06
this 4,27 5,45 5,25 11,53 5,59

Table 3: Execution times (in minutes) of two algo-
rithms for five different queries, in a dataset of size
491,5MB, using a cluster of 14 nodes.

7. CONCLUSION
In this paper, we present a two-phase MapReduce algo-

rithm, for querying large amount of linked data, that extends
our approach in [10]. The input query is decomposed into
star subqueries and the answers to these subqueries are com-
puted and joined to obtain the answers to the given query.
Experimental evaluation shows that the algorithm is scal-
able in terms of the size of the data graph as well as the
number of nodes in the cluster. In the near future we plan
to compare the performance of the algorithm for different
methods for decomposition of the input query into stars.

8. REFERENCES
[1] Apache Hadoop Project. http://hadoop.apache.org/.

[2] F. N. Afrati, D. Fotakis, and J. D. Ullman.
Enumerating subgraph instances using map-reduce. In
ICDE, pp. 62–73, 2013.

[3] F. N. Afrati and J. D. Ullman. Optimizing multiway
joins in a map-reduce environment. IEEE Trans.
Knowl. Data Eng., 23(9):1282–1298, 2011.

[4] C. Basca and A. Bernstein. Avalanche: Putting the
spirit of the web back into semantic web querying. In
CEUR Workshop, 2010.

[5] M. Bröcheler, A. Pugliese, and V. S. Subrahmanian. A
budget-based algorithm for efficient subgraph
matching on huge networks. In ICDE Workshops, pp.
94–99, 2011.

[6] J. Cohen. Graph twiddling in a mapreduce world.
Computing in Science and Engg., 11(4):29–41, 2009.

[7] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. T.
Groth, A. Haque, A. Harth, F. L. Keppmann, D. P.
Miranker, J. Sequeda, and M. Wylot. Nosql databases
for rdf: An empirical evaluation. In International
Semantic Web Conference (2), pp. 310–325, 2013.

[8] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[9] J.-H. Du, H. Wang, Y. Ni, and Y. Yu. HadoopRDF: A
scalable semantic data analytical engine. In ICIC (2),
pp. 633–641, 2012.

[10] M. Gergatsoulis, C. Nomikos, E. Kalogeros, and
M. Damigos. An algorithm for querying linked data
using map-reduce. In Globe, pp. 51–62, 2013.

[11] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB,
4(11):1123–1134, 2011.

[12] M. F. Husain, L. Khan, M. Kantarcioglu, and B. M.
Thuraisingham. Data intensive query processing for
large RDF graphs using cloud computing tools. In
CLOUD, pp. 1–10. IEEE, 2010.

[13] P. Mika and G. Tummarello. Web semantics in the
clouds. IEEE Intelligent Systems, 23(5):82–87, 2008.

[14] J. Myung, J. Yeon, and S. goo Lee. SPARQL basic
graph pattern processing with iterative mapreduce. In
MDAC, ACM, 2010.

[15] Z. Nie, F. Du, Y. Chen, X. Du, and L. Xu. Efficient
SPARQL query processing in mapreduce through data
partitioning and indexing. In APWeb, pp. 628–635,
2012.

[16] N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2RDF: adaptive query processing on
RDF data in the cloud. In WWW (Companion
Volume), pp. 397–400. ACM, 2012.

[17] B. Quilitz and U. Leser. Querying distributed rdf data
sources with sparql. In ESWC, pp. 524–538, 2008.

[18] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen.
Pigsparql: mapping SPARQL to pig latin. In SWIM,
2011.

[19] S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. In WWW, pp. 607–614, 2011.

231

Performance optimization for querying social network data
Florian Holzschuher

iisys – Hof University
Alfons-Goppel-Platz 1,
95183 Hof, Germany
+49 9281 409 6214

florian.holzschuher@iisys.de

René Peinl
iisys – Hof University
Alfons-Goppel-Platz 1
95183 Hof, Germany
+49 9281 409 4820

rene.peinl@iisys.de

ABSTRACT
In this paper, we report about benchmark experiments and results

from optimizing database connectivity for querying social net-

working data from Apache Shindig in a Neo4j database. We built

on our experiments from [1] and tried to improve performance of

the current RESTful http connection in comparison to JDBC in

order to fully utilize performance benefits of the graph database

compared to relational database management systems. We imple-

mented a database driver based on WebSockets. We found that

BSON is a better data transfer format than JSON and compression

increases performance in some settings while decreasing it in

others. Multiple WebSocket connections are needed to scale to a

high number of client requests and fully utilize database perfor-

mance. Multi-threading is another key factor for scalability. Im-

plementing a kind of stored procedure, we were able to further

increase throughput and decrease response times.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems - Query processing

General Terms

Performance, Experimentation.

Keywords

Graph query processing, social networks, performance optimiza-

tion, WebSocket, graph database

1. INTRODUCTION
Graph databases are a viable alternative to relational systems and

perform especially well in domains like chemistry, biology and

social networking [9]. In [1] we proved Neo4j to be a superior

database backend for Apache Shindig compared to the existing

JPA backend and MySQL. However, it seemed that RESTful http

connections between client and server perform much worse than

the TCP-based, permanent JDBC connection for JPA. RESTful

http is a common choice for a NoSQL database, since it facilitates

access from all programming languages that are able to use http

and you don’t have to provide drivers for every single language.

CouchDB, Riak and AllegroGraph are examples of NoSQL data-

bases using REST as their primary interface (see nosql-

database.org). On the other hand, there had to be good reasons for

computer engineers some ten years ago to put considerable efforts

into connection pooling and similar optimization strategies for

JDBC and other database connectivity technology [12, 13, 14].

Therefore, we decided to proceed with our performance analysis

and investigate different options for connecting the Neo4j

backend to Shindig with a WebSocket-based driver (see Figure 1).

Our goal was to identify performance tuning factors for the graph

database connection, while keeping the graph query language

itself stable.

The remainder of the paper is structured as follows. We first

discuss related work, especially other benchmarking approaches

for graph databases of the last two years. Then we present the

benchmark setup, discuss the relationship to previous results and

compare performance of our WebSocket approach to embedded

Neo4j and Cypher over RESTful http. We continue exploring the

impact of different data transport formats and compression on

performance and perform a detailed analysis of time measure-

ments. As a last step, we present results from multi-threading,

clustering and multiple connections before discussing limitations,

future work and finishing with a conclusion.

2. Benchmark setup
Sample data and queries were the same as in our first published

benchmarks in [1]. To briefly sum up, our sample data set covers

a typical Web 2.0 intranet social networking portal and contains

2011 people, 26,982 messages, 25,365 activities, 2000 addresses,

200 groups and 100 organizations. The XML file generated is 45

MB in size and contains 1.5 million lines of text. Parsed into

Neo4j, this set generates around 83,500 nodes and about 304,000

relationships, consuming just over 40 MB of disk space. On aver-

age, a person has 25 friends, at least 1 and a maximum of 667

resulting in about 25,000 friendship relations in total. 90% of

people have less than 65 friends whereas the median is at 12

friends. We did not use the larger datasets with more people,

activities and messages used in [1], since our tests generated

enough data already and no significant differences were expected.

We used the same 19 queries as in [1]. They are described briefly

and categorized in the appendix. Due to space restrictions, we

limited the diagrams to a subset.

In contrast to our first paper [1] we did not use VMs but physical

hardware this time. The client with Apache Shindig was running

on a server with AMD Opteron 870 CPUs (2 GHz) with 8 cores

altogether and 32GB DDR RAM (400 MHz). Neo4j was running

on one to five nodes with Intel Xeon X5355 CPUs (2,66 GHz)

with 8 cores altogether and 32GB DDR2 RAM (667 MHz). All

servers had a Gigabit network connection and a RAID 0 hard disk,

but benchmarks ran completely in memory due to a warm-up that

filled the caches. Monitoring data confirmed that there was less

than one disk I/O operation per second in all benchmarks.

Our software consists of a client and a server part with a Web-

Socket connection in between (see Figure 1). Our benchmark

client is based on Apache Shindig 2.5u1, the OpenSocial refer-

ence implementation, and creates the queries (step 1). This step

also includes serialization of the query. This serialized query is

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

232

then transferred to the server using a pre-existing WebSocket

connection (step 2). The connection is permanent and does not

have to be established and closed for every single query, which is

a major improvement compared to RESTful http. The server

receives the query, deserializes it and executes it against the em-

bedded Neo4j server (step 3). The driver (server part) and Neo4j

database are running within the same process.

Figure 1: process of query execution

Once results from Neo4j are available, they are converted into a

transferable structure (step 4). This step does not include serializa-

tion, but mainly consists of fetching additional data, since Neo4j

always uses lazy loading of results. We are forcing the database to

load all data, before transferring it to the client. Results are then

serialized and transferred back over the network (step 5). These

two steps were initially performed by the WebSocket library in

one call that does both transmission and serialization using a

previously defined converter class. We separated this later on in

order to make better use of multi-threading for serialization. Final-

ly, results are converted from the system independent transfer

format to Shindig’s object structure (step 6).

We were using Neo4j 1.9.4 as a graph database, OpenJDK 7u25

as a runtime environment, Glassfish Tyrus WebSocket library

1.2.1, json.org 20090211 and MongoDB BSON serializer 2.11.2.

All servers were running Ubuntu 12.04 LTS 64 bit.

We measured response times with System.nanoTime(). “On mod-

ern hardware and operating systems, it can deliver accuracy and

precision in the microsecond range. Conclusion: for benchmark-

ing, always use System.nanoTime …” [9]. This is important, since

many of our measured values are in the range of one millisecond

or even below. One reason for moving from VMs to physical

servers is the reliability of this measuring instrument, which only

seems given for physical hardware. In order to collect network

load, CPU load and memory usage, we used Monitorix1 and modi-

fied it in order to increase time resolution from one minute to five

seconds, since some of our tests only ran for two minutes.

3. Related work
In [1], we reported about our data generator for social networking

data and performance comparison of several query languages.

Although we did not pay so much attention to correlation, our

graph data generator follows a similar approach as [17]. We used

dictionaries with real names, geographies, friendship networks

and groups [1]. However, we did not intend to create big data at

TB scale, but concentrate on intranet scenarios, i.e. medium to

large organizations with a few thousand employees.

Although we did not crawl the data, but used the Stanford Large

Network Dataset Collection as a basis instead, we followed a

procedure similar to [7]. We also created a subset from a larger

amount of available data that has no references regarding friend-

ship or authorship pointing to entities outside the dataset. In addi-

tion to tweets (which we call messages), we are using activities

like “Person x commented document y in System z”, or “Person a

1 http://www.monitorix.org/

rated activity b with three stars in System c”. We also coinci-

dentally use the same number of queries (19) for benchmarking,

although those of [7] are analytical queries, whereas our own are

operational queries used in Shindig. They are for example used to

display the user profile of a person, display an activity stream or

suggest interesting colleagues for “friendship” formation. [7]

roughly classify queries in three categories, i.e. “social network

queries, timeline queries, and hotspot queries”. We had something

similar and titled our query categories after the respective Shindig

services group, person, message, activity and graph service.

Graph service might be a misleading name, since all our queries

are graph-oriented. These queries are for friend-of-a-friend (foaf)

display, detection of shortest path between two people as well as

friend and group suggestions. However, this doesn’t seem to

describe queries well enough. [2] go further than that as part of

the LDBC project and perform classification based on query

characteristics. They introduce the categories select, adjacency,

reachability, summarization and pattern matching. This seems to

enhance traceability and we therefore tried to categorize our que-

ries in the same manner (see appendix). However, assignment is

not always clear since several queries have more than one of the

properties described in one category. [3] also classify queries

regarding basic operations involved and name especially a) point

reads (based on primary key), b) CRUD operations based on

primary key, c) association range queries for ID, type and

timestamp range ordered from latest to oldest and d) association

count queries, e.g. number of friends. Our own query mix includes

(a), e.g. selective message read, (c), e.g. people’s friends activities

and (d), although we usually fetch friend count together with top x

friends. We do not benchmark write, update or delete operations.

The most extensive classification is suggested in [5]. The authors

present a multi-dimensional classification scheme describing the

starting point (scope), reach (radius) and result of a query. We

classified our queries regarding those criteria in order to make

them more traceable. The result can be seen in the appendix.

We already reviewed some older graph benchmarks in [1]. [2]

also benchmark Neo4j and conclude that it performs well, alt-

hough a bit slower than Dex and usage of Cypher would be a

viable option since it scales similarly well as the native API.

Another benchmark comparison between Neo4j and Dex is re-

ported in [10], but they mainly use micro operations like “get

vertex” or “get edge” instead of more complex queries. They

found out that Neo4j scales very well for in-memory graphs,

which is the case in our benchmark, but significantly loses per-

formance when reading from disk and especially writing due to

ACID transaction guarantees. They further mention that access of

properties is considerably slower than access of vertices and edges

for both Neo4j and Dex. We are accessing both vertices and prop-

erties in our benchmark.

[6] focus their benchmark on graph traversal operations and force

the systems to perform disk I/O due to limited memory resources.

They also use a graph data generator (LFR) and compare Dex,

Neo4j, and four other systems. Neo4j performed well in breadth-

first search with response times that are quite stable at less than

7,000 ms up to network sizes of 100,000 vertices, whereas Dex

needed 15,000 ms for 10,000 vertices already. Computation of

connected components on the other hand is scaling much worse,

since response times increase dramatically for network sizes

larger than 40,000 vertices.

A last study dealing with performance of graph databases in gen-

eral and Neo4j in particular analyzes a special kind of data, name-

ly social networking data varying over time [4]. They present a

233

detailed data model and test ten queries. Neo4j performs well in

eight of those and needs around 2,300 ms, due to a highly con-

nected graph with up to 20,000 edges per vertex. These results are

similar to ours, although distribution is even more extreme, since

our slowest queries ran over 10 seconds and fastest under one ms.

4. Comparison Cypher REST vs. Cypher WS
We first discuss differences between new results for Cypher over

RESTful http and embedded benchmarks compared to the previ-

ous ones published in [1], before presenting the improvements of

our WebSocket implementation.

4.1 Relation to previous results
Although we tried to modify as few things as possible, the update

from Neo4j 1.8 to 1.9 together with moving from VMs to physical

servers influenced results. Keeping that in mind when comparing

them, we still see Cypher performance improvements claimed by

the vendor and anticipated in our previous paper [1] in the em-

bedded benchmarks. In Figure 2, we show the results of the new

benchmarks in relation to the respective previous ones (100%).

Cypher needs only 57% of the time for running our queries com-

pared to the results previously published. Native implementation

also gains in most cases, although there are a few exceptions,

where performance loss of 13% and 29% respectively can be

noticed. The median is still 69%, which means that native imple-

mentation is roughly 30% faster than before.

For Cypher, results get even better, since embedded Cypher out-

performs native implementation in our tests with multiple threads

already at 16 threads with 1343 requests per second and reaches a

maximum of 1370 req/sec with 64 threads, whereas native imple-

mentation reaches its maximum at 1323 req/sec with 128 threads.

This is especially interesting, since native implementation is more

than 30% faster for single threads.

Figure 2: comparison of new results with previous ones

The downside is that although Cypher performs better than before,

the connection over RESTful http got worse by nearly factor two.

This further encouraged us to move on with our own connection

library that should provide significant performance benefits. Part

of the performance loss could be caused by the slower physical

network connection between servers compared to the purely

virtual connection on the VMs in our previous experiments, alt-

hough our Gbps network connection’s capacity was never fully

utilized.

4.2 WebSocket performance
In this section, we discuss performance of Cypher queries over

WebSocket with JSON (Cypher JSON) compared to Cypher over

RESTful http with JSON (Cypher REST). We also introduced a

kind of stored procedure, where the client only calls the procedure

by name and passes parameters along (Native JSON). On the

server, a native procedure is then executed. This is a higher im-

plementation effort, but might prove worthwhile for single queries

like foaf where Cypher still does not perform very well. Stored

procedures using predefined Cypher queries could hardly be used

due to the dynamic nature of Shindig requests. Therefore, cypher-

rs2, a Neo4j server extension for stored Cypher queries was no

option. Figure 3 shows the results in relation to http performance

(100%). Absolute query times for Cypher REST lie in between

two and 20 seconds or in between four and 100 ms broken down

to single retrievals. However, there are three exceptions, namely

friend recommendations and both friend of a friend tests (foaf).

Due to Cypher language constraints or inefficient implementation

these queries take up to 426 seconds or between 367 and 21,330

ms on the single query level. We therefore consider them to be

spikes and discuss them separately. These spikes were already

present in our last test [1], although there were some performance

improvements for Cypher (see section 4.1).

Figure 3: comparison of WebSocket and REST performance

Cypher JSON is faster than Cypher REST in all cases. Perfor-

mance gains range from 83% for shortest path until 9% for inbox

message reads and average at 40-50%. This is fairly good, since

we were only enhancing the network connection between client

and server and not the queries. However, we were inspired by the

idea of stored procedures in relational database systems as men-

tioned above and wanted to further explore such a possibility in

Neo4j. On the server, you can register your own Java implementa-

tions of such queries using Google Guice’s injection mechanisms

without recompiling the project. The afore mentioned spikes are

good candidates for those stored procedures and the native JSON

line in Figure 3 shows that performance in these cases is about ten

times higher than RESTful http and even 200 times higher for foaf

with three levels. A mix of normal Cypher for most of the queries,

with these three “stored procedures” increased performance gains

from about factor two to factor nine, which seems impressive and

worth the effort.

5. Performance tuning
After these initial results, where only network connection was

changed from pure http to WebSocket, we decided to investigate

the impact of different choices regarding data transfer format

(5.1), compression (5.2) as well as conversion from Neo4js’ ob-

ject model into Shindigs object model (5.3).

5.1 JSON vs. BSON
For the primary transfer format, we considered binary JSON

(BSON) as an alternative to JSON, since it is type safe and we

didn’t need the better compatibility of JSON, since we control

2 https://github.com/jexp/cypher-rs

234

both ends of the connection. Contrary to intuition, the binary

BSON format produces slightly larger objects than the text-based

JSON due to additional metadata regarding data types. Figure 4

shows the relative response times of our queries with BSON

serialization in relation to its JSON counterparts (100%).

Native implementation gains more from using BSON instead of

JSON although Cypher usually produces larger result sets and the

full query in Cypher language has to be transferred instead of the

name of the “stored procedure” together with parameter values in

the native implementation. Therefore, one would expect that the

serialization format has a larger impact there. However, native

implementation is much faster than Cypher and therefore the

relative impact of serialization benefits is much higher. The medi-

an for performance improvements of BSON is 44% for native

implementation and 36% for Cypher. Single queries are up to

three times faster for native implementation. We therefore consid-

er BSON to be the better choice and concentrate our further re-

sults on this option.

Figure 4: response time of BSON in relation to JSON

5.2 Compression
Since we are optimizing network transmission and conversion

infrastructure, compression could be an interesting option. How-

ever, our WebSocket implementation does already transmit data

much more efficient than the original RESTful http connection. In

one of our scenarios, we measured 70 MByte/sec network load on

the client for RESTful http, whereas our WebSocket implementa-

tion needed 17.4 MByte/sec only and achieved 3.8 times the

number of requests/sec (see section 7.1), so that it is factor 15

more efficient. We tested the built-in Java zlib deflate algorithm

with fast and best compression settings. With fast compression we

were able to reduce network bandwidth usage further to 5.4

MByte/sec – again factor 3 more efficient. Best compression only

marginally further reduced network load to 4 MByte/sec, but at

the expense of slower operation and higher CPU load.

Figure 5: response time of fast in relation to no compression

Figure 5 depicts relative response times for single threaded que-

ries and fast compression compared to no compression (100%).

For BSON, fast compression achieved significantly slower answer

times (30% slower for Cypher, 50% for native). In the JSON case

some lower answer times and some higher times compensate

more or less for each other for fast compression. Best compres-

sion performed 10% worse on average.

Astonishingly, compression is still useful in some scenarios with

high throughput, although the Gbps network card is far from

saturated, so that network traffic shouldn’t be the bottleneck. We

assume that the single threaded WebSocket implementation is the

limiting factor (see section 7.3). Summed up, for 128 threads on

the client and 8 threads on the server, fast compression achieved

64% more throughput and even best compression was 45% faster

than no compression (see section 7 below).

5.3 Object model conversion and serialization
One annoying thing about querying the database is type conver-

sion. With JDBC, there is a similar problem with dates and times

(java.util.Calendar vs. java.sql.Date or java.sql.Timestamp). In

our case the problems were arrays and lists. Neo4j internally uses

arrays for multi-value properties. Both Shindig and the BSON

serializer however, use java lists exclusively, although data is

transferred as a BSON array. The same applies to JSON. There-

fore, we had to convert at multiple points from lists to arrays and

back, which is an annoying overhead, although handled by a

single call of List.toArray() and Arrays.asList() respectively.

Furthermore, we identified serialization and deserialization as a

potential performance bottleneck. In our initial tests, we let Tyrus

(the WebSocket library from Glassfish) handle serialization of

Java objects, since it conveniently performs it as part of the trans-

fer and only requires a serializer class for the desired message

format to be registered. However, this process is largely single

threaded and therefore posed a limitation for scaling as soon as we

introduced multiple client threads. Therefore, we chose to handle

serialization ourselves before transmitting raw data using Tyrus in

order to make it multi-threaded. Each client thread is creating its

own converter objects due to thread safety. We considered using a

pool of conversion objects instead of constantly instantiating new

ones, but haven’t implemented it yet.

Although we are not able to present any reliable numbers on that

particular implementation detail, we are sure that it is the founda-

tion for scaling to a large number of client requests.

6. Detailed performance analysis
After completion of the experiments described above, it seemed

that uncompressed BSON was the best option and we could not

further enhance performance of the connection. However, we did

not have the impression to fully understand which components

represented the bottleneck limiting throughput, since neither CPU

nor network were used to full capacity. Therefore, we tried to

investigate further and come up with more detailed time meas-

urements.

Single processing steps shown in Figure 1 could not be logged

consistently in all detail. However, we managed to capture times

for steps 1+2+6 (client processing time), steps 3+4 (server pro-

cessing time) and step 5 (network time). Figure 6 shows results

for some of our queries and compares JSON with BSON serializa-

tion as well as fast compression and no compression. Relative

times are depicted in bar charts, whereas absolute times are shown

in milliseconds. Numbers above the bars are total times for the

individual type of query.

235

Time reductions for BSON compared to JSON are achieved in

both serialization and deserialization, which is included in the

client and the network times depicted in Figure 6. Server times are

only marginally reduced, since only deserializing the query is part

of this time measure, which requires less effort than deserializing

the response, which is up to 500 kB in size for friend recommen-

dation and up to 200 kB for FOAF responses.

Compression is slower in all three parts for BSON and is especial-

ly striking in the network times that nearly double due to com-

pression of the server response that is included in this time. Faster

transfer of the reduced message size is negligible in relation to

compression time when using a Gbps network connection.

Figure 6: processing times split into client, server and net

7. Scaling tests
Having seen results for single threads, we additionally tested how

threading on client and server impacted the results. We switched

benchmarking measurements from time per request to requests per

second. In order to better capture real relations, we limited queries

to those that were not identified as spikes before (see section 4.2).

7.1 Threading
Initially, we used a single thread only in order to understand

performance impacts of different options. Now, we wanted to

explore the scalability with multiple threads. On the client side,

we used 4, 16, 64 and 128 threads. On the server side we used

powers of two up to 16. Figure 7 shows the results without com-

pression. Numbers along the x-axis represent server threads.

Figure 7: results with multi-threading in requests per sec.

For our native implementation the server didn’t scale very well:

only 37% for the step from one to two server threads and only 3%

more for 16 threads. Cypher scaled better and gained an astonish-

ing 229% for two threads but only additional 31% for the step to 4

threads. Afterwards, it gains only 7% for eight threads and even

loses 8% for 16 threads. Since the server has 8 cores and neither

CPU nor network are saturated, we suspected the comparably

slow memory of the client and the single threaded WebSocket

implementation to be the bottleneck. The good thing about the

different scalability of native and Cypher implementations is that

Cypher BSON reaches 86% of the maximum throughput and

outperforms the old Cypher REST by more than factor three. This

performance gain is in a similar order of magnitude as reported in

[11].

Although we assumed that compression could not provide per-

formance improvements in our setup, we included it in our thread-

ing benchmarks. This led to surprising results, since fast compres-

sion already proved to be superior to no compression with a single

server thread and reached about 66% higher performance for eight

server and 128 client threads (see Figure 8). Scaling results per se

are quite similar to uncompressed results, but at a slightly higher

level. Native implementation only scales well up to two server

threads and only marginally gains for more threads. Cypher per-

formance improves by a surprising 112% for two threads and an

additional 57% and 50% for four and eight threads. 16 threads did

not increase throughput further, which is not surprising due to the

fact that the server only has eight cores.

Figure 8: results with multi-threading and fast compression

7.2 Cluster
The next step was to move from a single server to use multiple

Neo4j servers in a cluster. We implemented a cluster-enabled

client driver that distributes requests evenly with a round robin

algorithm. It works similarly to C-JDBC [12]. Based on our scal-

ing tests (see section above) we configured the server to run with

eight threads, which means one per core. This setup scales rela-

tively well from one to three nodes, as can be seen in Figure 9.

Figure 9: requests/sec with different cluster setups

Native implementation gains 133%, Cypher does not scale quite

as well and reaches 105%. That still seems acceptable compared

to the increase in hardware resources of 200%. Although exact

numbers are not visible very well in the 3D diagrams presented in

[11], it seems that our performance gains lie between MySQL and

PostgreSQL with C-JDBC [11]. Performance gains for further

236

increasing hardware resources to five nodes are considerably

lower with 39%, so that native implementation reaches 223% of

single node throughput and Cypher 185%.

Compression turns out to be an important option in this scenario

as well. Even with one node, throughput is between 43% (Cypher)

and 74% (native) higher with fast compression than without com-

pression. Maximum throughput with five nodes and 256 client

threads is even 77% (Cypher) and 79% (native) higher than that

without compression. This is mainly due to better scaling from

three to five nodes. Whereas performance gains for moving from

one to three nodes is similar for fast compression to no compres-

sion (131% for native and 129% for Cypher), the step from three

to five nodes leads to another 48% (native) and 52% (Cypher)

performance improvement for fast compression, which is signifi-

cantly higher than the 39% for no compression.

7.3 Multiple WebSocket connections
We finally tried to use multiple WebSocket connections (conns)

between client and server to get either CPU or network fully

utilized. We directly aimed for eight connections and skipped tests

for two and four, but varied the number of server threads per

connection. Figure 10 shows results from one server node, 128

client threads, the depicted number of connections and server

threads per connection. Results are shown for Cypher BSON and

Native BSON without compression (left bar group) and fast com-

pression (right bar group).

Figure 10: requests/sec with multiple WebSocket connections

It turned out, that this was indeed the limiting factor and none of

our previous measurements had revealed that. Results for native

implementation without compression, eight connections and eight

server threads per connection outperforms both three node (45%

higher throughput) and even five node cluster results (11% higher

throughput) with one connection and otherwise identical settings.

For fast compression at least the three node cluster is beaten by

5%. Unfortunately, Cypher does not benefit equally from multiple

connections. Where native implementation gains impressive

245% when moving from one to 8 connections with 8 server

threads (uncompressed), Cypher gains only 91% and therefore

reaches only 52% of native throughput. This is due to CPU usage,

as shown in Figure 11.

Small usage spikes at the beginning represent warm-up procedure.

Then native tests starting briefly before 16:30 are utilizing all

eight CPUs at roughly 60% with spikes up to 75%. Then again a

warm-up is run and Cypher tests start around 16:32:30. CPU load

is near 100% there. Looking at single CPU cores, we see that all

except one core are saturated at 100% and the last one at 90%.

This state is nearly reached for native implementation with fast

compression, where global CPU load averages at 95%. Network

load is not the limit. It reaches 50 MByte/sec without compression

and 12 MByte/sec for fast compression. We did not manage to run

all the multi-connection tests in the cluster, but gave the most

promising constellation a shot and achieved 2544 req/sec for

3 nodes Native BSON and fast compression (2489 req/sec for

5 nodes) and 1824 req/sec for 5 nodes with Cypher BSON (1266

req/sec for 3 nodes). Results without compression were lower.

Figure 11: global kernel usage on the server (Monitorix)

That means that Cypher scales nearly linearly with the number of

nodes (300% nodes => 281% performance, 500% nodes => 404%

performance) with multiple WebSocket connections. This is better

than the results for a cluster with a single WebSocket connection

per server (see Table 1). Native implementation, on the other

hand, reaches a limit at the three node cluster setup (225% per-

formance) and does not scale further (220% for 5 nodes). The

client was not able to issue more requests.

Table 1: throughput for cluster with single and multiple conns

 Native Cypher

3 nodes, single conn 1.148 r/s (231%) 926 r/s (229%)

3 nodes, 8 conns 2.544 r/s (225%) 1.266 r/s (281%)

5 nodes, single conn 1.705 r/s (342%) 1.405 r/s (347%)

5 nodes, 8 conns 2.489 r/s (220%) 1.824 r/s (404%)

8. Limitations
Our benchmark queries are directly derived from Apache Shindig.

However, some of them are only present in our extended version

of Shindig that supports friend and group recommendations as

well as shortest path analysis like many other social networks

provide them (e.g. Xing). The single queries are not weighted

based on frequency of use in normal user scenarios.

Furthermore, we did not make any efforts to optimize RESTful

http, so that it uses one thread per request, which leads to some

overheads. We did not consider using an asychronous event-

driven implementation instead [16] that might positively impact

performance when carefully tuned [15]. We didn’t test alternative

JSON serialization libraries, although we were pointed to an

interesting resource lately, showing very fast implementations3.

We also did not test all alternatives with multiple WebSocket

connections, since some early tests with this feature proved un-

successful so that we did not consider it for inclusion up to a few

days before submission. When we remembered to retest it with

our other improvements and physical machines it turned out to

make a big difference. Therefore, we could only conduct the few

tests discussed here instead of the full suite. Finally, it would have

been desirable to have different hardware options in order to gain

further insight into how different CPU speeds and cores affect

3 https://github.com/eishay/jvm-serializers/wiki

237

overall performance or whether speed of system memory really is

a limiting factor in some tests.

9. Future work
In parallel to our work described here, Neo Technology is finish-

ing work on Neo4j 2.0. Keen on any enhancements the new ver-

sion is providing, we did a preliminary test with Neo4j 2.0 M06

dating from 15th of October 2013. We found that due to introduc-

tion of multiversion concurrency control (MVCC), neither the

native implementation nor Cypher queries ran without changes.

We had to make significant changes and to introduce at least one

transaction for every query. This leads to decreased performance

in most of our tests. Native implementation loses the most with

19% in embedded and 30% in WebSocket BSON benchmark. For

Cypher there have been further language optimizations so that

some of the Cypher tests gained performance, most notably foaf

(20-50%) as well as friend and group recommendation (20%-

30%). Still, overall performance decreased here as well losing

12% in embedded and WebSocket and 7% in our REST bench-

mark. These results have to be interpreted with caution, since we

did not use all new query features and did not optimize our que-

ries and algorithms for the new version. All we did were changes

to get queries running. There is e.g. a whole new transactional http

API that finally gets rid of the superfluous URLs that were deliv-

ered with every result and led to the tremendous overhead report-

ed in [1]. We have not investigated this new endpoint yet.

Being confident that we optimized the network connection quite

well, we plan to further explore end-to-end performance of Shin-

dig together with the database and use jMeter to query the Shindig

REST API instead of using our own benchmarking tool. It could

be the case that Shindig is not able to benefit from our optimiza-

tions due to own internal inefficiencies. Another influence could

come from switching from running a standalone client and server

to running them in Apache Tomcat and Glassfish.

We also plan to use much higher volumes of data, so that Neo4j

has to access disks, instead of caching all data in main memory.

Finally, we aim at including benchmarks for writing data to

Neo4j, since all our current queries are read-only. Neo4j provides

single master replication within all nodes of an enterprise cluster,

which we were using in our cluster tests. It will be interesting to

see how well write operations scale and how fast replication

between nodes really is.

10. Conclusion
We’ve presented results from optimizing the database connection

to Neo4j for querying social networking data from Apache Shin-

dig. We’ve thoroughly analyzed several options for the transfer

including JSON vs. BSON as a data transfer format, different

compression options, multiple WebSocket connections as well as

multi-threading on client- and server-side for achieving the high-

est possible throughput. We then went from a single server data-

base to a cluster of three and five nodes in order to analyze scala-

bility. Results show that BSON is more efficient than JSON,

especially regarding (de-)serialization. Compression reduces

network load significantly and performs better for a high number

of client requests. Multiple WebSocket connections increase

maximum throughput significantly (up to 245%).

The database cluster is able to increase throughput and achieves a

maximum of 181% performance increase for 200% additional

server resources with Cypher. Scaling to five servers did not result

in better throughput for native implementation. It might be the

case that the client was the limiting factor there. Cypher however,

was able to gain an additional 44% of performance compared to

three nodes which lead to a 304% performance increase altogether

in comparison to a single node. Table 2 summarizes results of our

test in relation to Cypher over RESTful http. Values in parenthe-

ses represent the performance relative to REST.

Summed up, we can state that it is worthwhile to pay attention to

network connectivity between application server and database

server. We are convinced that many NoSQL databases are experi-

encing similar problems causing them to not fully expose their

internal performance over a standard RESTful http interface. It

would be interesting to measure performance of our approach

compared to RexPro and Rexster from the tinkerpop project, that

aim at providing a kind of JDBC-like standardization to graph

databases. With systematic analysis and consequent enhancement

of our database driver, we were able to increase speed by factor

5.6 for Cypher and up to 13.3 when using our “stored procedures”

that ran native queries on the database server. When considering

extreme graph queries like three level foaf, performance differ-

ences are even higher.

Table 2. Summary of results

 REST Native BSON Cypher BSON

single thread

response time
100% 17% 38%

128 threads

throughput (r/s)
70 215 (3.1x) 83 (1.2 x)

Max 1 node

throughput (r/s)
85 1131 (13.3x) 476 (5.6x)

Global max

throughput (r/s)
85 2544 (29.9x) 1824 (21.5x)

Although the benchmark is specific to Apache Shindig, the Neo4j

driver is generic and can be used in any project. As an intended

side effect of our efforts, open source projects with a more liberal

license like APL v2 can now use GPL v3 licensed Neo4j, without

fear of the viral GPL, since a pure network connection separates

client and server part of our driver, so that GPL does not affect

client code. This is another major improvement compared to our

efforts in [1]. Therefore, we hope that our Neo4j backend will

soon become the default for Apache Shindig.

11. REFERENCES
[1] Holzschuher, F., and Peinl, R. 2013. Performance of graph

query languages: comparison of cypher, gremlin and native

access in Neo4j. Joint EDBT/ICDT Workshop GraphQ 2013.

Genoa, Italy. 22.03.2013. 195-204

[2] Angles, R., Prat-Pérez, A., Dominguez-Sal, D., and Larriba-

Pey, J. L. (2013) Benchmarking database systems for social

network applications. 1st International Workshop on Graph

Data Management Experiences and Systems. ACM. 15

[3] Armstrong, T. G., Ponnekanti, V., Borthakur, D., and Calla-

ghan, M. (2013) LinkBench: a Database Benchmark Based

on the Facebook Social Graph. ACM SIGMOD, June 2013.

1185–1196

[4] Cattuto, C., Quaggiotto, M., Panisson, A., and Averbuch, A.

(2013) Time-varying social networks in a graph database: a

Neo4j use case. In 1st International Workshop on Graph Data

Management Experiences and Systems. ACM. 11

[5] Grossniklaus, M., Leone, S., and Zäschke, T. (2013) To-

wards a benchmark for graph data management and pro-

cessing. Technical Report KN-2013-DBIS-01, University of

Konstanz, Department of Computer and Information Science

238

[6] Ciglan, M., Averbuch, A., and Hluchy, L. (2012) Bench-

marking traversal operations over graph databases. In Data

Engineering Workshops (ICDEW 2012). 186-189. IEEE.

[7] Ma, H., Wei, J., Qian, W., Yu, C., Xia, F., & Zhou, A. (2013)

On benchmarking online social media analytical queries. In

1st International Workshop on Graph Data Management Ex-

periences and Systems. ACM. 10

[8] Boyer, B. (2008) Robust Java benchmarking, Part 1- Under-

stand the pitfalls of benchmarking Java code.

http://www.ibm.com/developerworks/java/library/j-

benchmark1/index.html

[9] Miller, J. J. (2013). Graph Database Applications and Con-

cepts with Neo4j. Proceedings of the Southern Association

for Information Systems Conference, Atlanta, GA, USA

March 23rd-24th, 2013.

[10] Macko, P., Margo, D., and Seltzer, M. (2013). Performance

introspection of graph databases. In Proceedings of the 6th

International Systems and Storage Conference. ACM. 18

[11] Unde, P., Vin, H., Natu, M., Kulkarni, V., Thomas, D.,

Vasudevan, S., and Pathak, R. (2012) Architecting the Data-

base Access for a IT Infrastructure and Data Center Moni-

toring tool. In IEEE 28th International Conference on Data

Engineering Workshops (ICDEW), 2012. 351-354

[12] Cecchet, E. (2004) C-JDBC: a Middleware Framework for

Database Clustering. IEEE Data Engineering. Bulletin.

27(2), 19-26.

[13] Karlsson, M., Moore, K. E., Hagersten, E., & Wood, D. A.

(2003). Memory system behavior of Java-based middleware.

In 9th int. Symposion on High-Performance Computer Archi-

tecture,. HPCA-9 2003. (pp. 217-228). IEEE.

[14] Li, Y., & Lü, K. (2000). Performance issues of a Web data-

base. In Database and Expert Systems Applications (pp. 825-

834). Springer Berlin Heidelberg.

[15] Malkowski, S., Jayasinghe, D., Hedwig, M., Park, J.,

Kanemasa, Y., & Pu, C. (2010). Empirical analysis of data-

base server scalability using an n-tier benchmark with read-

intensive workload. In Proceedings of the 2010 ACM Sym-

posium on Applied Computing. 1680-1687.

[16] Harji, A. S., Buhr, P. A., & Brecht, T. (2012). Comparing

high-performance multi-core web-server architectures. 5th

Annual International Systems and Storage Conference (p. 2).

[17] Pham, M.-D., Boncz, P. & Erling, O. (2012) S3G2: A Scala-

ble Structure-Correlated Social Graph Generator. 4th TPC

Technology Conference, Istanbul, Turkey, 27.08.2012

Appendix: Query classification

Query Description Scope Radius Result Type

2000 * people for a group Group x => members node neighbors nodes select

2000 * groups for a person Person x => group membership node neighbors nodes select

200 friend recommendations Person x => friend => friend[not x’s friend]

sort by friends in common

node neighbors nodes pattern

matching

200 group recommendations Person x => friend => group[not x’s group]

sort by num friends with this group

node neighbors nodes pattern

matching

20 friends of friends reads

(3 levels)

Person x => friend => friend => friend

[not x’s friend]

node neighbors nodes pattern

matching

20 friends of friends reads

(2 levels)

Person x => friend => friend

[not x’s friend]

node neighbors nodes pattern

matching

200 shortest path reads Person x, y => shortest path between path path subgraph reachability

2000 inbox message reads Person x => message collection[inbox]

=> messages

node neighbors nodes select

2000 message collection reads Person x => message collections incl. num

messages per collection

node neighbors nodes summariza-

tion

2000 people themselves

(profile page)

Person x => all first level properties => some

second level properties

node neighbors subgraph adjacency

200 * 10 people themselves Person a, b, …, j => all first level properties

=> some second level properties

subgraph neighbors subgraph adjacency

200 * 10 people's friends Person a, b, …, j => friends subgraph neighbors nodes adjacency

2000 people's friends Person x => friends node neighbors nodes adjacency

2000 single activities for people Person x => activities[a] node neighbors nodes select

2000 people's own activities Person x => activities node neighbors nodes adjacency

200 * 10 people's activities Person a, b, …, j => activities subgraph neighbors nodes adjacency

200 * 10 activity lists for people Person x => activities[a, b, …, j] node neighbors nodes select

200 people's friends'

activities, limit: 100

Person x => friends => activities =>

sort by created descending [1..100]

path neighbors nodes adjacency

239

Frequent Pattern Mining from Dense Graph Streams

Juan J. Cameron
University of Manitoba, Winnipeg, MB, Canada

umcame33@cs.umanitoba.ca

Alfredo Cuzzocrea
ICAR-CNR & Uni. Calabria, Rende (CS), Italy

cuzzocrea@si.deis.unical.it
Fan Jiang

University of Manitoba, Winnipeg, MB, Canada
umjian29@cs.umanitoba.ca

Carson K. Leung
University of Manitoba, Winnipeg, MB, Canada

kleung@cs.umanitoba.ca

ABSTRACT
As technology advances, streams of data can be produced in
many applications such as social networks, sensor networks,
bioinformatics, and chemical informatics. These kinds of
streaming data share a property in common—namely, they
can be modeled in terms of graph-structured data. Here, the
data streams generated by graph data sources in these ap-
plications are graph streams. To extract implicit, previously
unknown, and potentially useful frequent patterns from these
streams, efficient data mining algorithms are in demand.
Many existing algorithms capture important streaming data
and assume that the captured data can fit into main mem-
ory. However, problems arise when such an assumption does
not hold (e.g., when the available memory is limited). In this
paper, we propose a data structure called DSMatrix for cap-
turing important data from the streams—especially, dense
graph streams—onto the disk when the memory space is
limited. In addition, we also propose two stream mining al-
gorithms that use DSMatrix to mine frequent patterns. The
tree-based horizontal mining algorithm applies an effective
frequency counting approach to avoid recursive construction
of sub-trees as in many tree-based mining. The vertical min-
ing algorithm makes good use of the information captured
in the DSMatrix for mining.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—graphs and networks; H.2.8
[Database Management]: Database Applications—data
mining

General Terms
Algorithms; Design; Experimentation; Management; Perfor-
mance; Theory

Keywords
Data mining, frequent pattern discovery, graph patterns,
graph-structured data, social networks, extending database
technology, database theory

c⃝2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

1. INTRODUCTION & RELATED WORK
Since the introduction of the research problem of frequent
pattern mining from traditional static databases [3], nu-
merous studies [9, 18, 22] have been proposed. Examples
include the Apriori algorithm [3]. To improve efficiency,
Han et al. [16] proposed the FP-growth algorithm, which
uses an extended prefix-tree structure called Frequent Pat-
tern tree (FP-tree) to capture the content of the transaction
database. Unlike Apriori that scans the database k times
(where k is the maximum cardinality of the mined frequent
patterns), FP-growth scans the database twice. Although
there are some works [5, 15] that use disk-based structure
for mining, they mostly mine frequent patterns from static
databases. As a preview, we mine frequent patterns from
dynamic data streams. When dealing with these stream-
ing data, we no longer have the luxury of scanning the data
multiple times, for instance in support of complex knowledge
discovery processes from data streams, like OLAP analysis
over data streams (e.g., [10])).

Over the past decade, the automation of measurements
and data collection has produced high volumes of valuable
data at high velocity in many application areas. The in-
creasing development and use of a large number of sensors
has added to this situation. These advances in technology
have led to streams of data such as sensor networks, social
networks, road networks [19, 28]. These kinds of data share
in common the property of being modeled in terms of graph-
structured data [23] so that the streams they generate are,
properly, graph streams (i.e., streams of graphs). In order to
be able to make sense of streaming data, stream mining al-
gorithms are needed [17, 24, 26]. When comparing with the
mining from traditional static databases, mining from dy-
namic data streams is more challenging due to the following
properties of data streams:

Property 1: Data streams are continuous and unbounded.
To find frequent patterns from streams, we no longer have
the luxury of performing multiple data scans. Once the
streams flow through, we lose them. Hence, we need some
data structures to capture the important contents of the
streams (e.g., recent data—because users are usually more
interested in recent data than older ones (e.g., [12, 11])).

Property 2: Data in the streams are not necessarily uni-
formly distributed; their distributions are usually changing
with time. A currently infrequent pattern may become fre-
quent in the future, and vice versa. So, we have to be care-
ful not to prune infrequent patterns too early; otherwise, we
may not be able to get complete information such as fre-
quencies of certain patterns (as it is impossible to retract

240

those pruned patterns).
Several approximate and exact algorithms have been pro-

posed to mine frequent patterns from data streams. Approx-
imate algorithms (e.g., FP-streaming [14], TUF-streaming
[20]) focus mostly on efficiency. However, due to approxi-
mate procedures, these algorithms may find some infrequent
patterns or miss frequency information of some frequent pat-
terns (i.e., some false positives or negatives). An exact al-
gorithm mines only truly frequent patterns (i.e., no false
positives and no false negatives) by (i) constructing a Data
Stream Tree (DSTree) [21] to capture contents of the stream-
ing data and then (ii) recursively building FP-trees for pro-
jected databases based on the information extracted from
the DSTree.

While the above two properties play an important role in
the mining of data streams in general, they play a more
challenging role in the mining of a special class of data
streams—namely, graph streams. Nowadays, various graph
data sources can easily generate high volumes of streams
of graphs (e.g., direct acyclic graphs representing human
interactions in meetings [13], social networks representing
connections or friendships among social individuals [7, 25]).
However, when comparing with data streams in general,
graph streams in particular are usually more difficult to
handle [4]. Problems and state-of-the-art solutions are high-
lighted in recent studies. For instance, Aggarwal et al. [2]
studied the research problem of mining dense patterns in
graph streams, and they proposed probabilistic algorithms
for determining such structural patterns effectively and effi-
ciently. Bifet et al. [4] mined frequent closed graphs on evolv-
ing data streams. Their three innovative algorithms work on
coresets of closed subgraphs, compressed representations of
graph sets, and maintain such sets in a batch-incremental
manner. Moreover, Aggarwal [1] explored a relevant prob-
lem of classification of graph streams. Along this direction,
Chi et al. [8] proposed a fast graph stream classification
algorithm that uses discriminative clique hashing (DICH),
which can be applicable for OLAP analysis over evolving
complex networks. Furthermore, Valari et al. [27] discov-
ered top-k dense subgraphs in dynamic graph collections by
means of both exact and approximate algorithms. As a pre-
view, while these recent studies focus on graph mining, the
mining algorithms we propose in the current paper work on
both graph-structured data and other non-graph data.

Note that, although memory is not too expensive nowa-
days, the volume of data generated in data streams (in-
cluding graph streams) also keeps growing at a rapid rate.
Hence, algorithms for mining frequent patterns with limited
memory are still in demand, so as to deal with the probing
case of streams generated by graph data sources. For in-
stance, Cameron et al. [6] studied this topic and proposed
an algorithm that works well for sparse data streams in lim-
ited memory space. In contrast, the mining algorithms we
propose in the current paper are designed to mine dense
data streams in limited memory space. These algorithms
can be viewed as complements to the sparse stream mining
algorithm.

Here, key contributions of our current paper include a
simple yet powerful on-disk data structure called DSMa-
trix for capturing and maintaining relevant data found in
the streams, including dense graph streams. The DSMa-
trix is designed for stream mining of frequent patterns with
window-sliding models. The corresponding tree-based hori-

zontal mining algorithm builds a tree for data in the current
window captured in the DSMatrix. Moreover, our frequency
counting technique effectively avoids the recursive building
of FP-trees for projected databases, and thus saving space.
Furthermore, our vertical mining algorithm takes advantage
of the data representation of the DSMatrix to mine frequent
patterns efficiently. As the proposed DSMatrix can gener-
ally be applicable to different kinds of streaming data, it can
be used in graph streams where memory requirements are
very demanding.

This paper is organized as follows. Background is pro-
vided in Section 2. Section 3 presents our DSMatrix struc-
ture for capturing important information from dense streams
and describes how our DSMatrix can efficiently mine fre-
quent patterns from graph streams. Then, we discuss how
we make use of the DSMatrix for horizontal (Section 4) and
vertical (Section 5) mining of frequent patterns extracted
from graph streams. Section 6 focuses on an analytical eval-
uation of the properties of the DSMatrix structure in com-
parison with other similar (stream) frequent pattern struc-
tures. Section 7 shows experimental results. Finally, con-
clusions are given in Section 8.

2. BACKGROUND
To mine frequent patterns, an exact stream mining algo-
rithm [21] first constructs a Data Stream Tree (DSTree),
which is then used as a global tree for recursively generat-
ing smaller FP-trees (as local trees) for projected databases.
Due to the dynamic nature of data streams (as seen in Prop-
erties 1 and 2), frequencies of items are continuously af-
fected by the insertion of new batches (and the removal of
old batches) of transactions. Arranging items in frequency-
dependent order may lead to swapping—which, in turn, can
cause merging and splitting—of tree nodes when frequen-
cies change. Hence, in the DSTree, transaction items are ar-
ranged according to some canonical order (e.g., alphabetical
order), which can be specified by the user prior to the tree
construction or mining process. Consequently, the DSTree
can be constructed using only a single scan of the graph
streams. Note that the DSTree is designed for processing
streams within a sliding window. So, for a window size of
w batches, each tree node keeps (i) an item and (ii) a list of
w frequency values (instead of a single frequency count in
each node of the FP-tree for frequent pattern mining from
static databases). Each entry in this list captures the fre-
quency of the item in each batch of dynamic streams in the
current window. By so doing, when the window slides (i.e.,
when new batches are inserted and old batches are deleted),
frequency information can be updated easily. Consequently,
the resulting DSTree preserves the usual tree properties that
(i) the total frequency (i.e., sum of w frequency values) of
any node is at least as high as the sum of total frequencies
of its children and (ii) the ordering of items is unaffected by
the continuous changes in item frequencies.

With the aforementioned DSTree, the mining is “delayed”
until it is needed. Hence, once the DSTree is constructed,
it is always kept up-to-date when the window slides. The
exact mining algorithm mines frequent patterns from the
updated DSTree by performing the following steps. It first
traverses/extracts relevant tree paths upwards and sums the
frequency values of each list in a node representing an item
(or itemset)—to obtain its frequency in the current slid-
ing window—for forming an appropriate projected database.

241

Afterwards, the algorithm constructs a FP-tree for the pro-
jected database of each of these frequent patterns of only
1 item (i.e., 1-itemset) such as an {x}-projected database
(in a similar fashion as in the FP-growth algorithm for min-
ing static data [16]). Thereafter, the algorithm recursively
forms subsequent FP-trees for projected databases of fre-
quent k-itemsets where k ≥ 2 (e.g., {x, y}-projected data-
base, {x, z}-projected database, etc.) by traversing paths in
these FP-trees. As a result, the algorithm finds all frequent
patterns. Note that, as items are consistently arranged ac-
cording to some canonical order, the algorithm guarantees
the inclusion of all frequent items using just upward traver-
sals. Moreover, there is also no worry about possible omis-
sion or double-counting of items during the mining process.
Furthermore, as the DSTree is always kept up-to-date, all
frequent patterns—which are embedded in batches within
the current sliding window—can be found effectively.

In the remainder of this paper, we call the aforementioned
exact algorithm that uses the DSTree as the global tree, from
which FP-trees for subsequent projected databases can be
constructed recursively, the ⟨global DSTree, local FP-
trees⟩ mining option. It works well when memory space
is not an issue. The success of this algorithm mainly re-
lies on the assumption—usually made for many tree-based
algorithms [16]—that all tree (i.e., the global tree together
with subsequent FP-trees) fit into the memory. For example,
when mining frequent patterns from the {x, y, z}-projected
database, the global tree and two subsequent FP-trees (for
the {x}-, {x, y}- and {x, y, z}-projected databases) are all
assumed to be fit into memory.

However, there are situations where the memory is so lim-
ited that not all the trees can fit into memory, like the case
of streaming generated from graph data sources. To han-
dle these situations, the Data Stream Table (DSTable)
[6] was proposed. The DSTable is a two-dimensional table
that captures on the disk the contents of transactions in all
batches within the current sliding window. Each row of the
DSTable represents a domain item. Like the DSTree, items
in the DSTable are arranged according to some canonical
order (e.g., alphabetical order), which can be specified by
the user prior to the construction of the DSTable. As such,
table construction requires only a single scan of the graph
stream. Each entry in the resulting DSTable is a “pointer”
that points to the location of the table entry (i.e., which row
and which column) for the “next” item in the same transac-
tion. When dealing with graph streaming data, the DSTable
also keeps w boundary values (to represent the boundary
between w batches in the current sliding window) for each
item. By doing so, when the window slides, transactions in
the old batch can be removed and transactions in the new
batch can be added easily.

Similar to mining with the DSTree, the mining with this
DSTable is also“delayed”until it is needed. Once the DSTable
is constructed and kept up-to-date when the window slides,
the mining algorithm first traverses/extracts relevant trans-
actions from the DSTable. Then, the algorithm (i) con-
structs a FP-tree for the projected database of each of these
1-itemsets and (ii) recursively forms subsequent FP-trees for
projected databases of frequent k-itemsets (where k ≥ 2) by
traversing the paths of these FP-trees. As a result, the al-
gorithm finds all frequent patterns. In the remainder of this
paper, we call this the ⟨global DSTable, local FP-trees⟩
mining option.

Figure 1: A graph stream (Example 1).

Example 1. For illustrative purpose, let us consider a slid-
ing window of size w = 2 batches (i.e., only two batches
are kept) and the following segments in a stream of graphs,
where each graph G = (V, E) consists of |V | = 4 vertices
(Vertices α, β, γ and δ) and |E| ≤ 6 edges:

• At time T1, E = {(α, β), (α, δ), (β, γ), (γ, δ)};
• At time T2, E = {(α, β), (β, γ), (β, δ), (γ, δ)};
• At time T3, E = {(α, β), (α, γ), (α, δ)};
• At time T4, E = {(α, β), (α, δ), (γ, δ)};
• At time T5, E = {(α, β), (α, δ), (β, γ), (γ, δ)}; and
• At time T6, E = {(α, γ), (α, δ), (β, γ)}.

See Figure 1. These graphs may represent some interactions
in meetings or friendships among social individuals. For
simplicity, we represent these edges by six symbols a, b, c, d, e
and f . Consequently, we get (i) transactions t1 = {a, c, d, f},
t2 = {a, d, e, f} and t3 = {a, b, c} in the first batch B1;
as well as (ii) transactions t4 = {a, c, f}, t5 = {a, c, d, f}
and t6 = {b, c, d} in the second batch B2. Let the user-
specified minsup threshold be 2. Then, the DSTable stores
the following information:

DSTable:
Row Boundaries Contents

Edge a: Cols 3 & 5 (c, 1), (d, 2), (b, 1); (c, 3), (c, 4)
Edge b: Cols 1 & 2 (c, 2); (c, 5)
Edge c: Cols 2 & 5 (d, 1), end; (f, 3), (d, 3), (d, 4)
Edge d: Cols 2 & 4 (f, 1), (e, 1); (f, 4), end
Edge e: Cols 1 & 1 (f, 2);
Edge f : Cols 2 & 4 end, end; end, end

In the DSTree, the first entry in Row a with value (c, 1)—
which captures a transaction starting edge/item a and hav-
ing c as the second edge—points to the 1st column of Row c.
Its value (d, 1) points to the 1st column of Row d, which cap-
tures the value (f, 1). This indicates the third and fourth
edges are d and f , respectively. Then, the 1st column of
Row e with value “end” indicates the end of the transac-
tion containing {a, c, d, f}. Based on contents of the entire
DSTable, the mining algorithm first finds frequent single-
tons {a}, {b}, {c}, {d} and {f}. The algorithm then con-
structs an FP-tree for the {a}-projected database (i.e., trans-
actions containing a) to get frequent 2-itemsets {a, c}, {a, d}
and {a, f}. From this FP-tree, the algorithm recursively
constructs subsequent FP-trees (e.g., for {a, c}-, {a, c, d}-
and {a, d}-projected databases). Afterwards, the algorithm
constructs an FP-tree for the {b}-projected database (i.e.,
transactions containing b), from which subsequent FP-trees
are constructed. Similar steps apply to {c}- and {d}-proj-
ected databases.

242

The boundary information “Cols 3 & 5” for Row a indi-
cates that (i) the boundary between batches B1 and B2 is
at the end of column 3 and (ii) batch B2 ends at column 5.
Hence, when a new batch comes in, the old batch is removed.
In this case, the first three columns of Row a (due to “Cols 3
& 5” in Row a), the first 1 column of Row b (due to “Cols 1
& 2” in Row b), the first 2 columns of Rows c and d, the first
1 column of Row e, as well as the first 2 columns of Row f
can be removed.

Observed from the above example, mining with the ⟨global
DSTree, local FP-trees⟩ option may suffer from several prob-
lems when handling data streams (especially, dense graph
streams) with limited memory. Some of these problems are
listed as follows:

P1. To facilitate easy insertion and deletion of contents
in the DSTable when the window (of size w batches)
slides, the DSTable keeps w boundary values for each
row (representing each of the m domain items). Hence,
the DSTable needs to keep a total of m × w boundary
values.

P2. Each table entry is a “pointer” that indicates the lo-
cation in terms of row name (e.g., Row c) and col-
umn number (e.g., Column 1) of the table entry for
the “next” item in the same transaction. When the
data stream is sparse, only a few “pointers” need to
be stored. However, when the graph stream is dense,
many “pointers” need to be stored. Given a total of
|T | transactions in all batches within the current slid-
ing window, there are potentially m × |T | “pointers”
(where m is the number of domain items).

P3. During the mining process, multiple FP-trees need to
be constructed and kept in memory (e.g., FP-trees for
all {a}-, {a, c}- and {a, c, d}-projected databases are
required to be kept in memory).

3. THE DSMatrix DATA STRUCTURE
In attempt to solve the above problems while mining fre-
quent patterns from data streams (especially, dense graph
streams) with limited memory, we propose a 2-dimensional
structure called Data Stream Matrix (DSMatrix). This
matrix structure captures the contents of transactions in all
batches within the current sliding window by storing them
on the disk. Note that the DSMatrix is a binary matrix,
which represents the presence of an item x in transaction ti

by a “1” in the matrix entry (ti, x) and the absence of an
item y from transaction tj by a“0”in the matrix entry (tj , y).
With this binary representation of items in each transaction,
each column in the DSMatrix captures a transaction. Each
column in the DSMatrix can be considered as a bit vector.

Similar to the DSTable, our DSMatrix also keeps track
of any boundary between two batches so that, when the
window slides, transactions in the older batches can be eas-
ily removed and transactions in the newer batches can be
easily added. Note that, in the DSTable, boundaries may
vary from one row (representing an item) to another row
(representing another item) due to the potentially differ-
ent number of items present. Contrarily, in our DSMatrix,
boundaries are the same from one row to another because
we put a binary value (0 or 1) for each transaction.

Example 2. Let us revisit Example 1. The information
captured by that DSTable can be effectively captured by
our DSMatrix, but in less space:

Our DSMatrix:
Boundaries: Cols 3 & 6

Row Contents
Row a: 1 1 1; 1 1 0
Row b: 0 0 1; 0 0 1
Row c: 1 0 1; 1 1 1
Row d: 1 1 0; 0 1 1
Row e: 0 1 0; 0 0 0
Row f : 1 1 0; 1 1 0

When compared with the DSTable, we do not need to store
the same boundary information multiple times (for the m do-
main items). We only need to store it once.

Hence, with our DSMatrix, we solve previous Problems P1
and P2 of the DSTree, as follows:

S1. Recall that the DSTable needs to keep a total m ×
w boundary values. In contrast, our DSMatrix only
keeps w boundary values (where w ≪ m × w) for the
entire matrix, regardless how many domain items (m)
are here.

S2. Recall that each table entry in the DSTable captures
both the row name and column number to represent a
“pointer” to the next item in a transaction. The com-
putation of column number requires the DSTable to
constantly keep track of the index of the last item in
each row representing a domain item. Moreover, each
“pointer” requires two integer (row name/number and
column number). For P items in |T | transactions, the
DSTable requires 2 × 32 × P bits (for 32-bit integer
representation). For dense data streams, the DSTable
requires potentially 64m × |T | bits. In contrast, our
DSMatrix uses a bit vector to indicate the presence or
absence of items in a transaction. The computation
does not require us to keep track of the index of the
last item in every row and thus incurring a lower com-
putation cost. Moreover, given a total of |T | transac-
tions in all batches within the current sliding window,
there are |T | columns in our DSMatrix. Each column
requires only m bits. In other words, our DSMatrix
takes m × |T | bits (cf. potentially 64m × |T | bits for
dense data streams required by the DSTree).

4. TREE-BASED HORIZONTAL FRE-
QUENT PATTERN MINING

Whenever a new batch of streaming data (e.g., streaming
graph data) comes in, the window slides. Transactions in the
oldest batch in the sliding window are then removed from
our DSMatrix so that transactions in this new batch can be
added. Following the aforementioned mining routines, the
mining is “delayed” until it is needed. Once the DSMatrix
is constructed, it is kept up-to-date on the disk.

To find frequent patterns, we propose a tree-based horizon-
tal mining algorithm. When the user needs to find frequent
patterns, we extract relevant transactions from the DSMa-
trix to form an FP-tree for each projected database of every
frequent singleton. Key ideas of the algorithm are illustrated
in Example 3.

243

Figure 2: Multiple FP-trees built for {a}-, {b}-, . . .
projected DBs from the DSMatrix (Example 3).

Example 3. Continue with Example 2. To form the {a}-
projected database, we examine Row a. For every column
with a value “1”, we extract its column downwards (e.g.,
from edges/items b to e if they exist). Specifically, when
examining Row a, we notice that columns 1, 2, 3, 4 and
6 contain values “1” (which means that a appears in those
five transactions in the two batches of streaming graph data
in the current sliding window). Then, from Column 1, we
extract {c, d, f}. Similarly, we extract {d, e, f} and {b, c}
from Columns 2 and 3. We also extract {c, f} and {c, d, f}
from columns 4 and 5. All these form the {a}-projected
database, from which an FP-tree can be built. From this FP-
tree for the {a}-projected database, we find that 2-itemsets
{a, c}, {a, d} and {a, f} are frequent. Hence, we then form
{a, d}- and {a, f}-projected databases, from which FP-trees
can be built. (Note that we do not need to form the {a, c}-
projected database as it is empty after forming both {a, d}-
and {a, e}-projected databases.) When applying this step
recursively in a depth-first manner, we obtain frequent 3-
itemsets {a, c, d}, {a, c, f} and {a, d, f}, which leads to FP-
trees for the {a, d, c}-projected database. (Again, we do not
need to form the {a, f, c}- or {a, d, f}-projected databases
as they are both empty.) At this moment, we keep FP-trees
for the {a}-, {a, d}- and {a, d, c}-projected databases. Af-
terwards, we also find that 4-itemset {a, c, d, f} is frequent.
In the context of graph streams, this is a frequent collection
of 4 edges—namely, Edges a, c, d and f . See Figure 2.

We backtrack and examine the next frequent singleton
{b}. When examining Row b, we notice that Columns 3
and 6 contain values “1” (which means that b appears in
those two transactions in the current sliding window). For
these two columns, we extract downward to get {c} and
{c, d} that appear together with b (i.e., to form the {b}-
projected database. As shown in Figure 2, the corresponding
FP-tree contains {c}:2 meaning that c occurs twice with b
(i.e., 2-itemset {b, c} is frequent with frequency 2). Similar
steps are applied to other frequent singletons {c}, {d} and
{f} in order to discover all frequent patterns.

Note that, during the mining process, we require multi-
ple FP-trees to be kept in the memory during the mining
process (i.e., Problem P3 of the ⟨global DSTree, local FP-
trees⟩ mining option). However, when the memory space
is limited, not all of the multiple FP-trees can fit into the
memory.

Figure 3: FP-tree for {a}-proj. DB (Example 4).

To solve this problem, which identifies the Problem P3
above, we propose the following effective frequency counting
technique:

S3. Once an FP-tree for the projected database of a fre-
quent singleton is built, we traverse every tree node in
a depth-first manner (e.g., pre-order, in-order, or post-
order traversal). For every first visit of a tree node, we
generate the itemset represented by the node and its
subsets. We also compute their frequencies.

Example 4. Based on the DSMatrix in Example 2, we first
construct an FP-tree for the {a}-projected database. Then,
we traverse every node in such an FP-tree. When traversing
the leftmost branch ⟨c:4, b:1⟩, we visit nodes “c:4” (which
represents itemset {a, c} with frequency 4) and “b:1” (which
gives {a, b} with frequency 1 and {a, b, c} with frequency
1). Next, we traverse the middle branch ⟨c:4, f :3, d:2⟩. By
visiting nodes “f:3” and “d:2”, we get {a, f} and {a, c, f}
both with frequencies 3, as well as {a, d}, {a, c, d}, {a, d, f}
and {a, c, d, f} all with frequencies 2. Finally, we visit nodes
“f:1”and“d:1” in the rightmost branch ⟨f :1, d:1⟩, from which
we get the frequency 1 for both {a, d}, {a, d, f} and {a, f}.
This frequency value is added to the existing frequency count
of 2 (from the middle branch) to give the frequency of {a, d}
and {a, d, f} equal to 3. Hence, with the minsup threshold
set to 2, we obtain frequent patterns {a, c}:4, {a, c, d}:2,
{a, c, d, f}:2, {a, c, f}:3, {a, d}:3, {a, d, f}:3 and {a, f}:4.
Note that, during this mining process for the {a}-projected
database, we count frequencies of itemsets without recursive
construction of FP-trees. See Figure 3.

Afterwards, we build an FP-tree for the {b}-projected
database and count frequencies of all frequent patterns con-
taining item b. Similar steps are applied to the FP-trees for
the {c}- and {d}-projected databases.

Note that, at any moment during the mining process, only
one FP-tree needs to be constructed and kept in the memory
for this ⟨global DSMatrix, local FP-tree⟩ mining process (cf.
multiple FP-trees required for the ⟨global DSTree, multiple
local FP-trees⟩ mining option). This solves Problem P3.

5. VERTICAL FREQUENT PATTERN
MINING

244

In Section 4, we described a tree-based horizontal frequent
pattern mining algorithm that makes good use of the DS-
Matrix to form FP-trees for frequent singletons. From each
of these FP-trees, the algorithm applies an effective fre-
quency counting technique to find all frequent patterns with
their frequency information in such a way that the algo-
rithm avoids recursive construction of FP-trees for frequent
k-itemsets (where k > 2).

In this section, we present a vertical frequent pattern min-
ing algorithm. Given that the contents stored in our DS-
Matrix can be considered as a collection of bit vectors. It
becomes logical to consider vertical mining. To mine fre-
quent singletons, we examine each row (representing a do-
main item). The row sum (i.e., total number of 1s) gives the
frequency of the item represented by that row. Once the
frequent singletons are found, we intersect the bit vectors
for two items. If the row sum of the resulting intersection
≥ the user-specified minsup threshold, then we find a fre-
quent 2-itemset. We repeat these steps by intersecting two
bit vectors of frequent patterns to find frequent patterns of
higher cardinality.

Example 5. Based on the DSMatrix in Example 1, we
first compute the row sum for each row (i.e., for each do-
main item). As a result, we find that edges/items a, b, c, d
and f are all frequent with frequencies 5, 2, 5, 4 and 4,
respectively. Afterwards, we intersect the bit vector of a
(i.e., Row a) with any one of the remaining four bit vectors
(i.e., any one of the four rows) to find frequent 2-itemsets
{a, c}, {a, d} and {a, f} with frequencies 4, 3 and 4, respec-
tively, because (i) the intersection of a⃗ and c⃗ gives a bit vec-

tor 101110, (ii) the intersection of a⃗ and d⃗ gives a bit vector

110010, and (iii) the intersection of a⃗ and f⃗ gives a bit vector

110110. Next, we intersect (i) −→ac with
−→
ad, (ii) −→ac with

−→
af and

(iii)
−→
ad with

−→
af to find frequent 3-itemsets {a, c, d}, {a, c, f}

and {a, d, f}. We also intersect
−→
acd with

−→
acf to find fre-

quent 4-itemset {a, c, d, f}. These are all frequent patterns
containing item a.

Afterwards, we repeat similar steps with the bit vectors

for the other singletons. For instance, we intersect b⃗ with

c⃗, d⃗ and f⃗ . We find out that, among them, only {b, c} is

frequent with frequency 2. We also intersect c⃗ with d⃗ and

f⃗ to find frequent 3-itemsets {c, d} and {c, f}, each with
frequencies of 3. We also find frequent 4-itemsets {c, d, f}
by intersecting

−→
cd and

−→
cf . Finally, we intersect d⃗ and f⃗ to

find frequent 2-itemset {d, f} with frequency 3.

6. ANALYTICAL EVALUATION
Recall from Section 1 that FP-streaming [14] is an approx-
imate algorithm, which uses an “immediate” mode for min-
ing. During the mining process for each batch of the stream-
ing data, FP-streaming builds a global FP-tree and O(f ×d)
subsequent local FP-trees, where f is the number of fre-
quent items in the domain and d is the height/depth of the
global FP-tree. At any time during the mining process for
each batch, the global FP-tree and O(d) subsequent local
FP-trees are stored in the memory. Hence, storage cost in-
cludes the memory space for the global FP-tree plus all O(d)
subsequent local FP-trees for each batch. In terms of effi-
ciency, when the number of batches in the data stream in-
creases, the CPU cost for the mining process increases. For

example, let us consider a sliding window of w=5 batches.
When handling a stream of S=100 batches, FP-streaming
builds the global FP-tree plus all subsequent local FP-trees,
and mines frequent patterns from these FP-trees for each
of the 100 batches. In other words, FP-streaming builds
100 sets of the global and subsequent local FP-trees. More-
over, the computation effort for the first 95 batches is wasted
(when users request frequent patterns at the end of the 100th
batch).

Recall from Section 2 that mining with the DSTree [21] or
DSTable [6] uses a“delayed”mode for mining. So, the actual
mining of frequent patterns is delayed until they are needed
to be returned to the user. Hence, for S=100 batches, the
mining algorithm needs to build a global DSTree or DSTable
and updates it S−w = 100−5 = 95 times. Once an up-
dated DSTree or DSTable has captured the 96th to the
100th batches, multiple FP-trees are constructed to find fre-
quent patterns. Note that only one set of the updated global
DSTree (or DSTable) and multiple FP-trees are required (cf.
building 100 sets of a global tree and O(f × d) FP-trees by
FP-streaming, one set for each of the 100 batches). More-
over, at any time during the mining process of the ⟨global
DSTree, local FP-trees⟩ option, only the global DSTree and
multiple FP-trees are needed to be present (cf. one global
FP-tree and O(d) subsequent FP-trees are needed to be
present in FP-streaming). When using the ⟨global DSTable,
local FP-trees⟩ option, the global DSTable is kept on disk.
Thus, only multiple FP-trees are needed to be kept in the
memory.

In contrast, the DSMatrix resides on disk. Being special-
ized to dense graph streams, it can serve as an alternative to
the global FP-tree when memory is limited. Moreover, the
size of the DSMatrix is independent of the user-specified
minimum support threshold (minsup). Hence, it is useful
for interactive mining, especially when users keep adjust-
ing minsup, which is relevant for mining graph streams. It
should be noted that the DSMatrix captures the transac-
tions in the current sliding window. During the mining pro-
cess, the algorithm skips infrequent items (i.e., items having
support lower than minsup) and only includes frequent items
when building subsequent FP-trees for projected databases.
Furthermore, with our frequency counting technique, we do
not even need to build too many FP-trees. Instead, we only
need to build FP-trees for frequent singleton (i.e., for {x}-
projected databases, where x is a frequent item). When
users adjust minsup during the interactive mining process,
we do not need to rebuild the DSMatrix. In contrast, when
minsup changes, FP-streaming needs to rebuild the global
FP-tree.

In terms of disk space, the DSTable [6] requires 64×P bits
(for 32-bit integer representation), where P is the total num-
ber of items in |T | transactions in the w batches of the data
streams. In the worst case, the DSTable requires poten-
tially 64m × |T | bits for dense data streams. In contrast,
our DSMatrix requires only m × |T | bits, which is desirable
for applications that require dense graph stream mining.

7. EXPERIMENTAL EVALUATION
To acquire dense graph stream datasets, we first generated
random graph models via a Java-based generator by varying
model parameters (e.g., topology, average fan-out of nodes,
edge centrality, etc.). We then generated graph streams as
nodes and node-edge relationships derived from the above

245

0

500

1000

1500

2000

2500

0.7 0.75 0.8 0.85 0.9 0.95

M
em

or
y

sp
ac

e
re

qu
ire

d
(in

 M
B

)

Minimum support threshold (in percentage)

Memory (Connect4)

<global DSTree, recursive local FP-trees>
<global DSTable/DSMatrix, recursive local FP-trees>

<global DSMatrix, FP-trees for only frequent singletons>

0

20

40

60

80

100

120

140

160

180

200

0.7 0.75 0.8 0.85 0.9 0.95

R
un

tim
e

(in
 s

ec
on

ds
)

Minimum support threshold (in percentage)

Runtime (Connect4)

Vertical mining
Horizontal mining w/ FP-trees for only frequent singletons

Horizontal mining w/ recursive local FP-trees

(a) Main memory consumption (b) Runtime

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

D
is

k
sp

ac
e

re
qu

ire
d

(in
 M

B
)

Density of data stream (in percentage)

Disk (Dense data)

DSTable
DSMatrix

(c) Disk consumption

Figure 4: Experimental results.

graph models, and obtained node values from popular data
stream sets available in literature (stored in the projected
database). In addition, we also used many different data-
bases including IBM synthetic data, real-life databases (e.g.,
connect4) from the UC Irvine Machine Learning Depository
as well as those from the Frequent Itemset Mining Imple-
mentation (FIMI) Dataset Repository. For example, con-
nect4 is a dense data set containing 67,557 records with
an average transaction length of 43 items, and a domain
of 130 items. Each record represents a graph of legal 8-ply
positions in the game of connect 4.

All experiments were run in a time-sharing environment
in a 1 GHz machine. We set each batch to be 6K records
and the window size w=5 batches. The reported figures
are based on the average of multiple runs. Runtime in-
cludes CPU and I/Os; it includes the time for both tree
construction and frequent pattern mining steps. In the ex-
periments, we mainly evaluated the accuracy and efficiency
of our DSMatrix by comparing with related works such as
(i) DSTree [21] and (ii) DSTable [6].

In the first experiment, we measured the accuracy of the
following four mining options: (i) ⟨global DSTree, recur-
sive local FP-trees⟩; (ii) ⟨global DSTable, recursive local
FP-trees⟩; (iii) ⟨global DSMatrix, recursive local FP-trees⟩;
(iv) ⟨global DSMatrix, local FP-trees for only frequent sin-
gletons⟩ options. Experimental results show that mining
with any of these four options give the same mining results.

While these four options gave the same results, their per-
formance varied. In the second and third experiments, we
measured the space and time efficiency of our proposed DS-
Matrix. Results show that the ⟨DSTree, recursive FP-trees⟩
option required the largest main memory space as it stores
one global DSTree and multiple local FP-trees in main mem-
ory. The ⟨DSTable, recursive FP-trees⟩ and ⟨DSMatrix,
recursive FP-trees⟩ options required less memory as their
DSTable and DSMatrix were kept on disk. Among the four
mining options, the ⟨DSMatrix, FP-trees for only frequent
singletons⟩ option required the smallest main memory space
because at most m FP-trees needed to be generated during
the entire mining process, one for each frequent domain item.
Note that not all m domain items were frequent. Moreover,
at any mining moment, only one of these FP-trees needs to
be presented. In other words, not all ≤ m FP-trees were
generated at the same time. See Figure 4(a).

There are tradeoffs between memory consumption vs. run-
time performance. Runtime performance of the three op-
tions also varied. For instance, vertical mining does not
consume too much memory. While the bitwise operation
(e.g., intersection) is quick, but vertical mining required
many scans to read bit vectors from the DSMatrix. In con-
trast, horizontal mining with FP-trees built for only fre-
quent singletons consumes more memory because it keeps
these ≤ m FP-trees from ≤ m frequent singletons in mem-
ory. Along the same direction, horizontal mining with FP-

246

trees recursively built for subsequent frequent patterns con-
sumes even more memory because it keeps all FP-trees (i.e.,
those for frequent singletons and their subsequent frequent
k-itemsets, where k ≥ 2) in memory. See Figure 4(a). It is
important to note that reading from disk would be a logical
choice in a limited main memory environment.

Moreover, we perform some additional experiments, by
testing with the usual experiment (e.g., the effect of min-
sup). As shown in Figure 4(b), the runtime decreased when
minsup increased. In another experiment, we tested scal-
ability with the number of transactions. The results show
that mining with our proposed DSMatrix was scalable (see
Figure 4(c)). In particular, Figure 4(c) compares the disk
consumption between the DSTable and our DSMatrix, and it
clearly shows that our DSMatrix requires a constant amount
of disk space, where the DSTable requires different amounts
depending on the density of data streams. An interesting
observation that, for dense data, our DSMatrix is beneficial
due to its bit vector representation. As future work, we plan
to conduct more extensive experiments on various datasets
(including Big data) with different parameter settings (e.g.,
varying minsup and transaction lengths that represent the
complexity of graphs).

8. CONCLUSIONS
As technology advances, streams of data (including graph
streams) can be produced in many applications. Key con-
tributions of this paper include (i) a simple yet powerful
alternative disk-based structure—called DSMatrix—for ef-
ficient frequent pattern mining from streams (e.g., dense
graph streams) with limited memory and (ii) two frequent
pattern mining algorithms: a tree-based horizontal mining
algorithm and a vertical mining algorithm. To avoid keeping
too many FP-trees in memory when the space is limited,
we also described an effective frequency counting technique,
which requires only one FP-tree for a projected database to
be kept in the limited memory. Analytical and experimental
results show the benefits of our DSMatrix structure and its
corresponding mining algorithms.

9. ACKNOWLEDGEMENTS
This project is partially supported by NSERC (Canada) and
University of Manitoba.

10. REFERENCES
[1] C.C. Aggarwal. On classification of graph streams. In Proc.

SDM 2011, pp. 652–663.

[2] C.C. Aggarwal, Y. Li, P.S. Yu, & R. Jin. On dense pattern
mining in graph streams. PVLDB, 3(1–2), pp. 975–984
(2010).

[3] R. Agrawal & R. Srikant. Fast algorithms for mining
association rules. In Proc. VLDB 1994, pp 487–499.

[4] A. Bifet, G. Holmes, B. Pfahringer, & R. Gavaldà. Mining
frequent closed graphs on evolving data streams. In Proc.
ACM KDD 2011, pp. 591–599.

[5] G. Buehrer, S. Parthasarathy, & A. Ghoting. Out-of-core
frequent pattern mining on a commodity. In Proc. ACM
KDD 2006, pp. 86–95.

[6] J.J. Cameron, A. Cuzzocrea, & C.K. Leung. Stream mining
of frequent sets with limited memory. In Proc. ACM SAC
2013, pp. 173–175.

[7] J.J. Cameron, C.K. Leung, & S.K. Tanbeer. Finding strong
groups of friends among friends in social networks. In Proc.
SCA 2011, pp. 824–831.

[8] L. Chi, B. Li, & X. Zhu. Fast graph stream classification
using discriminative clique hashing. In Proc. PAKDD
2013, Part I, pp. 225–236.

[9] D.Y. Chiu, Y.H. Wu, & A. Chen. Efficient frequent
sequence mining by a dynamic strategy switching
algorithm. VLDBJ, 18(1), pp. 303–327 (2009).

[10] A. Cuzzocrea. CAMS: OLAPing Multidimensional Data
Streams Efficiently. In Proc. DaWaK 2009, pp. 48–62.

[11] A. Cuzzocrea & S. Chakravarthy. Event-based lossy
compression for effective and efficient OLAP over data
streams. Data & Knowledge Engineering, 69(7),
pp. 678–708 (2010).

[12] A. Cuzzocrea, F. Furfaro, G.M. Mazzeo & D. Saccà. A
Grid Framework for Approximate Aggregate Query
Answering on Summarized Sensor Network Readings. In
Proc. OTM Workshops 2004, pp. 144–153.

[13] A. Fariha, C.F. Ahmed, C.K. Leung, S.M. Abdullah, & L.
Cao. Mining frequent patterns from human interactions in
meetings using directed acyclic graphs. In Proc. PAKDD
2013, Part I, pp. 38–49.

[14] C. Giannella, J. Han, J. Pei, X. Yan, & P.S. Yu. Mining
frequent patterns in data streams at multiple time
granularities. In Data Mining: Next Generation Challenges
and Future Directions, ch. 6 (2004).

[15] G. Grahne & J. Zhu. Mining frequent itemsets from
secondary memory. In Proc. IEEE ICDM 2004, pp. 91–98.

[16] J. Han, J. Pei, & Y. Yin. Mining frequent patterns without
candidate generation. In Proc. ACM SIGMOD 2000,
pp. 1–12.

[17] R. Jin & G. Agrawal. An algorithm for in-core frequent
itemset mining on streaming data. In Proc. IEEE ICDM
2005, pp. 210–217.

[18] C.K. Leung. Mining frequent itemsets from probabilistic
datasets. In Proc. EDB 2013, pp. 137–148.

[19] C.K. Leung & C.L. Carmichael. Exploring social networks:
a frequent pattern visualization approach. In Proc. IEEE
SocialCom 2010, pp. 419–424.

[20] C.K. Leung, A. Cuzzocrea, & F. Jiang. Discovering
frequent patterns from uncertain data streams with
time-fading and landmark models. LNCS TLDKS, 8,
pp. 174–196 (2013).

[21] C.K. Leung & Q.I. Khan. DSTree: a tree structure for the
mining of frequent sets from data streams. In Proc. IEEE
ICDM 2006, pp. 928–932.

[22] C.K. Leung & S.K. Tanbeer. PUF-tree: a compact tree
structure for frequent pattern mining of uncertain data. In
Proc. PAKDD 2013, Part I, pp. 13–25.

[23] F. Mandreoli, R. Martoglia, G. Villani, & W. Penzo:
Flexible query answering on graph-modeled data. In Proc.
EDBT 2009, pp. 216–227.

[24] O. Papapetrou, M. Garofalakis, & A. Deligiannakis.
Sketch-based querying of distributed sliding-window data
streams. PVLDB, 5(10), pp. 992–1003 (2012).

[25] S.K. Tanbeer, F. Jiang, C.K. Leung, R.K. MacKinnon, &
I.J.M. Medina. Finding groups of friends who are
significant across multiple domains in social networks. In
Proc. CASoN 2013, pp. 21–26.

[26] S. Tirthapura & D.P. Woodruff. A general method for
estimating correlated aggregates over a data stream. In
Proc. IEEE ICDE 2012, pp. 162–173.

[27] E. Valari, M. Kontaki, & A.N. Papadopoulos. Discovery of
top-k dense subgraphs in dynamic graph collections. In
Proc. SSDBM 2012, pp. 213–230.

[28] F. Wei-Kleiner. Finding nearest neighbors in road
networks: a tree decomposition method. In Proc.
EDBT/ICDT 2013 Workshops (GraphQ), pp. 233–240.

247

Linked Web Data Management (LWDM)

Devis Bianchini (Università degli Studi di Brescia, Italy)
Valeria De Antonellis (Università degli Studi di Brescia, Italy)

Roberto De Virgilio (University of Rome, Italy)

248

Quantifying the Connectivity of a Semantic Warehouse

Yannis Tzitzikas1,2, Nikos Minadakis1, Yannis Marketakis1,
Pavlos Fafalios1,2, Carlo Allocca1, Michalis Mountantonakis1,2

1 Institute of Computer Science, FORTH-ICS, GREECE, and
2 Computer Science Department, University of Crete, GREECE

{tzitzik,minadakn,marketak,fafalios,carlo,mountant}@ics.forth.gr

ABSTRACT
In many applications one has to fetch and assemble pieces of
information coming from more than one SPARQL endpoints.
In this paper we describe the corresponding requirements
and challenges, and then we present a process for construct-
ing such a semantic warehouse. We focus on the aspects
of quality and value of the warehouse, and for this reason
we introduce various metrics for quantifying its connectiv-
ity, and consequently its ability to answer complex queries.
We demonstrate the behavior of these metrics in the context
of a real and operational semantic warehouse. The results
are very promising: the proposed metrics-based matrixes al-
low someone to get an overview of the contribution (to the
warehouse) of each source and to quantify the benefit of the
entire warehouse. The later is useful also for monitoring the
quality of the warehouse after each reconstruction.

1. INTRODUCTION
An increasing number of datasets are already available

as Linked Data. For exploiting this wealth of data, and
building domain specific applications, in many cases there
is the need for fetching and assembling pieces of informa-
tion coming from more than one SPARQL endpoints. These
pieces are then used for constructing a warehouse, for offer-
ing more complete browsing and query services (in compar-
ison to those offered by the underlying sources).

We shall use the term Semantic Warehouse (for short
warehouse) to refer to a read-only set of RDF triples fetched
(and transformed) from different sources that aims at serv-
ing a particular set of query requirements.

We can distinguish domain independent warehouses, like
the Sindice RDF search engine [9], or the Semantic Web
Search Engine (SWSE) [4], but also domain specific, like
TaxonConcept1 and marineTLO-based warehouse [12].

In this paper we focus on the requirements for building do-
main specific semantic warehouses. Such warehouses aim to

1http://www.taxonconcept.org/

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

serve particular needs, for particular communities of users,
consequently their “quality” requirements are more strict. It
is therefore worth elaborating on the process that can be
used for building such warehouses, and on the related dif-
ficulties and challenges. In brief, for building such a ware-
house one has to tackle various challenges and questions,
e.g. how to define the objectives and the scope of such a
warehouse, how to connect the fetched pieces of informa-
tion (common URIs or literals are not always there), how
to tackle the various issues of provenance that arise, how to
keep the warehouse fresh, i.e. how to automate its construc-
tion or refreshing. In this paper we focus on the following
questions:

• How to measure the value and quality (since this is
important for e-science) of the warehouse?

• How to monitor its quality after each reconstruction
or refreshing (as the underlying sources change)?

We have encountered these questions in the context of a
real semantic warehouse for the marine domain which har-
monizes and connects information from different sources of
marine information. Past works have focused on the notion
of conflicts, and have not paid attention to connectivity. We
use the term connectivity to express the degree up to which
the contents of the semantic warehouse form a connected
graph that can serve, ideally in a correct and complete way,
the query requirements of the semantic warehouse, while
making evident how each source contributes to that degree.
To this end in this paper we introduce and evaluate sev-
eral metrics for quantifying the connectivity of the ware-
house. These metrics allow someone to get an overview of
the contribution (to the warehouse) of each source (enabling
the discrimination of the important from the non important
sources) and to quantify the benefit of such a warehouse

The paper is organized as follows: Section 2 describes the
main requirements, related works, and what distinguishes
the current work. Section 3 provides the context by de-
scribing the process used for constructing such warehouses.
Section 4 introduces the quality metrics and demonstrates
their use. Finally, Section 5 concludes the paper.

2. REQUIREMENTS AND RELATED WORK
The context of this work is the ongoing iMarine project2

that offers an operational distributed infrastructure that
serves hundreds of scientists from the marine domain. As
regards semantically structured information, the objective is
to integrate information from various marine sources, specif-

2FP7, Research Infrastructures, http://www.i-marine.eu/

249

ically from WoRMS3, Ecoscope4, FishBase5, FLOD6 and
DBpedia7.

The integrated warehouse (its first version is described
in [12])8 is now operational and it is exploited in various
applications, including generators of fact sheets (e.g. Tu-
naAtlas9), or for enabling exploratory search services (e.g.
X-ENS [3] that offers semantic post-processing of search re-
sults). Below we list the main functional and non functional
requirements for constructing such warehouses.

Functional Requirements
• Multiplicity of Sources. Ability to query SPARQL end-

points (and other sources), get the results, and ingest
them to the warehouse.

• Mappings, Transformations and Equivalences. Abil-
ity to accommodate schema mappings, perform trans-
formations and create sameAs relationships between
the fetched content for connecting the corresponding
schema elements and entities.

• Reconstructibility. Ability to reconstruct the ware-
house periodically (from scratch or incrementally) for
keeping it fresh.

Non Functional Requirements
• Scope control. Make concrete and testable the scope

of the information that should be stored in the ware-
house. Since we live in the same universe, everything
is directly or indirectly connected, therefore without
stating concrete objectives there is the risk of contin-
uous expansion without concrete objectives regarding
its contents, quality and purpose.

• Connectivity assessment. Ability to check and assess
the connectivity of the information in the warehouse.
Putting triples together does not guarantee that they
will be connected. In general, connectivity concerns
both schema and instances and it is achieved through
common URIs, common literals and sameAs relation-
ships. Poor connectivity affects negatively the query
capabilities of the warehouse. Moreover, the contribu-
tion of each source to the warehouse should be mea-
surable, for deciding which sources to keep or exclude
(there are already hundreds of SPARQL endpoints).

• Provenance. More than one levels of provenance can
be identified and are usually required, e.g. warehouse
provenance (from what source that triple was fetched),
information provenance (how the fact that the x species
is found in y water area was produced), and query
provenance (which sources and how contributed to the
answer of this query).

• Consistency and Conflicts. Ability to specify the de-
sired consistency level of the warehouse e.g. do we
want to tolerate an association between a fish com-
mercial code and more than one scientific names? Do
we want to consider this as inconsistency (that makes

3http://www.marinespecies.org/
4http://www.ecoscopebc.ird.fr/EcoscopeKB/
ShowWelcomePage.action
5http://www.fishbase.org/
6http://www.fao.org/figis/flod/
7http://dbpedia.org/
8URL of the warehouse (restricted access): http://
virtuoso.i-marine.d4science.org:8890/sparql
9http://vmecoscopebc-proto.mpl.ird.fr:8080/
semantic-atlas/ShowWelcomePage

the entire warehouse, or parts of it, unusable), or as
resolvable (through a rule) conflict, or as a normal case
(and allow it as long as the provenance is available).

2.1 Related Approaches
Below we refer and discuss in brief the more related sys-

tems, namely ODCleanStore and Sieve.

ODCleanStore [8, 6, 5] is a tool that can download content
(RDF graphs) and offers various transformations for clean-
ing it (deduplication, conflict resolution), and linking it to
existing resources, plus assessing the quality of the outcome.
It names conflicts the cases where two different quads (e.g.
sources) have different object values for a certain subject s
and predicate p. To such cases conflict resolution rules are
offered that either select one or more of these conflicting val-
ues (e.g. ANY, MAX, ALL), or compute a new value (e.g.
AVG). [5] describes various quality metrics (for scoring each
source based on conflicts), as well for assessing the overall
outcome.

Another related system is Sieve [7] which is part of the
Linked Data Integration Framework (LDIF)10. This work
proposes metrics like schema completeness and conciseness.
However, such metrics are not useful for the case of do-
main specific warehouses that have a top-level ontology, in
the sense that the schema mappings and the transformation
rules can tackle these problems. This is true in our ware-
house (it is also assumed in the scenarios of ODCleanStore).

Overall, we can say that the quality metrics introduced by
other works focus more on conflicts. The aspect of connec-
tivity, is not covered sufficiently. The aspect of connectivity
is important in warehouses whose schema is not small, and
consequently the queries contain paths. The longer such
paths are, the more the query capability of the warehouse is
determined by the connectivity.

Of course, the issue of data warehouse quality is older
than the RDF world, e.g. [10, 1]. A discussion of related
works for the RDF world is available in [2], that also focuses
on describing data sources in terms of their completeness in
query answering. Another quality perspective identified in
[13] is that of the specificity of the ontology-based descrip-
tions under ontology evolution, an issue that is raised when
ontologies and vocabularies evolve over time.

Finally, we could mention that works like [11], which focus
on the statistical evaluation of the metadata elements of a
repository, are not directly related, since they do not con-
sider the characteristics of RDF and Linked Data, nor they
try to evaluate the contribution of the underlying sources.

3. THE INTEGRATION PROCESS
For making clear the context, here we describe in brief

the steps of the process that we follow for creating the ware-
house. Figure 1 shows an overview of the warehouse’s con-
tents, while Figure 2 sketches the construction process11.

The first step is to define requirements in terms of compe-
tency queries. It is a set of queries (provided by the commu-
nity) indicating the queries that the warehouse is intended
to serve. Some indicative queries are given in Appendix A,

10http://www4.wiwiss.fu-berlin.de/bizer/ldif/
11Extra material is available at http://www.ics.forth.gr/
isl/MarineTLO/#applications.

250

Figure 1: Overview of the warehouse

the full list is web accessible12. It is always a good practice
to have (select or design) a top-level schema/ontology as it
alleviates the schema mapping effort (avoids the combinato-
rial explosion of pair-wise mappings) and allows formulating
the competency queries using that ontology (instead of using
elements coming from the underlying sources, which change
over time). For our case in iMarine, the ontology is called
MarineTLO [12]13.

The next step is to fetch the data from each source and this
requires using various access methods (SPARQL endpoints,
HTTP accessible files, JDBC) and specifying what exactly
to get from each source (all contents or a specific part). For
instance, and for the case of the iMarine warehouse, we fetch
all triples from FLOD through its SPARQL endpoint, all
triples from Ecoscope obtained by fetching OWL files from
its web page, information about species (ranks, scientific and
common names) from WoRMS, information about species
from DBpedia’s SPARQL endpoint, and finally information
about species, water areas, ecosystems and countries from
the relational tables of FishBase.

Warehouse construction and
evolution process

Define requirements in terms
of competency queries

Fetch the data from the selected sources
(SPARQL endpoints, services, etc)

Queries

Transform and Ingest to the Warehouse

Inspect the connectivity of the
Warehouse

Formulate rules creating sameAs
relationships

Apply the rules to the warehouse

Rules for

Instance

Matching

sameAs triples
Ingest the sameAs relationships

to the warehouse

Test and evaluate the Warehouse
(using competency queries, metrics)

creates

Warehouse

produces

Triples

uses

uses

uses

MatWare

MatWare

MatWare

MatWare

MatWare

Figure 2: The process for constructing and evolving
the warehouse

The next step is to transform and ingest the fetched data.

12http://www.ics.forth.gr/isl/MarineTLO/competency_
queries/MarineTLO_Competency_Queries_Version_v3.
pdf

13http://www.ics.forth.gr/isl/MarineTLO

Some data can be stored as they are fetched, while oth-
ers have to be transformed, i.e. a format transformation
and/or a logical transformation has to be applied for be-
ing compatible with the top-level ontology. For example,
a format transformation may be required to transform in-
formation expressed in DwC-A (a format for sharing bio-
diversity data), to RDF. A logical transformation may be
required for transforming a string literal to a URI, or for
splitting a literal for using its constituents, or for creating
intermediate nodes (e.g. instead of (x,hasName,y) to have
(x,hasNameAssignement,z),(z,name,y),(z,date,d), etc.

This step also includes the definition of the required schema
mappings that are required for associating the fetched data
with the schema of the top level ontology. Another im-
portant aspect for domain specific warehouses, is the man-
agement of provenance. In our case we support what we
call “warehouse”-provenance, i.e. we store the fetched (or
fetched and transformed) triples from each source in a sepa-
rate graphspace (a graphspace is a named set of triples which
can be used for restricting queries and updates in a RDF
triple store). In this way we know which source has pro-
vided what facts and this is exploitable also in the queries.
As regards conflicts (e.g. different values for the same prop-
erties), the adopted policy in our case is to make evident
the different values and their provenance, instead of making
decisions, enabling in this way the users to select the desired
values, and the content providers to spot their differences.
The adoption of separate graphspaces also allows refreshing
parts of the warehouse, i.e. the part that corresponds to one
source. Furthermore, it makes feasible the computation of
the metrics that are introduced in the next section.

The next step is to inspect and test the connectivity of the
“draft” warehouse. This is done through the competency
queries as well as through the metrics that we will introduce.
The former (competency queries) require manual inspection,
but automated tests are also supported. In brief, let q be a
query in the set of competency queries. Although we may
not know the“ideal”answer of q, we may know that it should
certainly contain a particular set of resources, say Pos, and
should not contain a particular set of resources, say Neg.
Such information allows automated testing. If ans(q) is the
answer of q as produced by the warehouse, we would like to
hold Pos ⊆ ans(q) and Neg ∩ ans(q) = ∅. Since these con-
ditions may not hold, it is beneficial to adopt an IR-inspired
evaluation, i.e. compute the precision and recall defined as:

precision = 1− |Neg∩ans(q)|
|ans(q)| , recall = |Pos∩ans(q)|

|Pos| . The big-

ger the values we get the better (ideally 1). The better we
know the desired query behaviour, the bigger the sets Pos
and Neg are, and consequently the more safe the results of
such evaluation are.

Based also on the results of the previous step, the next
step is to formulate rules for instance matching, i.e. rules
that can produce sameAs relationships for obtaining the de-
sired connections. For this task we employ the tool SILK[14]14.
Then, we apply the instance matching rules (SILK rules in
our case) for producing (and then ingesting to the ware-
house) sameAs relationships.

Finally we have to test the produced repository and eval-
uate it. This is done through the competency queries and
through the metrics that we will introduce.

Periodic Reconstruction Above we have described the

14
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

251

steps required for the first time. After that the warehouse
is reconstructed periodically for getting refreshed content.
This is done automatically through a tool that we have de-
veloped called MatWare. The metrics that we will intro-
duce are very important for monitoring the warehouse after
reconstructing it. For example by comparing the metrics in
the past and new warehouse, one can understand whether
a change in the underlying sources affected negatively the
quality (e.g. connectivity) of the warehouse.

4. CONNECTIVITY METRICS
The objective is to define metrics for assisting humans on

assessing in concrete terms the quality and the value offered
by the warehouse.

To aid understanding, after defining each metric we show
the values of these metrics as computed over the iMarine
warehouse which is built using data from FLOD, WoRMS,
Ecoscope, DBpedia, and FishBase. The warehouse is real
and operational15. This also allows testing whether the met-
rics are successful.

At first we introduce some required notations. Let S =
S1, . . . Sk be the set of underlying sources. Each contributes
to the warehouse a set of triples (i.e. a set of subject-
predicate-object statements), denoted by triples(Si). This
is not the set of all triples of the source. It is the subset that
is contributed to the warehouse (fetched mainly by running
SPARQL queries). We shall use Ui to denote the URIs that
appear in the triples in triples(Si). Hereafter, we consider
only those URIs that appear as subjects or objects in a triple.
We do not include the URIs of the properties because they
concern the schema and this integration aspect is already
tackled by the top level schema.

Let W denote the triples in the warehouse, i.e. W =
∪1..ktriples(Si).

On Comparing URIs
For computing the metrics that are defined next, we need
methods to compare URIs coming from different sources.
There are more than one methods, or policies, for doing so.
Below we distinguish three main policies:

i Exact String Equality. We treat two URIs u1 and u2
as equal, denoted by u1 ≡ u2, if u1 = u2 (i.e. strings
equality).

ii Suffix Canonicalization. Here we consider that u1 ≡ u2

if last(u1) = last(u2) where last(u) is the string ob-
tained by (a) getting the substring after the last ”/” or
”#”, and (b) turning the letters of the picked substring
to lowercase and deleting the underscore letters that
might exist. According to this policy
http://www.dbpedia.com/Thunnus_Albacares ≡
http://www.ecoscope.com/thunnus_albacares

since their canonical suffix is the same, i.e. thunnusal-
bacares. Another example of a equivalent URIs:
http://www.s1.com/entity#thunnus_albacares ≡
http://www.s2.org/entity/thunnusAlbacares.

iii Entity Matching. Here consider u1 ≡ u2 if u1 sameAs

u2 according to the entity matching rules that are (or
will be eventually) used for the warehouse. In general

15In the evaluation of related tools, like Sieve [7] and OD-
CleanStore [8], real datasets have been used but not “real”
operational needs. In our evaluation we use an operational
warehouse with concrete (query) requirements which are de-
scribed by the competency queries.

such rules create sameAs relationships between URIs.
In our case we use SILK for formulating and applying
such rules.

Note that if two URIs are equivalent according to policy
[i], then they are equivalent according to [ii] too. Policy
[i] is very strict (probably too strict for matching entities
coming from different sources), however it does not pro-
duce any false-positive. Policy [ii] achieves treating as equal
entities across different namespaces, however false-positives
may occur. For instance, Argentina is a country (http://
www.fishbase.org/entity#Argentina) but also a fish genus
(http://www.marinespecies.org/entity#WoRMS:
125885/Argentina). Policy [iii] is fully aligned with the in-
tended query behaviour of the warehouse (the formulated
rules are expected to be better as regards false-negatives
and false-positives), however for formulating and applying
these entity matching rules, one has to know the contents of
the sources. Consequently one cannot apply policy [iii] the
first time, instead policies [i] and [ii] can be applied auto-
matically without requiring any human effort. We could also
note that policy [ii] can be used for providing hints regarding
what entity matching rules to formulate.

Below we define and compute the metrics assuming policy
[ii], i.e. whenever we have a set operation we assume equiv-
alence according to [ii] (e.g. A ∩ B means { a ∈ A | ∃ b ∈
B s.t. a ≡[ii] b}. Then, in Section 4.1, we report results
according to policy [iii].

Matrix of Percentages of Common URIs
The number of common URIs between two sources Si and
Sj , is given by |Ui ∩ Uj |. We can define the percentage of
common URIs (a value ranging [0..1]), as follows: curii,j =

|Ui∩Uj |
min(|Ui|,|Uj |) . In the denominator we use min(|Ui|, |Uj |) in-

stead of |Ui ∪Uj | as in the Jaccard similarity. With Jaccard
similarity the integration of a small triple set with a big one
would always give small values, even if the small set contains
many URIs that exist in the big set. For this reason we use
min.

We now extend the above metric and consider all sources
aiming at giving an overview of the warehouse. Specifically,
we compute a k × k matrix where ci,j = curii,j . The higher
values this matrix contains, the more glued its“components”
are. However note that we may have 3 sources, such that
each pair of them has a high curi value, but the intersection
of the URIs of all 3 sources is empty. This is not necessar-
ily bad, for example, consider a source contributing triples
of the form person-lives-placeName, a second source con-
tributing placeName-has-postalCode, and a third one con-
tributing postCode-isAddressOf-cinema. Although these
three sources may not contain even one common URI, their
hosting in a warehouse allows answering queries: “give me
the cinemas in the area where the x person leaves”.

On the other hand, in a case where the three sources were
contributing triples of the form person-lives-placeName,
person-worksAt-Organization and person-owns-car, then
it would be desired to have common URIs in all sources,
as that would allow having more complete information for
many persons. Finally, one might wonder why we do not
introduce a kind of average path length, or diameter, for the
warehouse. Instead of doing that, we inspect the paths that
are useful for answering the queries of the users, and this is
done through the competency queries.

For the warehouse at hand, Table 1 shows the matrix of

252

the common URIs, while Table 2 shows the matrix of the
common URI percentages. The percentages range from 0.3%
to 27.39%. We can see that in some cases we have a sig-
nificant percentage of common URIs between the different
sources. The biggest intersection is between FishBase and
DBpedia.

HHHHSi

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 173,929 239 523 631 887
WoRMS 80,485 200 1,714 3,596
Ecoscope 5,824 192 225
DBpedia 70,246 9,578
FishBase 34,974

Table 1: Common URIs (|Ui ∩ Uj |)

HHHHSi

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 0.3% 8.98% 0.9% 2.54%

WoRMS 1 3.43% 2.44% 10.28%

Ecoscope 1 3.3% 3.86%

DBpedia 1 27.39%

FishBase 1

Table 2: Common URIs % (curii,j =
|Ui∩Uj |

min(|Ui|,|Uj |))

Percentage of Common literals between two sources
The percentage of common literals, between two sources Si

and Sj can be computed by cliti,j =
|Liti∩Litj |

min(|Liti|,|Litj |) . To

compare 2 literals coming from different sources, we convert
them to lower case, to avoid cases like comparing “Thunnus”
from one source and “thunnus” from another.

Table 3 shows the matrix of the common literals, while
Table 4 shows the percentages. We can see that as regards
the literals the percentages of similarity are even smaller
than the ones regarding common URIs. The percentages
range from 2.71% to 12.37%.

HHHHSi

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 111,164 3,624 1,745 5,668 9,505

WoRMS 51,076 382 2,429 4,773

Ecoscope 14,102 389 422

DBpedia 123,887 14,038

FishBase 138,275

Table 3: Common Literals (|Liti ∩ Litj |)

Increase in the Average Degree
Now we introduce another metric for expressing the degree of
common URIs. Let E be the entities of interest (or all URIs).
If T is a set of triples, then we can define the degree of an
entity e in T as: degT (e) = |{(s, p, o) ∈ T | s = e or o = e}|,
while for a set of entities E we can define their average degree
in T as degT (E) = avge∈E(degT (e)).

Now for each source Si we can compute the average degree
of the elements in E considering triples(Si). If the sources
of the warehouse contain common elements of E, then if we
compute the degrees in the graph of W (i.e. degW (e) and
degW (E)), we will get higher values. So the increase in the
degree is a way to quantify the gain, in terms of connectivity,
that the warehouse offers.

For each source Si, Table 5 shows the average degree of its
URIs (i.e. of those in Ui), and the average degree of the same

HHHHSi

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 7.1% 12.37% 5.1% 8.55%

WoRMS 1 2.71% 4.76% 9.34%

Ecoscope 1 2.76% 2.99%

DBpedia 1 11.33%

FishBase 1

Table 4: Common Literals % (cliti,j =
|Liti∩Litj |

min(|Liti|,|Litj |))

Si avg degSi
(Ui) avg degW (Ui) increase

FLOD 7.18 9.18 27.84%

WoRMS 3.3 7.33 122.36%

Ecoscope 22.84 31.18 36.56%

DBpedia 41.41 42.11 1.7%

FishBase 18.86 29.81 58.08%

AVERAGE 18.72 23.92 27.78%

Table 5: Average degrees in sources and in the ware-
house

URIs in the warehouse graph. It also reports the increment
percentage (computed by warehouse/source * 100). The last
row of the table shows the average values of each column.
We observe that the average degree is increased from 18.72
to 23.92

Restricting the Metrics (to the Entities of Interest)
The above metrics can be refined so that to consider not all
URIs, but only those that serve the purpose of the ware-
house. For example, one could define the above metrics by
considering only URIs that are instances of a particular class
or classes (e.g. Persons, Locations), or those returned by the
competency queries. In general, we can consider that the set
of URIs (or entities) of interest is a set E that is defined ex-
tensionally (by listing its elements) or intentionally (through
a query).

Complementarity of Sources
We now define metrics for quantifying the complementarity
of the sources.

The “contribution” of each source Si can be quantified
by counting the triples it has provided to the warehouse, i.e.
by |triples(Si)|. We can also define its“unique contribution”
by excluding from triples(Si) those belonging to the triples
returned by the other sources. Formally, we can define
triplesUnique(Si) = triples(Si) \ (∪1≤j≤k,j ̸=itriples(Sj)).
It follows that if a source Si provides triples which are also
provided by other sources, then we have triplesUnique(Si) =
∅. Consequently, and for quantifying the contribution of
each source to the warehouse, we can compute and report
the number of its triples |triples(Si)|, the number of unique
triples |triplesUnique(Si)|, and the percentage of unique

triples |triplesUnique(Si)|
|triples(Si)| . To count the unique triples of each

source, for each triple of that source we perform suffix canon-
icalization on its URIs, convert its literals to lower case, and
then we check if the resulting (canonical) triple exists in the
canonical triples of a different source. If not, we count this
triple as unique.

Let triplesUniques be the union of the unique triples of all
sources, i.e. triplesUniques = ∪itriplesUnique(Si). This
set can be proper subset of W (i.e. triplesUniques ⊂ W),
since it does not contain triples which have been contributed
by two or more sources.

Table 6 shows for each source the number of its triples

253

|triples(Si)|, the number of unique triples |triplesUnique(Si)|,
and the percentage of unique triples |triplesUnique(Si)|

|triples(Si)| . We

can see that every source contains a very high (> 99%) per-
centage of unique triples, so we can conclude that all sources
are important.

Si a = |triples(Si)| b = |triplesUnique(Si)| b/a

FLOD 665,456 664,703 99.89%

WoRMS 461,230 460,741 99.89%

Ecoscope 54,027 53,641 99.29%

DBpedia 450,429 449,851 99.87%

FishBase 1,425,283 1,424,713 99.96%

Table 6: (Unique) triple contributions of the sources

We now define another metric for quantifying the value
of the warehouse for the entities of interest. Specifically we
define the complementarity factor for an entity e, denoted
by cf(e), as the number of sources that provided unique
material about e. It can be defined declaratively as:

cf(e) = |{ i | triplesW (e) ∩ triplesUnique(Si) ̸= ∅}|
i.e. it is the number of sources which have provided unique
content for e. Note that if k = 1, i.e. if we have only one
source, then for every entity e we will have cf(e) = 1 . If
k = 2, i.e. if we have two sources, then we can have the
following cases:
− cf(e) = 0 if both sources have provided the same triple
(or triples) about e,
− cf(e) = 1 if the triples provided by the one source (for e)
are subset of the triples provided by the other,
− cf(e) = 2 if each source has provided at least one different
triple for e (of course they can also have contributed common
triples).

Consequently for the entities of interest we can compute
and report the average complementarity factor as a way to
quantify the value of the warehouse for these entities.

Table 7 shows (indicatively) the complementarity factors
for a few entities which are important for the problem at
hand. We see that for the entities “Thunnus” and “Shark”
each source provides unique information (with the term en-
tity we mean any literal or URI that contains the word
“thunnus” for example). For the entity “Greece” and “As-
trapogon” we take unique information from three sources.
The fact that the complementarity factor is big means that
the warehouse provides information about each entity from
all/many sources.

Kind of Entity cf(·)/5

Thunnus 5/5

Greece 3/5

Shark 5/5

Astrapogon 3/5

Table 7: Complementarity factor (cf) of some enti-
ties

4.1 After applying the rule-derived ‘sameAs’
relationships and the transformation rules

So far in the computation of the above metrics we have
used policy [ii] (suffix canonicalized URIs) when comparing
URIs. Here we show the results from computing again these
metrics using policy [iii]. This means that now when com-
paring URIs we consider the sameAs relationships that have

been produced by the entity matching rules of the ware-
house. In the current warehouse we use 11 SILK rules. An
indicative SILK rule is the following: “If an Ecoscope indi-
vidual’s attribute preflabel (e.g. Thunnus albacares) in lower
case is the same with the attribute label in latin of a FLOD
individual (e.g. ‘thunnus albacares’@la), then these two in-
dividuals are the same”.

We should also note that previously, in policy [ii] we con-
sidered the triples as they are fetched form the sources. Here
we consider the triples as derived from the transformation
rules (described in §3).

Computing the metrics using policy [iii], not only allows
evaluating the gain achieved by these relationships, but it
also better reflects the value of the warehouse since query
answering considers the sameAs relationships.

Table 8 shows the matrix of the common URIs after the
rule-derived sameAs relationships and the execution of the
transformation rules, and Table 9 shows the corresponding
percentages. We can see that, compared to the results of
Tables 1 and 2, after considering the sameAs relationships
the number of common URIs between the different sources
is significantly increased (more than 7 times in some cases).

HHHHSi

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 190,733 434 1,897 4,009 6,732

WoRMS 80,486 805 1,754 3,596

Ecoscope 7,805 1,245 2,116

DBpedia 74,381 10,385

FishBase 34,974

Table 8: Common URIs (|Ui ∩ Uj |)

HHHHSi

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 0.54% 24.3% 5.39% 19.25%

WoRMS 1 10.31% 2.36% 10.28%

Ecoscope 1 15.95% 27.1%

DBpedia 1 29.69%

FishBase 1

Table 9: Common URIs % (curii,j =
|Ui∩Uj |

min(|Ui|,|Uj |))

Table 10 shows the average degree of the URIs of each
source Si (i.e. of those in Ui), and the average degree of the
same URIs in the warehouse graph. It also reports the in-
crement percentage (computed by warehouse/source * 100).
The last row of the table shows the average values of each
column. We can see that the average degree, of all sources,
after the inclusion of the sameAs relationships is significantly
bigger than before. In comparison to Table 5, the increase
is from 2 to almost 8 times bigger. This means that we
achieve a great increase in terms of the connectivity of the
information in the warehouse.

As regards the unique contribution of each source, Table
11 shows the number of the triples of each source |triples(Si)|,
the number of unique triples |triplesUnique(Si)|, and the

percentage of unique triples |triplesUnique(Si)|
|triples(Si)| . We observe

that the values in the column “a” are increased in compar-
ison to Table 6. This is because of the execution of the
transformation rules after the ingestion of the data to the
warehouse, which results to the creation of new triples for
the majority of sources. Finally we observe that, in general,

254

Si avg degSi
(Ui) avg degW (Ui) increase

FLOD 7.18 54.31 656.51%

WoRMS 3.3 9.93 201.36%

Ecoscope 22.84 165.24 623.6%

DBpedia 41.41 84.2 103.36%

FishBase 18.86 50.6 168.32%

AVERAGE 18.72 72.86 289.21%

Table 10: Average degrees in sources and in the
warehouse

the percentage of unique triples provided by each source is
decreased. This happens because the transformation rules
and the same-as relationships have turned previously differ-
ent triples, the same.

Si a = |triples(Si)| b = |triplesUnique(Si)| b/a

FLOD 810,301 798,048 98.49%

WoRMS 582,009 527,358 99.88%

Ecoscope 138,324 52,936 38.27%

DBpedia 526,016 517,242 98.33%

FishBase 1,425,283 1,340,968 94.08%

Table 11: (Unique) triple contributions of the
sources

4.2 Detecting Redundancies or other Patho-
logical Cases

The metrics can be used also for detecting various patho-
logical cases, e.g. sources that do not have any common URI
or literal, or “redundant sources”. To test this we created
two artificial sources, let’s call them Airports and Clone-
Source. The first contains triples about airports which were
fetched from the DBpedia public SPARQL endpoint, while
the second is a subset of Ecoscope’s and DBpedia’s triples
as they are stored in the warehouse.

In the sequel, we computed the metrics for all 7 sources.
Table 12 shows the unique triples and Table 13 shows the
average degrees. As regards Airports, the percentage of com-
mon URIs was very low, and the average degree for the en-
tities of that source was very low too (2.22% due to some
common country names), while its unique contribution was
100%. As regards CloneSource we got 0 unique contribution
(as expected, since it was composed from triples of existing
sources).

Si

a =
|triples(Si)|

b =
|triplesUnique(Si)| b/a

FLOD 665,456 664,703 99.89%

WoRMS 461,230 460,741 99.89%

Ecoscope 54,027 17,951 33.23%

DBpedia 450,429 429,426 95.34%

Fishbase 1,425,283 1,424,713 99.96%

CloneSource 56,195 0 0%

Airports 31,628 31,628 100%

Table 12: (Unique) triple contributions of the
sources

Rules for Detecting Pathological Cases
It follows that we can detect pathological cases using two
rules: (a) if the average increase of the degree of the entities
of a source is low, then this means that its contents are not
connected with the contents of the rest sources (this is the

case of Aiports where we had only 2.22% increase), (b) if the
unique contribution of a source is very low (resp. zero), then
this means that it does not contribute significantly (resp. at
all) to the warehouse (this is the case of CloneSource where
the unique contribution was zero).

Si avg degSi
(Ui) avg degW (Ui) increase

FLOD 7.18 54.31 656.51%

WoRMS 3.3 9.93 201.36%

Ecoscope 22.84 165.24 623.6%

DBpedia 41.41 84.2 103.36%

FishBase 18.86 50.6 168.32%

CloneSource 44.43 84.2 89.52%

Airports 70.99 72.56 2.22%

AVERAGE 29.86 74.43 149.26%

Table 13: Average degrees in sources and in the
warehouse

4.3 Implementation
As regards implementation, the above metrics are com-

puted by the tool MatWare that we have developed. The
values of the metrics are exposed in the form of an HTML
page (as shown in Figure 3) providing in this way a kind of
quantitative documentation of the warehouse. As regards
time, the current warehouse (containing 3,772,919 triples)
takes about 7 hours to reconstruct.16

Figure 3: Metrics results displayed in HTML as pro-
duced by MatWare

5. SYNOPSIS AND CONCLUSION
For many applications one has to fetch and assemble pieces

of information coming from more than one SPARQL end-
points. In this paper we have described the main require-
ments and challenges, based also on our experience so far
in building a semantic warehouse for marine resources. We
have presented a process for constructing such warehouses
and then we introduced metrics for quantifying the connec-
tivity of the outcome.

The results are very positive. By inspecting the proposed
metrics-based matrixes one can very quickly get an overview

16Virtuoso and machine spec: Openlink Virtuoso V6.1,
Ubuntu 12.10 64bit, Quad-Core, 4 GB RAM.

255

of the contribution of each source and the tangible benefits
of the warehouse. The main metrics proposed are: (a) the
matrix of percentages of the common URIs and/or liter-
als, (b) the complementarity factor of the entities of inter-
est, (c) the table with the increments in the average degree
of each source, and (d) the unique triple contribution of
each source. The values of (a),(b),(c) allow valuating the
warehouse, while (c) and (d) mainly concern each particular
source.

For instance, and for the warehouse at hand, by combin-
ing the unique triples contribution (from Table 11) and the
increment of the average degrees (of Table 10), we can un-
derstand that not only we get unique information from all
sources, but also how much the average degree of the en-
tities of the sources has been increased in the warehouse.
Moreover, redundant sources can be spotted through their
low unique contribution, while unconnected sources through
their low average increase of the degree of their entities. Of
course one could combine the above metrics and derive var-
ious other single-valued metrics for expressing the quality
(connectivity, redundancy) of each source, as well as for the
entire warehouse.

The ability to assess the quality of a semantic warehouse
(using methods like those presented in this paper, as well
those presented in §2.1) is very important for judging whether
the warehouse can be used in e-Science. It is also important
because in the long run we expect that datasets and ware-
houses will be peer-reviewed, evaluated and cited, and this
in turn will justify actions for their future preservation.

In future we plan to continue along this direction, focusing
also on methods that compare the metrics of two different
warehouse versions for monitoring the evolution of the ware-
house over time.

Acknowledgement
This work was partially supported by the ongoing project
iMarine (FP7 Research Infrastructures, 2011-2014).

6. REFERENCES
[1] D. P. Ballou and G. K. Tayi. Enhancing data quality

in data warehouse environments. Communications of
the ACM, 42(1):73–78, 1999.

[2] F. Darari, W. Fariz, W. Nutt, G. Pirro, and
S.Razniewski. Completeness Statements about RDF
Data Sources and their Use for Query Answering. In
The Semantic Web–ISWC 2013, pages 66–83.
Springer, 2013.

[3] P. Fafalios and Y. Tzitzikas. X-ENS: Semantic
Enrichment of Web Search Results at Real-Time. In
SIGIR’13, pages 1089–1090, Dublin, Ireland, 2013.
ACM.

[4] A. Hogan, A. Harth, J. Umbrich, S. Kinsella,
A. Polleres, and S. Decker. Searching and Browsing
Linked Data with SWSE: The Semantic Web Search
Engine. Web Semantics: Science, Services and Agents
on the World Wide Web, 9(4), 2011.

[5] T. Knap and J. Michelfeit. Linked Data Aggregation
Algorithm: Increasing Completeness and Consistency
of Data, http://www.ksi.mff.cuni.cz/~knap/files/
aggregation.pdf.

[6] T. Knap, J. Michelfeit, J. Daniel, P. Jerman,
D. Rychnovskỳ, T. Soukup, and M. Nečaskỳ.

ODCleanStore: a Framework for Managing and
Providing Integrated Linked Data on the Web. In Web
Information Systems Engineering-WISE 2012, pages
815–816. Springer, 2012.

[7] P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve:
Linked Data Quality Assessment and Fusion. In
Proceedings of the 2012 Joint EDBT/ICDT
Workshops, pages 116–123. ACM, 2012.

[8] J. Michelfeit and T. Knap. Linked Data Fusion in
ODCleanStore. In International Semantic Web
Conference (Posters & Demos), 2012.

[9] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
Document-Oriented Lookup Index for Open Linked
Data. Int. J. Metadata Semant. Ontologies,
3(1):37–52, 2008.

[10] G. G. Shanks and P. Darke. Understanding Data
Quality and Data Warehousing: A Semiotic Approach.
In Third Conference on Information Quality (IQ’98),
pages 292–309, 1998.

[11] E. Tsiflidou and N. Manouselis. Tools and Techniques
for Assessing Metadata Quality. In 7th Metadata and
Semantics Research Conference (MTSR’13), 2013.

[12] Y. Tzitzikas, C. Alloca, C. Bekiari, Y. Marketakis,
P. Fafalios, M. Doerr, N. Minadakis, T. Patkos, and
L. Candela. Integrating Heterogeneous and
Distributed Information about Marine Species through
a Top Level Ontology. In Proceedings of the 7th
Metadata and Semantic Research Conference
(MTSR’13), Thessaloniki, Greece, November 2013.

[13] Y. Tzitzikas, M. Kampouraki, and A. Analyti.
Curating the Specificity of Ontological Descriptions
under Ontology Evolution. Journal on Data
Semantics, pages 1–32, 2013.

[14] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk -
A Link Discovery Framework for the Web of Data. In
Proceedings of the WWW’09 Workshop on Linked
Data on the Web, 2009.

APPENDIX
A. COMPETENCY QUERIES

Figure 4 displays the textual description for some compe-
tency queries as they were supplied by the communities.

#Query For a scientific name of a species (e.g. Thunnus Albacares or Poromitra Crassiceps),

find/give me

Q
1

the biological environments (e.g. ecosystems) in which the species has been introduced and more

general descriptive information of it (such as the country)

Q
2

its common names and their complementary info (e.g. languages and countries where they are

used)

Q
3

the water areas and their FAO codes in which the species is native

Q
4

the countries in which the species lives

Q
5

the water areas and the FAO portioning code associated with a country

Q
6

the presentation w.r.t Country, Ecosystem, Water Area and Exclusive Economical Zone (of the

water area)

Q
7

the projection w.r.t. Ecosystem and Competitor, providing for each competitor the identification

information (e.g. several codes provided by different organizations)

Q
8

a map w.r.t. Country and Predator, providing for each predator both the identification information

and the biological classification

Q
9

who discovered it, in which year, the biological classification, the identification information, the

common names - providing for each common name the language, the countries where it is used

in.

Figure 4: Some indicative competency queries

256

Scalable Numerical SPARQL Queries over

Relational Databases

Minpeng Zhu, Silvia Stefanova, Thanh Truong, Tore Risch
Department of Information Technology, Uppsala University

Box 337, SE-75105 Uppsala, Sweden

{Minpeng.Zhu, Silvia.Stefanova, Thanh.Truong, Tore.Risch}@it.uu.se

ABSTRACT

We present an approach for scalable processing of SPARQL

queries to RDF views of numerical data stored in relational

databases (RDBs). Such queries include numerical expressions,

inequalities, comparisons, etc. inside FILTERs. We call such

FILTERs numerical expressions and the queries - numerical

SPARQL queries. For scalable execution of numerical SPARQL

queries over RDBs, numerical operators should be pushed into

SQL rather than executing the filters as post-processing outside

the RDB; otherwise the query execution is slowed down, since a

lot of data is transported from the RDB server and furthermore

indexes on the server are not utilized. The NUMTranslator

algorithm converts numerical expressions in numerical

SPARQL queries into corresponding SQL expressions. We

show that NUMTranslator improves substantially the scalability

of SPARQL queries based on a benchmark that analyses

numerical logs stored in an RDB. We compared the performance

of our approach with the performance of other systems

processing SPARQL queries to RDF views of RDBs and show

that NUMTranslator improves substantially the scalability of

numerical queries compared to the other systems’ approaches.

Keywords

SPARQL queries; RDF views of relational databases; numerical

expressions; query rewrites; query optimization

1. INTRODUCTION
The Semantic Web provides uniform data representation for

integrating data from different data sources by using established

well-known formats like RDF, RDFS, OWL, and the standard

query language SPARQL. Semantic Web seems promising to

integrate and search industrial data [2].

Our application scenario is from the industrial domain, where

sensors on machines such as trucks, pumps, kilns, etc., produce

large volumes of log data. Such log data describes measured

values of certain components at different times and can be used

for analyzing machine behavior. Furthermore, the geographic

locations of machines are often widely distributed and

maintained locally in autonomous RDBs called log databases.

We are developing the FLOQ (Federated LOg database Query)

system, which is a system for historical analyses over

federations of autonomous log databases using SPARQL

queries. To discover abnormal machine behaviors, a user of

FLOQ defines SPARQL queries to these log databases. FLOQ

processes a SPARQL query by first finding the relevant log

databases containing the desired data, then sending local

SPARQL queries to them, and finally collecting the local query

results to obtain the final result.

In this paper we concentrate on scalable historical analyses by

SPARQL queries of log data stored in a single relational

database. Suspected abnormal machine behaviors are discovered

and analyzed by specifying numerical SPARQL queries to an

RDF view of the RDB. The queries analyze log data through

numerical FILTERs containing numerical operators [11]. For

example, query Q1 retrieves the machine identifiers m for which

a sensor has measured values mv of measurement class A higher

than the expected values ev by a threshold value @thA during

the time from bt to time et. Here <prod> denotes the URI for

the RDF view of the RDB.

In FLOQ, SPARQL queries to RDBs are processed by

generating a local execution plan containing calls to one or

several SQL queries sent to a back-end RDBMS for evaluation.

SPARQL queries that cannot be completely processed by SQL

are instead partially processed by an execution plan interpreter

in FLOQ. However, in order for the SQL queries to return the

minimal required data, it is desirable that as much as possible of

the SPARQL query is translated to SQL [8].

In FLOQ numerical SPARQL queries are defined over an

automatically generated RDF view over an RDB expressed in

ObjectLog [6], which is a Datalog dialect that supports objects

for representing URIs and typed literals [9], disjunctive queries

for UNION expressions, and foreign predicates to represent

numerical operators in queries. The SPARQL queries are parsed

into ObjectLog queries to the RDF view. Internally representing

queries in ObjectLog permits domain calculus query

transformations and optimizations before generating the

execution plan. Calls to tuple calculus SQL query strings are

made as foreign predicates. Foreign predicates are also used for

accessing URIs in the execution plan. Doing all processing in

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0.

Q1:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresA log:mA_BySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.

 ?measuresA log:mA/m ?m.

 ?measuresA log:mA/mv ?mv.
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + @thA)) }

257

the RDB is complicated, and requires implementing SPARQL

operators not supported by SQL as RDB-specific UDFs. We

show that ObjectLog query transformations enable scalable

execution by the RDBMS.

Numerical SPARQL queries contain variables bound to numbers

and calls to numerical functions and operators. For scalable

execution, it is important that such numerical expressions are

pushed into corresponding SQL expressions and executed on the

RDBMS server, which is the subject of this paper. The

NUMTranslator algorithm converts numerical SPARQL queries

into SQL queries where numerical expressions are pushed into

SQL. For example, Q1 is converted into SQL query SQL1,

where the numerical expression in the SPARQL FILTER is

translated into a corresponding SQL expression.

A particular problem is that SPARQL and ObjectLog are

domain calculus languages where variables can be bound to

numbers, while SQL is a tuple calculus language where

variables have to be bound to tuples in relations. The

NUMTranslator algorithm translates domain calculus

expressions into corresponding SQL tuple calculus expressions

after having applied domain calculus transformation on the

ObjectLog representation.

We show that NUMTranslator improves substantially the query

performance for numerical SPARQL queries compared to other

approaches used by other systems.

In summary the contributions are:

 We propose a table driven approach to translate

numerical domain calculus operators into numerical

SQL tuple calculus operators.

 We present the NUMTranslator algorithm that extracts

numerical ObjectLog expressions and translates them

into corresponding numerical SQL expressions.

 We compare the performance of numerical SPARQL

queries to RDF views of RDBs with and without

applying NUMTranslator, and show that the algorithm

substantially improves the query performance.

 We compare the performance of our approach with the

performance of other systems processing SPARQL

queries over RDF views of RDBs and show

substantially better performance.

The rest of this paper is organized as follows: Section 2 presents

a scenario where the approach is applicable. Section 3 overviews

the system architecture. Section 4 describes the NUMTranslator

algorithm. Section 5 discusses performance experiments.

Section 6 describes related work. Conclusions and future work

are described in section 7.

2. MOTIVATING SCENARIO
We present a common scenario from an industrial setting where

it is desirable to analyze historical log data in order to find

abnormal machine behavior. Log data from embedded sensors is

stored in a relational log database.

Figure 1 shows the schema of the RDB storing log data

measured by sensors embedded in machine installations. Table

Machine(m, mm) stores meta-data about each machine

installation, i.e. machine identifier and model name. The table

Sensor(m, s, sm, mc, ev, ad, rd) stores information about each

sensor installation, i.e. the machine installation m where a sensor

s is embedded, sensor model name sm, the kind of measurement

(measurement class) mc, expected sensor value ev, absolute

error ad and relative error rd. The attribute mc, measurement

class is used to identify different kind of measurements, e.g. oil

pressure, temperature, etc. The tables MeasuresA(m, s, bt, et,

mv) and MeasuresB(m, s, bt, et, mv) store log data of kind A and

B read from sensors s embedded in machine installations m. The

begin time bt and the ending time et for a sensor reading are also

stored, while the measured value for a certain time stamp is

denoted by mv. The columns m, (m, s), and (m, s, bt) are primary

keys in the tables Machine, Sensor, and MeasuresA and

MeasuresB, respectively. The column m in tables MeasuresA,

MeasuresB, and Sensor references the column m in the table

Machine as foreign key. Furthermore, columns (m, s) in tables

MeasuresA and MeasuresB reference columns (m, s) in table

Sensor as a composite foreign key.

The RDF view of the RDB is illustrated by the RDF graph in

Figure 2.

SQL1:

SELECT m.m, bt, et
FROM MeasuresA m, SENSOR s
WHERE m.m=s.m AND
 m.s=s.s AND
 m.mv > s.ev + @thA

Machine(m, mm)

Sensor(m, s, sm, mc, ev, ad, rd)

MeasuresA(m, s, bt, et, mv)

MeasuresB(m, s, bt, et, mv)

Figure 1. RDB schema for log data

 mA/mv

 mA/bt

 mA/et

Figure 1

 mA/m mA/s

mB/m
mB/s

mB/bt

mB/et

 mB/mv

sensor/ev

sensor/s

sensor/m

machine/m

machine/mm

mB_atMachine

mA_atMachine

mA_bySensor
sensor_ofMachine

mB_bySensor
Sensor

MeasuresB

MeasuresA

Machine

xsd:string xsd:int

xsd:float xsd:int

xsd:int

....

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

Figure 2. RDF graph of the RDF view for

the example RDB

258

Next we define two more typical numerical SPARQL queries to

the log database, Q2 and Q3, that discover abnormal machine

behaviors. Query Q2 identifies a potential failure by retrieving

for machine models M_1, M_2, and M_3 those machineid

where, during the time interval (bt, et), the measured value mv

was above 75% of the allowed deviation @thA from the

expected value ev.

Query Q3 identifies abnormal behaviors of machines of a

measurement class based on absolute deviations: when and for

which machine identifiers did the pressure reading of class B

deviate more than @thB from its expected value ev?

3. FLOQ OVERVIEW AND QUERY

PROCESSING
Figure 3 illustrates processing of numerical SPARQL queries by

FLOQ.

The RDF view over the RDB is automatically generated based

on the database schema and ontology mapping tables in FLOQ.

The used mappings conform to the direct mapping

recommended by W3C [10].

We define a unique RDFS class for each relational table, except

for link tables [10] representing set-valued properties as many-

to-many relationships. In addition, RDF properties are defined

for each column in a table. For example, the RDFS class with

the URI <log:mA> represents the table MeasuresA, while

<log:mA/bt> and <log:mA/et> represent the columns bt and et

in MeasuresA, respectively.

The RDF view is defined in terms of:

 Source predicates R(a1, a2, …, an) that represent the

content of each referenced relational database table R

where the tuple (a1, …, an) represents a row in R.

 URI-constructor predicates that construct URIs to

identify rows in tables.

 Mapping tables that map relational schema elements

to RDF concepts.

The complete RDF view definitions can be found in [9]. The

query processing steps in FLOQ are shown in Figure 4.

The SPARQL parser first transforms the SPARQL query into an

ObjectLog expression where each triple pattern in the query

becomes a reference to the RDF view of the RDB. Then the

ObjectLog transformer generates a simplified disjunctive normal

form (DNF) predicate. The NUMTranslator algorithm performs

the extractor and finalizer steps. The extractor collects from

conjunctions predicates that can be translated to SQL, called

access filters. The query decomposer then optimizes the query,

producing a query execution plan where access filters are called.

The finalizer traverses the execution plan to translate the

extracted predicates in the access filters into SQL expressions.

When the execution plan is interpreted, the generated SQL

statements are sent to the RDB for execution. The non-extracted

predicates are not translated to SQL and have to be processed

outside the RDB by post-processing operators. For example,

Q2:
SELECT ?machineid ?bt ?et
FROM <prod>
WHERE{?measuresA log:mA_bySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.
 ?measuresA log:mA/mv ?mv.
 ?measuresA log:mA_atMachine ?machineid.

 ?machineid log:machine/mm ?mm.
 FILTER (?mm in ('M_1','M_2','M_3')).
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + 0.75*@thA)) }

Q3:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresB log:mB/bt ?bt.
 ?measuresB log:mB/et ?et.
 ?measuresB log:mB/mv ?mv.
 ?measuresB log:mB_bySensor ?sensor.
 ?sensor log:sensor/m ?m.
 ?sensor log:sensor/ev ?ev.
 BIND ((?mv-?ev) as ?temp).
 FILTER (abs(?temp) > @thB) }

SQL

SPARQL query

SPARQL parser

RDB

Query Decomposer

Finalizer

Extractor

ObjectLog transformer

Post-processing

Figure 4. Query processing steps

SPARQL query

SQL

FLOQ

RDF view

Query processor

NUMTranslator

RDB

Figure 3. FLOQ query processor

259

such operators are URI-constructors and numerical expressions

not supported by the SQL engine.

4. THE NUMTRANSLATOR

ALGORITHM
The NUMTranslator uses a table-driven approach to define

which SPARQL operators to extract and translate into

corresponding SQL operators and functions. Table 1 defines the

SPARQL to SQL operator translations:

Table 1. SPARQL to SQL operators to translate

SPARQL SQL INFIX FUNCTION

> > True False

< < True False

= = True False

!= <> True False

+ + True True

- - True True

ABS ABS False True

UCASE UPPER False True

etc.

In Table 1 there is one row for each SPARQL operator or

function (column SPARQL) that can be translated into SQL. The

column SQL defines the corresponding SQL operator or

function. A value in the column INFIX is true when the

corresponding SQL operator is an infix operator op on operands

x and y, i.e. x op y (e.g. x+y); otherwise it is an SQL function on

format f(x,y,..). The column FUNCTION is true when the

operator is a non-Boolean function returning a value.

4.1 The NUMTranslator extractor
The extractor is applied on each ObjectLog conjunction in the

simplified predicate received by the ObjectLog transformer. The

extractor collects predicates that can be translated to SQL. Such

predicates are i) source predicates SPs representing RDB tables,

and ii) non-source predicates (NSPs) that are defined in Table 1

as translatable to SQL.

Figure 5 shows the ObjectLog representation of Q1 after it has

been transformed by the ObjectLog transformer.

In this case all predicates in Q1 are translatable to SQL since

MeasuresA and Sensor are SPs, and > and + are NSPs defined

in Table 1.

The steps of the extractor are the following:

1. Initialize a variable Xpreds for the first found SP,

denoted R1, in the conjunction and bind a variable

Rest to the other predicates.

2. Iteratively extract from Rest the predicates that have

some common variable with some extracted predicate

in Xpreds, which are either SPs or NSPs defined in

Table 1.

3. Construct an access filter of all extracted predicates in

Xpreds since those can be fully translated to SQL.

4. While there are some remaining SP, R2, in Rest, re-

initialize Xpreds by R2 and Rest by the remaining

predicates, and repeat steps 2-3.

5. Finally, construct a conjunction of the access filters

and Rest.

For example, for Q1 the predicates in Xpreds are extracted in the

following order:

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.

2. >(mv, v36) (line 2) since > is defined in Table 1 and

the variable mv is common with the extracted

MeasuresA.

3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP

having common variables (m and s) with MeasuresA().

4. V36 = ev + @thA (line 3) since + is defined in Table

1 and the variable ev is common with the extracted

Sensor predicate.

Then the following conjunctive access filter F1 is formed by the

predicates in Xpreds:

 F1(m,s,bt,et,mv,ev):-

1 MeasuresA(m, s, bt, et, mv) and

2 Sensor(m, s, _, _, ev, _, _) and

3 v36= ev + @thA and

4 mv > v36

No non-translatable predicates remain in Rest.

4.2 Query decomposition
To optimize the query produced by the extractor, the query

decomposer uses cost-based optimization [6] to produce an

optimized execution plan. Based on heuristics and statistic of the

queried RDB, execution cost and selectivities of access filter are

estimated. Default cost parameters are used by the optimizer to

estimate the execution cost and selectivities of predicates if no

statistic is available. The decomposer will then reorder the

access filters and the post processed predicates to generate an

optimized execution plan. We do not further elaborate the query

decomposer here.

4.3 The NUMTranslator finalizer
The finalizer translates access filters in the decomposed

execution plan into calls to an SQL interface operator, sql that

sends generated SQL strings to the back-end RDB for execution.

ObjectLog numerical expressions are translated into SQL

numerical expressions by recursively replacing all ObjectLog

domain variables that represent numerical expressions with their

bound expressions. For example, the variable v36 in line 4 in F1

doesn’t represent a relational column and is replaced by its

bound expression in line 3, and then the obtained expressions is

mv > ev + @thA. Thus for Q1 the execution plan P1 becomes

the following:

The execution plan contains an algebra expression where the

apply operator γ fn(..) calls the foreign predicate sql(ds, q,

result) implemented in Java. The foreign predicate sql sends an

Figure 5. ObjectLog of query Q1

Q1(m, bt, et):-

1 MeasuresA(m, s, bt, et, mv) and

2 mv > v36 and

3 v36 = ev + @thA and

4 Sensor(m, s, _, _, ev, _, _)

(m, bt, et)

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA
m, SENSOR s WHERE m.mv > s.ev + @thA AND

m.m=s.m AND m.s=s.s", (m, bt, et))

Figure 6. Execution plan P1 with NUMTranslator

260

SQL query q to the RDBMS data source ds for execution and

iteratively returns bindings of tuples, result.

If NUMTranslator had not been applied, all numerical operators

would have to be post-processed, which would slow down the

query execution since filtering cannot be made in the database

server.

For example, if NUMTranslator is turned off, for Q1 the

following execution plan P2 is produced that doesn’t contain

any numerical SQL operators corresponding to numerical

SPARQL operators, which are instead post-processed:

Comparing the two execution plans P1 and P2 it can be seen

that the sql operator in P2 retrieves much more data than P1, so

if NUMTranslator is turned off lots of data needs to be filtered

out outside the RDB server. Furthermore, the utilization of

indexes on the SQL numerical expression by the back-end

database server makes significant performance difference. We

show in the next section that applying NUMTranslator

substantially improves the query performance of numerical

SPARQL queries.

5. PERFORMANCE MEASUREMENTS
We compared the performance for executing the numerical

queries Q1, Q2, and Q3 in FLOQ with and without applying

NUMTranslator. Furthermore, we compared the query

performance of FLOQ with the query performance of D2RQ [1]

for Q1, Q2, and Q3, for the same back-end relational database.

We tried to run the queries with both ontop [7] and Virtuoso [3]

as well, but none of our numerical SPARQL queries could be

run, indicating that those systems do not provide full support for

processing numerical SPARQL queries.

All experiments are carried out on a MS SQL Server 2008 R2

installed on a server machine with 8 AMD OpteronTM 6128

processors, 2.00 GHz CPU and 16GB RAM. The RDB is

populated by loading sensor data into the MS SQL server. B-tree

indexes are created on the columns mm, mv, bt, et, ev, ad, and rd

to speed up the queries.

All measurements were taken both for cold and warm runs. The

cold runs were made immediately after the RDBMS server was

started, which implied that there were no data cached in the

buffer pool and the executed query wasn’t optimized by the

RDBMS. Thus a measured query execution time for a cold run

includes the time for i) reading data from disk, ii) SQL query

optimization on the RDBMS server, iii) communication, and iv)

post-processing of data on the client. The warm runs were made

after a query was executed once. Since the back-end RDBMS

has a statement cache a same SQL query executed twice will be

optimized the first time it is run. Therefore, warm executions do

not include RDBMS query optimization time.

The plotted values are mean values of three measurements. The

standard deviation is less than 10% in all cases. To investigate

the SQL query produced by all the other systems we use the

system profiling tool of MS SQL server when running a query.

The following notations are used in the performance diagrams:

 NUMTranslator: FLOQ with NUMTranslator turned

on, i.e. the SPARQL numerical expressions are

translated into corresponding SQL expressions.

 Naive: FLOQ with NUMTranslator turned off, i.e. the

SPARQL numerical expressions are not translated into

corresponding SQL numerical expressions.

 D2RQ: D2RQ version [0.8.1] configured with the

system’s default mappings.

Figure 8, 9 and 10 show the execution times for both cold and

warm runs for Q1, Q3, and Q2 while scaling the databases size

from 1 GB to 15 GB.

Figure 9. Execution times for Q3

Figure 8 and 9 show that NUMTranslator substantially improves

the query execution scalability compared to Naïve for numerical

SPARQL queries like Q1 and Q3 with highly selective

numerical FILTERs: 0.04% for Q1 and 3% for Q3. In these

cases pushing the numerical FILTERs to SQL is more profitable

than filtering large data amounts on the client. The performance

of D2RQ is worse than Naïve since D2RQ sends to the RDBMS

an SQL query that doesn’t contain numerical expressions, and is

a much more complex query with more joins. Furthermore, Q3

had to be manually changed for D2RQ to remove the BIND

operator, since otherwise D2RQ wouldn’t return correct result.

Measurement results for Q2 are shown in Figure 10. For Q2 the

results for NUMTranslator and Naïve are presented in a separate

diagram, since they are very close. It can be seen on Figure 10

that NUMTranslator doesn’t improve the query performance for

non-selective queries like Q2 where the FILTER selects 43% of

the data. In this case pushing the numerical SPARQL filters to

be executed to the RDBMS server doesn’t make a significant

difference compared to post-filtering data on the client.

D2RQ performs worse for Q2 since it doesn’t translate any of

the FILTERs and it furthermore generates a very complex SQL

query with many joins.

(v36)

(mv)

(m, bt, et)

(ev)

γ >(mv, v36)

γ +(ev, @thA)

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND

m.s=s.s", (m, s, bt, et, mv, ev))

Figure 7. Execution plan P2 without NUMTranslator

Figure 8. Execution times for Q1

261

Figure 10. Execution times for Q2

In general, the experiments show that NUMTranslator

substantially improves the query performance of numerical

SPARQL queries where the numerical FILTERs have high

selectivity.

6. RELATED WORK
Virtuoso RDF Views [3] and D2RQ [1] are other systems that

process SPARQL queries to RDF views of RDBs. These

systems implement compilers that translate SPARQL directly to

SQL. By contrast, FLOQ first generates ObjectLog queries to a

declarative RDF view of the RDB, and then transforms the

SPARQL queries to SQL by logical transformations.

We didn’t find any publication of how D2RQ compiles

numerical SPARQL queries into SQL and the documentation for

Virtuoso’s SQL generation is very limited [3]. However, by

using the profiling tool of the RDBMS and the debug logging of

Virtuoso we were able to analyze what queries were actually

sent to the RDBMS, showing that neither of those systems

translates numerical SPARQL expressions into corresponding

SQL expressions.

The ontop system [7] also enables SPARQL queries to RDF

views of RDBs by translating SPARQL to Datalog programs,

which are rewritten and translated to SQL. A difference to ontop

is the table driven NUMTranslator algorithm, which makes it

very easy to extend for new operators. Furthermore, FLOQ

generates execution plans containing calls to SQL intermixed

with expressions interpreted in the client. This enables FLOQ to

interpret in the client SPARQL operators not available in SQL.

In addition NUMTranslator translates the domain calculus

SPARQL queries into tuple calculus SQL queries by substituting

variables with their bound expressions.

7. CONCLUSIONS AND FUTURE WORK
We presented the FLOQ system where the NUMTranslator

algorithm uses a table driven approach to translate numerical

domain calculus SPARQL expressions into corresponding

numerical SQL expressions. This enables scalable processing of

numerical SPARQL queries to RDF views over RDBs.

The approach was evaluated on a benchmark scenario in an

industrial setting where logged data stored in an RDB was

analyzed using numerical SPARQL queries. We compared the

performance of the SPARQL queries with and without applying

NUMTranslator. The experiments show that NUMTranslator

substantially improves the query performance of numerical

SPARQL queries in particular when the numerical expressions

inside FILTERs are highly selective.

We also compared our approach with other systems that

translate SPARQL queries to SQL. Only D2RQ could execute

our queries, but substantially slower since D2RQ does not

employ an approach similar to NUMTranslator.

As our next step, we will investigate numerical SPARQL

queries searching large numbers of distributed log databases

combined through an ontology. Another issue is creating

benchmarks based on randomly generating SPARQL queries

[5]. Furthermore, query processing and mediation strategies over

other back-ends than RDBs [4] in our setting should be

investigated.

8. ACKNOWLEDGMENTS
This work is supported by EU FP7 project Smart Vortex and the

Swedish Foundation for Strategic Research under contract

RIT08-0041.

9. REFERENCES
[1] Bizer, C., Cyganiak, R., Garbers, G., Maresch, O., and

Becker, C. 2009. The D2RQ Platform v0.7 - Treating Non-

RDF Relational Databases as Virtual RDF Graph,

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/

[2] Björkelund, A., Edström, L., etc. 2011. On the integration

of skilled robot motions for productivity in manufacturing,

In Proc. of IEEE International Symposium on Assembly

and Manufacturing, Tampere, Finland.

[3] Erling, O. and Mikhailov, I. 2009. RDF Support in the

Virtuoso DBMS, Studies in Computational Intelligence,

Vol. 221

[4] Langegger, A., Wöß, W., and Blöchl, M. 2008. A Semantic

Web Middleware for Virtual Data Integration on the Web,

5th European Semantic Web Conference ESWC 2008.

[5] Langegger, A. and Wöß, W. 2009. RDFStats – The

Extensible RDF Statistics Generator and Library, 8th

International Workshop on Web Semantics, DEXA 2009,

Linz, Austria, August 31-September 40.

[6] Litwin, W. and Risch, T. 1992. Main Memory Oriented

Optimization of OO Queries using Typed Datalog with

Foreign Predicates, IEEE Transactions on Knowledge and

Data Engineering, Vol. 4, No. 6.

[7] Rodriguez-Muro, M., Rezk, M., Hardi, J., Slusnys, M.,

Bagosi, T., and Calvanese, D. 2013. Evaluating SPARQL-

to-SQL Translation in Ontop, ORE 2013

[8] Sequeda, J. F., and Miranker, D. P. 2013. Ultrawrap:

SPARQL Execution on Relational Data, Tech. Report,

Univ. of Texas at Austin.

http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-

2078.pdf

[9] Stefanova, S., and Risch, T. 2011. Optimizing Unbound-

property Queries to RDF Views of Relational Databases. 7t

International workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2011), Bonn, Germany.

[10] Arenas, M., Bertails, A., Prud’hommeaux, E., and Sequeda,

J. 2012. A Direct Mapping of Relational Data to RDF,

http://www.w3.org/TR/rdb-direct-mapping/

[11] Harris, S., and Seaborne, A. 2013. SPARQL 1.1 Query

Language, http://www.w3.org/TR/sparql11-query/

262

Similarity Recognition in the Web of Data

Alfio Ferrara
Dipartimento di Informatica

Università degli Studi di Milano
Via Comelico 39

20135 - Milano, Italy
alfio.ferrara@unimi.it

Lorenzo Genta
Dipartimento di Informatica

Università degli Studi di Milano
Via Comelico 39

20135 - Milano, Italy
lorenzo.genta@unimi.it

Stefano Montanelli
Dipartimento di Informatica

Università degli Studi di Milano
Via Comelico 39

20135 - Milano, Italy
stefano.montanelli@unimi.it

ABSTRACT
In the web of data, similarity recognition is the basis for
a variety of resource-consuming activities and applications,
including data recommendation, data aggregation, and data
analysis. In this paper, we propose HMatch4, a novel in-
stance matching algorithm for similarity recognition, which
has been developed on the ground of our experience with
HMatch3 [3].

1. INTRODUCTION
In the web of data, the capability to recognize the degree of
similarity between different descriptions of web resources is
getting more and more crucial for a number of purposes [2,
5]. Focused techniques specifically conceived for the web of
data are required to address the peculiar aspects of similarity
evaluation in such a context. Two main issues need to be
considered.

Similarity is not identity. In the literature, traditional
approaches/tools for similarity recognition are based on the
idea of comparing resources by analyzing their features. In
these solutions, the goal is to recognize the identity between
two resources, namely the capability to detect when the two
descriptions refer to the same real object. From this perspec-
tive, identity is seen as a special case of similarity character-
ized by a high similarity value (i.e., high number of shared
features). Low similarity values are usually interpreted as
a non-identity result, meaning that the two considered re-
source descriptions refer to different real objects. Consider
the following example:

tiger woods
profession: golfer
nationality: united states

arnold schwarzenegger
profession: bodybuilder
profession: politician
nationality: united states

In this case, the degree of similarity between tiger woods
and arnold schwarzenegger is quite low, because they ac-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

tually have only one feature in common (i.e., nationality).
According to traditional instance matching approaches, the
similarity value between the two resources is discarded, con-
cluding that they do not represent the same person. Such
a behavior is correct, however, matching techniques for the
web of data have to be capable of capturing and preserving
the correct degree of similarity both when the considered re-
sources are identical or very similar and when they are only
quite similar or even completely different. This can be useful
in many application scenarios, like for example in web data
classification where the goal can be to aggregate resources
based on the similarity over one (or few) specific features
(see for example [4]).

The scale as a key issue. In the web of data, matching
usually involves very large data collections, potentially com-
posed by hundred of thousands of web resources described by
millions of features. In this scenario, the intrinsic limitation
of existing instance matching approaches to similarity evalu-
ation is due to the cost of directly comparing all the pairs of
resource items in order to compute their degree of similarity
within a considered dataset. In a classical comparison-based
matching approach, this means that a matching operation
is required to calculate the similarity degree for each pos-
sible pair of items. For a dataset of n items, this means
that O(n2) matching operations are required in the worst
case to compare each item against all the other items in
the dataset. Optimization strategies have been proposed in
the literature to reduce the number of comparison opera-
tions and to increase the performance of the overall match-
ing process [5]. However, to the best of our knowledge, the
currently available instance matching tools are still affected
by severe limitations in terms of scalability, which usually
means that in real systems the similarity recognition task
need to be executed offline in case of very large collections
of data.

In this paper, we propose HMatch4, a novel instance match-
ing algorithm for similarity recognition, which has been de-
veloped on the ground of our experience with HMatch3 [3].
HMatch4 is natively conceived for working in the web of
data, where the above matching issues are properly consid-
ered and addressed. In the following, we first describe the
HMatch4 techniques and related algorithm (Section 2 and 3).
Then, we provide the results of a preliminary evaluation ob-
tained by comparing HMatch4 against HMatch3 and other
popular tools for instance matching, namely LogMap [7] and
SLINT+ [8] (Section 4). Related work and concluding re-

263

marks are finally discussed (Section 5 and 6).

2. THE HMATCH4 PROCESS
We first describe our model for representation of the web-of-
data resources, and then we present the HMatch4 matching
process.

2.1 Modeling web resource items
In HMatch4, we rely on the use of an internal data model
called web resource item (wri) for representation of the re-
sources to match. A wri element is featured by a set of
feature-value pairs and it is defined as follows:

wri = {(f, v)1 . . . (f, v)k}
where each pair (f, v) ∈ wri represents a feature-name f
and the corresponding feature-value v.

Wrapping resources to the wri model. The wri model
has been conceived to support matching of different kinds
of web-of-data resources, like for example social data (e.g.,
Facebook, Twitter resources) and linked data (e.g., Freebase,
DBpedia resources). The idea of modeling resources as sets
of feature-value pairs is motivated by the need to deal with
a number of different native formats that are commonly em-
ployed for description of web-of-data resources. Appropri-
ate wrapping operations are required to transform the na-
tive web resource representation into a wri-based represen-
tation. In general, this wrapping step is straightforward. A
feature-value pair (f, v) ∈ wri is created for each property
and corresponding value within the native description of the
considered resource. For instance, in case of a social data re-
source like a tweet, a feature-value pair is defined in the wri
representation for each tweet field (e.g., id, text, user, lang,
place, created at, entities). A similar approach is enforced
to generate a wri representation when a linked data resource
URI extracted from a repository R is considered. In partic-
ular, a feature-value pair is created for each property name
and corresponding property value that is directly connected
with URI in the RDF specification extracted from the repos-
itory R. In case that URI has a property name p associated
with multiple property values v1 . . . vm, a feature-value pair
(p, vj) is created in the wri description for each value vj with
j ∈ [1,m].

Example. As an example, we show the wri description for
a linked data resource featuring the famous athlete muham-

mad ali. Such a description is extracted from the Freebase

repository by only considering the properties profession, type,
and nationality.

muhammad ali
(profession, athlete),
(profession, professional boxer),
(type, olympic athlete),
(nationality, United States of America).

2.2 Matching process
HMatch4 works on a dataset D of wri elements to match and
it produces a similarity matrix as a result.

Spirit of HMatch4. The idea is to measure the similar-
ity degree between two items by calculating their number

of common feature-value pairs in the wri representations.
Given wri1 and wri2, this can be determined by calculat-
ing the set of pairs (f, v) that belong to both the consid-
ered items (i.e., wri1 ∩ wri2). As a difference with classical
comparison-based approaches, HMatch4 proposes a sort of
index-based matching approach where the similarity degree
of two items is the result of an indexing operation and a
“pair-by-pair” comparison between wri elements is not re-
quired. The key idea of HMatch4 is to consider each single
wri in the dataset and to index all the possible subsets of
feature-value pairs belonging to wri that can be relevant for
detecting a similarity with other wri elements. Two items
wri1 and wri2 are similar if they share the same entry in the
index, meaning that they have a common subset of feature-
value pairs in their wri representations (i.e., the feature value
pairs of the index entry). The similarity degree is assessed
by measuring the size (i.e., cardinality) of the shared subset
of feature-value pairs.

Matching process. The matching process of HMatch4 is
articulated in three main steps, namely configuration, exe-
cution, and assessment (see Figure 1). The configuration
step defines the setup of the matching execution and it spec-
ifies the requirements to be satisfied by two items wri1 and
wri2 for being considered as similar. We call feature-set F
the set of all the features involved in the specification of wri
elements within the considered dataset D, namely:

F = {
n⋃

i=1

fs(wrii)}

where n = |D| is the number of items within the dataset
D and fs(wri) = {fj | (fj , v) ∈ wri} is the set of features
characterizing the feature-value pairs of wri. Then, we cal-
culate the power set P(F) containing all the possible subsets
of features over F . Then, we define the set F ⊂ F as follows:

F = {rfs | rfs ∈ F ∧ | rfs || F | ≥ ths}

where ths ∈ (0, 1] is a similarity threshold and it determines
the minimum similarity degree that is required to consider
two items as matching items. A set rfs ∈ F is called relevant
feature-set and it represents a combination of features to be
considered for similarity recognition. The rationale of our
matching process is that two items wri1 and wri2 are similar
iff they share a set of feature-value pairs where the features
coincides with a set rfs ∈ F .

The execution step creates an index structure I containing
entries for the combinations of feature-value pairs within wri
descriptions that are relevant for similarity recognition. An
index entry ie ∈ I has the form ie = 〈rfs, fvl, wp〉, where
rfs ∈ F is a relevant feature-set, fvl is a list of feature-
value pairs, and wp is a set of wri elements belonging to D.
Given an index entry ie and the associated relevant feature-
set rfs = {f1, . . . , fs}, the corresponding list of feature-
value pairs fvl has the form fvl = (f1, v1) | . . . | (fs, vs), and
wp contains the wri elements that provide fvl in their wri
representation. For each item wri ∈ D, we create an entry
in the index I for those combinations of feature-value pairs
of wri that are based on a relevant feature-set belonging to
F . Details about the HMatch4 algorithm for creating the
index I are presented in Section 3.

264

(f1, v1) | (f2, v3) wri1, wri2

feature-value list (fvl) wri of
provenance (wp)

(f1, v1) | (f2, v5)

(f1, v1) | (f3, v4)

(f1, v2) | (f3, v4)

{ f1, f2 }

(f2, v3) | (f3, v4)

(f1, v1) | (f2, v3) | (f3, v4)

(f1, v2) | (f2, v3)

(f1, v2) | (f2, v3) | (f3, v4)

wri2

wri1, wri3

{ f1, f3 } wri1

wri1, wri3

{ f2, f3 } wri1, wri3

{ f1, f2, f3 } wri1

wri1, wri3

relevant
feature-sets (rfs)

wri
dataset

wri1 (f1, v1)
(f1, v2)
(f2, v3)
(f3, v4)

wri2 (f1, v1)
(f2, v3)
(f2, v5)

wri3 (f1, v2)
(f2, v3)
(f3, v4)

Configuration
(feature-set composition)

Execution
(indexing of feature-value pairs)

Assessment
(similarity matrix construction)

wri1

wri2

wri3

wri1

wri11

wri2 wri3

wri1

wri1

wri1

wri1

wri1

wri1

wri1

wri1

-

-

1

1

1

-

-

0.8

similarity
matrix

feature-set (F)
(ths = 0.5)

{ f1, f2, f3 }

Power-set of the
feature-set P(F)

{ }
{ f1 }
{ f2 }
{ f3 }
{ f1, f2 }
{ f1, f3 }
{ f2, f3 }
{ f1, f2, f3 }

Figure 1: The similarity recognition process of HMatch4

The assessment step generates the similarity matrix M
for the wri items of the dataset D. Given two items wri1
and wri2, their similarity value sim(wri1, wri2) is deter-
mined by querying the index I and by extracting the index
entry shared by wri1 and wri2 (if it exists). Given an in-
dex entry ie where wri1, wri2 ∈ wp, the similarity value
sim(wri1, wri2) is calculated through the Dice’s coefficient
formula:

sim(wri1, wri2) =
2· | rfs |

| fs(wri1) | + | fs(wri2) |
where fs(wri) is the set of features characterizing the feature-
value pairs of wri and rfs is the relevant feature-set associ-
ated with the index entry ie, meaning that the items wri1
and wri2 share feature-value pairs for all the features in
rfs. According to this definition, the similarity values com-
puted by HMatch4 are symmetric (i.e., sim(wri1, wri2) =
sim(wri2, wri1)) and thus the resulting matrix M is upper
triangular. It is possible that two items wri1 and wri2 have
not a shared entry in the index structure. In HMatch4, this
means that sim(wri1, wri2) = 0. It is also possible that two
or more index entries are shared by two items wri1 and wri2,
meaning that the two items have more relevant feature-sets
in common. In this case, the entry with max(| rfs |) is
selected for calculating sim(wri1, wri2).

Example. We consider the wri about muhammad ali previ-
ously introduced and the following wri descriptions about
michael jordan and george foreman.

michael jordan
(profession, athlete),
(type, olympic athlete),
(type, celebrity).

george foreman
(profession, professional boxer),
(type, olympic athlete),
(nationality, United States of America).

According to these descriptions, the feature-set F = { pro-

fession, type, nationality } is generated. By setting a similarity
threshold ths = 0.5, we obtain the relevant feature-sets F =
{{profession, type}, {profession, nationality}, {type, nationality},
{profession, type, nationality}}. The resulting index structure
is shown in Figure 2. Thus, the similarity matrix generated
in the assessment step is the following:

m. ali m. jordan g. foreman

m. ali 1.0 0.8 1.0
m. jordan - 1.0 0.0
g. foreman - - 1.0

For calculation of sim(m. ali,m. jordan), we consider the first
entry in the index structure of Figure 2 that is shared by
m. ali and m. jordan (see column wp). Thus, we obtain:
sim(m.ali,m.jordan) = (2 · 2)/(3 + 2) = 0.8. Moreover, we
note that sim(m.jordan, g.foreman) = 0.0. This is due to
the fact that m. jordan and g. foreman only share the feature-
value pair type, olympic athlete that does not coincide with a
relevant feature-set, meaning that the similarity between m.

jordan and g. foreman is not sufficient for being recognized in
the current HMatch4 configuration (ths = 0.5).

3. THE HMATCH4 ALGORITHM
In this section, we present the HMatch4 algorithm used in
the execution step for creation of the index structure I. The
algorithm is shown in Figure 3. The algorithm is imple-
mented by the function Indexing(D,F), which takes the
dataset D and the relevant feature-set F as input. The func-
tion initializes the index I as a map where keys are numeric
values and values are sets of wri (line 2). Then, it takes into
account all the wri in D. For each wri and for each relevant
relevant feature-set rfs in F , we first initialize an empty set
of values V (line 5). As an example, let us take into account
the wri1 of Figure 1, which is composed by the feature-value
pairs {(f1, v1), (f1, v2), (f2, v3), (f3, v4)}, and the relevant
feature-set {f1, f2}. For each feature fi in rfs, we insert
into V all the feature-values pairs having fi as feature (lines
7-8). In our example, the set V at the end of this pro-
cess is composed by the elements V = { {(f1, v1), (f1, v2)},

265

Relevant feature-set rfs Feature-value list fvl wri wp

{profession, type} (profession, athlete) (type, olympic athlete) m ali, m. jordan
(profession, athlete) (type, celebrity) m. jordan
(profession, professional boxer) | (type, olympic athlete) m. ali, g. foreman

{profession, nationality} (profession, athlete) | (nationality, United States of America) m ali
(profession, professional boxer) | (nationality, United States of America) m. ali, , g. foreman

{type, nationality} (type, olympic athlete) | (nationality, United States of America) m.ali, g. foreman
{profession, type, nationality} (profession, athlete) | (type, olympic athlete) | (nationality, United States of America) m ali

(profession, professional boxer) | (type, olympic athlete) | (nationality, United States of America) m ali, g. foreman

Figure 2: Index structure for the wri descriptions about muhammad ali, micheal jordan, and george foreman

1: function Indexing(D,F)
2: I ← a key-value map of the form <number: set>
3: for all wri ∈ D do
4: for all rfs ∈ F do
5: V ← {}
6: for all f ∈ rfs do
7: F ← {(fi, vi) | (fi, vi) ∈ wri ∧ fi = f}
8: add F to V
9: end for

10: X ← v1 × v2 × . . .× v|V | | vi ∈ V

11: for all x ∈ X do
12: h← hash(x)
13: if h ∈ keys(I) then
14: add wri to I[h]
15: else
16: I[h]← {wri}
17: end if
18: end for
19: end for
20: end for
21: return I
22: end function

Figure 3: The HMatch4 execution algorithm

{(f2, v3)}}. Now, we process each element in the cartesian
product X of the sets in V , which are {(f1, v1), (f2, v3)} and
{(f1, v2), (f2, v3)} (lines 10-11). The idea behind this step
is that features having more than one value, such as f1 in
the example, are considered separately and in combination
with all the other feature values. For each element x of X,
we insert a new entry in the index I. In particular, we ob-
tain a numerical index key as the hash-value of x. We note
that, in this paper, we assume to have just a simple hashing
function capable of providing a unique value for each com-
bination of feature-value pairs. The development of a more
powerful hashing function is one of the goals of our future
work. According to this procedure (lines 12-16), the index
I will contain one entry for each combination of values in
the relevant feature-set rfs. In our example, given all the
feature-sets of Figure 1, we generate 7 entries, 3 for {f1, f2},
2 for {f1, f3}, 1 for {f2, f3}, and 2 for {f1, f2, f3}. In such
a way, when a subsequent wrij is processed, if it has one or
more combinations of feature-value pairs that are equal to
those of wri, it will be inserted in the same set of wri in the
index, denoting the fact that there is a similarity between
wrij and wri.

4. EXPERIMENTAL RESULTS
The goal of our experimentation is to evaluate HMatch4 in
terms of i) the quality of similarity recognition measured
by precision and recall; ii) the scalability of HMatch4 when
matching a growing number of web resources. Considering
the quality assessment, we performed a comparison against

a ground-truth set of mappings produced by human users.
The scalability evaluation is performed on both time and
space consumption in comparison with the matching tools
LogMap and SLINT+ [7, 8]. These tools have been chosen
for their known efficiency and for the availability of a work-
ing prototype. The scalability tests are performed on an
automatically produced dataset based on multiple replica-
tions of a base dataset. Both the quality and scalability tests
have been performed by comparing HMatch4 and HMatch3
[3], our previous version of matching tool.

4.1 Experiment setup
In this section, we discuss quality assessment and scalability
evaluation.

Quality assessment. The ground truth has been produced
by exploiting a novel crowdsourcing approach called Liquid
Crowd. A crowdsourcing approach consists in reducing a
problem in a set of elementary units of work that are dis-
tributed to a (possibly) large number of human workers.
Each worker participates giving the solution for one or more
work units and receives a reward (e.g., money, personal sat-
isfaction or other benefits) proportional to the completed
amount of work. The main idea behind Liquid Crowd is
to change the definition of worker from a single user to a
group of users. A work unit is considered accepted only if
the assigned group reaches a consensus on the produced an-
swer (i.e., the qualified majority of users converge on the
same answer). In our experimentation, the ground truth for
quality assessment is built on 58 individuals from Freebase
repository with a total number of 275 feature-value pairs.
Thus, the work units have been structured as a blind eval-
uation of a pair of web resources. For instance, the users
have to evaluate the similarity of the given resources only
knowing their features and features-values without knowing
their identifiers (i.e., the names of the resources): this is
done to avoid that users exploit their personal knowledge in
evaluating the similarity.
In order to complete a work unit, the user has to choose be-
tween 4 possible answers: equal (E), very similar (VS), quite
similar(QS), unequal (U). Thus, the final mappings pro-
duced are in the form m(wrix, wriy) = {E|V S|QS|U}. As a
result from the proposed set of work units, the human work-
ers produced 1136 mappings (work units that reached the
consensus) with the following distribution: U = 653, QS =
317, V S = 151, E = 15. On this dataset we produced 1653
work units. The crowdsourcing session was open for 7 days
to any volunteer: 82 persons took part to the experiment
with a result of 1136 completed tasks.

Scalability evaluation. For this test, we performed differ-

266

ent executions of the 4 matching tools by replicating K times
the dataset used for quality assessment, for K between 1 and
1461. The number of resources of the performed tests is be-
tween 58 (426 RDF triples) and 85144 (888293 RDF triples)
and each resource has a mean of 4 feature-value pairs. The
time measurements has been performed by evaluating time
between the execution of the considered tool and its termi-
nation, while the memory measurement has been done by
polling the used memory and catching the greatest value
during the execution of each tool.

4.2 Results
For quality assessment, we compare the results of HMatch4
and HMatch3 against the ground truth produced by the hu-
man users of our crowdsourcing system. The decision to
exclude LogMap and SLINT+ arises from the fact that they
are proposed to find different representations of the same
resource and not to perform similarity recognition, which
means that i) the produced values are a representation of
identity or candidate identity and ii) each resource appears
in the results only compared to its best match. In order to
make the results produced by HMatch4 and HMatch3 com-
parable to the ground truth, we converted the continuous
values of our tools to the four similarity classes produced by
the crowdsourcing system. This has been done creating 4 in-
tervals and 4 association rules mapping each interval to the
corresponding similarity class: [0, 0.17) → U, [0.17, 0.5) →
QS, [0.5, 0.8)→ V S, [0.8, 1]→ E.

The comparison between HMatch4 and HMatch3 is based
on 3 measures: precision, recall and F-measure (Figure 4).
Given the set of mappings in a specific class produced by the
automatic tool as T and the set of mappings of the ground
truth in the same class as G, the precision value is com-
puted as T∩G

T
and recall value is computed as T∩G

G
, while F-

measure is the harmonic mean between precision and recall.
The obtained results show that HMatch4 and HMatch3 are
very similar in both precision and recall values. We note that
both tools behave exactly as humans on inequality recogni-
tion, while they have different perceptions on the other sim-
ilarity classes. This is probably due to human evaluation of
similarity that tends to discriminate the importance of sim-
ilarity based on the name of the feature. We also considered
a different comparison approach by converting the classes of
the crowdsourcing system to values in the interval [0, 1], in
order to perform an overall accuracy measure. This measure
has been computed as the inverse of the mean distance of the
results produced by our tools against the ground truth. The
results of the crowdsourcing system have been converted as
follows: E → 1, V S → 0.66, QS → 0.33, U → 0. The ac-
curacy values obtained are 0.886 for HMatch3 and 0.890 for
HMatch4. Also in this case the results are almost the same.

Finally, we present the results of the scalability evaluation.
All the tests have been executed on a 4-core Intel(R) Xeon(R)
processor (model E5-1620) with a frequency of 3.60GHz and
16 GB of total RAM memory. The results shown in Figure
5 (execution time) represent the trend of the 4 considered
tools for the time consumption: the y-axis is the log-scale of
the required time while the x-axis is the size of the dataset
represented by the maximum number of possible compar-
isons (i.e., for a dataset of N resources the x-axis shows
N ·N).

1 0 1 2 3 4 5 6 7 8
1e9

0

2

4

6

8

10
Execution time

HM3 HM4 LogMap SLINT

1 0 1 2 3 4 5 6 7 8
1e9

0

1

2

3

4

5

6

1e9 Memory usage

HM3 HM4 LogMap SLINT

Figure 5: Execution time and memory usage for
HMatch3, HMatch4, LogMap, and SLINT+

In Figure 5 (memory usage) the memory consumption of the
4 considered tools is shown. In this case, the y-axis shows
the occupied memory in bytes while the x-axis represents
the size of the dataset (intended again as the greatest num-
ber of possible comparisons). We note that the HMatch3
tool is executed just until the 161th replication due to the
excessive required time and memory. In all the executed test
cases HMatch4 performed as the best tool between the con-
sidered counterparts. In the largest test case, we matched
N · N resources with N = 85144 (401775 features, 888293
triples): SLINT+ required 2697 seconds, LogMap required
166 seconds and HMatch4 completed the comparison in 24
seconds.

5. RELATED WORK
In the recent years, a lot of research effort has been fo-
cused on data matching with a specific attention to instance
matching in the framework of the Semantic Web. Most of
the existing solutions have been conceived to deal with the
so-called identity-recognition problem, where the target is
to detect when different descriptions extracted from inde-

267

Figure 4: Precision, Recall and F-measure of HMatch3 and HMatch4

pendent web repositories refer to the same individual. On
this research line, a reference survey of existing techniques
and tools can be found in [5]. The creation of an instance-
matching track within the context of the well-known OAEI
initiative1 is a further message that emphasizes the grow-
ing attention about the data matching issues. Examples of
interesting tools that have been emerging from the OAEI
competition are LogMap [7] and SLINT+ [8]. Yet, the focus
of these proposed tools is the capability to recognize identi-
ties (i.e., same-as links) between pairs of web objects.
Approaches based on feature similarity are also relevant with
respect to our HMatch4. In this kind of solutions, the objects
to match are described through (numeric) feature vectors
and the similarity degree is calculated in terms of distances
in a n-dimensional space by relying on vector calculus op-
erations. Vector-based matching techniques are usually em-
ployed in image similarity recognition and in nearest neigh-
bor search where the items to compare are characterized by
feature vectors with n numeric coordinates and the mapping
within a n-dimensional space is straightforward [9]. For ap-
plication of vector-based techniques to web-of-data match-
ing, a transformation of (string-based) feature-value pairs
into (numeric) feature vectors is required, but such a kind
of transformation is not straightforward.
Finally, the possibility to use hashing solutions to index the
object features to match is not completely new in the liter-
ature about data matching [6]. The capability to create an
efficient data structure for storing similar values in neigh-
bor positions of the index is promising and solutions in this
direction are currently appearing [1]. We plan to integrate
the use of hashing data structures into HMatch4. We will
investigate this issue in the next-future research activities
to further increase the performance of execution and assess-
ment steps of the HMatch4 process (see Section 6).

Original contribution. With respect to all the above so-
lutions, the peculiarity of HMatch4 is on the goal of the
matching process rather than on the novelty of the proposed
techniques. In HMatch4, the target is similarity recognition,
based on evaluating the relevance of shared subset of feature-
values in the different wri specifications. The use of an index
structure is adopted to avoid a direct pair-by-pair compari-
son of all the items to match, with the aim at improving the
overall performance of the matching process.

1http://oaei.ontologymatching.org/.

6. CONCLUDING REMARKS
In this paper, we presented HMatch4 and related techniques
for similarity recognition. HMatch4 has been conceived for
application in those contexts where the goal is to evaluate
the similarity degree among description of different individu-
als like for example dimension-based data classification and
web data summarization [4]. In future work, we plan to
investigate the extension of HMatch4 to support approxi-
mate matching. The idea is to enforce hashing techniques
that preserve “near” index positions when “near” feature val-
ues are recognized. The investigation of hashing techniques
based on tree structures is also in the research agenda of
HMatch4 for efficient indexing of feature-value pairs.

7. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal Hashing

Algorithms for Approximate nearest Neighbor in high
Dimensions. In Proc. of the 47th IEEE FOCS, 2006.

[2] D. Bianchini, C. Cappiello, V. De Antonellis, and
B. Pernici. P2S: A Methodology to Enable
Inter-organizational Process Design through Web
Services. In Proc. of the 21st Int. CAiSE, 2009.

[3] S. Castano, A. Ferrara, S. Montanelli, and G. Varese.
Ontology and Instance Matching. In Knowledge-driven
multimedia information extraction and ontology
evolution. Springer, 2011.

[4] A. Ferrara, L. Genta, and S. Montanelli. Linked Data
Classification: a Feature-based Approach. In Proc. of
the 3rd EDBT LWDM Workshop, 2013.

[5] Ferrara, A. and Nikolov, A. and Scharffe, F. Data
Linking for the Semantic Web. Int. Journal on
Semantic Web and Information Systems, 7(3), 2011.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity Search
in High Dimensions via Hashing. In Proc. of the 25th
VLDB Conference, 1999.

[7] E. Jiménez-Ruiz, B. C. Grau, Y. Zhou, and I. Horrocks.
Large-scale Interactive Ontology Matching: Algorithms
and Implementation. In Proc. of the 20th ECAI, 2012.

[8] K. Nguyen, R. Ichise, and B. Le. SLINT: A
Schema-Independent Linked Data Interlinking System.
In Proc. of the 7th Int. Workshop on Ontology
Matching, 2012.

[9] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
Efficiency in high Dimensional nearest Neighbor Search.
In Proc. of ACM SIGMOD, 2009.

268

Mining of Diverse Social Entities from Linked Data

Alfredo Cuzzocrea
ICAR-CNR & Univ. of Calabria

Rende (CS), Italy
cuzzocrea@si.deis.unical.it

Carson K. Leung
University of Manitoba
Winnipeg, MB, Canada

kleung@cs.umanitoba.ca

Syed K. Tanbeer
University of Manitoba
Winnipeg, MB, Canada

tanbeer@cs.umanitoba.ca

ABSTRACT
Nowadays, high volumes of valuable data can be easily gen-
erated or collected from various data sources at high velocity.
As these data are often related or linked, they form a web
of linked data. Examples include semantic web and social
web. The social web captures social relationships that link
people (i.e., social entities) through the World Wide Web.
Due to the popularity of social networking sites, more people
have joined and more online social interactions have taken
place. With a huge number of social entities (e.g., users or
friends in social networks), it becomes important to analyze
high volumes of linked data and discover those diverse social
entities. In this paper, we present (i) a tree-based mining al-
gorithm called DF-growth, along with (ii) its related data
structure called DF-tree, which allow users to effectively
and efficiently mine diverse friends from social networks. Re-
sults of our experimental evaluation showed both the time-
and space-efficiency of our scalable DF-growth algorithm,
which makes good use of the DF-tree structure.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations—linked represen-
tations; H.2.8 [Database Management]: Database Ap-
plications—data mining ; J.2 [Computer Applications]:
Social and Behavioral Sciences

General Terms
Algorithms; Design; Experimentation; Management; Perfor-
mance; Theory

Keywords
Data mining, friendship patterns, diverse friends, linked
data, social networks, extending database technology, data-
base theory

c©2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

1. INTRODUCTION & RELATED WORK
Nowadays, with the advances in technology, high volumes
of valuable data—such as blogs, forums, wikis, and users’
reviews—can be easily generated or collected from various
data sources. These data are often related or linked, and
thus form a web of linked data [3]. Over the few years, re-
searchers have modelled, queried, and reasoned these linked
web data. For instance, Pernelle and Säıs [15] focused on
classification rule learning for linked data. Ferrara et al. [9]
proposed a feature-based approach to classify linked data.

A social web is an instance of a web of linked data. Such
a social web can be viewed as a collection of social relation-
ships that link social entities (e.g., users). In recent years,
researchers have exploited the social perspective or social
phenomena [4, 8] in this web of linked data (e.g., for the
relevant problem of detecting communities over social and
information networks [6, 7, 20]). Intuitively, social networks
[14] are made of social entities who are linked by some spe-
cific types of relationships (e.g., friendship, common interest,
kinship). Facebook, Google+, LinkedIn, Twitter and Weibo
[17, 22] are some examples of social networks. Within these
networks, a user fi usually can create a personal profile,
add other users as friends, endorse their skills/expertise, ex-
change messages among friends. These social networks may
consist of thousands or millions of users; each user fi can
have different number of friends. Among them, some are
more important (or influential, prominent, and/or active in
a wide range of domains) than others [2, 12, 13, 19, 23].
Recognizing these diverse friends can provide valuable in-
formation for various real-life applications when analyzing
and mining high volumes of valuable social network data.

Over the past few years, several data mining techniques
[11, 16, 21] have been developed to help users extract im-
plicit, previously unknown, and potentially useful informa-
tion about the important friends. Recent works on social
network mining include the discovery of strong friends [5]
and significant friends [18] based on the degree of one-to-
one interactions (e.g., based on the number of postings to a
friend’s wall).

However, in some situations, it is also important to dis-
cover users who (i) are influential in the social networks,
(ii) have high level of expertise in some domains, and/or
(iii) have diverse interest in multiple domains. In other
words, users may want to find important friends based on
their influence, prominence, and/or diversity. For instance,
some users may be narrowly interested in one specific do-
main (e.g., computers). Other users may be interested in
a wide range of domains (e.g., computers, music, sports),

269

but their expertise level may vary from one domain to an-
other (e.g., a user fi may be a computer expert but only a
beginner in music).

In this paper, we propose a tree-based mining algorithm to
find from social networks for those diverse friends, who are
highly influential across multiple social network domains.
To this end, one of our key contributions is an efficient
tree-based algorithm called DF-growth for mining diverse
friends from social networks. DF-growth takes into account
multiple properties (e.g., influence, prominence, and/or di-
versity) of friends in the networks. Another key contribution
is a prefix-tree based structure called DF-tree for capturing
the social network data in a memory-efficient manner. Once
the DF-tree is constructed, DF-growth computes the diver-
sity of users based on both their influence and prominence
to mine diverse groups of friends.

The remainder of this paper is organized as follows. The
next section introduces the notion of diverse friends. Sec-
tion 3 presents our DF-growth algorithm, which mines di-
verse friends from our DF-tree. Experimental results are re-
ported in Section 4. Conclusions and future work are given
in Section 5.

2. DIVERSE FRIENDS IN SOCIAL NET-
WORKS

This section presents the concept of diverse friends in social
networks. Let us consider a social network on three differ-
ent domains (domains D1, D2, D3) and seven individuals—
Antonios, Barbara, Georgios, Dimitrios, Evgenios, Zoe, and
Hebe—with prominence values in each domain, as shown
in Table 1. Each domain represents a sub-category (e.g.,
sports, arts, education) of interest. The prominence value
of an individual reveals his level of expertise (e.g., impor-
tance, weight, value, reputation, belief, position, status, or
significance) in a domain. In other words, the prominence
value indicates how important, valued, significant, or well-
positioned the individual is in each domain. The promi-
nence value can be measured by using a common scale,
which could be (i) specified by users or (ii) automatically
calculated based on some user-centric parameters (e.g., con-
nectivity, centrality, expertise in the domain, years of mem-
bership in the domain, degree of involvement in activities
in the domain, numbers of involved activities in the do-
main). In this paper, the prominence value is normalized
into the range (0, 1]. As the same individual may have
different levels of expertise in different domains, his corre-
sponding prominence value may vary from one domain to
another. For instance, prominence value PromD1(Antonios)
of Antonios in domain D1 is 0.45, which is different from
PromD2(Antonios) = 0.60. Moreover, PromD1(Antonios) is
higher than PromD1(Georgios) = 0.20, implying that Anto-
nios is more influential than Georgios in domain D1.

Similar to the existing settings of a social network [5,
11, 18], let F = {f1, f2, . . . , fm} be a set of social enti-
ties/friends in a social network. An interest-group list L ⊆ F
is a list of individuals who are connected as friends due
to some common interests. Let G = {f1, f2, . . . , fk} ⊆ F
be a group of friends (i.e., friend group) with k friends.
Then, Size(G) = k, which represents the number of indi-
viduals in G. A friend network FSN = {L1, L2, . . . , Ln} is
the set of all n interest-group lists in the entire social net-
work. These lists belong to some domains, and each domain

Table 1: Prominence of friends
Friend Prominence Prom(fi)
(fi) Domain D1 Domain D2 Domain D3

Antonios 0.45 0.60 0.50
Barbara 0.90 0.70 0.30
Georgios 0.20 0.60 0.70
Dimitrios 0.30 0.50 0.40
Evgenios 0.50 0.40 0.45

Zoe 0.42 0.24 0.70
Hebe 0.57 0.10 0.20

Table 2: Lists of interest groups in FSN

Domain Interest-group list Lj

L1 = {Antonios, Barbara}
D1 L2 = {Antonios, Barbara, Dimitrios}

L3 = {Georgios, Dimitrios}
L4 = {Barbara, Georgios, Dimitrios}

D2 L5 = {Barbara, Georgios, Evgenios}
L6 = {Barbara, Hebe}
L7 = {Georgios, Evgenios}
L8 = {Antonios, Georgios}

D3 L9 = {Antonios, Georgios, Evgenios}
L10= {Antonios, Zoe}

contains at least one list. The set of lists in a particular do-
main D is called a domain database (denoted as FD). Here,
we assume that there exists an interest-group list in every
domain. The projected list F G

D of G in FD is the set of
lists in FD that contains group G. The frequency FreqD(G)
of G in FD indicates the number of lists Lj ’s in F G

D , and
the frequencies of G in multiple domains are represented as
FreqD1,2,...,d

(G) = 〈FreqD1
(G),FreqD2

(G), . . . ,FreqDd
(G)〉.

Example 2.1. Consider FSN shown in Table 2, which
consists of n=10 interest-group lists L1, ..., L10 for m=7 so-
cial individuals/friends in Table 1. Each row in the table
represents the list of an interest group. These 10 interest
groups are distributed into d=3 domains D1, D2 and D3.
For instance, FD1 = {L1, L2, L3}. For group G = {Geor-
gios, Evgenios}, its Size(G)=2. As its projected lists on
the 3 domains are F G

D1
=∅, F G

D2
={L6, L7} and F G

D3
={L8},

its frequencies FreqD1,2,3
(G) = 〈0, 2, 1〉.

Definition 2.1. The prominence value PromD(G)
of a friend group G in a single domain D is defined as the
average of all prominence values for all the friends in G:

PromD(G) =

∑Size(G)
i=1 PromD(fi)

Size(G)
. (1)

Then, prominence values PromD1,2,...,d(G) of a friend group
G in multiple domains are represented as PromD1,2,...,d(G)
= 〈PromD1(G), PromD2(G), . . . , PromDd(G)〉.

Example 2.2. Revisit FSN in Table 2. The prominence
value of friend group G = {Georgios, Evgenios} in D1 =
PromD1

(Georgios)+PromD1
(Evgenios)

Size(G)
= 0.20+0.50

2
= 0.35. We

apply similar computation on the other two domains D2

and D3 to get PromD1,2,3(G) = 〈0.35, 0.60+0.40
2

, 0.70+0.45
2

〉 =
〈0.35, 0.5, 0.575〉.

270

Definition 2.2. The influence Inf D(G) of a group G
of social entities/friends in a domain D in FD is defined as
the product of the prominence value of G in the domain D
and its frequency in the domain database FD, i.e.,

Inf D(G) = PromD(G) × FreqD(G). (2)

The influence Inf D1,2,...,d
(G) of G in multiple domains is

then represented as Inf D1,2,...,d
(G) = 〈Inf D1

(G), Inf D2
(G),

. . . , Inf Dd
(G)〉.

Example 2.3. Continue with Example 2.2. Recall that
PromD1,2,3(G) = 〈0.35, 0.5, 0.575〉. Recall from Example 2.1
that FreqD1,2,3

(G) = 〈0, 2, 1〉. Then, the overall influence

of G in all 3 domains can be calculated as Inf D1,2,3
(G) =

〈0.35 × 0, 0.5 × 2, 0.575 × 1〉 = 〈0, 1, 0.575〉.

Definition 2.3. The diversity Div(G) of a group G of
social entities/friends among all d domains in FSN is defined
as the average of all the influence values of G in all domains
in the social network:

Div(G) =

∑d
j=1 Inf Dj

(G)

d
. (3)

Example 2.4. Continue with Example 2.3. Recall that
Inf D1,2,3

(G) = 〈0, 1, 0.575〉. Then, the diversity of G in

these d=3 domains in FSN is Div(G)= 0+1+0.575
3

=0.525.

Here, a group G of friends in a social network FSN is con-
sidered diverse if its diversity value Div(G) ≥ user-specified
minimum threshold minDiv, which can be expressed as an
absolute (non-negative real) number or a relative percentage
(with respect to the size of FSN). Given FSN and minDiv,
the research problem of mining diverse friends from so-
cial networks is to find every group G of friends having
Div(G) ≥ minDiv.

Example 2.5. Let group G = {Georgios, Evgenios}. Re-
call from Example 2.4 that diversity Div(G) = 0.525. Given
(i) FSN in Table 2 and (ii) the user-specified minDiv=0.5,
G is diverse because Div(G)=0.525 ≥ 0.5=minDiv.

However, group G′ = {Evgenios}, such that G′ ⊆ G is

not diverse because Div(G′) = (0.5×0)+(0.4×2)+(0.45×1)
3

=
0+0.8+0.45

3
= 0.417 < minDiv.

Note that, when mining frequent patterns, the frequency/
support measure [1, 10] satisfies the downward closure prop-
erty (i.e., all supersets of an infrequent patterns are infre-
quent). This helps reduce the search/solution space by prun-
ing infrequent patterns, which in turn speeds up the mining
process.

However, mining diverse friends is different from mining
frequent patterns. As observed from Example 2.5 that group
G′ = {Evgenios} is not diverse but its super-group G =
{Georgios, Evgenios} is diverse. In other words, diversity
does not satisfy the downward closure property (i.e., if a
group is not diverse, then not all of its super-groups are
guaranteed to be diverse).

3. MINING DIVERSE FRIENDS
Given that diversity does not satisfy the downward closure
property, we cannot prune those groups that are not di-
verse. Hence, the mining of diverse friends can be challeng-
ing. To handle this challenge, for each domain D, we identify

the (global) maximum prominence value GMPromD

among all friends. Then, for each friend fi, we calculate
an upper bound of the influence value Inf U

D(fi) by multi-
plying GMPromD (instead of the actual PromD(fi)) with
the corresponding frequency FreqD(fi). The upper bound
of diversity value DivU (fi) can then be computed by using
Inf U

D(fi).

Lemma 3.1. Let G be a group of friends in FSN such that
a friend fi ∈ G. If DivU (fi) < minDiv, then Div(G) must
also be less than minDiv.

Example 3.1. Let us revisit FSN in Table 2. Global max-
imum prominence values are GMPromD1=0.90, GMPromD2

= 0.70, and GMPromD3=0.70. Recall from Example 2.5
that FreqD1,2,3

({Evgenios}) = 〈0, 2, 1〉. Then, we can com-

pute DivU ({Evgenios}) = (0.90×0)+(0.70×2)+(0.70×1)
3

= 0.7 ≥
minDiv. So, we do not prune {Evgenios} to avoid miss-
ing its super-group {Georgios, Evgenios}, which is diverse.

Similarly, DivU ({Zoe}) = (0.90×0)+(0.70×0)+(0.70×1)
3

=0.23 <
minDiv. Due to Lemma 3.1, we prune Zoe as none of its
super-groups can be diverse.

3.1 Construction of a DF-tree Structure
Our proposed DF-growth algorithm takes (i) a friend net-
work FSN and (ii) a user-specified minDiv threshold as two
input parameters to construct a DF-tree as follows. It first
scans FSN to calculate FreqDj

(fi) for each friend fi in each

domain Dj . For each fi, DF-growth then uses GMPromD

to compute the upper bound of the diversity value DivU (fi),
which is used to prune groups of friends who are not poten-
tially diverse. Every potentially diverse friend fi, along with
its FreqD1,...,d

(fi), is stored in the header table.

Then, DF-growth scans FSN the second time to capture
the important information about potentially diverse friends
in a user-defined order in the DF-tree. Each tree node con-
sists of (i) a friend name and (ii) its frequency counters for
all d domains in the respective path. The basic construction
process of a DF-tree is similar to that of the FP-tree [10].
A key difference is that, rather than using only a single fre-
quency counter capturing either the maximum or average
frequency for all domains (which may lead to loss of informa-
tion), we use d frequency counters capturing the frequency
for all d domains. See Example 3.2.

Example 3.2. To construct a DF-tree for FSN shown in
Table 2 when minDiv=0.5, DF-growth scans FSN to com-
pute (i) GMPromD1,2,3 = 〈0.9, 0.7, 0.7〉 for all d=3 domains,
(ii) frequencies of each of the 7 friends in d=3 domains (e.g.,
FreqD1,2,3

({Antonios}) = 〈2, 0, 3〉), (iii) upper bound of di-

versity values of all 7 friends (e.g., DivU ({Antonios}) =
(0.9×2)+(0.7×0)+(0.7×3)

3
= 1.3 using Inf U

D1,2,3
({Antonios})).

Based on Lemma 3.1, we safely remove Zoe and Hebe hav-
ing DivU ({Zoe})=0.23 and DivU ({Hebe})=0.23 both below
minDiv as their super-groups cannot be diverse. So, the
header table includes only the remaining 5 friends—sorted
in some order (e.g., lexicographical order of friend names)—
with their FreqD1,2,3

({fi}). To facilitate a fast tree traver-

sal, like the FP-tree, the DF-tree also maintains horizontal
node traversal pointers from the header table to nodes of
the same fi.

Our DF-growth algorithm then scans each Lj ∈ FSN , re-
moves any friend fi ∈ Lj having DivU (fi) <minDiv, sorts

271

Figure 1: Construction of a DF-tree.

the remaining friends according to the order in the header
table, and inserts the sorted list into the DF-tree. Each
tree node captures (i) fi representing the group G consist-
ing of all friends from the root to fi and (ii) its frequencies
in each domain FreqD1,2,3

(G). For example, the rightmost

node Evgenios:0,1,0 of the DF-tree in Figure 1(b) captures
G={Georgios, Evgenios} and FreqD1,2,3

(G)=〈0, 1, 0〉. Tree

paths of common prefix (i.e., same friends) are shared, and
their corresponding frequencies are added. See Figures 1(a),
1(b), and 1(c) for DF-trees after reading all interest-group
lists in domain D1, both D1 and D2, as well as the entire
FSN , respectively.

With this tree construction process, the size of the DF-
tree for FSN with a given minDiv is observed to be bounded
above by

∑
Lj∈FSN

|Lj |.

3.2 Mining of All Diverse Friend Groups
After constructing the DF-tree, our DF-growth algorithm
recursively mines/discovers diverse friend groups by building
projected and conditional trees in a fashion similar to that
of FP-growth [10].

Recall that Div(G) computed based on PromD(G) does
not satisfy the downward closure property. To facilitate
pruning, we use GMPromD(fi) to compute DivU (fi), which
then satisfies the downward closure property. However, if
DivU (G) was computed as an upper bound to super-group G
of fi, then it may overestimate diversity of G and may lead
to false positives. To reduce the number of false positives,
DF-growth uses the local maximum prominence value
LMPromD(G) = maxfi∈F G

D
{PromD(G)} for the projected

and conditional trees for G. See Lemma 3.2 and Exam-
ple 3.3.

Lemma 3.2. The diversity value of a friend group G com-
puted based on LMPromD(G) is a tighter upper bound than
DivU (G) computed based on GMPromD.

Example 3.3. Let us continue Example 3.2. To mine
potentially diverse friend groups from the DF-tree in Fig-
ure 1(b) using minDiv = 0.5, DF-growth first builds the

Figure 2: Tree-based mining of diverse friend
groups.

{Evgenios}-projected tree—as shown in Figure 2(a)—by ex-
tracting the paths 〈Antonios, Georgios, Evgenios〉:0,0,1, 〈Bar-
bara, Georgios, Evgenios〉:0,1,0 and 〈Georgios, Evgenios〉:0,1,0
from the DF-tree in Figure 1(b). For FEvgenios

D1,2,3
= {An-

tonios, Barbara, Georgios, Evgenios}, our DF-growth al-

gorithm uses LMPromD1,2,3(F
Evgenios
D1,2,3

) = 〈0.9, 0.7, 0.7〉 to

compute the tightened DivU (G) such that the tightened

DivU ({Antonios, Evgenios}) = (0.9×0)+(0.7×0)+(0.7×1)
3

=0.23
< minsup.

As DivU ({Antonios, Evgenios}) and DivU ({Barbara, Ev-
genios}) are both below minsup, DF-growth prunes Anto-
nios and Barbara from the {Evgenios}-projected tree to get
the {Evgenios}-conditional tree as shown in Figure 2(b).
Due to pruning, our DF-growth algorithm recomputes (i) the

local maximum prominence value LMPromD1,2,3(F
Evgenios
D1,2,3

)

=〈0.5, 0.6, 0.7〉 and (ii) the tightened DivU ({Georgios, Ev-

genios}) = (0.5×0)+(0.6×2)+(0.7×1)
3

= 0.63 for the updated

FEvgenios
D1,2,3

= {Georgios, Evgenios}. This completes the min-

ing for {Evgenios}.
Next, DF-growth builds {Dimitrios}-, {Georgios}- and

{Barbara}-projected trees as well as their conditional trees,
from which potentially diverse friend groups can be mined.
Finally, our DF-growth algorithm computes the true diver-
sity value Div(G) for each of these mined groups to check if
it is truly diverse (i.e., to remove all false positives).

272

Table 3: Dataset characteristics
Dataset n=#transactions m=#domain items Max trans. length Avg trans. length Density

mushroom 8,124 119 23 23.0 Dense
T10I4D100K 100,000 870 29 10.1 Sparse
kosarak 990,002 41,270 2498 8.1 Sparse

Figure 3: Experimental results.

3.3 Removal of Non-diverse Friend Groups
Our DF-growth algorithm makes good use of the global and
local maximum prominence values of friend groups as upper
bounds to diversity values of friend groups. Consequently,
the algorithm discovers all truly diverse friend groups (i.e.,
no false negatives). However, it also discover some “poten-
tially diverse” friend groups that are not truly diverse (i.e.,
some false positives). Hence, as its final step, our algorithm
computes the true diversity values Div(G) for each of these
mined groups to check if it is truly diverse (i.e., to remove
all false positives).

Example 3.4. Let us continue Example 3.3. After min-
ing potentially diverse friend groups from {Evgenios}-, {Di-
mitrios}-, {Georgios}- and {Barbara}-projected trees as well
as their conditional trees, our DF-growth algorithm com-
putes the true diversity value Div(G) for each of the mined
groups to check if it is truly diverse (i.e., to remove all false
positives).

4. EXPERIMENTAL EVALUATION
To evaluate the effectiveness of our proposed DF-growth al-
gorithm and its associated DF-tree structure, we compared
them with a closely related weighted frequent pattern min-
ing algorithm called Weight [24] (but it does not use different
weights for individual items). As Weight was designed for
frequent pattern mining (instead of social network mining),
we apply those datasets commonly used in frequent pattern
mining for a fair comparison: (i) IBM synthetic datasets
(e.g., T10I4D100K) and (ii) real datasets (e.g., mushroom,
kosarak) from the Frequent Itemset Mining Dataset Repos-
itory (http://fimi.ua.ac.be/data). See Table 3 for more
detail. Items in transactions in these datasets are mapped
into friends in interest-group lists. To reflect the concept of
domains, we subdivided the datasets into several batches.
Moreover, a random number in the range (0, 1] is generated
as a prominence value for each friend in every domain.

All programs were written in C++ and run on the Win-
dows XP operating system with a 2.13 GHz CPU and 1 GB

main memory. The runtime specified indicates the total ex-
ecution time (i.e., CPU and I/Os). The reported results are
based on the average of multiple runs for each case. We
obtained consistent results for all of these datasets.

4.1 Runtime
First, we compared the runtime of DF-growth (which in-
cludes the construction of the DF-tree, the mining of po-
tentially diverse friend groups from the DF-tree, and the
removal of false positives) with that of Weight. Figure 3(a)
shows the results for a dense dataset (mushroom), which
were consistent with those for sparse datasets (e.g., T10I4-
D100K). Due to page limitation, we omit the results for
sparse datasets. But, runtimes of both algorithms increased
when mining larger datasets (social networks), more batches
(domains), and/or with lower minDiv thresholds. Between
the two algorithms, our tree-based DF-growth algorithm
outperformed the Apriori-based Weight algorithm. Note
that, although FP-growth [10] is also a tree-based algorithm,
it was not design to capture weights. To avoid distraction,
we omit experimental results on FP-growth and only show
those on Weight (which captures weights).

4.2 Memory Consumption
Second, we evaluated the memory consumption. Figure 3(b)
shows the amount of memory required by our DF-tree for
capturing the content of social networks with the lowest min-
Div threshold (i.e., without removing any friends who were
not diverse). Although this simulated the worst-case sce-
nario for our DF-tree, DF-tree was observed (i) to consume
a reasonable amount of memory and (ii) to require less mem-
ory than Weight (because our DF-tree is compact due to the
prefix sharing).

4.3 Scalability
Third, we tested the scalability of our DF-growth algorithm
by varying the number of transactions (interest-group lists).
We used the kosarak dataset as it is a huge sparse dataset
with a large number of distinct items (individual users).
We divided this dataset into five portions, and each por-

273

tion is subdivided into multiple batches (domains). We set
minDiv=5% of each portion. Figure 3(c) shows that, when
the size of the dataset increased, the runtime also increased
proportionally implying that DF-growth is scalable.

4.4 Summary on Evaluation Results
Experimental results on (i) runtime, (ii) memory consump-
tion (which reveals tree compactness) and (iii) scalability
showed that our DF-growth algorithm is time- and space-
efficient as well as scalable. As ongoing work, we plan to
evaluate the quality (e.g., precision) of DF-growth in finding
diverse friend groups. Moreover, for a fair comparison with
Weight, we have used those datasets that are commonly used
in frequent pattern mining. As ongoing work, we plan to
evaluate DF-growth using real-life social network datasets.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we (i) introduced a new notion of diverse
friends for social networks, (ii) proposed a compact tree
structure called DF-tree to capture important information
from social networks, and (iii) designed a tree-based min-
ing algorithm called DF-growth to find diverse (groups of)
friends from social networks. Diversity of friends is mea-
sured based on their prominence, frequency and influence
in different domains on the networks. Although diversity
does not satisfy the downward closure property, we man-
aged to address this issue by using the global and local
maximum prominence values of users as upper bounds. Ex-
perimental results showed that (i) our DF-tree is compact
and space-effective and (ii) our DF-growth algorithm is fast
and scalable for both sparse and dense datasets. As ongoing
work, we conduct more extensive experimental evaluation
with various datasets (e.g., real-life social network datasets)
and to measure other aspects (e.g., precision) of our DF-
growth algorithm in finding diverse friends. We also plan
to (i) design a more sophisticated way to measure influence
and (ii) incorporate other computational metrics (e.g., pop-
ularity, significance, strength) with prominence into our dis-
covery of useful information from social networks.

6. ACKNOWLEDGEMENTS
This project is partially supported by NSERC (Canada) and
University of Manitoba.

7. REFERENCES
[1] R. Agrawal & R. Srikant. Fast algorithms for mining

association rules in large databases. In Proc. VLDB
1994, pp. 487–499.

[2] A. Anagnostopoulos, R. Kumar, & M. Mahdian.
Influence and correlation in social networks. In Proc.
ACM KDD 2008, pp. 7–15.

[3] D. Bianchini, V. de Antonellis, & M. Melchiori. A
linked data perspective for collaboration in mashup
development. In Proc. DEXA Workshops 2013,
pp. 128–132.

[4] D. Bianchini, V. de Antonellis, & M. Melchiori.
Exploiting social tagging in web API search. In Proc.
OTM 2013, pp. 764–771.

[5] J.J. Cameron, C.K. Leung, & S.K. Tanbeer. Finding
strong groups of friends among friends in social
networks. In Proc. SCA 2011, pp. 824–831.

[6] A. Cuzzocrea & F. Folino. Community evolution
detection in time-evolving information networks. In

Proc. EDBT/ICDT 2013 Workshops (LWDM),
pp. 93–96.

[7] A. Cuzzocrea, F. Folino, & C. Pizzuti. DynamicNet :
an effective and efficient algorithm for supporting
community evolution detection in time-evolving
information networks. In Proc. IDEAS 2013,
pp. 148–153.

[8] R. de Virgilio & A. Maccioni. Generation of reliable
randomness via social phenomena. In Proc. MEDI
2013, pp. 65–77.

[9] A. Ferrara, L. Genta, & S. Montanelli. Linked data
classification: a feature-based approach. In Proc.
EDBT/ICDT 2013 Workshops (LWDM), pp. 75–82.

[10] J. Han, J. Pei, & Y. Yin. Mining frequent patterns
without candidate generation. In Proc. ACM
SIGMOD 2000, pp. 1–12.

[11] F. Jiang, C.K. Leung, & S.K. Tanbeer. Finding
popular friends in social networks. In Proc. SCA 2012,
pp. 501–508.

[12] K.Y. Kamath, J. Caverlee, Z. Cheng, & D.Z. Sui.
Spatial influence vs. community influence: modeling
the global spread of social media. In Proc. ACM
CIKM 2012, pp. 962–971.

[13] W. Lee, C.K. Leung, J.J. Song, & C.S. Eom. A
network-flow based influence propagation model for
social networks. In Proc. SCA 2012, pp. 601–608.

[14] C.K. Leung & C.L. Carmichael. Exploring social
networks: a frequent pattern visualization approach.
In Proc. IEEE SocialCom 2010, pp. 419–424.

[15] N. Pernelle & F. Säıs. Classification rule learning for
data linking. In Proc. EDBT/ICDT 2012 Workshops
(LWDM), pp. 136–139.

[16] Y. Ruan, D. Fuhry, & S. Parthasarathy. Efficient
community detection in large networks using content
and links. In Proc. ACM WWW 2013, pp. 1089–1098.

[17] M. Schaal, J. O’Donovan, & B. Smyth. An analysis of
topical proximity in the twitter social graph. In Proc.
SocInfo 2012, pp. 232–245.

[18] S.K. Tanbeer, F. Jiang, C.K. Leung, R.K. MacKinnon,
& I.J.M. Medina. Finding groups of friends who are
significant across multiple domains in social networks.
In Pro. CASoN 2013, pp. 21–26.

[19] S.K. Tanbeer, C.K. Leung, & J.J. Cameron. DIFSoN:
discovering influential friends from social networks. In
Proc. CASoN 2012, pp. 120–125.

[20] Z. Wu, W. Yin, J. Cao, G. Xu, & A. Cuzzocrea.
Community detection in multi-relational social
networks. In Proc. WISE 2013, pp. 43–56.

[21] T. Yang, P.M. Comar, & L. Xu. Community detection
by popularity based models for authored networked
data. Proc. IEEE/ACM ASONAM 2013, pp. 74–81.

[22] Q. Yuan, G. Cong, Z. Ma, A. Sun, &
N. Magnenat-Thalmann. Who, where, when and what:
discover spatio-temporal topics for twitter users. In
Proc. ACM KDD 2013, pp. 605–613.

[23] C. Zhang, L. Shou, K. Chen, G. Chen, & Y. Bei.
Evaluating geo-social influence in location-based social
networks. In Proc. ACM CIKM 2012, pp. 1442–1451.

[24] S. Zhang, C. Zhang, & X. Yan. Post-mining:
maintenance of association rules by weighting.
Information Systems, 28(7), pp. 691–707 (2003).

274

TripleGeo: an ETL Tool for Transforming Geospatial Data
into RDF Triples

Kostas Patroumpas†,§ Michalis Alexakis§ Giorgos Giannopoulos§,† Spiros Athanasiou§

§Institute for the Management of Information Systems †School of Electrical and Computer Engineering
"Athena" Research Center, Hellas National Technical University of Athens, Hellas

kpatro@dblab.ece.ntua.gr, {alexakis, giann, spathan}@imis.athena-innovation.gr

ABSTRACT
Integrating data from heterogeneous sources has led to the devel-
opment of Extract-Transform-Load (ETL) systems and methodolo-
gies, as a means of addressing modern interoperability challenges.
A few such tools have been available for converting between geo-
spatial formats, but none specifically addressing the emerging needs
of geospatially-enabled RDF stores. In this paper, we introduce
TripleGeo, an open-source ETL utility that can extract geospatial
features from various sources and transform them into triples for
subsequent loading into RDF stores. TripleGeo can directly ac-
cess both geometric representations and thematic attributes either
from standard geographic formats or widely used DBMSs. It can
also reproject input geometries on-the-fly into a different Coordi-
nate Reference System, before exporting the resulting triples into a
variety of notations. Most importantly, TripleGeo supports the re-
cent GeoSPARQL standard endorsed by the Open GeoSpatial Con-
sortium, although it can extract geometries into other vocabularies
as well. This tool has been validated against OpenStreetMap layers
with millions of geometries, opening up perspectives to add more
functionality and to address much bigger data volumes.

1. INTRODUCTION
Nowadays, geospatial data is ubiquitous on the Web, either ex-

plicitly (through maps or satellite imagery) or implicitly (e.g., via
addresses, geotagged photographs, or geolocation hashtags). Spa-
tial information can be found in a variety of data formats, schemas,
and heterogeneous platforms, systems, web services, etc. Most
of this data still remains in proprietary databases and Geographic
Information Systems (GIS) maintained by commercial vendors or
governmental agencies. Standardization by the Open GeoSpatial
Consortium (OGC) [24] or initiatives for building spatial data in-
frastructures under the EU INSPIRE Directive [11], pave the way
towards geospatial data interoperability and dissemination. In par-
allel, crowdsourced geodata is rapidly emerging, and projects like
OpenStreetMap [29], GeoNames [16], or Wikipedia [46] currently
offer reliable, up-to-date geographic information for free.

Besides, knowledge representation and reasoning according to
the Linked Data paradigm [5] is extremely useful in Semantic Web

(c) 2014, Copyright is with the authors. Published in the Workshop Proceedings of
the EDBT/ICDT 2014 Joint Conference (March 28, 2014, Athens, Greece) on CEUR-
WS.org (ISSN 1613-0073). Distribution of this paper is permitted under the terms of
the Creative Commons license CC-by-nc-nd 4.0.

applications, such as online shopping platforms, personalized con-
tent delivery, etc. Crowdsourced initiatives like DBpedia [7] extract
structured information from Wikipedia [46] and link it to other web
resources. Thanks to knowledge representation models like RDF
[35] and OWL [32], and query protocols such as SPARQL [39],
much work is done towards transforming relational data into RDF,
including standardization by the RDB2RDF W3C group [36].

Linked data technologies can also provide the means for seman-
tic manipulation of spatial features, including interlinking, query-
ing, reasoning, aggregation, fusion, and visualisation. With a hand-
ful of notable exceptions [2, 31, 43], only a small amount of such
information has been published as linked geospatial data and as-
sociated with other resources in the Semantic Web. A major dif-
ficulty has to do with the inherent complexity of geospatial con-
cepts. Apart from points, which can be simply abstracted as a pair
of latitude/longitude coordinates, all other geometries require more
robust representations to cope with irregular shapes (e.g., polygons
with holes, or curves with multiple disconnected parts). It is also
difficult to express implicit topological relationships between web
resources, e.g., to provide an answer to the query "Find all subway
stations within 1 km distance from my hotel". After several initial
proposals, the recent OGC GeoSPARQL standard [25] suggests a
unified approach for representing linked geospatial data as RDF
triples and querying them through a SPARQL extension equipped
with a variety of spatial operators and functions [4]. Yet, it is sur-
prising the lack of tools for converting geospatial features from sev-
eral sources into GeoSPARQL-compliant serializations.

Towards this goal, we introduce open-source utility TripleGeo
[1]. Our aim is to bridge the gap between typical geographic rep-
resentations from a variety of proprietary files, DBMSs, and geo-
reference systems with the demands of geospatially-enabled RDF
stores. Development was based on open-source geometry2rdf li-
brary [19], but with notable modifications and substantial enhance-
ments to meet interoperability needs in RDF stores. In fact, Triple-
Geo is designed as a spatial ETL tool, enabling users to: (i) Extract
spatial data from a source; (ii) Transform this data into a triple for-
mat and geometry vocabulary prescribed by the target RDF store;
and (iii) Load resulting triples into the target RDF store. Therefore,
TripleGeo always preserves data integrity and provides consistent,
well-defined geospatial information to end users.

Among its distinctive features, we point out that TripleGeo can:

• Directly access de facto geographic formats (e.g., shapefiles
[9]) or DBMSs (e.g., Oracle Spatial [30] or PostGIS [33]).

• Recognize many geometric data types, i.e., not only points,
but (multi-)linestrings and (multi-)polygons as well.

• Extract thematic attributes, e.g., identifiers, names, or types,
associated with each feature.

275

• Allow on-the-fly reprojection between Coordinate Reference
Systems (CRS), e.g., transform geometries from GreekGrid87
(a local CRS) into WGS84 (used for GPS locations).

• Export triples into various notations (RDF/XML, TTL, etc.)
and geometry vocabularies for swift loading into RDF stores.

The remainder of this paper proceeds as follows. In Section 2,
we survey related work on specifications and tools for converting
relational and geospatial data into RDF. In Section 3, we present
TripleGeo’s architecture, by examining its components and pro-
cessing flow, along with its dependencies on third-party platforms
and libraries. In Section 4, we discuss the current implementation
status and planned extensions for future releases of TripleGeo.

2. RELATED WORK
Creating knowledge from structured (e.g., relational databases,

XML) or unstructured sources (e.g., text, images) can be extremely
valuable in the Semantic Web. The R2RML Recommendation [37]
by W3C specifies an RDF notation for mapping relational tables,
views or queries into the RDF data model. Among the thirty tools
for knowledge extraction reviewed in [42], the majority are con-
sidered as proof-of-concept prototypes. Some of them are rather
"mature" tools for transforming relational databases into RDF, such
as Triplify [3], D2R Server [8], or Virtuoso’s RDFizer Middleware
(Sponger) [27]. During conversion, these tools allow reuse of exist-
ing vocabularies and ontologies. Although under development, the
Google Refine RDF Extension [38] seems promising, and can rec-
oncile against SPARQL endpoints and RDF dumps. However, none
of the aforementioned methodologies and tools currently provides
any particular support for geospatial data and operations.

On the other hand, several ETL tools can manage the unique
characteristics of spatial data. Among them, GDAL/OGR [13] is an
open-source translator library implementing the OGC vector model
[24] and can handle proprietary storage models for many geospa-
tial DBMSs and files. GeoKettle [40] is a metadata-driven spa-
tial ETL tool dedicated to integration of different data sources for
building and updating geospatial data warehouses. Finally, FME
Workbench is included in ESRI’s ArcGIS Data Interoperability ex-
tension [10] and enables transformation of geometric and thematic
attributes along with schema redefinitions. Currently, such utilities
are mainly used for data cleaning, merging, verification or conver-
sion into various formats, but have absolutely no RDF support.

There have been several proposals for geospatial RDF data man-
agement such as [14, 17, 47], but none provided a solid frame-
work for developing large-scale applications and services. Recently
(2012), the OGC GeoSPARQL standard [25] suggests a concrete
ontology for representing features and geometries in RDF as Well
Known Text (WKT) or Geography Markup Language (GML) liter-
als. GeoSPARQL defines a core set of classes, properties and data
types that can be used to construct query patterns in an extension
of SPARQL. To cope with incompatible methods for representing
and querying spatial data, GeoSPARQL follows other OGC stan-
dards [24]. With such standardization, both vendors and users can
achieve uniform, transparent, platform-independent access to geo-
spatial RDF data with a rich collection of query operators. Cur-
rently, only few RDF stores like Parliament [34] or uSeekM [28]
have partially implemented GeoSPARQL specifications. Instead,
several geospatially-enabled triple stores prefer proprietary geo-
metric representations (e.g., AllegroGraph [12]) or restrict their
support to points only (such as OWLIM [23] or Virtuoso [26]).

To the best of our knowledge, there have been very few initia-
tives specifically for converting geospatial features into RDF re-
sources. Data conversion into an appropriate RDF format using

a selected ontology is among the functionalities supported by the
generic DataLift platform [6]. Although geometries can be ex-
tracted as WKT strings under a custom namespace, there is cur-
rently no support for GeoSPARQL. LinkedGeoData [2] aims at
adding a spatial dimension to the Semantic Web. It offers a flexible
platform for mapping OpenStreetMap (OSM) data [29] to RDF, a
SPARQL endpoint for making RDF data publicly available, as well
as several tools for performing mappings and interlinking of geo-
spatial semantic data. The resulting graph comprises more than 20
billion triples interlinked with DBpedia [7] and GeoNames [16].
Nevertheless, spatial operations deal strictly with OSM nodes and
ways, ignoring any other geographic sources or data types.

In parallel, Geo.LinkedData.es is an open initiative to enrich the
Web of Data with geospatial data for Spain. Among the tools
they developed, geometry2rdf [19] enables extraction of geome-
tries as RDF triples [44]. Geometries can be available in GML or
WKT serializations and are manipulated with GeoTools [18], not
only in order to retrieve features, but also to perform coordinate
transformation. However, its RDF model is not compliant with
the GeoSPARQL standard [25], and cannot handle attribute values
(e.g., name literals) or export triples in various notations apart from
RDF/XML. Concerning interaction with geospatial sources, it only
supports geometry extraction from shapefiles [9] and Oracle Spatial
[30]. Despite these important deficiencies, this open source library
provided an initial base for developing our own utility TripleGeo.
As we explain next, we particularly aim at integrating several exter-
nal databases and providing support for GeoSPARQL data types.

3. CONVERTING GEOMETRIES TO RDF
In this Section, we present the architecture and capabilities of

ETL tool TripleGeo for converting vector geospatial features into
RDF triples. This process iterates through all features in the input
dataset and emits a series of triples per record. Every geometric fea-
ture is converted into properly formatted triple(s), according to the
specified RDF vocabulary. Most typically, geometries are turned
into WKT serializations as prescribed by GeoSPARQL [25], but
some legacy namespaces are supported as well. Thematic attributes
can be extracted in tandem, such as identifiers, names, or classifica-
tions. Results are written into a file using standard triple notations,
so that they can be readily loaded into an RDF store.

3.1 Integrated Libraries
TripleGeo inherits from geometry2rdf dependencies to various

open-source tools and libraries, all of which are used "as is". The
most significant of these libraries are:

• Apache Jena [21] is a widely used Java framework for devel-
oping Semantic Web applications, tools and servers.

• GeoTools [18] offer Java implementations of OGC specifi-
cations [24] for geospatial data management comparable to
GIS desktop applications and web services. Its rich API sup-
ports feature access to many file formats (like CSV, DXF,
GeoJSON, ESRI shapefiles, etc.) and spatial DBMSs, as well
as coordinate transformations between CRS.

• GDAL/OGR. We actually make use of OGR Simple Features
embedded in this Geospatial Data Abstraction Library [13].
This includes command-line tools for read access to a variety
of vector formats (shapefiles, PostGIS, Oracle Spatial, etc.).

• Java Topology Suite (JTS) [45] is an open source API that
provides support for 2-dimensional topological predicates and
spatial functions conforming to OGC [24].

276

Figure 1: Processing flow diagram for ETL utility TripleGeo.

3.2 TripleGeo Components
TripleGeo has been implemented with several Java classes that

perform specific tasks in a modular fashion. From a user’s perspec-
tive, this command-line utility is entirely automated according to
preconfigured settings. Figure 1 illustrates the flow diagram used
for converting geospatial features into RDF triples. Next, we out-
line the basic components of the utility:

• Input data may be obtained either from geographic files or
geospatially-enabled DBMSs, as explained in Section 3.3.

• Connectors to source data are required in order to access ge-
ometric features. In case of a DBMS, this is possible thanks
to suitable JDBC drivers. With respect to file formats, the in-
tegrated GeoTools library provides all required functionality.

• A configuration file declares user preferences concerning all
stages of the conversion: how input source will be accessed,
which data is involved, what geometric representation should
be used, whether geometries must be reprojected into another
CRS, as well as the output triple notation.

• A parser iterates through each input record and converts ge-
ometries into a suitable representation according to user spec-
ifications. It also consumes thematic attribute values (e.g.,
types, names) and emits properly formatted literals.

• A Jena model is a main-memory data structure that is used
to retain all state information consisting of the collection of
generated triples. This model denotes an RDF graph, so
called because it contains a collection of RDF nodes, at-
tached to each other by labelled relations. In Java terms, this
model acts as the primary container of RDF information in
graph form. A significant benefit from using the Jena model
is that it offers a rich API with many methods intended to
make it easier to write RDF-based applications.

• Optionally, reprojection of geometries into another spatial
reference system is possible. This transformation is carried
out thanks to the integrated GeoTools library and according
to user specifications for the source and target CRS.

• Export of generated triples into a single file is performed by
the Jena API. This offers the possibility of writing the output
into several triple formats, as discussed in Section 3.4.

3.3 Input
Current version 1.0 of TripleGeo can access geometries from:

• ESRI shapefiles [9], which is a well-known format for storing
geospatial features in files.

• Geospatially-enabled DBMSs, such as: IBM DB2 with Spa-
tial Extender [20], MySQL [22], Oracle Spatial and Graph
[30], and PostGIS (spatial module for PostgreSQL) [33].

Geometric data must reside in a single table (in case of a database)
or a file. Combining thematic information from multiple tables
(e.g., via joins) from the same source is also available. However,
it is not currently possible to concurrently process data from di-
verse sources or formats. Attributes (i.e., table columns) that can
be extracted from a given data source include:

• The geometry itself (mandatory), expecting valid, georefer-
enced points, (multi-)linestrings, and (multi-)polygons ac-
cording to the OGC specification [24].

• A unique identifier (mandatory) for each entity, which will
be used to generate the IRI of the extracted resource.

• Optionally, a name value associated with an entity can be
converted into a string literal.

• Optionally, a type value that characterizes an entity can be
associated with an rdf:type predicate.

3.4 Output
In terms of output serializations, and according to the specifica-

tions of the Jena API [21] that exports the model, the triples can
be obtained in one of the following notations: RDF/XML (default),
RDF/XML-ABBREV, N-TRIPLES, N3, and TURTLE (TTL).

In terms of standardization, output triples are conformant to W3C
standards, thanks to Jena API methods for creating resources, prop-
erties and literals, and statements linking them. Therefore, all out-
put triples are compatible with the most commonly used standards,
including RDF, RDFS, OWL, and SPARQL.

With respect to geospatial features, triples can be exported ac-
cording to the GeoSPARQL standard [25]. TripleGeo also sup-
ports legacy namespaces, such as pos: of the W3C Basic Geo
Vocabulary [47] or Virtuoso’s virtrdf: for custom point ge-
ometries [26]. But note that such syntaxes are neither compliant to
GeoSPARQL nor can they handle shapes other than points.

Basically, the output geometry serialization depends on the RDF
store where triples will be loaded afterwards. Parliament [34] and
uSeekM [28] only accept GeoSPARQL-compliant triples. Virtuoso
[26] requires its own custom syntax and currently handles point fea-
tures only. OWLIM [23] supports only points under the W3C Basic
Geo Vocabulary. Other RDF stores like Oracle [30] or Strabon [41]
are close, but not fully conformant to GeoSPARQL, mainly due to
differing namespaces. In that case, geometries can be extracted into
GeoSPARQL and then replace the necessary prefixes.

4. CURRENT STATUS AND OUTLOOK
TripleGeo is free software and its current version 1.0 is available

from [1], including the Java source code and sample data. We pro-
vide distributions in both platform-neutral Java JARs and Debian-
specific DEB packages. TripleGeo can be redistributed or modi-
fied under the terms of the GNU General Public License. This tool
is also integrated into stack.linkeddata.org, which com-
prises many utilities for managing the lifecycle of Linked Data.

We have tested TripleGeo with diverse input formats, RDF stores,
data sources, and geometric serializations. In one test case sce-
nario, OpenStreetMap layers [29] for Great Britain were converted
into more than 25 million triples, including 3.5 million geometries
(points, polylines, and polygons). TripleGeo can readily accept
shapefiles from OSM dumps as input and convert them into RDF
triples. However, these original shapefiles were also imported into
databases hosted in PostGIS [33] and Oracle Spatial [30]. Thus,
we have also conducted ETL operations from these spatial DBMSs

277

into triples, and we were able to verify that TripleGeo can also in-
teract and access spatial features from major DBMSs. Apart from
verifying its functionality, we also performed some more compre-
hensive tests by converting large datasets into triples; a detailed
evaluation is available at [15]. Not only has such testing proven the
robustness of the tool, but the differing geospatial specifications of
each RDF store also guided development and progressive refine-
ment towards handling as many cases as possible.

TripleGeo is still a work-in-progress. Thanks to its modular
implementation, more utilities are under development without af-
fecting existing functionality, including interaction with more ge-
ographic data sources (e.g., GML, KML, etc.) and DBMS plat-
forms, as well as support for more complex geometric types (e.g.,
geometry collections [24]). We also plan to expose the full func-
tionality of TripleGeo via a RESTful API (e.g. for web-accessible
data), and also offer a web interface to upload, convert and down-
load large datasets. As scalability with increasing data volumes
is most challenging, a possible solution would be to automatically
split the input into disjoint batches and use a parallelization scheme
like MapReduce to generate triples. Last, but not least, ability to
define mappings and vocabularies and export geometric and the-
matic values under a user-specified ontology would be noteworthy.
As a test case, we have begun developing an ETL methodology for
INSPIRE-compliant [11] data and metadata.

5. ACKNOWLEDGEMENTS
This work was partially supported by the European Commission

under EU/FP7 grant #318159 for project "GeoKnow: Making the
Web an Exploratory Place for Geospatial Knowledge".

6. REFERENCES
[1] Athena R.C. TripleGeo open source utility. URL:

https://github.com/GeoKnow/TripleGeo

[2] LinkedGeoData project. URL: http://linkedgeodata.org
[3] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D.

Aumueller. Triplify: Light-weight linked data publication
from relational databases. In WWW, pp. 621-630, April 2009.

[4] R. Battle and D. Kolas. GeoSPARQL: Enabling a Geospatial
Semantic Web. Semantic Web Journal, 3(4):355-370, 2012.

[5] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The
Story So Far. IJSWIS, 5(3): 1-22, 2009.

[6] DataLift project. URL: http://datalift.org/
[7] DBpedia.URL: http://dbpedia.org
[8] D2R Server. URL: http://d2rq.org/d2r-server
[9] ESRI Inc. Shapefile Technical Description. URL: http://

www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[10] ESRI Inc. FME Workbench for ArcGIS Data Interoperability
URL: http://www.esri.com/software/arcgis/extensions/
datainteroperability/key-features/spatial-etl

[11] European Commission. INSPIRE Directive – Infrastructure
for Spatial Information in the European Community. URL:
http://inspire.jrc.ec.europa.eu/

[12] Franz Inc. AllegroGraph Triple Store. URL:
http://www.franz.com/agraph/allegrograph/

[13] GDAL/OGR library. URL: http://www.gdal.org/
[14] GeoJSON 1.0. URL: http://geojson.org/
[15] GeoKnow Deliverable D2.2.1: Integration of External

Geospatial Databases. URL: http://geoknow.eu/t2-2.html
[16] GeoNames database. URL: http://www.geonames.org/
[17] GeoRDF Profile. URL: http://www.w3.org/wiki/GeoRDF
[18] GeoTools library. URL: http://www.geotools.org/

[19] Geo.LinkedData.es Team. geometry2rdf Utility. URL:
https://github.com/boricles/geometry2rdf

[20] IBM DB2 Spatial Extender. URL:
http://www.ibm.com/software/products/us/en/db2spaext/

[21] Apache Jena project. URL: http://jena.sourceforge.net/
[22] MySQL Database. URL: http://www.mysql.com/
[23] Ontotext AD. OWLIM Semantic Repositories. URL:

http://www.ontotext.com/owlim

[24] OGC Inc. Implementation Specification for Geographic
Information - Simple Feature Access. URL: http://portal.
opengeospatial.org/files/?artifact_id=25354

[25] OGC Inc. GeoSPARQL Standard - A Geographic Query
Language for RDF Data. URL: https://portal.
opengeospatial.org/files/?artifact_id=47664

[26] OpenLink Software. Virtuoso Universal Server. URL:
http://virtuoso.openlinksw.com/

[27] OpenLink Software. Virtuoso’s RDFizer Middleware
(Sponger). URL: http://docs.openlinksw.com/
virtuoso/virtuososponger.html

[28] OpenSahara uSeekM library. URL:
https://dev.opensahara.com/projects/useekm/

[29] OpenStreetMap project. URL:
http://www.openstreetmap.org/

[30] Oracle Inc. Oracle 12c Spatial and Graph. URL:
http://www.oracle.com/technology/products/spatial

[31] Ordnance Survey. Linked Data Platform. URL:
http://data.ordnancesurvey.co.uk/

[32] OWL Web Ontology Language: http://www.w3.org/TR/owl
[33] PostGIS - Spatial and Geographic Objects for PostgreSQL.

URL: http://postgis.net/
[34] Raytheon BBN Technologies Inc. Parliament Triple Store.

URL: http://parliament.semwebcentral.org/
[35] Resource Description Framework Primer. URL:

http://www.w3.org/TR/rdf-primer/

[36] RDB2RDF Working Group. URL:
http://www.w3.org/2001/sw/rdb2rdf/

[37] R2RML: RDB to RDF Mapping Language. URL:
http://www.w3.org/TR/r2rml/

[38] RDF Refine: a Google Refine extension for exporting RDF.
URL: http://refine.deri.ie/

[39] SPARQL 1.1 Query Language for RDF. URL:
http://www.w3.org/TR/sparql11-query/

[40] Spatialytics.org. GeoKettle Spatial ETL tool. URL:
http://www.spatialytics.org/projects/geokettle/

[41] TELEIOS EU/FP7 project. Strabon prototype. URL:
http://strabon.di.uoa.gr/

[42] J. Unbehauen, S. Hellmann, S. Auer, and C. Stadler.
Knowledge Extraction from Structured Sources. In Search
Computing III, pp. 34-52, 2012.

[43] U.S. Geological Survey. Building Ontology for the National
Map. http://cegis.usgs.gov/ontology_userguide.html

[44] L.M. Vilches-Blázquez, B. Villazón-Terrazas, V. Saquicela,
A. de León, O. Corcho, and A. Gómez-Pérez. GeoLinked
Data and INSPIRE through an Application Case. In ACM
SIGSPATIAL GIS, pp. 446-449, November 2010.

[45] Vivid Solutions Inc. JTS Topology Suite. URL:
http://www.vividsolutions.com/jts/JTSHome.htm

[46] Wikipedia. URL: http://wikipedia.org
[47] W3C Basic Geo (WGS84 lat/long) Vocabulary. URL:

http://www.w3.org/2003/01/geo/

278

Multimodal Social Data Management (MSDM)

Antonio Penta (University of Turin, Italy)
Claudio Schifanella (University of Turin, Italy)

Carlos Ruiz (playence GmbH, Austria)
Maria Luisa Sapino (University of Turin, Italy)

279

Social Data and Multimedia Analytics for News and Events

Applications
Ioannis Kompatsiaris

Information Technologies Institute
6th Km Charilaou-Thermi road

GR57001, Thessaloniki, Greece
+30 2311257774

ikom@iti.gr

Sotiris Diplaris
Information Technologies Institute

6th Km Charilaou-Thermi road
GR57001, Thessaloniki, Greece

+30 2311257778

diplaris@iti.gr

Symeon Papadopoulos
Information Technologies Institute

6th Km Charilaou-Thermi road
GR57001 Thessaloniki, Greece

+30 2311257772

papadop@iti.gr

ABSTRACT

This paper discusses a framework enabling real-time multimedia

indexing and search across multiple social media sources. It

places particular emphasis on the real-time, social and contextual

nature of content and information consumption in order to

integrate topic and event detection, mining, search and retrieval,

based on aggregation and indexing of shared user-generated

multimedia content. User-friendly applications for the News and

Events domains have been developed based on these approaches,

incorporating novel user-centric media visualisation and browsing

methods. The research and development is part of the FP7 EU

project SocialSensor.

Categories and Subject Descriptors

I.5.4 [Pattern Recognition]: Applications; H.3.3 [Information

Search and Retrieval]: Retrieval models

General Terms

Algorithms, Theory, Experimentation

Keywords

social media, multimedia analysis, multimedia search, analytics

1. INTRODUCTION
Social networks have become an integral part of modern life

driving more and faster communication than ever before. Media

content is created and published online at unprecedented rates by

both regular users and professional organisations. At the same

time the wide availability of smartphones has enabled the creation

and instant sharing of media content at the time and place of an

event, creating an “online reflection” of what happens in the real

world. However, the fast pace, the huge volume and the

unpredictable nature of user-contributed content make it

extremely challenging to obtain informative views of evolving

news stories and events in real time and to quickly surface

relevant media content.

Especially with regard to the news industry the challenge is to use

and embrace new content authoring and provision methods, and

the channels offered by social media and mobile technologies, to

their fullest advantage, for both information gathering and

information distribution. A key challenge in this respect is to

develop appropriate tools for quickly surfacing trends, sentiments

and discussions in social media, in relevant and useful ways.

Another domain where social media analytics are gaining great

importance is the organization of large events, such as festivals

and expos. As attendants of such events need to organise their

visits, new methods providing context-aware information are

becoming necessary in order to enhance user experience. Event

organisers can also benefit from social media sensing applications

that can help them capture the pulse of their events and gain

valuable insights into their impact on visitors. To this end, they

need tools that help them make sense of the large amounts of

online messages and shared content.

This short paper presents a framework for social media analytics

that have been developed in the context of SocialSensor, a 3-year

FP7 European Integrated Project1 aiming to tackle some of the

challenges outlined above and to offer solutions as well as

improvements in the industry domains of professional news and

event organisation. In the first domain, we present a system for

crawling, indexing and browsing social media content with the

goal of facilitating the discovery of newsworthy and interesting

social multimedia. In the second, we present the EventSense

application that helps event organisers extract insights from large

events by mining large amounts of online messages shared

through OSNs. Offering real-time social indexing capabilities for

both of these use cases is expected to have a transformational

impact on both sectors.

The subsequent chapters outline some of the research applications

developed by SocialSensor, for sensor mining and social search,

as well as results from their evaluation.

2. SOCIAL MULTIMEDIA SEARCH
The first application facilitates the targeted collection, indexing

and browsing of shared media content through a hybrid crawling

strategy, comprising both a stream-based and a query-driven

approach. In addition, it integrates very efficient and scalable

image indexing and clustering implementations.

The crawler is responsible for the collection of data and content

from online sources in the form of Items (posts made in a social

platform, e.g. tweets), WebPages (URLs embedded in collected

Items) and MediaItems (images/videos embedded in Items or

WebPages), given a set of crawling specifications (arguments

1 http://www.socialsensor.eu

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0.

280

specifying what to crawl, e.g. a hashtag on Twitter) as input. The

proposed crawling and indexing framework, depicted in Figure 1,

comprises the following components: (a) Item collection,

comprising stream-based (stream-manager) and query-driven

(search-manager) components, (b) structured data repositories

based on mongoDB and Solr, (c) fetching and indexing

components, including WebPage fetching, article extraction,

MediaItem detection and extraction, feature extraction and visual

indexing [1], (d) aggregation components, including geo, visual

clustering and analytics. Several of the system components are

available as open-source projects on GitHub2, intended for use in

the professional journalism domain [2].

3. SOCIAL MEDIA SENSING
The EventSense application enables a series of mining operations

on social media content around large events, including the

automatic association of online messages to entities of interest

(e.g. films in the case of a film festival), the discovery of trending

topics, and the detection of sentiment (positive, negative, neutral)

both at an entity level (e.g. per film) and on aggregate. In

addition, the application produces an informative social media

summary of the event of interest by automatically selecting and

putting together its highlights, e.g. the most discussed entities and

topics, the most influential users, the evolution of the discussions’

sentiment, and the most shared media and news content.

More specifically, online messages about the event are organized

around entities of interest (e.g. films) and topics, and sentiment

scores are extracted for each of those, by aggregating the

sentiment expressed by individual messages. An overview of the

EventSense application is illustrated in Figure 2. For more details

please see [3].

4. RESULTS
With respect to the social multimedia crawling and search

framework we evaluated its media retrieval capabilities in the

context of the #OccupyGezi events. We selected images related to

the event from four different sources and used them as visual

queries to the NN search component. To assess the search

performance, we computed a coverage score by dividing the

number of queries with at least one correct result with the total

number of queries. We note that in most cases coverage ranges

from 0.5 to 0.95. Regarding the quality of ranking for similar

images, in most cases where at least one correct result was found

to be the same or very similar to the query image, the correct

2 https://github.com/socialsensor

results were ranked above the incorrect ones. It is also noteworthy

that in all cases, the response times were sub-second, typically in

the range of 100-200msec. More details are available in [2].

We conducted an evaluation of EventSense on a Twitter dataset

around the 53rd International Film Festival of Thessaloniki taking

place between November 2nd and 11th, 2012. The evaluation

results provided evidence that real-world event variables, such as

film ratings, are correlated with aggregate statistics mined from

the stream of online messages. For further details, please see [3].

5. CONCLUSION
We presented two applications for real-time social media content

indexing, search and retrieval tailored around the needs of news

professionals, as well as organisers and attendees of large events.

To this end, innovative analysis techniques of social data and

content, assisted by effective indexing of real-time social media

streams were developed. Evaluation studies demonstrate the

effectiveness of such techniques in collecting diverse content from

social networks, in browsing and searching it in multiple ways,

and in perceiving the pulse of large-scale events.

6. ACKNOWLEDGMENTS
This work is supported by the SocialSensor FP7 project, partially

funded by the EC under contract number 287975.

7. REFERENCES
[1] Spyromitros-Xioufis, E., Papadopoulos, S., Kompatsiaris, I.,

Tsoumakas, G., & Vlahavas, I. (2012, May). An empirical

study on the combination of surf features with VLAD vectors

for image search. In Image Analysis for Multimedia

Interactive Services (WIAMIS), 2012 13th International

Workshop on (pp. 1-4). IEEE.

[2] Papadopoulos, S., Schinas, E., Mironidis, T., Iliakopoulou,

K., Spyromitros-Xioufis, E., Tsampoulatidis, I., and

Kompatsiaris, I., 2013. Social Multimedia Crawling and

Search. In IEEE Computer Society Special Technical

Community on Social Networking E-Letter, vol. 1, no. 3,

October 2013.

[3] Schinas, E., Papadopoulos, S., Diplaris, S., Kompatsiaris, I.,

Mass, Y., Herzig, J., and Boudakidis, L. 2013. EventSense:

capturing the pulse of large-scale events by mining social

media streams. In Proc. 17th Panhellenic Conference on

Informatics (PCI '13). ACM, New York, NY, USA, 17-24.

Figure 2. EventSense system.

.

Figure 1. Social multimedia crawling and search.

.

281

Event Identification and Tracking in
Social Media Streaming Data

Andreas Weiler, Michael Grossniklaus, and Marc H. Scholl
University of Konstanz

Dept. of Computer & Information Science
Box D 188, 78457 Konstanz, Germany

firstname.lastname@uni-konstanz.de

ABSTRACT
In recent years, the growing popularity and active use of
social media services on the web have resulted in massive
amounts of user-generated data. With these data available,
there is also an increasing interest in analyzing it and to
extract information from it. Since social media analysis
is concerned with investigating current events around the
world, there is a strong emphasis on identifying these evens
as quickly as possible, ideally in real-time. In order to scale
with the rapidly increasing volume of social media data, we
propose to explore very simple event identification mecha-
nisms, rather than applying the more complex approaches
that have been proposed in the literature. In this paper,
we present a first investigation along this motivation. We
discuss a simple sliding window model, which uses shifts
in the inverse document frequency (IDF) to capture trend-
ing terms as well as to track the evolution and the context
around events. Further, we present an initial experimen-
tal evaluation of the results that we obtained by analyzing
real-world data streams from Twitter.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Storage and Retrieval; H.4 [Information Systems Appli-
cations]: Miscellaneous

Keywords
event detection, stream processing, social media analytics

1. INTRODUCTION AND MOTIVATION
The continuous emergence of new web services, such as

social media platforms and technologies for generating and
receiving streamed data, imposes new challenges on the way
such data volumes are processed and analyzed in real-time
or near real-time. Since the users of information services are
typically interested in current events and actual happenings

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

of the world, it is necessary to retain the real-time charac-
teristic of the streams and to perform the identification of
real-world events as fast as possible.

In this paper, we focus on the use-case of Twitter, the
most popular social microblogging site, which produces a
large volume of data as a continuous stream of messages,
so-called “tweets”. Since its inception, the way people use
Twitter has undergone a remarkable evolution. While Twit-
ter was initially intended as a service to share short personal
status messages, it quickly became a platform that people
used to report on and stay informed about current events
happening all around the world. This change in usage was
also reflected in Twitter’s user interface by changing the
original prompt “What are you doing?” to the more general
question “What’s happening?”1.

Another important characteristic of Twitter is its vibrant
community with, as of 2013, 200 million daily active users
from all around the world. Due to its lightweight approach
to broadcasting, important news rapidly propagate through
Twitter’s densely interconnected social network. Although
the resulting volume and variety of content in the informa-
tion flow is a great opportunity for data analysis, it also
gives rise to the challenge of detecting significant messages
that can be used to identify events in the frenzy of tweets.
As a consequence, several state of the art approaches exist
that address the problem of accurate event detection. In the
last six years, tweets have gone from 16 millions per year to
400 millions per day. Taking this rapid growth into consid-
eration, we believe that the scalability of event identifica-
tion is as important as its accuracy. Therefore, we propose
to study simple approaches that, ideally, can be tuned to
trade-off precision for lower computational complexity.

In this paper, we present a first exploration into this di-
rection. We propose a simple event identification approach,
which uses a sliding window model to extract events and
the context of events in real-time from the live public data
stream of Twitter. Our approach is based on monitoring
shifts in the inverse document frequency (IDF) of terms and
therefore suggests that it is possible to handle large amounts
of data and get important insights by means of aggregation
only. Since our approach is based on windowing, the window
size is a natural parameter that can be used to control the
precision/complexity trade-off. Apart from the approach it-
self, we also present a first evaluation based on a case study
to obtain an indication of the results that can be expected
from such an approach.

1http://blog.twitter.com/2009/11/whats-happening.
html

282

2. EVENT ANALYSIS
Event detection is a classical problem in computer science

and has been studied for many years in various research
areas. A lot of research is dedicated to detecting anomalies
or novelties in different data sources ([5, 11]), considering
those phenomena to be an indication of an event. Further
related research deals with the detection of changes or drifts
in data streams ([1, 7, 9]).

Taking into account a vast number of Twitter messages
generated each second, it becomes a crucial task to group
messages by topics or events. Because there is no explicit
knowledge about current or future events, the latter have
to be identified and detected in an on-line fashion without
limitation to any domain via predefined keywords. We pro-
pose that only by means of aggregation it is possible to han-
dle large amount of data and gain important insights into
it. Therefore, the detected high-level representations can be
used to compress the tweets in a meaningful manner.

Our approach of using sliding windows to identify events
in streaming data considers the timestamp information in-
cluded within the tweets as a basis for the window sizes. In
the following, we describe the identification of events by us-
ing textual analysis of the content of tweets and statistical
analysis of the frequency of terms. Once an event has been
detected, we keep track of the most co-occurring terms with
the event term, which mainly describe the context around
an event. This can be helpful to provide a better overview
and more insights into the event’s evolution to analysts and
other users.

2.1 Event Identification
The content of the tweet messages provides a high variety

of information and as such can be considered as the most
important dimension in the data set. In the following, we
describe the process of event identification by analyzing the
content of tweets.

The first step of the event term extraction process is the
tokenization and part-of-speech tagging of the tokens by us-
ing a especially for Twitter tailored tokenizer and Part-Of-
Speech Tagger [8]. Since pure tokenization of texts results
in an abundance of terms, but the main subject of an event
is typically reflected in nouns we filter the resulting set of
tokens to nouns and proper nouns for further treatment.
Additionally to single nouns, we also take bigrams (nouns
with preceding adjectives, verbs, or nouns) into account.
We further reduce the token set by discarding all tokens,
which are shorter than four characters, as well as tokens
contained in a standard English stopword list, or contain-
ing any non-alphabetic characters. Because the spelling of
words in social media can be very diverse and the amount
of terms would increase a lot, we also discard tokens with
more than three successive repetitions of the same character
(e.g., “hellooooo”, “gooooaaalll”). Once the preprocessing is
done, each tweet message is represented by a set of terms
T = (t1, t2, t3, ...). To avoid wrong identification of event
candidates by continuous repetition of the same term, these
sets are kept duplicate-free.

The evolution of relevant terms is evaluated by an ongo-
ing process using the following rules. The incoming stream
TWS = (tw1, tw2, tw3, ...) is partitioned into fixed sized win-
dows (w1, w2, w3, ...). For each extracted term (we call them
event candidates ec) in the stream we continuously calculate
an IDF [16] (idf(ec)) value for each of the windows. In ad-

dition, we calculate the percentage of the shift of the IDF
value from one window to another (sidf(ec)), which is only
possible if the ec occurs in two successive windows. For
further evaluation, we also calculate the average IDF value
(avg(idf(ec))) of all terms in the window and the average
value of all shifts avg(sidf(ec)) (possible for all ec occurring
in the last two successive windows) between two succeeding
windows.

If the ec occurs in more then n successive windows, we
check the IDF value of all n windows against the average
value avg(idf(ec)) of the corresponding window. If all val-
ues are lower then the average value the ec is further eval-
uated. After the first check, we check the IDF value shift
sidf(ec) for the windows (wn−3, wn−2), (wn−2, wn−1) and
(wn−1, wn) against the corresponding average values. If all
shift values are higher than the corresponding average value
and the added up shift value is over a certain threshold, we
identify this ec as an event term. In this way, both fast
and slower increasing event terms can be identified, and the
identification of event terms adapts to dynamically changing
boundaries, which are the currently existing average values.

Since the amount of event candidates in the term set in-
creases continuously we discard all terms, which are missing
in a window. Figure 3 shows that there is an almost equiv-
alent number of terms in the windows over time. Event
candidates, which are identified as event terms are passed
on to the event tracking phase, which is described in the
next section.

2.2 Event Tracking
Once the event identification phase has identified an event

candidate as event term, it is also interesting for an analyst
to keep track of the event, to get an ongoing overview and
insight of the happenings related to the event, or to evaluate
the importance of an event. Therefore, the event tracking
phase of our analysis is initiated after an event term is iden-
tified.

To support this process, we extract all co-occurring terms
of the event term, which includes verbs, nouns, and adjec-
tives and use the term cleaning methods, which are men-
tioned before. Afterwards we calculate the percentage of the
co-occurrences of the term with the event term in the corre-
sponding window and order them by the percentage value.
To summarize the context around a identified event term
the top n co-occurrence terms are extracted continuously.

3. EVALUATION
In this section, we describe the evaluation of our approach

in terms of the experimental setup and the experiments that
we conducted. In both experiments, we applied an imple-
mentation of our approach to the identification of events in
the Twitter social data stream and subsequent tracking of
the evolution of these identified events.

3.1 Setup
The Twitter platform provides direct access to the public

live stream of Twitter messages via a set of developer APIs.
The Twitter API [17] enables application developers to re-
ceive a large portion of the total number of daily produced
tweets. By using the Twitter Streaming API with the so-
called “gardenhose” access level, we are able to collect 10%
of the total public live stream. Additionally, we merge our
data set with a geo-filtered stream to increase the number

283

of geo-tagged tweets. We can assume that about 10% of
the incoming tweets have geographic information available.
This information is set either automatically by the mobile
device, or manually by the author of the tweet, or by both
of them. Figure 1 displays statistics about the amount of
incoming tweets for a representative sample of days. From
these numbers we can conclude that we can receive an aver-
age of over one million tweets per hour with the average of
20,000 tweets per minute. Further we can see that there is a
certain decrease in the number of tweets between the hours
11 and 16 each day.

Figure 1: Number of incoming tweets per hour for the
first day of the months June, July, August, and Septem-
ber 2012.

In our implementation, we rely on the native XML data-
base system BaseX 2 for data management and processing.
All designated incoming data is stored in a standardized
format to support fast and easy data access. The data
in the Twitter streams is in the JavaScript Object Nota-
tion (JSON) format, which is efficiently converted to XML
on-the-fly using the JSON conversion functionality of Ba-
seX. Since this solution converts the JSON object directly
to XML, there is an automatic adaptation to all potential
changes in the format of the streamed Twitter data.

For this work, we simulate a live-stream behavior of Twit-
ter by pushing stored tweets from the database in the same
sequence, in which they were gathered from the stream. The
client can register a filter query—formulated in XQuery—on
the stream to receive only a requested type of tweets from
the database system. For example, it is possible to filter for
tweets with valid geographic information or for tweets con-
taining a specified keyword. By simulating a live streaming
environment we ensure that the analysis can also be directly
applied to the on-line stream by connecting to the live Twit-
ter streaming data running through the database instead of
connecting to the simulated stream.

3.2 Experiments
For our experiments, we simulate a live stream of real-

life Twitter data and analyze the streamed tweets. Since
we only need the text of the tweets, we run a continuous
filter query for the text field on the incoming stream and
discard all other unused data fields. This helps us to mini-
mize the amount of data to process during the analysis. The
window size for this evaluation is set to one minute, which
allows us to identify events within four minutes after the
first triggering appearance of the corresponding event term.
The minimum limit of the added up IDF shift value for a

2http://www.basex.org

term to become an event term is set to 20% for single terms
and 12% for bigrams. These values can be easily changed
and dynamically adjusted. To track the evolution of iden-
tified events, we also take four minute windows to extract
the top 10 most co-occurring terms of the event term. By
manually evaluating the event terms and the most frequent
co-occurrence terms of the event terms we can derive that
the event terms are a mixture of non-english terms which
are not filtered out by our analysis, names of famous people
(e.g., Justin Bieber, Chris Brown), and real-world events.

The first experiment deals with the hours from 07:00 -
09:00 AM UTC on Wednesday, April 11th 2012. In this
time frame our analysis identifies a total of 50 event terms
for single terms and 21 event terms for bigrams within a
total of 916,948 tweets. To further explain the usefulness
of our approach, we choose the following two event terms.
In Table 1, we can see how the event term “earthquake” in
minute 8:45 with an overall shift of 22.13% evolved to an
event term. Table 2 shows the evolution of the event term
“tsunami” five minutes later in minute 8:50 with an overall
shift of 27.67%. The evolution of the IDF value of the event
terms in difference to the evolution of the IDF value of non-
event terms can be seen in Figure 2. We can see that the IDF
value of the event term “earthquake” increases significantly
and therefore there is a high shift in the value. Furthermore,
the event term “tsunami” shows almost the same behavior
just five minutes later. In contrast to these terms, the two
non-event terms “twitter” and “love” have almost no change
in the IDF value over time.

earthquake average
IDF Value Minute 8:42 6.54 7.69
IDF Value Minute 8:43 6.70 8.09
IDF Value Minute 8:44 5.85 7.93
IDF Value Minute 8:45 5.15 7.85

IDF Shift Minute 8:42-8:43 -2.50% -3.86%
IDF Shift Minute 8:43-8:44 12.72% 1.45%
IDF Shift Minute 8:44-8:45 11.91% 0.39%

Total Shift 22.13%
Table 1: Detection of event term “earthquake” in minute
8:45.

tsunami average
IDF Value Minute 8:47 5.24 8.18
IDF Value Minute 8:48 4.76 8.29
IDF Value Minute 8:49 4.35 8.43
IDF Value Minute 8:50 3.92 8.39

IDF Shift Minute 8:47-8:48 9.24% -0.99%
IDF Shift Minute 8:48-8:49 8.64% -1.22%
IDF Shift Minute 8:49-8:50 9.79% 0.19%

Total Shift 27.67%
Table 2: Detection of event term “tsunami” in minute
8:50.

The result of our event identification analysis indicates
that an “earthquake” and a “tsunami” happened in the cor-
responding time frame. With the event tracking analysis we
are able to extract more useful information about the identi-
fied events. After the event is detected, we analyze the new
incoming tweets corresponding to that event and extract the
ten most frequent co-occurrence terms for the time windows
of four minutes. The ten most frequent common terms and
their percentage frequency for the minutes after the event
“earthquake” are the following:

284

Figure 2: Sample IDF value evolution of the event terms
“earthquake” and “tsunami” and the non-event terms
“love” and “twitter” in the first experiment.

• Minute 8:46 to Minute 8:49: epicenter (7.39), aceh (6.82),
banda (5.68), tsunami (5.11), chennai (5.11), office (4.55),
depth (4.55), warning (4.55), malaysia (3.98), northern
(3.41)

• Minute 8:50 to Minute 8:54: aceh (37.02), tsunami (25.39),
warning (24.22), agency (23.26), issues (23.06), epicenter
(17.83), sumatra (17.44), indonesia (17.25), coast (15.50),
west (15.31)

• Minute 8:55 to Minute 8:59: aceh (42.13), tsunami (33.43),
warning (30.62), agency (24.72), issues (24.72), indonesia
(21.35), scale (17.42), magnitude (17.13), sumatra (16.85),
richter (16.85)

We can see that in the first window the term “tsunami”
is in only 5% of the tweets with “earthquake”. In the sec-
ond window, however, there is a rapidly growing frequency
of the term “tsunami”, which allows us to conclude that the
topic drifts from discussions and news about the earthquake
to messages about an expected or ongoing tsunami. Also
further information like “aceh” (a city in Indonesia), “in-
donesia”, and “sumatra” is extracted by the event tracking
phase. The extraction of the ten most frequent common
terms identifies also terms like “aceh” or “warning”. With
this information we are able to combine the two detected
events (“earthquake”and“tsunami”) into one top event. The
terms for the minutes after the “tsunami” event happened
can be seen in the following:

• Minute 8:51 to Minute 8:55: gempa (64.96), peringatan
(50.76), bengkulu (50.67), dini (50.49), lampung (50.49),
sumut (50.13), sumbar (49.96), aceh (25.88),
warning (13.84), earthquake (12.76)

• Minute 8:56 to Minute 9:00: gempa (52.53), peringatan
(40.08), dini (39.45), bengkulu (39.03), lampung (38.71),
sumbar (38.71), sumut (38.50), aceh (29.11),
warning (18.78), earthquake (13.71)

The second experiment deals with the hours from 05:00
- 09:00 AM UTC on Friday, July 20th 2012. In this time
frame our analysis identifies a total of 73 event terms for sin-
gle terms and a total of 54 event terms for bigrams. Figure 3
shows the frequencies of the tweets and terms per minute,
the overall total of all tweets for the four hours is 4,602,574

tweets. The frequency overview shows that we have an al-
most constantly number of terms and tweets in the windows
over time. In Table 3, we can see how the event term“knight
rises” in minute 7:20 with an overall shift of 14.21% evolved
to an event term. Table 4 shows the evolution of the event
term “aurora” almost an hour later in minute 8:19 with an
overall shift of 20.64%.

Figure 3: Frequency of the amount of tweets and terms
per minute in the four hours of the second experiment.

knight rises average
IDF Value Minute 5:51 8.61 9.13
IDF Value Minute 5:52 7.81 9.13
IDF Value Minute 5:53 7.78 9.10
IDF Value Minute 5:54 7.59 9.11

IDF Shift Minute 5:51-5:52 9.32% -0.19%
IDF Shift Minute 5:52-5:53 0.42% 0.10%
IDF Shift Minute 5:53-5:54 2.46% -0.23%

Total Shift 12.20%
Table 3: Detection of event term “knight rises” in minute
5:54.

aurora average
IDF Value Minute 8:16 8.59 8.84
IDF Value Minute 8:17 7.29 8.84
IDF Value Minute 8:18 6.96 8.82
IDF Value Minute 8:19 6.89 8.82

IDF Shift Minute 8:16-8:17 15.15% 0.00%
IDF Shift Minute 8:17-8:18 4.53% 0.02%
IDF Shift Minute 8:18-8:19 0.96% -0.11%

Total Shift 20.64%
Table 4: Detection of event term“aurora” in minute 8:19.

The result of our event identification analysis shows that
a couple of events happened in the corresponding hour. In
our case we are interested in two events. The first one is
called “knight rises” and the second is “aurora”. Since we
have no knowledge as to what these events are about, we
use the results of the event tracking analysis to extract more
useful information about the events. The ten most frequent
co-occurrence terms and their percentage frequency for the
minutes after the event “knight rises” are the following:

• Minute 5:56 to Minute 6:00: dark (96.43), movie (10.71),
experience (7.14), century (7.14), line (7.14), cinemas
(7.14), center (7.14), imax (7.14), theatre (7.14), river
(3.57)

285

• Minute 6:00 to Minute 6:04: dark (100.00), cinemark
(8.11), century (8.11), sinners (5.41), children (5.41),
masked (5.41), imax (5.41), theaters (5.41), mamba (5.41),
people (5.41)

• Minute 6:04 to Minute 6:08: dark (100.00), movie (9.52),
people (7.14), batman (7.14), midnight (7.14), spiderman
(4.76), regal (4.76), rumor (4.76), alert (4.76), spoiler
(4.76)

By looking at the co-occurrence terms, we are able to
figure out that most of the tweets discuss the “premiere” of
a movie in an IMAX theatre at midnight. Since there is an
ongoing premiere of the new movie “The Dark Knight Rises”
on this day and time, we can conclude that the identified
event is about the corresponding real-world event.

Since the analysis also detected an event“aurora”in minute
8:19, there could be a correlation between these two events.
The extraction of the ten most frequent co-occurring terms
for the event term “aurora” identifies the following terms:

• Minute 8:20 to Minute 8:24: shooting (78.69), colorado
(75.41), film (67.21), premiere (67.21), people (65.57),
dark (63.93), knight (63.93), local (62.30), media (60.66),
rises (60.66), update (59.02)

• Minute 8:24 to Minute 8:28: colorado (70.45), shooting
(61.36), dark (52.27), knight (52.27), film (45.45), pre-
miere (45.45), people (43.18), rises (43.18), media (36.36),
local (36.36), update (36.36)

We can derive that the newly detected event is somehow
related to the earlier detected event “knight rises”. Since
the first event describes the premiere of a new movie and
the new event “aurora” describes a mass shooting happen-
ing during the movie premiere of “The Dark Knight Rises”
in “Colorado”, we can conclude that there is a dependency
between these two events.

4. RELATED WORK
The extreme popularity of Twitter and access to its public

social data stream have resulted in an increasing amount
of Twitter-related scientific, industrial, and governmental
research initiatives. In this section, we summarize the most
related work.

Bontcheva et al. [4] present an overview of sense making
in social media data, which also includes current event de-
tection methods in social media streams. They classified
detection methods into three categories: clustering-based,
model-based, and those based on signal processing.

An event detection system dedicated to earthquakes is
presented by Sakaki et al. [14]. In contrast to our approach,
they use the keyword search feature provided by the Twit-
ter API to gather data in specified time intervals. Schüh-
macher et al. [15] propose another domain-specific event
detection method on microblogs to support forensic anal-
ysis. They train a linear classifier to detect suspicious posts.
Weng et al. [18] use wavelet analysis on frequency-based raw
signals of terms from tweets for detecting events. They use
a keyword-filtered dataset to show their practical usage for
identifying events during the Singapore General Election in
2011. Marcus et al. [10] demonstrate an application called
“TwitInfo”, which identifies and labels event peaks for given
search queries related to the event. In contrast to our pro-
posed idea, which uses an unfiltered data stream, all of the
above mentioned systems are somehow restricted.

More recently, Ritter et al. [13] presented the first ap-
proach for open domain event extraction from Twitter. Their
approach is based on latent variable models and proceeds
by first discovering event types, which match the data and
then using these results to classify aggregate events. How-
ever, no discussion about applying this approach directly to
the streaming data is included. Alvanaki et al. [3] proposed
a system “enBlogue”, which analyzes statistics about tags
and tag pairs for identifying unusual shifts in correlations.
Further recent work proposed by Nishida et al. [12] shows a
classification model of tweet streams for identifying changes
in statistical properties on word basis, which is used for topic
classification.

General research on on-line event detection has a long
track record. In 1998, Yang et al. [19] published a study
about retrospective and on-line event detection. They used
text retrieval and clustering techniques for detecting events
in a temporally ordered stream of news stories. In the same
year, Allan et al. [2] focused on a strict on-line setting by
using a modified single-pass clustering approach for event
detection and information filtering for event tracking. How-
ever these two approaches used clean and well-formed news
stories as sources for detecting events.

5. CONCLUSIONS
In this paper, we presented a method for identifying events

in the real-world social media data streams of Twitter. We
have shown that by means of aggregation it is possible to
handle large volumes of data and gain important insights
into it. We believe that under ideal conditions the data
streamed by Twitter can support faster detection of events
than by using reports of news agencies. Although we ob-
tained the data through the Twitter API that only provides
10% of the total data stream, which might introduce a skew
in the tweets we analyze, the total stream can be assumed
to contain more complete information an event.

Our evaluation shows that we are able to identify events
as well as to track the progress of the event and the context
around it in a simulated environment. However, the iden-
tification also detects a certain amount of non-event terms
as events. This is an indication that the identification phase
needs to be improved by including more information, like ge-
ographical data or other features extracted from the meta-
data. The tracking of the events shows that the context
around an event can be described properly and it is also
possible to identify relationships and dependencies between
events. For example, in both experiments we were able to
draw the conclusion that the second identified event is a
follow-up or related event of the first one. With the con-
tinuous removal of event candidates from the term set, we
are able to scale to the amount and the speed of tweets and
terms in the streaming data.

6. FUTURE WORK
A first extension of our approach will be the integration of

further information into the event identification phase. This
goal can be achieved by using information from the meta-
data fields or by extracting more information from the tex-
tual content of the tweets. In addition to the actual content
of the tweet messages, Twitter provides 60 metadata fields
describing the tweet (e.g., count of retweets, geographic lo-
cation) and the user’s profile (e.g., count of followers). This

286

additional knowledge can be used to extract further charac-
teristics of the identified events. For example, if a majority
of tweets related to an event have similar geographical infor-
mation (such as the same city or country), one can assume
that the event possibly originated at that location. Further-
more, it will be an interesting task to implement a catego-
rization and ranking (e.g., globally important) analysis for
the detected events. To support the ranking of events, we
can also integrate the metadata (e.g., number of retweets vs.
number of independent tweets) in our analysis.

A further extension is the integration of additional data
sources. Stock exchange markets, weather forecasts, data
from news agencies, RSS feeds, and further social media
services offer contents that can be retrieved in different ways
as streams and could also enrich our event identification and
tracking analysis. For example, even the social media photo
sharing platform Flickr was recently used as data source for
event detection [6].

For evaluation purposes it would be interesting to eval-
uate our approach against more complex state of the art
approaches, such as the one presented by Weng et al. [18].
This line of future work would enable us to better under-
stand how much complexity is needed to differentiate be-
tween event terms and standard terms.

7. REFERENCES
[1] I. Adä and M. R. Berthold. Unifying Change –

Towards a Framework for Detecting the Unexpected.
In Proceedings of the 2011 IEEE 11th International
Conference on Data Mining Workshops, ICDMW ’11,
pages 555–559, Washington, DC, USA, 2011. IEEE
Computer Society.

[2] J. Allan, R. Papka, and V. Lavrenko. On-line new
event detection and tracking. In Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval,
SIGIR ’98, pages 37–45. ACM, 1998.

[3] F. Alvanaki, S. Michel, K. Ramamritham, and
G. Weikum. See what’s enblogue: real-time emergent
topic identification in social media. In Proceedings of
the 15th International Conference on Extending
Database Technology, EDBT ’12, pages 336–347, New
York, NY, USA, 2012. ACM.

[4] K. Bontcheva and D. Rout. Making Sense of Social
Media Streams through Semantics: a Survey.
Semantic Web, 2012.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Comput. Surv., 41(3), 2009.

[6] L. Chen and A. Roy. Event detection from Flickr data
through wavelet-based spatial analysis. In Proceedings
of the 2009 ACM CIKM International Conference on
Information and Knowledge Management (CIKM ’09),
2009.

[7] A. Dries and U. Rückert. Adaptive concept drift
detection. Stat. Anal. Data Min., 2:311–327, 2009.

[8] K. Gimpel, N. Schneider, B. O’Connor, D. Das,
D. Mills, J. Eisenstein, M. Heilman, D. Yogatama,
J. Flanigan, and N. A. Smith. Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.
In ACL (Short Papers), pages 42–47, 2011.

[9] D. Kifer, S. Ben-David, and J. Gehrke. Detecting
change in data streams. In Proceedings of the Thirtieth

international conference on Very large data bases -
Volume 30, VLDB ’04, pages 180–191. VLDB
Endowment, 2004.

[10] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger,
S. Madden, and R. C. Miller. Twitinfo: aggregating
and visualizing microblogs for event exploration. In
Proceedings of the 2011 annual conference on Human
factors in computing systems, CHI ’11, pages 227–236.
ACM, 2011.

[11] M. Markou and S. Singh. Novelty detection: A review
- part 1: Statistical approaches. Signal Processing,
83:2003, 2003.

[12] K. Nishida, T. Hoshide, and K. Fujimura. Improving
tweet stream classification by detecting changes in
word probability. In Proceedings of the 35th
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’12, pages
971–980, New York, NY, USA, 2012. ACM.

[13] A. Ritter, Mausam, O. Etzioni, and S. Clark. Open
domain event extraction from twitter. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’12, pages
1104–1112, New York, NY, USA, 2012. ACM.

[14] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes Twitter users: real-time event detection by
social sensors. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages
851–860. ACM, 2010.

[15] J. Schühmacher and C. Koster. Signalling events in
text streams. In P. Daras and O. Mayora-Ibarra,
editors, UCMedia, volume 40 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 335–339.
Springer, 2009.

[16] K. Sparck Jones. A statistical interpretation of term
specificity and its application in retrieval, pages
132–142. Taylor Graham Publishing, 1988.

[17] Twitter Team. Developing for @twitterapi
(Techcrunch Disrupt Hackathon), 2012,
https://dev.twitter.com/docs/intro-twitterapi.

[18] J. Weng, Y. Yao, E. Leonardi, and F. Lee. Event
Detection in Twitter. Technical report, HP Labs, 2011.

[19] Y. Yang, T. Pierce, and J. Carbonell. A study of
retrospective and on-line event detection. In
Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in
information retrieval, SIGIR ’98, pages 28–36. ACM,
1998.

287

Recommendation of Multimedia Objects for Social
Network Applications

Flora Amato, Francesco Gargiulo, Vincenzo Moscato, Fabio Persia, Antonio Picariello
University of Naples Federico II

{flora.amato,francesco.gargiulo,vmoscato,fabio.persia.picus}@unina.it

ABSTRACT
Recommender systems help people in retrieving information
that match their preferences by recommending products or
services from a large number of candidates, and support peo-
ple in making decisions in various contexts: what items to
buy , which movie to watch or even who they can invite
to their social network . They are especially useful in en-
vironments characterized by a vast amount of information,
since they can effectively select a small subset of items that
appear to fit the user’s needs.

We present the main points related to recommender sys-
tems using multimedia data, especially for social networks
applications. We also describe, as an example, a frame-
work developed at the University of Naples “Federico II”.
It provides customized recommendations by originally com-
bining intrinsic features of multimedia objects (low-level and
semantic similarity), past behavior of individual users and
overall behavior of the entire community of users, and even-
tually considering users’ preferences and social interests.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.5.1 [Information Interfaces And Presentation]: Mul-
timedia Information Systems

General Terms
Multimedia Recommender System, Social Networks

1. INTRODUCTION
Images, Audios and Videos are the kind of data most in-

volved in Social Networks applications, due to the extraor-
dinary technological progress that makes possible the gen-
eration and exchange of multimedia content at low cost and
in a very easy way: just to make an example, tons of short
messages, images and video are produced and exchanged us-
ing smart phone, pads and laptop, and are posted every day
over popular social networks (e.g. Facebook, Twitter etc.).

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

As a consequence, massive collections of multimedia ob-
jects are now widely available to a large population of users
and to the appealing and sophisticated tools and applica-
tions used for social networks. However, the retrieval of
such objects and, in particular, of the “right” multimedia
component that can be suitable for a certain application,
still remains a challenging problem. To this aim, a number
of algorithms and tools – generally referred to as Recom-
mender Systems – are being proposed to facilitate browsing
of these large data repositories.

We note that the use of recommender systems is one of the
steps for realizing the transition from the era of search to
the era of discovery : that is, according to Fortune magazine
writer Jeffrey M. O’Brien, search is what you do when you
are looking for something while discovery is when something
wonderful that you didn’t know existed, or didn’t know how
to ask for, finds you.

Recommender systems help people in retrieving informa-
tion that match their preferences by recommending products
or services from a large number of candidates, and support
people in making decisions in various contexts: what items
to buy [1], which movie to watch [2] or even who they can
invite to their social network [3]. They are especially useful
in environments characterized by a vast amount of informa-
tion, helping people to effectively select a small subset of
items that fit the user’s needs [4, 5]. This kind of systems
can be used in many contexts, as example in Cultural Her-
itage, for guiding the tourists in their browsing activities or,
in e-Commerce, for suggesting items that the users are likely
to buy.

Here, we present the main points related to recommender
systems using multimedia data, especially for social net-
works applications. We also describe, as an example, a
framework developed at the University of Naples “Federico
II”. It provides customized recommendations by originally
combining intrinsic features of multimedia objects (low-level
and semantic similarity), past behavior of individual users
and overall behavior of the entire community of users, and
eventually considering users’ preferences and social interests.

2. THEORETICAL BACKGROUND
Wikipedia defines Recommender Systems as “a specific

type of information filtering technique that attempts to present
information items (movies, music, books, news, images, web
pages, etc.) that are likely of interest to the user”.

However, this definition shows only one basic idea of the
number of features and aspects of modern recommender sys-
tems.

288

From a general point of view, recommenders are a class
of applications that try to predict users choices [6]. Just to
bring the problem into focus, some good examples of recom-
mendation systems are described in the following.

Product Recommendations - perhaps the most important
use of recommendation systems; on-line vendors present each
returning user with some suggestions of products that they
might like to buy on the base of the purchasing decisions
made by similar customers. Movie Recommendations - in
MovieLens.org, for example, users initially rate some subset
of movies that they have already seen, with ratings specified
on a scale from 1 to 6 stars, where 1 is“Awful”and 6 is“Must
See”; MovieLens then uses the ratings of the community to
recommend other movies that user might be interested in
or to predict how that user might rate a movie; therefore,
the recommendation engine should be able to estimate (pre-
dict) the ratings of non-rated movie/user combinations and
generate appropriate recommendations based on these pre-
dictions. News Articles - news services have attempted to
identify articles of interest to readers, based on the articles
that they have read in the past. Social Recommendations -
recommending new friends in social nets, such as Facebook,
Twitter, and so on based on common interests retrieved from
the analysis of the published posts.

In these examples we recognize different kinds of recom-
mendation, such as personalized recommendation - based
on the individual’s past behavior, social recommendation -
based on the past behavior of similar users, item recommen-
dation - based on features related to the item itself amd any
combination of the approaches above.

What is an “item”? In real applications it is more then
simple text: it includes images, audio and video streams,
and it is not ensured the presence of and adequate metadata
system. In this framework, the challenge is then how to
exploit the information given by multimedia objects, and
how to combine it with past behavior of the single user or of
a community of users in order to provide easy and effective
recommendations.

Let us give some formal description of the above described
problem.

A recommendation system deals with a set of users U =
{u1, u2,...ui,...um} and a set of objects O = {o1, o2,...oj ,...on}1.
For each pair (ui, oj), a recommender can compute a score
ri,j that measures the expected interest of user ui in object
oj (or the expected utility of object oj for user ui), using a
knowledge base and a scoring (or ranking) algorithm that
should take into account that users preferences change with
context. In other terms, for each user u ∈ U , the recom-
mendation problem is to choose a set of items in O that
maximize the user’s utility, given the current context.

In this formulation, the utility of an item is usually rep-
resented by a rating which can be an arbitrary function,
including a profit function.

Depending on the application, utility can either be speci-
fied by the user, as it is often done for user-defined ratings,
or computed by the application, as in profit-based utility
functions. Each user in U can be associated with a profile
that includes various characteristics, such as age, gender, in-
come, marital status, and so on; similarly, each data item in
O is associated with a set of features.

1Both O and U can be very large, in the order of thousands
or even millions of items, such as in book recommendations
systems

For instance, in a movie recommendation application, O
being a collection of movies, each movie can be represented
by its title, genre, director, year of release, main actors, etc.

The utility is usually not defined on the whole U×O space,
but only on some subset of it, and thus the central problem
is to extrapolate r to the whole space U × O.

Extrapolations from known to unknown ratings are usu-
ally done by: (i) specifying heuristics that define the utility
function and empirically validating its performances and (ii)
estimating the utility function that optimizes certain perfor-
mance criterion, such as the mean square error. Once the
unknown ratings are estimated, actual recommendations of
an item to a user are made by selecting the highest rating
among all the estimated ratings for that user. Alternatively,
we can recommend the N best items to a user or a set of
users to an item.

As an example of novel and effective recommendation
techniques, in the following we show a system for recommen-
dations of multimedia items, that originally combines intrin-
sic features of multimedia objects (low-level and semantic
similarity), past behavior of individual users, and overall
behavior of the entire community of users and eventually
considering users’ preferences and social interests. Recom-
mendations are ranked using an importance ranking algo-
rithm that resembles the well known PageRank [7] ranking
strategy.

In order to best understand the described system, let us
consider a typical scenario, where an effective multimedia
recommender system would be desirable in social networks
applications. In particular, let us consider popular social
networks (e.g. Facebook, Twitter, Flickr) that, supporting
an intelligent browsing of images’ collection, allow users to
quickly retrieve her or of her friends’ pictures with respect
to a given category (e.g. landscapes, animals, vacation, etc.)
in order to automatically create personalized photographic
album. For example, if the user wants to create an album of
London using photos of her last vacation and other images
of her friends that have just visited the city, an image rec-
ommender systems should be able to suggest all the similar
images with respect to that observed by the user consider-
ing: similarities among images, past behaviors of the users
community, users social interests and preferences.

3. RELATED WORK
Literature about recommender systems is reported in dif-

ferent surveys[4, 8, 9], in which these systems are broadly
classified into three major categories: content based rec-
ommendation, collaborative filtering and hybrid approaches
(that combine collaborative and content-based methods),
using the main results in cognitive sciences, approximation
theory, information retrieval, and forecasting theories.

Recommendations based on content-based approach arise
from research in information retrieval and information filter-
ing [10]: in such frameworks, the suggested item is in some
way “similar” to the previous ones; for example, if a user
would like to have a recommendation about a good movie
to watch, the system tries to understand the commonalities
among the movies the user u has rated highly in the past
(specific actors, directors, genres, subject matter, etc), and
only the movies that have a high degree of similarity to the
user’s preferences would be recommended. In recent times,
the content-based approach has been applied to other types
of multimedia data as in [11], [12].

289

Collaborative filtering techniques associate each user to a
set of other users having similar profiles and recommending
items based on the similarity between users, rather than on
the similarity between data items themselves [13, 14]. In
other terms, this process uses the opinions of other people,
shares opinions with others, as in real life peoples discusses
about fashion or places to visit [4], [9].

The combination of collaborative and content based meth-
ods is at the basis of hybrid approaches; as reported in[4],
they are usually classified into different techniques: (i) im-
plementation of collaborative and content-based methods
separately and combination their predictions [15], (ii) in-
corporation of some content-based characteristics into a col-
laborative approach [16, 17], (iii) incorporation of some col-
laborative characteristics into a content-based approach [18],
and (iv) construction of a general unifying model that incor-
porates both content-based and collaborative characteristics
[19].

Hybrid recommendation systems can also use knowledge-
based techniques, such as case-based reasoning, in order to
improve recommendation accuracy and to address some of
the limitations (e.g., new user, new item problems) of tra-
ditional recommender systems [20, 21]. Some authors [16,
17, 18] empirically compare the performance of the hybrid
with the single ones and demonstrate that the hybrid meth-
ods can provide more accurate recommendations than pure
approaches [22].

In the last years approaches based on the use of knowledge
representation techniques and semantic relationships among
recommended objects have been proposed. For example,
in [23] the authors propose an approach that combines the
on-line user’s personal preferences, general user’s common
preference from users’ most recent experiences, and experts
knowledge for personalized recommendations.

Moreover, a recommending approach that shows ranked
news to users, considering previous visits, the terms con-
tained in articles and the category they are assigned to is
presented in [24] and [25]. The authors designed two proba-
bilistic models based on the aspect model to identify seman-
tic relationships[26] in user access to classified news.

4. THE RECOMMENDATION STRATEGY
So far we have discussed that a multimedia recommender

system for multimedia collections in a social network context
has to provide the capability of reliably identifying those
objects that are most likely to match the interests of a user
at any given point of her exploration.

Generally, we have to address four fundamental questions:
(i) How can we select a set of objects from the collection that
are good candidates for recommendation? (ii) How can we
rank the set of candidates? (iii) How can we capture, repre-
sent and manage semantics related to multimedia objects to
reduce the semantic gap between what user is watching and
what she is looking for? (iv) How can we arrange the rec-
ommended objects considering users’ preferences and social
interests?

To give an answer to the first two questions, we adopt
a recommendation strategy based on an importance rank-
ing method that strongly resembles the PageRank ranking
system and that the authors proposed in [7, 27].

Our basic idea is to assume that when an object oi is
chosen after an object oj during the same browsing session,
this event means that oj “is voting” for oi.

Similarly, the fact that an object oi is very similar to oj

can also be interpreted as oj “recommending” oi (and vicev-
ersa). Thus, we model a browsing system for a set of objects
O as a labeled graph (G,l), where G=(O,E) is a directed
graph and l: E → {pattern, sim} × R+ is a function that
associates each edge in E ⊆ O×O with a pair (t,w), where
t is the type of the edge which can assume two enumerative
values (pattern and similarity) and w is the weight of the
edge. According to this model, we list two different cases:
(i) a pattern label for an edge (oj,oi) denotes the fact that an
object oi was accessed immediately after an object oj and,
in this case, the weight wij is the number of times oi was
accessed immediately after oj ; (ii) a similarity label for an
edge (oj ,oi) denotes the fact that an object oi is similar to
oj and, in this case, the weight wij is the similarity between
oj and oi. In other terms, a link from oj to oi indicates that
part of the importance of oj is transferred to oi.

Given a labeled graph (G,l), we can formulate the defini-
tion of preference grade of an object oi as follows:

ρ(oi) =
∑

oj∈PG(oi)

wij · ρ(oj) (1)

where PG(oi) = {oj ∈ O|(oj , oi) ∈ E} is the set of prede-
cessors of oi in G, and wij is the normalized weight of the
edge from oj to oi. For each oj ∈ O

∑
oi∈SG(oj) wij = 1

must hold, where SG(oj) = {oi ∈ O|(oj , oi) ∈ E} is the set
of successors of oj in G.

It is easy to see that the vector R = [ρ(oi) . . . ρ(on)]T

can be computed as the solution to the equation R = C ·
R, where C={wij} is an ad-hoc matrix that defines how the
importance of each object is transferred to other objects and
can be seen as a linear combination of the following elements
[7].

A local browsing matrix Al={al
ij} for each user ul∈U. Its

generic element al
ij is defined as the ratio of the number of

times object oi has been accessed by user ul immediately
after oj to the number of times any object in O has been
accessed by ul immediately after oj . A global browsing ma-
trix A={aij}. Its generic element aij is defined as the ratio
of the number of times object oi has been accessed by any
user immediately after oj to the number of times any object
in O has been accessed immediately after oj . A multime-
dia similarity matrix B={bij} such that bij = σ(oi,oj)/Γ if
σ(oi,oj)≥τ ∀i̸= j, 0 otherwise. σ is any similarity function
defined over O which calculates for each couple of objects
their multimedia relatedness in terms of low (features) and
high level (semantics) descriptors; τ is a threshold and Γ is
a normalization factors which guarantees that ibij=1.

Matrix B allows to address the third question that we
introduced at the beginning of the section and thus to intro-
duce a sort of content-based retrieval in the recommendation
process.

In particular, to compute B matrix in the image realm,
we can adopt the most diffused multimedia features (Tamura
descriptors, MPEG-7 color-based descriptors, MPEG-7 edge-
based descriptors, MPEG-7 color layout- based descriptors
and all MPEG7 descriptors) and the related similarity met-
rics. In addition, we can exploit specific image metadata
– depending on the considered domain – and the semantic
similarity can be computed using the most diffused met-
rics for semantic relatedness of concepts based on a vo-
cabulary (Li-Bandar-McLean, Wu-Palmer, Rada, Leacock-
Chodorow, Budanitsky).

290

As an example, in [27], we consider the set of digital paint-
ings belonging to a social network related to Cultural In-
stitutions and the semantic similarity combines similarities
among artists, genres and subjects metadata obtained by
using a fixed taxonomy produced by domain experts with
image features. The combination between high and low
level descriptors is based on Sugeno fuzzy integral of Li and
MPEG-7 color layout- based similarities, and Sugeno fuzzy
integral of Wu-Palmer and MPEG-7 color based similarities,
in order to have more high level values of precision an recall;
thus we used this last combination for matrix B computa-
tion.

Still remains to discuss how to compute customized rank-
ings for each individual user considering user context infor-
mation. In this case, we can then rewrite previous equation
considering the ranking for each user as Rl = C · Rl , where
Rl=[ρ(oi). . .ρ(on)]T is the vector of preference grades, cus-
tomized for a user ul.

We note that solving equation R = C · R corresponds to
find the stationary vector of C, i.e., the eigenvector with
eigenvalue equal to 1. In [7], it has been demonstrated
that C, under certain assumptions and transformations, is a
real square matrix having positive elements, with a unique
largest real eigenvalue and the corresponding eigenvector has
strictly positive components. In such conditions, the equa-
tion can be solved using the Power Method algorithm.

It is important to note that C takes into account the
user’s context and does not have to be computed for all
the database objects, but it needs to be computed only for
those objects that are good candidates, i.e. the most sim-
ilar objects to that a user is currently watching (pre-filtering
strategy).

Finally, to met the last question, the set of suggested items
is organized in apposite recommendation lists: they are not
fixed and are arranged on the base of social user interests
and preferences in terms of taxonomic attributes – e.g. fa-
vorite artists, genres and subjects – , which values can either
retrieved using proper questionnaires or gathered by means
of apposite API from the most diffused social networks. The
preference degree of objects, which do not reflect user needs
in terms of semantic similarities, are penalized and such ob-
jects could be excluded from recommendation (post-filtering
strategy).

5. SYSTEM DESCRIPTION
Figure 1 shows an overview of our multimedia recom-

mender system, which takes as input the current context
in terms of observed objects (e.g. an image) and generates
a list of items. We distinguish the following components.

Items Manager - It is a repository manager that stores the
items to be suggested with the related descriptions. In the
case of images, it consists of an image DBMS, storing raw
data with the related low level features and metadata. Users
Log Tracker - It is a module devoted to capture and store
- in an appropriate format - all the users’ browsing sessions
in terms of accessed items during their explorations. User
Preferences Manager - It is a module devoted to gather from
social networks and manage all the user social interests and
preferences in terms of taxonomic attributes values. Items
Deliverer - It aims at delivering recommended objects to
each user in a format that will depend on the user profile
and device. Recommendation Engine - It is the system core
that for each user and on the base of current context dynam-

ically proposes a set of recommended objects ordered on the
base of their utility. In particular, it is composed by: (i)
a Browsing Matrices Computation Module - able to trans-
forms the collected browsing sessions into two matrices: a
global matrix which takes into account the overall browsing
behavior of the users, and a local matrix which considers the
behavior of a single user; (ii) a Similarity Matrix Computa-
tion Module - capable of computing a similarity degree for
each couple of objects and storing such degrees into a ma-
trix; (iii) a Candidate Set Building Module - computes the
subset of items that are more suitable for users needs; (iv)
a Items Ranks Computation Module - performs the ranking
and post-filtering of the selected candidates for recommen-
dation.

As discussed in [27], the system performances in terms of
user’s satisfaction are encouraging, providing a better (less
frustrating) user experience during assigned browsing tasks
with respect to classical image retrieval systems.

5.1 Application examples in Social Networks
The system is a platform that can provide services for

many social network applications. Just to make few exam-
ples, in the case of image collection, we use recommendation
services to assist users during browsing of image gallery con-
taining objects with the same subject (e.g. landscape, ani-
mal) or to suggest the most effective tags for image indexing
or to automatically create personalized photographic album.
For audio and video data, we can exploit recommendation
services to create personalized play-lists using, for example,
Youtube linked data

6. PRELIMINARY EXPERIMENTS
Recommender systems are generally complex applications
that are based on a combination of several models, algo-
rithms and heuristics. Recently, researchers began examin-
ing issues related to users’ subjective opinions and develop-
ing additional criteria to evaluate recommender systems. In
particular, they suggest that user’s satisfaction does not al-
ways (or, at least, not only) correlate with the overall recom-
mender’s accuracy and evaluation frameworks for measuring
the perceived qualities of a recommender and for predict-
ing user’s behavioral intentions as a result of these qualities
should be taken into account.

Starting from these considerations and based on current
trends in the literature, in [28] we decided to perform both
a user-centric evaluation and a more traditional evaluation
based on well-established accuracy metrics.

In particular, the proposed evaluation strategy aimed at
measuring (i) user satisfaction with respect to assigned brows-
ing tasks, and (ii) effectiveness of the system in terms of
accuracy.

In this work, we in turn evaluated the improvement of ac-
curacy performances due to the post-filtering strategy based
on users’ social preferences. We used the dataset provided
by the http://www.grouplens.org website, which makes avail-
able data collected by the MovieLens recommender system.
Through its website, MovieLens collects the preferences ex-
pressed by a community of registered users on a huge set of
movie titles. The dataset contains (i) explicit ratings about
1682 movies made by 943 users (only users who have rated
at least 20 movies are considered), (ii) demographic infor-
mation about users (age, gender, occupation, zip code), and
(iii) a brief description of the movies (title, year, genres).

291

Figure 1: System Overview

Sparsity Strategy RMSE
0.7 Without post-filtering 0.95
0.7 Users’ preferences post-filtering 0.87
0.75 Without post-filtering 0.95
0.75 Users’ preferences post-filtering 0.95
0.8 Without post-filtering 1.02
0.8 Users’ preferences post-filtering 0.97
0.85 Without post-filtering 1.07
0.85 Users’ preferences post-filtering 0.99
0.90 Without post-filtering 1.15
0.90 Users’ preferences post-filtering 1.04
0.95 Without post-filtering 1.32
0.95 Users’ preferences post-filtering 1.16

Table 1: Accuracy Improvement using the post-
filtering strategy

The experiments have been conducted on a collection of
about 1,000 movies, rated by a subset of 100 users: each of
them had rated at least 150 movies and at most 300, assign-
ing each movie a score between 1 (“Awful”) and 5 (“Must
to see”). Additionally, using the timestamp information, we
were able to reconstruct usage patterns for each user and
consequently the browsing matrices.

We compared in Table 1 the accuracy in terms of Root
Mean Square Error of the predictions computed by our rec-
ommender system without and with the post-filtering strat-
egy. In particular, we selected 50 test users (whose social
preferences are captured by proper questionnaires) and com-
puted the average accuracy for 50 predictions on a subset of
the most recently observed items, increasing data sparsity
for the same users.

7. FUTURE WORK
Recommender systems made a significant progress over

the last decade when numerous methods and several sys-
tems have been proposed. However, despite all these ad-
vances, the current generation of recommender systems still
requires further improvements. These extensions include the
improved modeling of users and multimedia large items’ col-
lections, generally depending on the considered application,
incorporation of the contextual information into the recom-
mendation process, support for multi-criteria ratings, and
provision of a more flexible and less intrusive recommenda-
tion process [4].

Our proposal represents an extension of a hybrid recom-
mender system supporting intelligent browsing of multime-
dia collections in social networks domain. We have shown
that the customized recommendations may be computed
combining several features of multimedia objects, past be-
havior of individual users and overall behavior of the en-
tire community of users and users’ social preferences. These
techniques, described into details for images, can be easily
adapted and extended to several kinds of multimedia data
such as video, audio and texts.

In according to the research future directions, the system
could be improved: (i) introducing explicit user profiling
mechanism based on the creation of users categories, (ii)
scaling the systems for large multimedia data collections,
(iii) integrating the several strategies using SOAP as a built-
in service for popular social networks.

8. REFERENCES
[1] Xinrui Zhang and Hengshan Wang. Study on

recommender systems for business-to-business
electronic commerce. Communications of the IIMA,
5:53–61, 2005.

[2] Song Qin, Ronaldo Menezes, and Marius Silaghi. A
recommender system for youtube based on its network
of reviewers. In Ahmed K. Elmagarmid and Divyakant
Agrawal, editors, SocialCom/PASSAT, pages 323–328.
IEEE Computer Society, 2010.

292

[3] Przemyslaw Kazienko and Katarzyna Musial.
Recommendation framework for online social
networks. In Mark Last, Piotr S. Szczepaniak, Zeev
Volkovich, and Abraham Kandel, editors, Advances in
Web Intelligence and Data Mining, volume 23 of
Studies in Computational Intelligence, pages 111–120.
Springer, 2006.

[4] Gediminas Adomavicius and Alexander Tuzhilin.
Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge and
Data Engineering, 17:734–749, 2005.

[5] Saverio Perugini, Marcos André Gonçalves, and
Edward A. Fox. Recommender systems research: A
connection-centric survey. J. Intell. Inf. Syst.,
23:107–143, September 2004.

[6] A.G. Parameswaran, H. Garcia-Molina, and J.D.
Ullman. Evaluating, combining and generalizing
recommendations with prerequisites. In Proceedings of
the 19th ACM international conference on
Information and knowledge management, pages
919–928. ACM, 2010.

[7] Massimiliano Albanese, Antonio d’Acierno, Vincenzo
Moscato, Fabio Persia, and Antonio Picariello.
Modeling recommendation as a social choice problem.
In Proceedings of the fourth ACM conference on
Recommender systems, RecSys ’10, pages 329–332,
New York, NY, USA, 2010. ACM.

[8] Michael J. Pazzani and Daniel Billsus. The Adaptive
Web: Methods and Strategies of Web Personalization,
volume 4321 of Lecture Notes in Computer Science,
chapter Content-Based Recommendation Systems,
pages 325–342. Springer, 2007.

[9] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of
collaborative filtering techniques. Adv. in Artif. Intell.,
2009:4:2–4:2, January 2009.

[10] Nicholas J. Belkin and W. Bruce Croft. Information
filtering and information retrieval: Two sides of the
same coin. COMMUNICATIONS OF THE ACM,
35(12):29–38, 1992.

[11] Veronica Maidel, Peretz Shoval, Bracha Shapira, and
Meirav Taieb-Maimon. Evaluation of an
ontology-content based filtering method for a
personalized newspaper. In Proceedings of the 2008
ACM conference on Recommender systems, RecSys
’08, pages 91–98, New York, NY, USA, 2008. ACM.

[12] Katarzyna Musial, Krzysztof Juszczyszyn, and
Przemyslaw Kazienko. Ontology-based
recommendation in multimedia sharing systems.
System Science, 34:97–106, 2008.

[13] Jae Kyeong Kim, Hyea Kyeong Kim, and Yoon Ho
Cho. A user-oriented contents recommendation system
in peer-to-peer architecture. Expert Syst. Appl.,
34(1):300–312, 2008.

[14] Hyea Kyeong Kim, Jae Kyeong Kim, and Young U.
Ryu. Personalized recommendation over a customer
network for ubiquitous shopping. IEEE Trans. Serv.
Comput., 2(2):140–151, 2009.

[15] Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel
Murnikov, Dmitry Netes, and Matthew Sartin.
Combining content-based and collaborative filters in
an online newspaper. In Proceedings of ACM SIGIR

Workshop on Recommender Systems, 1999.

[16] Marko Balabanović and Yoav Shoham. Fab:
content-based, collaborative recommendation.
Commun. ACM, 40(3):66–72, March 1997.

[17] Prem Melville, Raymod J. Mooney, and Ramadass
Nagarajan. Content-boosted collaborative filtering for
improved recommendations. In Proceedings of the
Eighteenth national conference on Artificial
intelligence, pages 187–192, Menlo Park, CA, USA,
2002. American Association for Artificial Intelligence.

[18] Ian Soboroff. Charles Nicholas and Charles K.
Nicholas. Combining content and collaboration in text
filtering. In In Proceedings of the IJCAI’99 Workshop
on Machine Learning for Information Filtering, pages
86–91, 1999.

[19] Andrew I. Schein, Alexandrin Popescul, Lyle H.
Ungar, and David M. Pennock. Methods and metrics
for cold-start recommendations. In Proceedings of the
ACM SIGIR ’02, pages 253–260, New York, NY, USA,
2002. ACM.

[20] Robin Burke. Knowledge-based Recommender
Systems. In Encyclopedia of Library and Information
Systems, volume 69, 2000.

[21] Stuart E. Middleton, Nigel R. Shadbolt, and David C.
De Roure. Ontological user profiling in recommender
systems. ACM Trans. Inf. Syst., 22:54–88, January
2004.

[22] Flora Amato, Antonino Mazzeo, Vincenzo Moscato,
and Antonio Picariello. Building and retrieval of 3d
objects in cultural heritage domain. In Complex,
Intelligent and Software Intensive Systems (CISIS),
2012 Sixth International Conference on, pages
816–821. IEEE, 2012.

[23] Chunyan Miao, Qiang Yang, Haijing Fang, and Angela
Goh. A cognitive approach for agent-based
personalized recommendation. Know.-Based Syst.,
20(4):397–405, 2007.

[24] Sergio Cleger-Tamayo, Juan M. Fernández-Luna, and
Juan F. Huete. Top-n news recommendations in digital
newspapers. Know.-Based Syst., 27:180–189, 2012.

[25] Flora Amato, Antonino Mazzeo, Vincenzo Moscato,
and Antonio Picariello. Exploiting cloud technologies
and context information for recommending touristic
paths. In Intelligent Distributed Computing VII, pages
281–287. Springer, 2014.

[26] Flora Amato, Antonino Mazzeo, Vincenzo Moscato,
and Antonio Picariello. Semantic management of
multimedia documents for e-government activity. In
Complex, Intelligent and Software Intensive Systems,
2009. CISIS’09. International Conference on, pages
1193–1198. IEEE, 2009.

[27] Massimiliano Albanese, Antonio d’Acierno, Vincenzo
Moscato, Fabio Persia, and Antonio Picariello. A
multimedia recommender system. ACM Transactions
on Internet Technology (TOIT), 13(1):3, 2013.

[28] Massimiliano Albanese, Antonio d’Acierno, Vincenzo
Moscato, Fabio Persia, and Antonio Picariello. A
multimedia recommender system. ACM Trans.
Internet Techn., 13(1):3, 2013.

293

Estimating Completeness in Streaming Graphs

Malay Bhattacharyya
Department of C.S.E.
University of Kalyani

malaybhattacharyya
@klyuniv.ac.in

Supratim Bhattacharya
Department of C.S.E.
University of Kalyani

bhattacharya.supratim
@gmail.com

Sanghamitra

Bandyopadhyay
∗

Machine Intelligence Unit
Indian Statistical Institute

sanghami@isical.ac.in

ABSTRACT

Finding the completeness of a graph is important from vari-
ous aspects. Considering the massive growth and dynamics
of real-life networks, we readdress this problem in a stream-
ing setting. We approach the problem of verifying the com-
pleteness of a graph by estimating the eigen values of a
sketch of its adjacency matrix. Here, we provide the first
approximation algorithm for estimating the completeness of
a bipartite graph in the streaming model. The approach is
further generalized for any arbitrary simple graph. We em-
ploy some useful recent results on ℓ1 heavy eigen-hitters to
construct the algorithms working in linear time and consum-
ing sublinear space. The implementation of the algorithms
have also been done and tested on a couple of networks.
We illustrate the effectiveness of the proposed approaches
in analyzing social, biological and other real-life networks.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and Networks; F.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems; G.2.2 [Discrete Mathemat-
ics]: Graph Theory

General Terms

Theory, Design, Analysis

Keywords

Streaming model, complete graphs, heavy eigen-hitter

1. INTRODUCTION
Graphs and networks are suitable descriptors of various

real-life environments like social activity, professional collab-
oration, web activity, etc. [12, 16]. They reflect local and
global relationships between the objects, which they model.

∗Corresponding author.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-

ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this

paper is permitted under the terms of the Creative Commons license CC-

by-nc-nd 4.0.

Studying how these objects interact with each other is use-
ful from different perspectives. A graph is complete if all
of its objects are connected to each other [5]. We are often
interested to find out whether a graph is complete or not.
Verifying the completeness of a graph consumes quadratic
space and time with respect to its order. Considering the
massive growth and dynamics of real-life networks, this be-
comes time/space inefficient. Therefore, designing sublinear
algorithms is very important in massive data analytics [15].

Due to the explosive growth of volume of the real-life
datasets (the emergence of big data), many of the computa-
tional problems have been redefined to overcome the bottle-
necks of time/space complexity. In this paper, we readdress
the problem of verifying the completeness of a graph in a
streaming model. In streaming models, the data are avail-
able as a sequence of items (stream) and the data cannot
be stored entirely [20]. Therefore, we have to examine the
data within a few passes (may be single) as the available
memory is also limited. Again, the processing time per item
has to be sublinear. This imposes a new kind of uncertainty
in computing beyond approximation and randomization.

Here, we consider that the adjacency matrix of a graph
is available as a stream. Adopting a turnstile model, we
estimate completeness of the corresponding graph based on
the ℓ1 norm. Initially, we study the problem for a bipartite
graph in the streaming model and generalize it further for
any arbitrary simple graph. We employ some recent approx-
imation results on ℓ1 heavy eigen-hitters to find out top k
eigen values, respectively [3]. The proposed algorithms run
in linear time and consumes space proportional to k2 and
the error parameters. We also demonstrate the effective-
ness of the approaches in analyzing social and other real-life
networks.

The current paper is organized as follows. Some back-
ground details and motivating applications are included in
section 2 and section 3, respectively. Section 4 describes
the state-of-the-art. Some theoretical results are provided
in section 5 and based on this the proposed method is pre-
sented in section 6. Section 7 and section 8 cover some em-
pirical results and discussions. Finally, section 9 concludes
the paper.

2. PRELIMINARIES
Let us introduce some formal notations and standard def-

initions that will be used throughout the paper. We assume
that |S| denotes the size (cardinality) of a set S. A graph
is a doublet G = (V, E), where V denotes the set of vertices
and E ⊆ V × V denotes the set of edges. The term graph

294

Figure 1: A complete bipartite graph with the sets
of disjoint vertices {v1, v2} and {v3, v4, v5, v6}.

is used to refer to a simple graph (without self-loops or par-
allel edges [7]) that is undirected and labeled. Suppose the
adjacency matrix of a graph G is denoted as AG. A sub-
graph of a graph contains a subset of the vertices and edges.
A subgraph is said to be induced by a vertex set if it has
exactly the edges that appear in the original graph over the
same vertex set. A graph is complete if all of its vertices
are connected to each other, i.e. E = V × V . A clique is
a complete subgraph (often restricted to be maximal) of a
graph [5]. A graph is said to be bipartite if its vertices can
be segregated into two disjoint subsets, say V1, V2, such that
V1 ∩ V2 = φ, V1 ∪ V2 = V and E ⊆ V1 × V2. A complete
bipartite graph has exactly |V1| × |V2| edges (see Fig. 1).
The other notations and graph-theoretic terminologies have
their usual meaning, unless specified otherwise.

In this study, we assume that graphs are available under
a streaming setting. In conventional data streaming models,
the input stream < s1, s2, · · · > arrives sequentially (item-
wise) and describes an underlying signal [11]. The stream-
ing models vary one from the other depending upon how the
si’s represent the signal. Here, we consider a turnstile model
where the underlying signal S is a one-dimensional function
S : [1 . . . N] → R, R denoting the real space, where the si’s
are updates to S[j]’s [20]. Note that in case of streaming
graphs, represented as a real symmetric adjacency matrix,
we obtain a strict turnstile model by default where S[j]’s
are always non-negative. Inspired from the earlier formal-
izations [9], we define a streaming graph in a strict turnstile
model as follows.

Definition 1. A streaming graph in a strict turnstile model
is a simple graph on n vertices V = {v1, v2, . . . , vn} with
edges E = {(vi, vj) : sk = (i, j) for some k ∈ [m]}, where
the data items sk ∈ [n]× [n] are available as an input stream
S =< s1, s2, . . . , sm > pursuing a strict turnstile model.

In this paper, we address a stronger version of the stream-
ing problems involving linear time and sublinear space. To
formalize, we would like the per-item processing time, stor-
age and overall computing time to be simultaneously O(N, t),
preferably polylog(N, t), at any time instant t in the data
stream. A sketch is often necessary to map the original
space to a reduced space, retaining the necessary proper-
ties, to achieve this. We formally define a sketch as follows.

Definition 2. A sketch ψ of a data set x, with respect to
some function f , is a projection of x → ψ from which one
can compute f(x).

Our proposed algorithms and the related theoretical re-
sults are mainly based on approximating the heavy eigen-
hitters in a streaming graph. We include the definition of
heavy eigen-hitters below.

Definition 3. The φ-heavy eigen-hitters of a graph G are
the eigen values that are at least φ-fraction of the total mass
of all the eigen values of the matrix AG.

In Definition 3, the total mass of eigen values represents,
in a simpler understanding, the summation of all the eigen
values. A norm is a function that assigns a strictly positive
length (or size) to each vector in a vector space, other than
the zero vectors (having a length zero). In general, we define
the ℓp norm as follows.

Definition 4. For any non-zero vector x, the ℓp norm is
defined as

||x||p = (

n∑

i

|x|p)1/p, (1)

where p ≥ 1 denotes a real constant.

Definition 5. The ℓ1 heavy eigen-hitters are the heavy
eigen-hitter values based on the total mass in ℓ1 norm.

We discuss some real-life applications of estimating com-
pleteness in a streaming graph in the subsequent section.

3. MOTIVATING APPLICATIONS
Recent efforts in analyzing the available massive volume

of data have assisted in both productivity growth and in-
novation in the industry and academia. It has immense
potential in understanding the World Wide Web (WWW),
financial sectors, medical analytics, public service domains,
etc. Graphs can highlight large-scale global relations in ef-
fective ways for streaming data. Therefore, many futuristic
applications are addressable with graph problems. Our tar-
get problem of estimating the completeness of a graph in a
streaming model is also of high importance. We foresee a
number of applications of this problem in various emerging
areas of big data. Three of these are highlighted below.

• Social network analysis: Social communication at
large-scale, rooted in WWW, has enabled the model-
ing of trillions of interactions between various social
groups (e.g., researchers, students, actors, etc.). For
the last decade or so, there is a massive growth of
un-analyzed data in this area. Various other social
communication methods like social networking web-
sites (Facebook, Twitter, etc.), smart phones, multi-
media applications, etc. are also contributing to these
growing volumes of networked data. This increases
the amount of dataflow per unit time and area. In
accordance with this growth of data, analyses started
with representing a network as a graph where the ver-
tices are the elements and the edges denote their re-
lations. Studying such large-scale graphs and their
topologies might provide important features about the
participating elements. Analyzing the dynamics of so-
cial networks is also interesting from different perspec-
tives. Completeness can be verified for a portion of the
streaming data so as to ensure whether the correspond-
ing set of vertices (or a subgraph) arriving currently is

295

forming a clique or not. Again, the completeness of
bipartite graphs may reveal interactions at the maxi-
mum scale between two different social groups. These
are very important in a streaming setting. A recent
attempt has shown that spreading rumors in real-life
social networks is (surprisingly) faster than in complete
graphs [8]. Therefore, studying graph completeness is
also important for benchmarking analyses.

• Analysis of biological networks: Biological sys-
tems are often modeled as a network of biomolecules
for understanding their cooperative activity. With the
advancements of high-throughput technologies, enor-
mous amount of experimental data is becoming ac-
cessible day by day. Biological networks may not be
available as a stream but analyzing networks in lin-
ear/sublinear time/space is useful for dynamic sequenc-
ing of genes or for studying protein-protein interac-
tions. Estimating completeness in such large-scale bi-
ological networks might help in prompt identification
of strongly connected components. In a spreading dis-
ease network, biomolecules get rapidly affected by one
another and such behaviors can be analyzed with com-
pleteness verification models. The broader goal is cer-
tainly to facilitate the system level understanding of
cell-to-cellular components and its subprocesses.

• Studying communication networks: The num-
ber of communication service providers has rapidly in-
creased over the last few decades around the world.
Their growth has not only increased the volume of data
but also its variability. This type of data can also be
modeled as a network to understand various proper-
ties. Analyzing such networks might help the service
providers to decide whether they should involve new
services. Estimating completeness in such networks
will be helpful in identifying the saturation of connec-
tivity. This will invoke the demand of new communica-
tion providers. Again for the better understanding of a
dynamic setting, we need to study the communication
networks modeled on streaming graphs.

In the following section, we discuss the state-of-the-art of
finding completeness of graphs, estimating cliques and the
related progresses in streaming algorithms.

4. RELATED WORKS
Verifying the completeness of a graph is a special case of

clique problems. A graph is complete if its clique number is
of the order of the graph. Finding the maximum order clique
in a graph is known to be an NP-hard problem [5]. An im-
portant study about a decade ago showed that the approxi-
mation of a maximal clique in polynomial time is hard within
a factor of n1−ε (for any ε > 0), unless NP = ZPP (where n
is the number of vertices in the graph) [14]. ZPP stands for
zero-error probabilistic polynomial time. The problems in
ZPP can be exactly solved in expected polynomial time by
a probabilistic algorithm. It is strongly believed that ZPP ⊂
NP and the hypothesis NP 6= ZPP is almost as strong as P
6= NP [14], where P denotes the decision problems solvable
in polynomial time using a deterministic Turing machine.
For this reason, many of the recent algorithms to solve the
maximum clique problem (MCP) are based on metaheuristic
approaches [4]. To approximate cliques, spectral approaches

showed promise in earlier studies. Spectral graph theory is
also important in analyzing the bounds of completeness. A
few attempts were made earlier to estimate the chromatic
number of a graph using eigen values [22], which can be
further related with the clique number of a graph. Based
on eigen value computations, several upper bounds on the
clique number were derived previously [2]. Recently, these
bounds (and also lower bounds) were tightened further [6].
Current studies indicate that a relation with the spectral
radius with the clique might help us to estimate the upper
bound of the clique in a streaming model [17].

Streaming algorithms have been in focus for more than
a decade. But this domain is still in a nascent stage. The
limited earlier contributions before 2005 have been well re-
viewed in [20]. While presenting this survey, Muthukrish-
nan also addressed some real life problems based on stream-
ing models. Following this, diverse efforts were made to re-
visit and solve a number of problems in a streaming setting.
There were studies on matrix approximation, matrix decom-
position, low rank approximation, ℓp regression, etc. [13, 17,
18]. There has been an influential line of work on computing
a low-rank approximation of a given matrix, starting with
the works of [10, 21]. A lot of works were done on linear
algebra in a streaming model. Also low rank approximation
made the analysis of massive data less complicated. Very re-
cently, the ℓ1 and ℓ2 heavy eigen-hitter problems have been
estimated in the streaming model in a lower dimension [3].
Notably, the heavy eigen-hitters problem was first proposed
in [20]. Andoni and Huy achieved a success probability of
5
9

[3]. They also estimated the residual error with the same
probabilistic accuracy. Sampling and sketching methods for
producing low-complexity approximations of large matrices
is in focus for the last few decades. We estimated the com-
pleteness of a graph in the streaming model based on the
computations of ℓ1 heavy eigen-hitters.

5. THEORETICAL RESULTS
In this section, we present some useful theoretical out-

comes and derive some new results that will be helpful in
devising the proposed algorithms. Let AG be a real symmet-
ric n×n (n ≥ 1) matrix denoting the adjacency relations in
a graph G. Further assume λi(AG) be the ith largest eigen
value of AG in absolute value. Now, if ψ represents a sketch
of the matrix AG where ψ = PAGP

T . Then, we have the
following important result from a recent study [3].

Theorem 1. There is a linear sketch of the real symmet-
ric matrix AG, of dimension n×n, using space O(k2ǫ−4)(ǫ >

0, k ∈ {1, 2, . . . , n}), from which one can produce values λ̃i,
for i ∈ [k], satisfying the following with at least 5

9
success

probability

|λi(AG) − λ̃i| ≤ ǫ|λi(AG)| +
1

k
Sk+1

1 ,

where Sk+1
1 =

∑
i>k |λi(AG)| denotes the residual “ℓ1 error”.

Now, we derive the following result on bipartite graphs
using the previous claim in Theorem 1.

Theorem 2. On fixing a value of ǫ > 0, one can ensure
whether G is a complete bipartite graph by deriving a lin-
ear sketch ψ from AG whose top two heavy eigen-hitters in
absolute value should be the same satisfying

λ1(ψ) = (1 ± ǫ)λ1(AG) ± S2
1 ,

296

and

λ2(ψ) = (1 ± ǫ)λ2(AG) ± 0.5S3
1 ,

and the third largest eigen value satisfies

λ3(ψ) = ±0.3̇S4
1 .

Proof. The eigen values of a complete bipartite graph G
can be ordered as {λ1(AG), 0, . . . , 0, λn(AG)}, where λ1(AG)
= −λn(AG) = λ (say) [2]. Therefore, if we obtain a decreas-
ing order of the eigen values of AG in absolute value, we
would get {λ, λ, 0, . . . , 0}. Since G does not contain any
self-loops, the trace of AG should be zero. Then, we can
write

n∑

i=1

λi(AG) = 0.

It is understandable that if the eigen values are decreas-
ingly ordered by absolute value, say {λ′

1(AG), λ′
2(AG), . . . ,

λ′
n(AG)}, and if λ′

1(AG) = λ′
2(AG) and λ′

3(AG) = 0, then
rest of the eigen values of AG will be certainly zero. This
is because the rest of the eigen values cannot be negative
(being in absolute value) and no more than zero (being in
decreasing order). So, it is sufficient for AG, to have the
first two largest eigen values same in absolute value and the
third one zero, for claiming that the corresponding graph
G is complete bipartite. Now, from Theorem 1, we can de-
rive that the first k eigen values, for a particular ǫ > 0, will
satisfy the following for a linear sketch ψ

λi(ψ) = (1 ± ǫ)λi(AG) ± 1

k
Sk+1

1 , (2)

Using Eqn. (2), one can verify whether the first two largest
eigen values are same and estimate their values from the
sketch ψ satisfying

λ1(ψ) = (1 ± ǫ)λ1(AG) ± 1

1
S1+1

1

=⇒ λ1(ψ) = (1 ± ǫ)λ1(AG) ± S2
1 .

and similarly

λ2(ψ) = (1 ± ǫ)λ2(AG) ± 1

2
S2+1

1

=⇒ λ2(ψ) = (1 ± ǫ)λ2(AG) ± 0.5S3
1 .

Again, one can verify whether the third largest eigen value
is zero and estimate its value from the sketch ψ satisfying

λ3(ψ) = (1 ± ǫ)λ3(AG) ± 1

3
S3+1

1

=⇒ λ3(ψ) = (1 ± ǫ).0 ± 0.3̇S4
1

=⇒ λ3(ψ) = ±0.3̇S4
1 .

This altogether completes the required proof.

Theorem 3. On fixing a value of ǫ > 0, one can ensure
whether G is a complete graph by deriving a linear sketch ψ
from AG whose top two heavy eigen-hitters in absolute value
satisfy the following

λ1(ψ) = (1 ± ǫ)(n− 1) ± S2
1 .

and

λ2(ψ) = (ǫ± 1) ± 0.5S3
1 .

Proof. The eigen values of a complete graph G can be
ordered as {n− 1,−1, ...,−1} [2]. Therefore, if we obtain a
decreasing order of the eigen values of AG in absolute value,
we would get {n−1, 1, . . . , 1}. Since G does not contain any
self-loops, the trace of AG should be zero. Then, we can
write

n∑

i=1

λi(AG) = 0.

It is understandable that if the eigen values are decreas-
ingly ordered by absolute value, say {λ′

1(AG), λ′
2(AG), . . . ,

λ′
n(AG)}, and if λ′

1(AG) = n − 1 and λ′
2(AG) = 1, then

certainly the rest of the eigen values of AG should also be
one. This is because the rest of the eigen values cannot be
negative (being in absolute value) and no more than one
(being in decreasing order). So, it is sufficient for AG, to
have the first two largest eigen values as n− 1 and one, re-
spectively, for claiming that the corresponding graph G is
complete. We have already derived that the first k eigen
values, for a particular ǫ > 0, will satisfy Eqn. (2) for a lin-
ear sketch ψ. Then using this, the first largest eigen value
can be estimated as

λ1(ψ) = (1 ± ǫ).λ1(AG) ± 1

1
S1+1

1

=⇒ λ1(ψ) = (1 ± ǫ).(n− 1) ± S2
1 .

and the second largest eigen value can be estimated as

λ2(ψ) = (1 ± ǫ).λ2(AG) ± 1

2
S2+1

1

=⇒ λ2(ψ) = (1 ± ǫ).(−1) ± 0.5S3
1

=⇒ λ2(ψ) = (ǫ ± 1) ± 0.5S3
1 .

This altogether completes the required proof.

In the next section, we present our approaches for com-
pleteness verification of bipartite graphs and any arbitrary
graph in a streaming setting.

6. PROPOSED METHOD
Our algorithms are principally based on the concept of

generating a projection P , of size O(k/ǫ2) by n, and com-
puting the sketch ψ = PAGP

T for ℓ1 to retain (and thus
estimate) the properties of the heavy eigen-hitters as close
as possible. This saves the space requirements and computa-
tional time together. The method of verifying completeness
of bipartite graphs is formally presented as Algorithm 1.
Theorem 2 serves as the base of this approach. Note that,
for estimating the completeness of bipartite graphs, we re-
quire the top two eigen values in absolute value to be same
in original matrix AG, i.e. λ1(AG) = λ2(AG) = λ (say).
Therefore, the eigen value differences in the sketch matrix
ψ result into the following relation (using Theorem 2).

λ1(ψ) − λ2(ψ) = ±2ǫλ± S2
1 ± 0.5S3

1 .

This provides an error estimation of the relation derived
in Theorem 2.

In Algorithm 2, we present the formal approach of veri-
fying completeness of any arbitrary graph. This is a more
generalized approach with a fewer number of eigen value es-
timations. We mainly use the results from Theorem 3 to
devise this algorithm. In both the algorithms described, for

297

Algorithm 1 An algorithm for estimating completeness of
bipartite graphs

Input: The adjacency matrix AG of the bipartite graph G.
Output: The decision about the completeness of G.
Algorithmic Steps:

1: Obtain a sketch ψ = PAGP
T , where P is a t × n ma-

trix with Θ(log2 n
ǫ2

)-wise independent entries identically

distributed as N(0, 1
t
).

2: Compute the top three largest eigen values of ψ in the
decreasing order denoted as λ1(ψ), λ2(ψ) and λ3(ψ),
respectively.

3: if λ1(ψ) = λ2(ψ) and λ3(ψ) = ±0.3̇S4
1 then

4: G is a complete bipartite graph.
5: end if

bipartite and general graphs, the Θ(log2 n
ǫ2

)-wise independent
entries for the random matrix P are generated following an
earlier approach [1].

Algorithm 2 An algorithm for estimating completeness of
any arbitrary graph

Input: The adjacency matrix AG of the graph G.
Output: The decision about the completeness of G.
Algorithmic Steps:

1: Obtain a sketch ψ = PAGP
T , where P is a t × n ma-

trix with Θ(log2 n
ǫ2

)-wise independent entries identically

distributed as N(0, 1
t
).

2: Compute the top two largest eigen values of ψ in the de-
creasing order denoted as λ1(ψ) and λ2(ψ), respectively.

3: if λ1(ψ) = (1±ǫ)(n−1)±S2
1 and λ2(ψ) = (ǫ±1)±0.5S3

1

then
4: G is a complete graph.
5: end if

7. EMPIRICAL STUDY
We considered two real-life networks for testing the out-

come of the proposed algorithms. The algorithms were im-
plemented in MATLAB and the simulations were performed
on an HP Laptop with Intel(R) Core(TM) i5-2410M proces-
sor running at 2.30 GHz speed and having 4 GB primary
memory. one of these networks is a complete bipartite graph
and the other one is sparse. The experimental procedures
are briefly discussed below.

7.1 Study on Synthetic Networks
We have constructed two synthetic networks, one com-

plete bipartite and another complete network, both hav-
ing orders 40 for performance analysis of the proposed ap-
proaches. The complete bipartite network has equal number
of partitions. In both these cases, dimension of the sketch
matrix becomes t× 40. We have varied t from 10 to 25 and
several arbitrary matrices are generated by employing ran-
dom selection method on a normal distribution (identically)
with parameters (0, 0.01). Finally, the eigen values are esti-
mated (using Algorithm 1 and Algorithm 2) and compared
with the original values. The obtained eigen values indicate
their completeness. The Figs. 2(a-b) show the accuracies
of the eigen values against the difference of dimensions be-
tween the sketch and the original matrix. It becomes clear

(a)

(b)

Figure 2: The average accuracy obtained against the
sketch difference of the synthetic (a) complete bipar-
tite network and (b) complete network.

that the performance rapidly improves after certain thresh-
old. So, proper selection of the dimension of the sketch
vector is very much important.

7.2 Study on Social Networks
We have used a large-scale social interaction data of Face-

book, consisting of ‘circles’ (denoting ‘friends lists’), from a
recent study [19]. This interaction data is used to construct
a large undirected unweighted social network having 4039
vertices and 88234 edges. The average clustering coefficient
of the network is found to be 0.61, establishing that it is not
complete. We have analyzed this and computed a sketch of
dimension 100 × 4039 with elements identically distributed
in N(0, 0.01). Finally, Algorithm 2 is applied on this. The
obtained eigen values are found to be quite far from the
values supporting its completeness (as per Theorem 3).

8. DISCUSSION
The approaches to completeness verification presented in

the current paper is important from two different perspec-
tives. First, the theoretical results provided might be useful
in estimating the clique number of a graph that depends
on the number of eigen values no greater than ‘−1’ [2]. Sec-
ondly, the implementation details might be useful is develop-
ing many other algorithms that work in a streaming setting.
Our assumption of a strict turnstile model does not weaken
the results because the problem demands so. The real sym-
metric form of adjacency matrices of streaming graphs can
be well captured using a turnstile model. Our attempts of
utilizing heavy eigen-hitters are also very promising. The
approaches to standard vector heavy hitters return the ele-
ments that are most frequent (heavy coordinates) [20]. On
the contrary, our methods do not find the elements that are
heavy hitters. This saves an additional factor of O(log n)
to the space requirements (ignoring the random seed size).

298

Another significant advantage of the proposed algorithms is
that their performances are independent of the seed selec-
tion for generating random matrices. It might appear that
the algorithms work only on static graphs (i.e. on a fixed
adjacency matrix) to compute the sketches. But they also
work in a streaming setting because the algorithms, being
linear in computational time, are also capable of supporting
arbitrary updates to the matrix. The major limitation of our
approaches is that the success probabilities are still low since
they rely on multiple applications of Theorem 1. Again, it
might be criticized that large real-life networks, like social
entities and their interactions, are rarely complete. But the
approaches of estimating completeness are still applicable
where time is a major constraint. Therefore, the proposed
methods are very much generalized.

9. CONCLUSION
In this paper, we have provided the first approximation al-

gorithms for estimating the completeness of bipartite graphs
and, in general, any arbitrary graph. Our results are promis-
ing and useful for diverse applications. We have also imple-
mented the proposed algorithms and verified results on two
test cases. The approaches are promising for many further
directions of research on big data at a network level. How-
ever, the success probabilities of our algorithms are still poor
that we would like to improve in near future. Again, we wish
to extend the current analysis using property testing.

10. ACKNOWLEDGMENTS
The authors are thankful to Huy L. Nguyen in the de-

partment of Computer Science of Princeton University for
his important feedback over an initial draft of the paper.

11. REFERENCES
[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta.

Simple constructions of almost k-wise independent
random variables. Random Stuctures and Algorithms,
3(3):289–304, 1992.

[2] A. T. Amin and S. L. Hakimi. Upper bounds on the
order of a clique of a graph. SIAM Journal on Applied
Mathematics, 22(4):569–573, 1972.

[3] A. Andoni and H. L. Nguyen. Eigenvalues of a matrix
in a streaming model. In Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1729–1737, New Orleans, USA,
2013.

[4] S. Bandyopadhyay and M. Bhattacharyya. Mining the
largest dense vertexlet in a weighted scale-free graph.
Fundamenta Informaticae, 96:1–25, 2009.

[5] I. M. Bomze, M. Budinich, P. M. Pardalos, and
M. Pelillo. The maximum clique problem. In D. Z. Du
and P. M. Pardalos, editors, Handbook of
Combinatorial Optimization: Supplementary Volume
A, pages 1–74. Kluwer Academic, Dordrecht, 1999.

[6] M. Budinich. Exact bounds on the order of the
maximum clique of a graph. Discrete Applied
Mathematics, 127:535–543, 2003.

[7] R. Diestel. Graph Theory. Springer-Verlag Heidelberg,
New York, 2005.

[8] B. Doerr, M. Fouz, and T. Friedrich. Why rumors
spread fast in social networks. Communications of the
ACM, 55(6):70–75, 2012.

[9] J. Feigenbaum, S. Kannan, A. McGregor, and S. Suri.
Graph distances in the data stream model. SIAM
Journal of Computing, 38(5):1709–1727, 2008.

[10] A. Frieze, R. Kannan, and S. Vempala. Fast
monte-carlo algorithms for finding low-rank
approximations. Journal of the ACM,
51(6):1025–1041, 2004.

[11] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One pass
summaries for approximate aggregate queries. In
Proceedings of the 27th International Conference on
Very Large Data Bases, pages 79–88, San Francisco,
CA, USA, 2001.

[12] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
Proccedings of the National Academy of Sciences USA,
99:7821–7826, 2002.

[13] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding
structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288, 2011.

[14] J. H̊astad. Clique is hard to approximate within n1−ε.
Acta Mathematica, 182(1):105–142, 1999.

[15] P. Indyk, R. Levi, and R. Rubinfeld. Approximating
and testing k-histogram distributions in sub-linear
time. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 15–22, Scottsdale,
Arizona, 2012.

[16] H. Ino, M. Kudo, and A. Nakamura. Partitioning of
web graphs by community topology. In Proceedings of
the 14th International World Wide Web Conference,
pages 661–669, Chiba, Japan, 2005.

[17] R. Kannan and S. Vempala. Spectral algorithms.
Foundations and Trends in Theoretical Computer
Science, 4(3-4):157–288, 2009.

[18] M. W. Mahoney. Randomized algorithms for matrices
and data. Foundations and Trends in Machine
Learning, 3(2):123–224, 2011.

[19] J. McAuley and J. Leskovec. Learning to discover
social circles in ego networks. In Proceedings of the
Neural Information Processing Systems, pages
548–556, 2012.

[20] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[21] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: a probabilistic
analysis. Journal of Computer and System Sciences,
61(2):217–235, 2000.

[22] H. S. Wilf. The eigenvalues of a graph and its
chromatic number. Journal of the London
Mathematical Society, 42(1):330–332, 1967.

299

Mining Urban Data (MUD) Gennady Andrienko (Fraunhofer

Institute IAIS, Germany)
Dimitrios Gunopulos (University of Athens, Greece)

Vana Kalogeraki (Athens University of Economics and Business, Greece)
Ioannis Katakis (National and Kapodistrian University of Athens, Greece)

Pedro José Marrón (University Duisburg-Essen, Germany)
Katharina Morik (Technischen Universität Dortmund, Germany)

Olivier Verscheure (IBM Research, Ireland)

300

Mining Trajectory Data for Discovering Communities
of Moving Objects

Corrado Loglisci
Department of Computer Science

University of Bari “Aldo Moro”
Bari, Italy

corrado.loglisci@uniba.it

Donato Malerba
Department of Computer Science

University of Bari “Aldo Moro”
Bari, Italy

donato.malerba@uniba.it

Apostolos N. Papadopoulos
Department of Informatics

Aristotle University
Thessaloniki, Greece

papadopo@csd.auth.gr

ABSTRACT
Recent advances on tracking technologies enable the collec-
tion of spatio-temporal data in the form of trajectories. The
analysis of such data can convey knowledge in prominent ap-
plications, and mining groups of moving objects turns out
to be a valuable mean to model their movement. Existing
approaches pay particular attention in groups where objects
are close and move together or follow similar trajectories by
assuming that movement cannot change over time. Instead,
we observe that groups can be of interest also when ob-
jects are spatially distant and have different but inter-related
movements: objects can start from different places and join
together to move towards a common location. To take into
account inter-related movements, we have to analyze the ob-
jects jointly, follow their respective movements and consider
changes of movements over time. Motivated by this, we in-
troduce the notion of communities and propose a computa-
tional solution to discover them. The method is structured
in three steps. The first step performs a feature extraction
technique to elicit the inter-related movements between the
objects. The second one leverages a tree-structure in order
to group objects with similar inter-related movements. In
the third step, these groupings are used to mine communities
as groups of objects which exhibit inter-related movements
over time. We evaluate our approach on real data-sets and
compare it with existing algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Trajectories, Mining, Groups of Moving Objects.

1. INTRODUCTION
The tremendous advances in positioning technologies, such

as telemetry, GPS equipment and smart mobile phones, have
enabled tracking of any type of moving objects and collect-
ing spatio-temporal data into growing repositories. Some

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

example applications follow: i) In location-based social net-
works, people travel in the real world and leave their location
history in the form of a trajectory. These trajectories do not
only connect locations in the physical world but also bridge
the gap between people and locations [12]. ii) GPS devices
allow the recording of vehicle locations [11]. Such informa-
tion often includes data for human mobility. iii) Zoologists
are investigating the impact of the levels of urbanization on
the migration, distribution and habitat use of animals [9].

In the aforementioned applications, one can be interested
in the discovery of groups of objects which move together
or in a similar manner. For instance, in car pooling it could
be useful to determine people with the same route to share
the car. Such problems are not novel in the literature [5]
and most of the efforts result in mining groups of moving
objects, such as flocks [1], convoys [4] and swarms [8].

The spatio-temporal properties of these groups is the main
distinguishing aspect. In particular, a flock contains at least
m objects moving in the same direction within an circular
region with a user-defined radius. Variants of the flock in-
clude also a notion of time-interval (with minimum duration
defined by the user) according to which in each time-stamp
of the interval a disc containing m objects can be identified.
The rigid characteristic of fixed circular shape could miss
some groups of arbitrary form.

The introduction of the notion of density avoids this draw-
back and allows to discover groups, named as convoys, which
have no limitations on the shape and size. A convoy is de-
fined as a cluster of objects and it is identified by means
of a density-based clustering technique which checks for the
condition of density-connectedness on the objects and for all
the time-stamps of a time-interval [4].

A more general group type is represented by the swarm
concept, which, in contrast to flocks and convoys, it is not
required to hold for all time-stamps of a time-interval, but it
can occur more sporadically. In the classical notion of swarm
this temporal constraint corresponds to a minimum number
of time-stamps which are not necessarily consecutive.

Motivation. The algorithms to detect flocks, convoys and
swarms are designed to capture similarities among (sub)tra-
jectories but leave unexplored two interrelated aspects which
instead appear to be new sources of information to exploit:
i) movements may depent on each other and may hide inter-
actions among the objects, ii) movements can reflect changes
of the motion of the objects and implicitly denote their dy-
namic behaviour. Interactions reflect the possible relation-
ships in which the objects can be involved in space and time,
they can provide a more complete description of the groups
by explaining even the cause of their formation. Interac-
tions can evolve because the objects can move near each

301

(a) (b)

Figure 1: Moving objects grouped using: (a) flocks, convoys and swarms and (b) communities.

other and then move away. Indeed, moving objects intrinsi-
cally are dynamic, their motion is not necessarily linear and
it can be influenced by the properties or needs of each ob-
ject and by the interactions with other objects as well. For
instance, in social studies, we can observe individuals which
begin to move from different locations, they could come near
until to join together in proximity of a point of interest, they
could remain there for a time and then go away from each
other. So, those individuals can be members of a group even
without having followed similar trajectories.

In that kind of problems, a group can turn out to be in-
teresting not only when its members are spatially close and
move similarly, but also when they are far apart and have dif-
ferent but inter-related movements, or also when they have
different movements but are involved in the same type of in-
teractions. Existing approaches are not prepared to handle
this concept, mainly due to the following reasons:

• Most of the existing techniques rely on a static group
concept where objects have to always meet the same
spatio-temporal properties: for instance, the members
of a group are required to be close each other in each
time-stamp.

• The trajectory corresponds to a geometric abstraction
of the movement and is defined as a series of punc-
tual time-stamped observations that cannot indicate
neither how the object moves over time nor whether
there exists any form of relationship with other trajec-
tories.

Related Work and Contributions. In this paper, we
introduce the concept of community based on the concepts
of interaction among the objects and change in the move-
ments of the objects. The interaction between two objects
oi and oj is defined on the basis of the movement that an ob-
ject oi performs with respect to another object oj , while the
change concerns the variations of spatio-temporal character-
istics that can be observed in the movement of each object.
Therefore, changes of an object’s motion may influence or
determine its interaction with other objects.

A community consists of a set of objects in common to
a set of groups arranged in sequence. In its turn, a group
contains n − 1 pairs formed with objects taken from a set of
n elements: a pair is formed with one object in common to
all pairs (reference object) and the other object taken from

the remaining n − 1 (participants). The pairs of a group
exhibit very similar spatio-temporal features. Differently
from flock, convoy and swarm, the timing of a community is
based on time-intervals created from the time-stamps of the
positions. We clarify the difference between a community
and other group types in the following example.

Another notion of community, proposed in [10], models
the similarities of moving objects in four information sources,
namely semantic properties of the locations, temporal dura-
tion of the trajectory, spatial proximity and movement ve-
locity. This notion anyway requires that the objects move
similarly in all time-stamps whereas the result cannot in-
clude communities with discontinuities over time.

Example 1. In Figure 1(a), six objects are tracked and
have the positions in six time-stamps included in the time-
intervals [t0, t1], [t1, t2], [t2, t3], [t3, t4], [t4, t5], [t5, t6]. Let
k=3 the minimum number of objects required for the fi-
nal groups. Clusters {C3, C6, C7, C8, C9} share the objects
{o1, o2, o3} which form a flock in [t1, t2], [t2, t3], [t3, t4], [t4, t5],
[t5, t6]. The group {o1, o2, o3, o4} corresponds to a convoy
if we consider the notion of density-connectedness on the
clusters {C4, C6, C7, C8, C9}. Finally, with the objects
in common to the clusters {C2, C5, C10} we have the swarm
{o4, o5, o6}. In Figure 1(b), we have two communities, namely
{o1, o2, o3} and {o4, o5, o6} respectively. The first one is
composed of the objects in common to the sequence of the
groups {C1, C3, C4, C5, C6}, where the group C1 is collo-
cated into the time-interval [t0, t2], C3 is collocated into the
time-interval [t1, t3], C4 is collocated into [t2, t4], C5 is asso-
ciated with [t4, t6]. The group C1 is composed of the pairs
(o2, o1) (where o2 is the reference, o1 is the participant) and
(o2, o3) (where o2 in the reference, o3 is the participant).
The other groups can be interpreted in the same manner.
The motions of the pairs (o2, o1)and (o2, o3) tells us that
they start far apart and tend to move near while observ-
ing a variation of the mutual distance (in [t0, t3]), then,
they move together without any variation of the distance
(in [t2, t5]), finally they move apart (in [t4, t6]). The commu-
nity {o4, o5, o6} is obtained from the non-consecutive groups
{C2, C7}: the first group is collocated into [t0, t2], the second
group in [t4, t6]. In this community, the pairs (o5, o4) and
(o5, o6) proceed by keeping the same distance in [t0, t2] while
they exhibit a reduction of the mutual distance in [t4, t6]. �

The previous example shows the difficulty of existing al-

302

gorithms to discover communities. Indeed, the algorithm
for finding flocks is inadequate since it works with clusters
in the strict form of a fixed disc. The method for detecting
convoys cannot be used since it operates on the density-
connectedness corresponding to the simultaneous applica-
tion of conditions on the size and closeness for each cluster,
which are criteria hard to be satisfied when considering dis-
tant objects. The difficulty of the algorithm for the discov-
ery of swarms [8] lies in the accommodation of the temporal
component and, specifically, in the fact that the members
of the swarms are required to stick together for a number of
possibly non-consecutive time-stamps. But this could mean
having insignificant swarms characterized by completely dis-
jointed time-stamps and fragmented movements. In sum-
mary, the contributions of this paper include:

• A new definition of group of moving objects which ex-
tends the classical notion of cluster based on the spatial
closeness and density-connectedness.

• The exploitation of two new sources of information cor-
responding to the interactions among the objects and
changes of their motions.

• The definition of spatio-temporal features able to model
the interactions and changes of the movements of pairs
of moving objects.

• The synthesis of a grouping technique which does not
rely on a distance/dissimilarity measure.

• A performance evaluation and experimental compari-
son with existing techniques.

Roadmap. The remainder of this work is organized as fol-
lows. The next section presents some fundamental concepts
related to our approach. Section 3 studies our proposal in
detail. Performance evaluation results are offered in Section
4 whereas Section 5 concludes our work and discuss briefly
future research directions.

2. FUNDAMENTAL CONCEPTS
In this section we present some fundamental concepts re-

lated to our proposal. Some frequently used symbols are
given in Table 1. Let O={o1, o2, . . . , on} be the set of all
moving objects and T = {τ1, τ2, . . . ,τm} be the set of all
time-stamps. The trajectory of an object o is a finite se-
quence of time-stamped locations denoted as t(o) : 〈(p1, τ1),
(p2, τ2), . . ., (pm, τm)〉 during the time-interval [τ1, τm], where

Table 1: List of symbols.
Symbol Explanation

O all moving objects
T all time-stamps

t(o) (t(ou)) trajectory of the object o (ou)
F set of descriptive features
Fl l-th features describing a pair of trajectories

F l
ou,ov

value of the l-th features for trajectories of ou, ov

[τ1, τm] time-interval containing time-stamps of T
G pair group

or reference object of a pair group
os participant object of a pair group
Gf feature group

εminl
(εmaxl

) min (max) value of feature Fl

εl fixed value of the categoric feature Fl

C a community

Figure 2: Feature generation from trajectories.

pi ∈ R2 is the geo-spatial position sampled at τi ∈ T . A tra-
jectory may have time-stamps not necessarily equally dis-
tanced, they can be different from those of another tra-
jectory as well as different trajectories may have different
lengths (number of geo-spatial positions).

In this work, we do not analyze the original trajectories
but we adopt a transformation technique which projects the
trajectory data into a descriptive space which includes a
finite set of features F={F1, . . . , Fl, . . . , Ff} which are the
real subject of our analysis. The features can take value in
categoric or numeric domains. In particular, for each pair
(ou, ov), the transformation technique returns a set of valued
features for the (sub)trajectories observed in two consecutive
time-intervals, which we denote as [τi, τj] ∪ [τj+1, τk] and
name as feature time-intervals.

A simple illustration is reported in Figure 2. Consider
the trajectories of three objects o1, o2, o3. Let F 1

ou,ov
,F 2

ou,ov

be two features which describe the reciprocal movement be-
tween the objects ou, ov and their average mutual distance
respectively. The domain of the feature F 1

ou,ov
has categoric

values {“const”,“far”,“close”} where “const” corresponds to
two objects that travel together by keeping constant their
distance, “away” corresponds to two objects that are moving
away, and “close” corresponds to two objects that are mov-
ing closer. The domain of the feature F 2

ou,ov
has numeric

values in the set of natural numbers N. The values of F 1

and F 2 are computed on the feature time-intervals [τ1, τ2] ∪
[τ2, τ3], [τ3, τ4] ∪ [τ4, τ5], [τ5, τ6] ∪ [τ6, τ7]. So, for instance,
the value of the feature F 1

o1,o2
in the feature time-intervals

[τ1, τ2] ∪ [τ2, τ3] is “const”, while the value the feature F 2
o1,o2

is 20. Figure 2 reports the remaining values of the features.

Definition 1 (Pair Group). Given a subset of O with
m objects, a pair group G consists of the (m−1) pairs of ob-
jects (or,os), where r ∈ {1, . . . , m}, s = 1, . . . , m, r 6= s. The
object or appears in all pairs and it is named as reference
object, while the objects os are named participant objects.

Definition 2 (Feature Group). Given a pair group
G, the set of features F={F1, . . . , Fl, . . . , Ff}, a feature group
Gf consists of the pairs of G which, in the feature time-
intervals [τi, τi+k] ⊆ T , [τi+k+1, τi+2k] ⊆ T , . . ., [τp, τp+k]
⊆ T , [τp+k+1, τp+2k] ⊆ T , satisfy the following conditions

303

• ∀ (or, os) ∈ G: εminl ≤ F l
ojr ,ojs

< εmaxl , iff Fl has
numeric values,

where εminl ∈ R, εmaxl ∈ R are minimum and maxi-
mum values respectively for the feature Fl.

• ∀ (or, os) ∈ G: F l
or,os

= εl, iff Fl has categoric values,

where εl is a fixed value in the domain of Fl.

The values of εminl , εmaxl , εl are specific for each feature
group. The feature time-intervals have identical width and
are arranged in chronological order.

Intuitively, a feature group is characterized by two compo-
nents, one of nature geo-spatial, the other one of nature tem-
poral. Definition 2 says that, in the time-intervals [τi, τi+k]
∪ [τi+k+1, τi+2k], . . ., [τp, τp+k] ∪ [τp+k+1, τp+2k], the pairs
of objects of G have the same value for each categorical fea-
ture and the same range for each numeric feature. For in-
stance in Figure 2, we have a feature group formed by the
pairs (o3, o2), (o3, o1) in the time-intervals [τ1, τ2] ∪ [τ2, τ3]
and [τ5, τ6] ∪ [τ6, τ7]. Indeed, considered ε1=“away” (εl for
F 1), εmin2=25, εmax2=50 (respectively, εminl and εmaxl for
F 2), the values of the feature F 1 are the same (“away”)
and the values of the feature F 2 have the same numeric
range. These conditions hold in the feature time-intervals
[τ1,τ2]∪[τ2,τ3] and [τ5,τ6] ∪ [τ6,τ7], but they do not hold in
the time-intervals [τ3,τ4] ∪ [τ4,τ5] because the value of the
feature F 1 is “close” which is different from “away”.

Definition 3 (Community). A set of feature groups
{Gf1 , Gf2 , . . ., Gfn} defines a community C iff:

• the feature groups Gf1 , Gf2 , . . ., Gfn consists of the
same pair group G=G1=G2 = . . .= Gn composed by
(m-1) pairs of objects with the same reference object
and the same set of m-1 participants.

• the feature time-intervals of two different feature groups
are disjointed ([τi, τi+k] ∪ [τi+k+1, τi+2k]

⋂
[τp, τp+k]

∪ [τp+k+1, τp+2k])= � and chronologically ordered (i+
2k < p).

The sequence of the feature time-intervals associated with
the feature groups is called time-line.

For instance, in Figure 2, we have a community formed
by the pairs (o3, o2) and (o3, o1) in the time-line [τ1, τ3],
[τ3, τ5], [τ5, τ7], where o3 is the reference object, o2 and o1

are participant objects. In particular, in the feature time-
intervals [τ1, τ2] ∪ [τ2, τ3] and [τ5, τ6] ∪ [τ6, τ7], the feature
F 1 has value “away”, while the feature F 2 has values in the
range [25,50) (ε1=“away”, εmin2=25, εmax2=50). In the fea-
ture time-interval [τ3, τ4] ∪ [τ4, τ5], the feature F 1 has value
“close”, while the feature F 2 has values in the range [15,25)
(ε1=“close”, εmin2=15, εmax2=25).

To capture possible discontinuities, we should handle the
case in which i + 2k < p − 1, namely when the feature
time-intervals are separated over time. At this aim, we in-
troduce an input parameter γ which defines the maximum
temporal gap that can be admitted between two feature
time-intervals.

Now, we can give a formal statement of the problem of
discovering communities from trajectories:

Given a set of moving objects O and the corresponding tra-
jectories, a set of time-stamps T , the features F and the
width of the associated time-intervals ∆, Discover the com-
munities as formalized in Definition 3: for each community
C, the temporal gap in the time-line does not exceed γ and
the number of involved objects is greater than or equal to
the minimum input threshold minO.

3. PROPOSED METHOD
The proposed solution comprises three steps: i) trans-

formation of the original trajectories in descriptive spatio-
temporal features, ii) arrangement of the feature vectors
produced in the previous step in a tree-like structure in order
to generate feature groups and iii) discovery of communities
from feature groups.

3.1 Transformation of Trajectory Data
Tracking devices often record the positions of moving ob-

jects with irregularity and discontinuity, mainly due to phys-
ical and instrumental factors which can affect the data qual-
ity. To remove possible inconsistencies we have to handle
this kind of error sources. Moreover, the analysis of interac-
tions among objects, we intend to conduct, suggests that we
should apply a pre-processing step able to return positions
(of the objects) equally distanced over time, so that the tra-
jectories can be handled with regular timing. We adopt a
data transformation technique which first performs a tempo-
ral segmentation operation and then projects the segmented
trajectories into the descriptive space. Preliminarily, an out-
lier removal operation is applied on the trajectories.

The temporal segmentation performs a discretization step
on the set T and generates time-intervals [τi, τi+k], [τi+k+1,
τi+2k], . . ., [τp, τp+k], [τp+k+1, τp+2k] with width equal to ∆.
This allows to have a sort of re-sampling of the trajectories at
regular time-stamps. In particular, for each object a single
geo-spatial location is associated with the set of positions
observed in each time-interval (segment). This location is
determined by an aggregation operation applied to the orig-
inal positions in a time-interval. As aggregation operator we
prefer to use the geometric mean due to its simplicity and
because other pre-processing operations (such as, smoothing
and interpolation) could introduce data loss and potential
creation of artifact in the trajectory data.

The descriptive space includes spatio-temporal features
defined to model the interactions and changes of the move-
ments of pairs of objects. The use of new descriptors to rep-
resent the original trajectories is not novel. In the literature
we can find several types of features (also called movement
parameters) which have been defined basically for eliciting
information which the trajectories are not able to do directly
[3]. Typically, features are produced by simple feature ex-
traction algorithms applied to original trajectories and their
purpose is to model physical and spatial characteristics of
the movements, such as speed, acceleration, duration, direc-
tion, etc. In this work, the features are extracted from the
aggregate values computed in two consecutive time-intervals
(segments). More precisely, the value of a feature is com-
puted for each pair of objects and it is determined from
the two aggregate values computed in the respective time-
intervals for each object of the pair. We investigate six fea-
tures defined as follows (please refer to Figure 3):

Categoric Reciprocal Movement (CRM) is the feature which
represents the movement of an object with respect to the

304

Figure 3: Trajectory transformation.

movement of another one. It takes five possible categoric
values in function of the two aggregate locations. The set of
possible values was defined manually and comprises {“one away”,
“both away”,“const”,“one close”,“both close”}. More specif-
ically, ”const”corresponds to two objects that travel together
by keeping their distance constant. We have “one away”
when one of the two objects is moving away from the other
one while the latter does not change. The value “one close”
occurs when one of the two objects is moving close while the
trajectory of the other one remain unchanged. The value
“both away” corresponds to two objects that are moving
away from each other. On the other hand, when the tra-
jectories tend to move close we have “both close”.

Numeric Reciprocal Movement (NRM) is the feature which,
like CRM, represents the movement of an object relatively to
another one but with numeric values. The value of NRM is
derived from the distances computed, in each time-interval,
between the two aggregate locations of the pair of objects. It
is equal to the difference between these two distances. Thus,
when two objects are moving close to each other, NRM has
a negative value, while, otherwise the value is positive.

Displacement (DIS) denotes the displacement done by the
pair of objects over the two time-intervals. The value of DIS
is derived from the middle locations between the two aggre-
gate locations (in the two time-intervals) and it is equal to
the distance between the two middle locations.

Cardinal Direction (CD). The features listed above pro-
vide a spatial description of the movement without specify-
ing any geographic connotation. We introduce the feature
CD in order to elicit the information about the spatial direc-
tion and capture that information as the classical cardinal
direction of the movement of the pair of objects. The value
of CD is derived from the middle locations between the two
aggregate locations (in the two time-intervals) and it takes
the direction which goes from the middle location of the
first time-interval towards the middle locations of the sec-
ond time-interval.

Position (POS). The purpose of this feature is to pro-
vide information on the localization of the movement. In-
deed, the features listed above cannot distinguish whether
two identical movements are localized in the neighbourhood
or in completely distant locations. The value of POS is de-
rived from the middle locations between the two aggregate
locations (in the two time-intervals) and it corresponds to

the middle point of the two middle locations.

Finally, for each pair of objects ou and ov, the transforma-
tion technique returns a vector of valued features 〈 CRM,
NRM, DIS, CD, POS 〉 computed on the two consecutive
time-intervals [τi, τi+k], [τi+k+1, τi+2k]. It is worthwhile that
the extraction of features for each pair of objects on con-
secutive time-intervals has a two-fold result: i) modelling
the interaction of the smallest admissible group of objects
(namely, two objects), and ii) capturing relevant changes
of their movements which turn out to be evident only on
time-intervals rather than instantaneous time-stamps.

3.2 The Feature Tree
Once the feature vectors have been generated, they pop-

ulate a B-tree [2] which is used to discover first the feature
groups and then the communities. The tree structure does
not change when the vectors are inserted and it is defined on
the basis of the set of features introduced in Section 3.1. The
arrangement of tree levels is such to represent the features
in the order {CRM, NRM, CD,DIS, POS-x, POS-y} (Figure
4(a)). The feature ordering is decided by domain experts on
the basis of their criteria about the discriminative power of
the features. Thus, the features CRM and NRM are ranked
first because they depict, better than the others, the inter-
action in a pair of objects. Then, we place features CD and
DIS because they are able to denote characteristics on the
changes of the movement, and, finally the features POS-x
and POS-y which provide a spatial indication not directly
related to the interactions and changes in moving objects.

Nodes of a specific level refer to one feature and access to
nodes (children) of the lower level which, in their turn, refer
to another feature. More precisely, a node has as many child
nodes as the number of the possible values of the feature as-
sociated with its level, therefore, the number of nodes of a
specific level is equal to the number of the possible values
of the feature associated with the parent level. In the case
of categorical features, the child nodes are denoted with dis-
tinct values εl defined in Section 3.1. For example, at the
level associated with feature CD, the nodes have eight child
nodes, one for each value of the set {“north”, “north-east”,
“east”, “south-east”, “south”, “west”, “south-west”, “north-
west”}. In the case of numeric features, the child nodes
are denoted with distinct ranges [εminl , εmaxl) produced by
a discretization technique. In this work, we adopt equi-
frequency discretization since it guarantees the balancing of
the tree due to the uniform distribution of vectors to ranges.

This tree structure allows us to collocate in the same
node the vectors whose values of the feature are identical
(εl) or are included in the same range ([εminl , εmaxl)). The
root node contains vectors which have only one feature with
identical value (categoric), while the leaf nodes contain vec-
tors which have all categoric features with identical values
and all numeric features with values included in the same
ranges. Therefore, the vectors collocated in the same leaf
node will be those that have traversed the same path in the
tree and that we consider similar since share the same cate-
goric values and same numeric ranges. For instance, in the
leftmost leaf node in Figure 4(b), the pairs (o2,o1), (o2,o3)
share the same categoric values, namely“one away”for CRM
and “north” for CD, and the same numeric ranges, namely
[1,3) for NRM, [20,40) for DIS, [100,600) for POS-x, and
[50,150) for POS-y.

The insertion process starts at the root and descends the
tree. For each level, it chooses the node whose value of the

305

(a) (b)

Figure 4: Feature tree example. The red dotted line illustrates a path.

associated feature is identical to (categorical) or includes
(numeric) the value of the same feature of the current vector.
From the chosen node we access to its child nodes where we
replicate the insertion considering the appropriate feature
until to reach the leaf nodes.

3.3 Feature Groups and Communities
We exploit the structure of the feature tree to determine

the geo-spatial and temporal components of feature groups
which are, in their turn, necessary for the communities.
From each leaf node we can extract at least one feature
group. The pair group G of a feature group can be searched
among the pairs of the inserted vectors, while the geo-spatial
component is determined directly from the tree path which
characterizes each leaf node. The temporal component is
computed by the method given in the sequel.

The method analyses the content of the leaf nodes sepa-
rately and, for each of these, it searches the feature time-
intervals which are in common. In particular, the method
identifies all possible pair groups (Definition 1) present in
each leaf node and, for each pair group, it processes all
sequences of feature time-intervals in order to find the se-
quences in common. The analysis is thus focused on each
pair group and is conducted in two phases: first, generation
of candidate sequences, then, selection of the more interest-
ing candidates with respect to preference criteria.

In the first phase, we adopt the efficient algorithm pro-
posed in [6] in order to find sequences (candidates) in com-
mon between a reference sequence of feature time-intervals
and the set of all sequences of the current pair group. The
algorithm solves the problem by searching the intersections
between the feature time-intervals of the reference sequence
and the feature time-intervals of the remaining sequences. In
particular, for each time-interval of the reference sequence,
the algorithm uses two binary search operations, one into
the sorted list of the time-stamps which terminate the time-
intervals and the other into the sorted list of the time-stamps
which open the time-intervals. Each search excludes the
time-intervals that cannot intersect the query interval. A
detailed description can be found in [6]. Eventually, the in-
tersecting time-intervals are sorted and combined to form
the candidate sequences.

In the second phase, two selection operations are per-

formed, one subsequent to the other one. The first one filters
out the candidates which have time-intervals shorter than
the width ∆, while the second one selects the candidates
which meet the preference criteria. We have two preference
criteria, one alternative to the other one. The first criteria
(maxInterval, MI) favor feature groups with time-intervals
as long as possible, whereas the second criteria (maxObjects,
MO) favor time-intervals associated with large set of pairs.
The preference criterion is strictly connected to the choice
of the reference sequence seen in the first phase. When we
choose maxInterval the reference sequence is chosen as the
longest sequence in the set of all sequences of the pair group,
while when we choose maxObjects the reference sequence is
chosen as the shortest sequence which has the maximum
number of pairs, since feature groups with higher number of
pairs are more probable in shorter sequences.

The result of the two phases consists in only one sequence
which contains the feature time-intervals shared in the cur-
rent pair group. It provides a temporal characterization
which completes the description of the feature group.

According to Definition 2 and the structure of the feature
tree, a reference object is associated with only one feature
group in each leaf node. Thus, a reference object is associ-
ated with a set of feature groups {Gf1 , Gf2 , . . ., Gfn} com-
puted from all leaf nodes. These feature groups anyway have
different sets of participant objects. The method for discov-
ering communities follows this same idea and builds groups
of moving objects relatively to reference objects. It works
with the feature groups of the same reference object and op-
erates on the selected sequences of the feature time-intervals
by generating a sequence of ordered feature time-intervals
(time-line) with the same set of participant objects.

Two alternatives are adopted depending on the chosen
preference criterion (maxObjects or maxInterval). They op-
erate in the same way (Algorithm 1) but they differ in that
the first one aims at generating time-lines with large num-
ber of participant objects, whereas the second one aims at
generating time-lines with the long feature time-intervals.
Both variants start by sorting (in chronological order) the
sequence of the time-intervals of the feature groups associ-
ated with the current reference object or. This may return
in an ordering where the time-intervals of the same feature
group are separated and time-intervals of different feature

306

Algorithm 1 COM /* community discovery */

Input: {Gf1
, Gf2

, . . ., Gfn}, γ, or , minO
Output: Tlines

1: TL ← �; Tlines ← �; D ← �;
2: S ← sort by time({Gf1

, Gf2
, . . ., Gfn});

3: Fprev ← nextTimeInterval(S, τ1);
4: insert(TL, Fprev); remove(S,Fprev);
5: while S 6= �
6: Fnext ← nextTimeInterval(S, getEndTimeStamp(Fprev));
7: if gap(Fprev , Fnext) ≤ γ
8: if testParticipants(getParticipants(Fprev),

getParticipants(Fnext))
8: update(TL, Fnext); remove(S, Fnext)
9: Fprev ← Fnext;
10: else
11: insert(D, Fnext); remove(S, Fnext);
12: else
13: S ← S ∪ D; TL ← �;
14: D ← �; Tlines ← Tlines ∪ {TL};
14: Fprev ← nextTimeInterval(S,τ1);
15: insert(TL, Fprev); remove(S, Fprev);
16: prune by minO(Tlines);

groups are adjacent.
Algorithm 1 generates a time-line incrementally by test-

ing joining the next time-interval (getNextTimeInterval())
to the current time-line (TL). In particular, the time-interval
Fprev is considered for the join when i) it follows temporally
the last time-interval added to the time-line TL and there
is no time-interval with the same participants which pre-
cedes it, and ii) it is not temporally distant more than γ.
The application of the test distinguishes two techniques: for
maxObjects the test is implemented as getParticipants(Fprev)
= getParticipants(Fnext), while for maxInterval the test is
getParticipants(TL) ∩ getParticipants (Fnext) 6= ∅, where
getParticipants(TL) returns the participants which are in
common to the time-intervals added to TL. The output
(Tlines) is a set of candidate time-lines which are further
processed: the time-lines with number of participants less
than minO are pruned, then, from those remaining, we se-
lect only the time-line which better satisfies the preference
criterion (either highest number of participants or longest
sequence of time-intervals).

Example 2. We extract feature groups and communi-
ties based on Figure 4(b) for ∆=1 hour. On the leftmost
leaf node, we have a feature group Gf1 whose pair group is
composed by the pairs (o2, o1) and (o2, o3), the geo-spatial
component is equal to “one away” (CRM), “north” (CD),
[1,3) (NRM), [20,40) (DIS), [100,600) (POS-x), and [50,150)
(POS-y), while the temporal component corresponds to the
sequence of intersecting feature time-intervals 〈 [10:00,12:00],
[15:00,16:00] 〉. On the rightmost leaf node, we see a feature
group Gf2 whose group consists of the pairs (o2, o1), (o2,
o3), and (o2, o4) the geo-spatial component is equal to “one
away” (CRM), “north” (CD), [1,3) (NRM), [20,40) (DIS),
[700,900) (POS-x), and [200,300) (POS-y), while the tem-
poral component corresponds to the sequence of intersecting
feature time-intervals 〈 [12:00,14:00], [18:00,19:00] 〉. Let o2

be the reference object and γ=4 hours. The time-intervals
are sorted as follows 〈 [10:00, 12:00] (Gf1), [12:00, 14:00]
(Gf2), [15:00, 16:00] (Gf1), [18:00, 19:00] (Gf2) 〉. By choos-
ing the criterion maxObjects, we obtain the community com-
posed of the pairs (o2,o1),(o2,o3), and (o2,o4) which exhibit
on the time-line 〈 [12:00, 14:00] [18:00, 19:00] 〉 the move-
ment so described: “one away” (CRM), “north” (CD), [1, 3)
(NRM), [20, 40) (DIS), [700, 900) (POS-x), and [200, 300)
(POS-y). Instead, by choosing the criterion maxInterval,

we obtain the community composed by the the pairs (o2,o1)
and (o2,o3) which exhibit the movement “one away” (CRM),
“north”(CD), [1, 3) (NRM), [20, 40) (DIS), [100, 600) (POS-
x), [50, 150) (POS-y) in [10:00, 12:00], [15:00, 16:00], and the
movement “one away” (CRM), “north” (CD), [1,3) (NRM),
[20, 40) (DIS), [700, 900) (POS-x), [200, 300) (POS-y) in
[12:00, 14:00], [18:00, 19:00]. �

4. PERFORMANCE EVALUATION
Experiments were conducted in order to test the efficiency

of COM and the influence of the parameters on the discov-
ered communities with both preference criteria (COM-MO
and COM-MI). Also, we performed comparative experi-
ments with two competitors. The first one (TC), is used
as baseline and it aims at discovering the common sub-
trajectories with a density-based line-segment clustering al-
gorithm [7]. It takes as user-defined parameters the min-
imum number of line-segments and radius of the clusters.
The second one (SW), discovers groups of objects moving
for certain snapshots that could be not consecutive [8]. The
algorithm SW works on pre-existing clusters and adopts a
candidate generation strategy. It takes as user-defined pa-
rameters the minimum number of the objects and minimum
duration the swarms (which correspond to minO and ∆ of
COM). We note that SW cannot be directly applied, since
it does not handle either trajectories of different length or
missing values. To perform a fair comparison, we tested it
on the pre-processed trajectories returned by the temporal
segmentation (Section 3.1).

We evaluated the performance of the algorithms using two
real-world datasets: i) Microsoft Geolife1 comprising tra-
jectories of 182 users outdoor movements in a period of over
three years sampled every 1-5 seconds or every 5-10 meters.
This dataset contains almost 24 millions of observations in
a set of 18 millions time-stamps. ii) Starkey2 which has
been generated by the Starkey project and contains radio-
telemetry locations of the movements of 128 elks. The ob-
servation period is May 1993-August 1996 and comprises
168,000 distinct recordings in 166,000 time-stamps. Each
object has a portion of 0.09 observations per time-stamp.
In both datasets, trajectories have different length and can
contain positions recorded at different time-stamps.

Figures 5(a) and 5(b) illustrate the results of the efficiency
when tuning minO. The results of SW-AVG include also
the running times averaged on ∆={1/2, 1, 1.5, 2} hours,
while those of TC are averaged on several settings of the
input parameters. We observe that the running times of
COM are significantly lower than those of SW and TC (y-
axis is logarithmic). In addition, the performance of COM
with respect to SW can be explained with the fact that
SW spends time in a preliminary density-based clustering
and exploration of the search space of the candidate swarms.
TC requires more time because the clustering decision re-
quires a distance measure on sub-trajectories whose execu-
tion is computationally intensive. COM exhibits the best
runtimes also when tuning ∆ (Figures 5(c) and (d)) but
with a different behaviour due to the different density of the
trajectories, as said before: in Geolife we have essentially a
slight decreasing tendency, while it is increasing in Starkey.
The decrease exhibited by SW, when increasing ∆, is due
to the reduced number of clusters that are likely to be ex-
tracted from wider time-intervals.

1
http://research.microsoft.com/apps/catalog/

2
http://www.fs.fed.us/pnw/starkey/data/tables

307

 100

 1000

 10000

2 3 4 5 6

R
u

n
ti

m
e

Min number of objects

COM-MO
COM-MI
SW-AVG

SW
TC

(a) Starkey

 100

 1000

 10000

 100000

2 3 4 5 6

R
u

n
ti

m
e

Min number of objects

COM-MO
COM-MI
SW-AVG

SW
TC

(b) Geolife

 100

 1000

 10000

0.5 1 1.5 2

R
u

n
ti

m
e

Delta

COM-MO

COM-MI

SW-AVG

SW

TC

(c) Starkey

 100

 1000

 10000

 100000

0.5 1 1.5 2

R
u

n
ti

m
e

Delta

COM-MO

COM-MI

SW-AVG

SW

TC

(d) Geolife

Figure 5: Runtime (in seconds) vs. minO and ∆ (γ=1 hour).

 1

 10

 100

 1000

 10000

 100000

2 3 4 5 6

N
u

m
b

er
 o

f
re

su
lt

s

Min number of objects

COM-MO
COM-MI
SW-AVG

SW
TC

(a) Starkey

 0.1

 1

 10

 100

 1000

 10000

2 3 4 5 6

N
u

m
b

er
 o

f
re

su
lt

s

Min number of objects

COM-MO
COM-MI
SW-AVG

SW
TC

(b) Geolife

 1

 10

 100

 1000

 10000

0.5 1 1.5 2

N
u

m
b

e
r

o
f

re
s
u

lt
s

Delta

COM-MO

COM-MI

SW-AVG

SW

TC

(c) Starkey

 0.1

 1

 10

 100

 1000

0.5 1 1.5 2

N
u

m
b

e
r

o
f

re
s
u

lt
s

Delta

COM-MO

COM-MI

SW-AVG

SW

TC

(d) Geolife

Figure 6: Number of results vs. minO and ∆ (γ=1 hour).

The different density and distribution of the two datasets
is the key to analyze the number of the groups (communities,
swarms and clusters) when varying ∆ (Figure 6, minO=4).
The results of SW-AVG are averaged on minO={2,3,4,5,6}.
COM and SW have similar behaviour, namely slightly de-
creasing in Geolife and increasing in Starkey. This comfort
us about the response of our approach with respect to trajec-
tories which have very different characteristics. A deeper in-
spection reveals the different order of magnitude between the
communities and swarms: this is quite expected since SW
works on the spatial closeness of the objects, while COM
can generate groups of objects even when they are not close.
Instead, TC discovers an average number of clusters which
is less than one. This difficulty could be due to the inherent
complexity that an operation of grouping of line-segments
can raise with respect to grouping simple geo-spatial loca-
tions, as in the case of SW.

5. CONCLUSIONS
We investigated the problem of mining groups of moving

objects from trajectory data. Different from the existing ap-
proaches relying on the spatial closeness, our work consid-
ers the interactions among the objects and changes of their
motions which opens to the possibility of following the com-
plete dynamics of a group. The proposed solution integrates
an efficient grouping technique which avoids to re-scan all
data. Experiments remark the efficiency with respect to
other algorithms. We plan to extend the work in several di-
rections including: i) the integration of pre-processing tech-
niques (e.g., locality sensitive hashing) to guide the discovery
process on sets of moving objects of particular interest, ii)
the adaptation of the approach to a distributed architecture
(e.g., MapReduce framework) to analyze massive trajectory
data, and iii) the construction of the feature tree without
considering any pre-defined order of the features.

Acknowledgments: In partial fulfilment of PRIN 2009 Project

“Learning Techniques in Relational Domains and Their Applications”

funded by the Italian Ministry of University and Research.

6. REFERENCES
[1] M. Benkert, J. Gudmundsson, F. Hübner, and

T. Wolle. Reporting flock patterns. Comput. Geom.,
41(3):111–125, 2008.

[2] D. Comer. The ubiquitous b-tree. ACM Computing
Surveys, 11:121–137, 1979.

[3] S. Dodge, P. Laube, and R. Weibel. Movement
similarity assessment using symbolic representation of
trajectories. International Journal of Geographical
Information Science, 26(9):1563–1588, 2012.

[4] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T.
Shen. Discovery of convoys in trajectory databases.
PVLDB, 1(1):1068–1080, 2008.

[5] P. Kalnis, N. Mamoulis, and S. Bakiras. On
discovering moving clusters in spatio-temporal data.
In SSTD, pages 364–381, 2005.

[6] R. M. Layer, K. Skadron, G. Robins, I. M. Hall, and
A. R. Quinlan. Binary interval search: a scalable
algorithm for counting interval intersections.
Bioinformatics, 29(1):1–7, 2013.

[7] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory
clustering: a partition-and-group framework. In ACM
SIGMOD Conference, pages 593–604, 2007.

[8] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining
relaxed temporal moving object clusters. PVLDB,
3(1):723–734, 2010.

[9] Z. Li, J. Han, M. Ji, L. A. Tang, Y. Yu, B. Ding, J.-G.
Lee, and R. Kays. Movemine: Mining moving object
data for discovery of animal movement patterns. ACM
TIST, 2(4):37, 2011.

[10] S. Liu, S. Wang, K. Jayarajah, A. Misra, and
R. Krishnan. Todmis: mining communities from
trajectories. In CIKM, pages 2109–2118, 2013.

[11] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,
and Y. Huang. T-drive: driving directions based on
taxi trajectories. In GIS, pages 99–108, 2010.

[12] Y. Zheng, X. Xie, and W.-Y. Ma. Geolife: A
collaborative social networking service among user,
location and trajectory. Data Eng. Bull., 33(2), 2010.

308

Mobile Sensing Data for Urban Mobility Analysis:
A Case Study in Preprocessing

Indrė Žliobaitė, Jaakko Hollmén
Helsinki Institute for Information Technology HIIT

Aalto University School of Science, Department of Information and
Computer Science, PO Box 15400, FI-00076 Aalto, Espoo, Finland

indre.zliobaite@aalto.fi, jaakko.hollmen@aalto.fi

ABSTRACT
Pervasiveness of mobile phones and the fact that the phones
have sensors make them ideal as personal sensors. Smart
phones are equipped with a wide range of motion, location
and environment sensors, that allow us to analyze, model
and predict mobility in urban areas. Raw sensory data is
being collected as time-stamped sequences of records, and
this data needs to be preprocessed and aggregated before
any predictive modeling can be done. This paper presents a
case study in preprocessing such data, collected by one per-
son over six months period. Our goal with this exploratory
pilot study is to discuss data aggregation challenges from
machine learning point of view, and identify relevant direc-
tions for future research in preprocessing mobile sensing data
for human mobility analysis.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; I.5.2 [Pat-
tern Recognition]: Feature evaluation and selection

Keywords
mobile sensing, data preprocessing, feature extraction, ac-
celerometer, smart cities

1. INTRODUCTION
The availability and penetration of smart mobile devices

is increasing; smartphone penetration in Europe is already
more than 49% [2]. Mobile sensing systems are finding their
way in many application areas, such as monitoring human
behavior, social interactions, commerce, health monitoring,
traffic monitoring, and environmental monitoring [9].

Pervasiveness of mobile phones and the fact that they
are equipped with many sensor modalities makes them ideal
sensing devices. Since the mobile phones are personal de-
vices, we can use the idea of mobile sensing to probe the
owner of the phone and the environment, in which the user
is moving. Our general interest is to use mobile phones to

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

learn about the mobility patterns of people and to reason
and predict about their mobility patterns in urban traffic
environment.

The idea of using mobile phones as sensors is not new: mo-
bile phones have been used for context recognition (e.g. [8])
and for measuring social interactions (e.g. [4]) in complex
social systems already about a decade ago.

Nowadays, smart phones are equipped with a wide range
of sensors, including motion, location and environment sen-
sors, that allow collecting rich observational data about hu-
man mobility in urban areas. Various predictive modeling
tasks can be formulated based on such data. For example,
one can be interested in recognizing the current activity of a
person [11], predict next location [6], or predicting a trajec-
tory of movement [13]. In this study, we explore challenges
of preprocessing such sensory data for machine learning pur-
poses for analyzing, modeling and predicting human mobil-
ity in urban areas. We present an experimental case study,
report lessons learned and discuss challenges for future re-
search.

The task of data preprocessing in mobile sensing is not
trivial, and there are various challenges associated with this
task. Data from sensors is collected as a sequence of time
stamped observation records. Data records are not equally
time spaced. Moreover, the timestamps of records from dif-
ferent sensors are not matching. In addition, observation
records can be of different types: recording discrete events
(e.g. battery charger plugged in), continuos processes (e.g.
acceleration), or static measurements (e.g. current temper-
ature).

The standard machine learning approaches for predictive
modeling require data to be represented as instances. In-
stance (or example, case, or record) is defined as a single
object of the world from which a model will be learned, or
on which a model will be used (e.g., for prediction) [10].
However, data recorded by mobile sensors does not come
as instances. Data comes as time stamped records, where
time stamps are different for each sensor and are not equally
spaced in time. The main data preprocessing question is,
how to aggregate such data and convert it into instances for
machine learning.

The problem of sensory data preprocessing is also not new,
typically in the literature an arbitrary data aggregation ap-
proach is chosen and briefly mentioned (or not reported at
all). However, there is a lack of dedicated studies focusing
on the problem of preprocessing itself. Furthermore, the
existing literature on preprocessing of mobile sensing data
mainly deals with feature extraction from one sensor (e.g.

309

Table 1: Data collection rates (in sec.)
Until June 14 After June 14

Source Per. Dur. Per. Dur.
AccelerometerSensorProbe - - 30 30
ActivityProb - - 30 30
AndroidInfoProbe 86 400 - 86 400 -
BatteryProbe 1 800 - 1 800 -
BluetoothProbe - - 300 -
CellProbe 600 - 300 30
GravitySensorProbe - 30 30 30
GyroscopeSensorProbe 120 - 30 -
HardwareInfoProbe 86 400 - 86 400 -
LightSensorProbe 1 800 30 120 30
LocationProbe 1 800 30 120 30
MagneticFieldSensorProbe 1 800 30 120 30
OrientationSensorProbe 120 30 30 30
RotationVectorSensorProbe - - 30 30
RunningApplicationsProbe 60 - - -
TemperatureSensorProbe 1 800 - 30 -
WifiProbe 600 - 300 -
DataUploadPeriod 3 600 - 3 600 -
Data annotation manual manual

accelerometer or GPS signal) [5, 14], which is only one side
of the problem. We are not aware of research works deal-
ing with the problem of synchronizing data from multiple
sensors.

This pilot study reports an exploratory case study in ag-
gregating mobile sensing data and can be seen as the first
step towards systematic treatment of this problem. We in-
vestigate how to construct instances out of sensory data for
analyzing human mobility in three different scenarios: ag-
gregating data with manual event annotations, converting
static records to estimates of dynamic characteristics, and
aggregating data from multiple sensors for predictive model-
ing purposes. The main contribution of this study is identi-
fication (via case study), and discussion of data aggregation
challenges, as well as highlighting important questions for
future research. To demonstrate the nature of mobile sens-
ing data, we have released a data set called Sensing Venice,
which is available as an open data set at the authors’ web-
sites.

The paper is organized as follows. Section 2 presents a
case study consisting of three experiments in analyzing mo-
bility data. Section 3 summarizes the main challenges and
lessons learned from the case study with respect to data
preparations, and presents a taxonomy of settings and guide-
lines for data aggregation. Section 4 discusses open research
directions and concludes the study.

2. EXPERIMENTAL CASE STUDY
We start the case study with a description of the settings

and data, and then report methodologies and results from
the three experiments. The experiments were selected to
capture different nature of data aggregation challenges in
processing mobile sensing records. The focus of this study
is on data preparation techniques, therefore, we do not go
further into domain driven analysis of the outcomes of the
case studies and their implications from traffic management
point of view. Domain-dependent treatise is left for future
work.

2.1 Data collection and representation
Dataset has been collected using contextLogger3 [12], which

Dataset 1

timestamps

Dataset 2

min1 max1min1

min2 max2

keepdiscard discard

Figure 1: Alignment of the time ranges.

is an open source software tool for smartphone data collec-
tion and annotation based on Funf open-sensing framework
[3]. Data was collected during the period from 2013 Febru-
ary 7 to 2014 Januray 27 using Sony Ericsson Xperia Ac-
tive phone, which is using Android OS, v2.3 (Gingerbread).
Summarizing our data collection upto January 2014, we have
over 300 million timestamped records, resulting in approxi-
mately 13 Gb of data. The capacity of the battery is 1 200
mAh.

On June 14 the settings for data collection rates were
changed. Table 1 provides details on sampling period and
duration. Period indicates how often a given sensor is ac-
tivated, and duration indicates for how long the sensor is
activated. For example, if the period is 120 and the dura-
tion is 30 it means that the accelerometer is activated every
120 sec, and is collecting data for 30 sec.

We have released a mobile sensing dataset — coined Sens-
ing Venice — as open data collection, which is available at
http://users.ics.aalto.fi/jhollmen/Data/. This par-
ticular subset of data has been recorded in July 2013 in
Venice, Italy. We hope that the mobile sensing dataset
demonstrates the nature of the original raw data, and en-
courages other researchers to develop solutions to the chal-
lenges introduced in the current paper.

The experiments reported in this paper are based on the
full six months dataset.

2.2 Experiment 1: processing event annota-
tions

The first experiment investigates processing of event an-
notations. The start and the end time of an event is input
by a user. These event annotations need to be cleaned, pre-
processed and aligned with the recorded sensor data.

We illustrate these data preprocessing challenges by an
experiment in modeling accelerometer data collection rate
for different user activities. Accelerometer data is available
only from June 14, hence, we use only that period of data
in this experiment.

2.2.1 Methodology
We have two sets of recordings: event annotations and ac-

celerometer records. Both are timestamped, but the times-
tamps are not aligned in any way. First we find the minimum
(earliest) and the maximum (latest) time stamps in both
sets, and discard the records from non-overlapping parts, as
illustrated in Figure 1.

The main challenge in data preparation in this experiment
is to extract activity labels from the event annotations. An-
notations provide the start and the end time stamps of ac-
tivities. Starts and ends are not necessarily paired, i.e., it
may happen that there is a start, but no end, or there are
three starts in a row and then one end of the same activity.

310

Figure 2: Accelerometer records over time.

We process annotations in a sequence. If there is a start,
we consider an activity happening (no matter how many
other starts of the same activity follow) until either of the
following three triggers appear: annotation ”stop”, annota-
tion ”invalidate”, or more than 6 hours have passed since
the start. The latter rule is arbitrary chosen, assuming that
mobility activities are typically short time.

For every second in time we create a label vector, where
currently ongoing activities are encoded as 1, and not on-
going activities are encoded as 0. We get a label matrix A
of size T × k, where T is the number of seconds from the
beginning of data recording to the end, and k is the number
of distinct activities recorded. Obviously, longer recording
periods produce very large data files, therefore, one may
consider choosing a larger time step for aggregation (e.g.
creating a vector for every 10 sec. instead).

For modeling data collection rates, we need to process
automatically collected accelerometer data and align it with
the extracted activity labels. The time step, over which
data is aggregated, needs to match the step used for label
extraction earlier. We count the number of accelerometer
records per second for every second that accelerometer was
on. We get a vector X of size T × 1, where each entry is a
number of records per second. Figure 2 shows the amount
of data recorded over time.

Given the extracted label matrix A and the record vector
X, we can obtain estimates for average records per second
for each activity. There is an important modeling decision
to be made. If two or more activities take place at the same
time, how does it affect the number of records? Suppose
activity a1 generates n1 records per second, and activity a2
generates n2 records. We could assume that if a1 and a2
take place at the same time, n1 + n2 records are generated.
Alternatively, we can assume that if a1 and a2 take place at
the same time, max(n1, n2) records are generated. In our
experimental study we take the latter approach.

Following the first assumption, data collection rate can
be modeled as a linear regression, where the inputs are bi-
nary indicators of activities, and the output is the number
of records generated. If the second assumption is adopted,

Figure 3: Average number of accelerometer records
per second for each activity.

each activity is modeled independently, as follows:

r̄i =

∑T
j=1 ajixj∑T
j=1 aji

, (1)

where i denotes the ith activity, aji is the jth entry of activity
i in matrix A, xj is the jth entry of vector X.

Note, that this approach will automatically exclude the
periods when the phone was off and no data was collected,
since in those cases xj = 0.

With this experimental setup we anticipate that different
activities generate different number of accelerometer records.
Raw sensor data in Android is acquired by monitoring sen-
sor events. A sensor event occurs every time a sensor detects
a change in the parameters it is measuring [1]. We expect
different activities to have different acceleration patters, and
in turn to result in different data collection rates.

2.2.2 Results and observations
Figure 3 shows the resulting estimates of data collection

rates for each activity. Data aggregated in such a way can
be used, for instance, as a feature for activity recognition.
While this feature stand alone would not be enough to sep-
arate all the activities, certain activities could be well dis-
tinguished, for instance, walking.

We see that walking produces the most records per time
period, while at home or in the office activities produce the
least. These results intuitively make sense. At home or office
the phone would typically stay still on the table, hence, there
is not much motion involved.

Moreover, we can see that conceptually similar activities
appear close together, presenting similar amount of records.
For example, ”elevator” is very close to ”escalator” and ”fu-
nicular”, where we would expect a smooth not too fast move-
ment following a straight path. On the other spectrum of
the scale ”train” and ”tram” appear nearby, both are means
of transportation over rail. From this pilot experiment we
can conclude that this preprocessing approach works and
proceed to the next experiment.

311

2.3 Experiment 2: estimating the rate of change
from static measurements

Sensors record static measurements; however, sometimes
our interest may be to estimate dynamic characteristics. Ex-
amples include estimating speed of a moving object from
GPS coordinates, estimating energy consumption from bat-
tery level indications, estimating flow rates from observed
level of liquid.

The task in this experiment is to estimate how much en-
ergy is being consumed during data collection, given un-
equally time spaced observations of the battery level. The
main challenges are: deriving conversion equations, filtering
out uninformative observations, identifying and handling the
periods with missing information (when the data collection
application is off).

2.3.1 Methodology
For energy rate estimation we use level, voltage and status

information from the BatteryProbe. Level indicates the per-
centage of battery charge remaining. Voltage indicates cur-
rent voltage. Status indicates whether the phone is charging,
discharging or the battery is full. All the records have the
same time stamps.

Energy consumption in watt-hours (Wh) is computed as

E(Wh) = Q(mAh) × V(V)/1000, (2)

where Q is the electric charge in milliampere-hours (mAh),
V is voltage in volts (V).

Given data recorded by ContextLogger2, the electric charge
during the ith time period,which starts at time ti and ends
at time ti+1 can be estimated as

Qi = Qbattery × (Li − Li+1), (3)

where Li and Li+1 are battery levels (in percentage) at the
start and the end of the period.

However, there are two challenges. Firstly, data records
are not equally spaced in time. As a result, time period i is
not necessarily equal to i + 1 and, hence, Qi is not compa-
rable to Qi+1. Secondly, battery levels are presented in low
granularity (in rounded percents). As a result, estimation
becomes stepped, where for several records the estimated
energy consumption is zero (because Li = Li+1), then sud-
denly jumps and becomes zero again.

The first challenge can be overcome by estimating the rate
of energy consumption instead of the amount of energy con-
sumed. The rate of consumption is known as power P (in
Watts), which during time period i can be computed as

Pi = Qi × 3 600/(ti+1 − ti). (4)

It is assumed that t is measured in seconds.
The second challenge can be addressed by discarding all

the records of battery level, where the level remains the same
as in the preceding record. This way we get less time inter-
vals to consider, while the intervals themselves are longer.

2.3.2 Results and observations
Figure 4 plots the resulting energy consumption rate over

time. We can see that most of the time energy consumption
with ContextLogger is around 5 W. Negative energy appears
when the phone is plugged for charging.

There are higher peaks of energy power, which may be due
to switching ContextLogger on and off, when it is partially
charged. In order to estimate energy more exactly at these

Figure 4: Estimated energy power estimates over
time.

points, we would need to know or detect when context logger
is switched on and off. Currently this information is not
available from the logs.

Overall, from this pilot experiment we can conclude that
it is possible to estimate the distribution of dynamic char-
acteristics, such as energy consumption, from static sensor
observations. However, this kind of preprocessing requires
some domain knowledge input (e.g. knowing from physics
how energy is defined). Nevertheless, we anticipate that it is
possible to define a generic model form of such estimates for
any sensor. This remains a subject of future investigation.

2.4 Experiment 3: data aggregation for pre-
dictive modeling

The goal of this experiment is to model energy consump-
tion as a function of charging status of the battery.

2.4.1 Methodology
We model energy consumption as a linear function of indi-

cator variables of the charging status: ”discharging”, ”charg-
ing” and ”full”. We assume that energy consumption or in-
flow should be fully covered by these three sources; hence,
we do not model the intercept (assume that the intercept is
zero). With preliminary experiments using cross-validation
we chose the Ridge regression optimization approach [7]
(λ = 1) for finding the regression coefficients.

In the first experiment we discarded the observations,
which did not indicate any change in the battery level. In
this experiment we use all the records. We select an aggre-
gation step s (e.g. 1 hour), which will be used to form data
instances from raw observation records.

Energy consumption data is produced as specified in Al-
gorithm 1. Voltage is estimated as (Vi + Vi+1)/2. Energy
power is estimated as in Eq. (4). We first divide all the
time span into time periods of length s. Within each pe-
riod we find all the observed records. We calculate energy
consumption from record to record over time. Finally, we
normalize the energy consumed from the actually observed
time period to a fixed size time period s.

For example, if our period of aggregation if one day (24h),
we may not necessarily observe records from 00:01 to 23:59.

312

It may happen, that we observe records only from 8:00 to
18:00. In such case, the factual time period is 10 hours.
Hence, we would divide the observed energy consumption
by 10 and multiply by 24 (the actual period of interest).

Algorithm 1: Aggregation of energy consumption data.

Data: A time ordered sequence of battery level L,
voltage V , and timestamps t (N records);
battery capacity Qbattery ; aggregation step s (in
sec)

Result: Dataset: energy consumption E = (E1, E2, . . .)
(Wh) during time period s

1 for b = 1 to (tN − t1)/s // number of bins

2 do
3 Eb ← 0, Tb ← 0;
4 for tnow ∈ [t1 + (b− 1)s, t1 + bs− 1] do

// all time stamps within an interval

5 Eb ← Eb ← Qbattery(Lnow − Lnow+1)×
6 ×(Vnow + Vnow+1)/2 000;
7 Tb ← Tb + tnow+1 − tnow ;

8 end
9 Eb ← sEb/Tb;

10 end

Charging status data is aggregated in a similar way, as
energy. For each time period b we have a three-dimensional
vector of battery status, where each dimension indicates the
percentage of time spent ”discharging”, ”charging” or oper-
ating with ”full” battery. The final dataset is a matrix with
four columns, where the first three columns are the indi-
cators of battery status, and the last column is the energy
consumption. Each row corresponds to an observation pe-
riod of 1 hour.

Since different sensors and sampling rates were active in
the first and in the second period of data collection (before
June 14 and after), we run the experiment in two parts, cor-
responding to these periods. For each period data is split
into training and testing at random (50:50%). The regres-
sion parameters were estimated on the training part, and
the model was tested on the testing part.

2.4.2 Results and observations
Table 2 presents the predictive models and their respective

accuracies. The coefficients at the charging status mean the
estimated energy consumption per hour. For example, 0.41
discharging means that when data is being collected and the
phone is not plugged in, it consumes 0.41Wh of energy per
hour. The negative coefficients mean that this is the net
amount of energy the phone gets, when it is plugged into
the electricity source.

We see that the directions of energy consumption (posi-
tive or negative) are identified correctly in both cases. In the
second period discharging when a charger is plugged is ex-
cessively high (0.76), identifying reasons for that requires

Table 2: Energy consumption as a function of bat-
tery status.

Period Discharg. Charg. Full MAE R2

Until June 14 0.41 −0.89 0.23 0.15 54%
After June 14 0.27 −1.66 0.76 0.19 72%

further investigation. The relative magnitudes of energy
consumption in the first period are convincing: charging
is faster than discharging (0.89 Wh vs 0.41 Wh), and dis-
charging when the charger is plugged is slower than when no
charger is plugged (0.23 vs. 0.41 Wh). Interestingly, the en-
ergy consumption estimate is lower after June 14. It could be
because of more inactivity periods during the second span;
however, a further investigation is needed to analyze this
phenomenon. Moreover, battery level is estimated rounded
numbers, therefore the resulting energy consumption esti-
mate is stepped and approximate.

Overall, from this experiment we conclude that it is pos-
sible to uncover, model and interpret relationships between
processes with basic data aggregation; however, more inves-
tigation into accompanying data denoising is required, which
remains a subject of future investigation.

3. DISCUSSION
The three case studies illustrate different challenges with

data preprocessing. The first challenge is aggregating un-
evenly spaced and not synchronized in time observations,
observed in Experiment 1. Given two sequences of observa-
tions, first we discard non overlapping (in time) parts, and
then aggregate data over a fixed time step (1 sec).

Setting an appropriate aggregation time step presents one
challenge for future investigation. The smaller the step, the
faster the reaction time. However, the accuracy of the anal-
ysis may suffer if the step is too small to present an infor-
mative summary of what is happening. On the other hand,
an excessively large time step only slows down the reac-
tion time (e.g. a person starts walking, but recognition is
delayed). Moreover, a large time step may capture hetero-
geneous data, for example, a mixture of several activities.

Another important open challenge is how to distinguish
the periods of inactivity from the periods when no data is
being collected, observed in Experiments 1, 2, 3. In this
study we assumed that if there are no accelerometer records,
then there is no activity. This is a crude approximation. Ac-
celerometer sensor may be off or accelerometer sampling rate
may be set to very large value (e.g. sample every 10 min).
Failing to distinguish periods of inactivity from the periods
when no data is being collected introduces noise in the re-
sulting computational models. Such noise could be ignored,
if there were only a few periods of inactivity or no data col-
lection. However, when analyzing human mobility typically
there are many more inactive periods than active periods.
Unless a person is, for instance, a taxi driver, during a typ-
ical working day there would be several spans of movement
and quite a lot of inactive periods, when the phone is resting
in a bag or on a table. Therefore, reliable methods for filter-
ing out the periods of no data collection and disambiguating
the periods of inactivity need to be developed.

The next open challenge is how to deal with different
granularity of sensor records, as observed in Experiment 3.
For example, battery level is estimated in percentage, there
are no decimals of percentage. If we are estimating energy
consumption, the battery level would remain constant for a
while before changing. If does not mean; however, that dur-
ing that period no battery has been consumed. In Experi-
ment 2 we overcame this challenge by introducing a variable
data aggregation step, which varies depending on observed
changes in the battery level. However, to deal with this
challenge systematically we need some kind of smoothing

313

mechanism, that would also work online.
Finally, automatically processing manual annotations pre-

sents a big open challenge. Ideally, manual annotation of
an activity should have a start and an end. In practice,
an activity may have, for instance, multiple starts and no
end, or an end, but no start. In addition, some activity
time stamps may have manual corrections. In such a case
end may happen earlier than the start, as we observed in
Experiment 1. One way to deal with this challenge could
be just to discard such corrupted data. However, manually
annotated data is typically very scarce, therefore it is in
the best interest of analysis to preserve as much of it as
possible. Therefore, tailored data cleaning and imputation
methods are needed. In our experimental investigation we
introduced several simple intuition based rules to check and
correct the integrity of user annotations. For example, if
an activity starts and ”end” annotation does not arrive for
6 hours, we consider the activity finished. A systematic
generic approach to this problem is needed, that is a subject
of future investigation.

4. SUMMARY AND CONCLUSIONS
We investigated how to aggregate mobile sensing data for

machine learning purposes. We performed three exploratory
experiments to illustrate different data preprocessing chal-
lenges. Following the experimental study, we identified and
discussed several major challenges in mobile sensing data
preprocessing for urban mobility analysis. The main direc-
tions are: how to determine the aggregation step, how to
identify and isolate the periods of inactivity, how to deal
with different granularity of observations, how to effectively
automatically process manual data annotations, and inte-
grate them with the observational data. To accompany the
paper, we have released a subset of the data as openly avail-
able data, coined Sensing Venice. The data with its docu-
mentation is available at the authors’ websites.

This pilot study sets a basis for further investigation aim-
ing at producing a systematic methodology for preprocessing
mobile sensing records for predictive modeling.

5. ACKNOWLEDGMENTS
This work was supported by the Aalto University AEF

research programme and Academy of Finland grant 118653
(ALGODAN).

6. REFERENCES
[1] Android developer’s guide.

http://developer.android.com/guide/topics/

sensors/sensors_overview.html.

[2] Mobile economy europe 2013. Report, GSMA, 2013.

[3] Aharony, N., Pan, W., Ip, C., Khayal, I., and
Pentland, A. Social fMRI: Investigating and shaping

social mechanisms in the real world. Pervasive and
Mobile Computing 7, 6 (2011), 643–659.

[4] Eagle, N., and Pentland, A. Reality mining:
sensing complex social systems. Personal and
Ubiquitous Computing 10 (2006), 255–268.

[5] Figo, D., Diniz, P. C., Ferreira, D. R., and
Cardoso, J. a. M. Preprocessing techniques for
context recognition from accelerometer data. Personal
Ubiquitous Comput. 14, 7 (2010), 645–662.

[6] Gao, H., Tang, J., and Liu, H. Mobile location
prediction in spatio-temporal context. In The
Procedings of Mobile Data Challenge by Nokia
Workshop at the 10th Int. Conf. on Pervasive
Computing (2012).

[7] Hastie, T., Tibshirani, R., and Friedman, J. The
Elements of Statistical Learning. Springer New York
Inc., 2001.

[8] Himberg, J., Korpiaho, K., Mannila, H.,
Tikanmäki, J., and Toivonen, H. Time series
segmentation for context recognition in mobile
devices. In Proceedings of the 2001 IEEE International
Conference on Data Mining (ICDM 2001) (2001),
pp. 203–210.

[9] Khan, W. Z., Xiang, Y., Aalsalem, M. Y., and
Arshad, Q.-A. Mobile phone sensing systems: A
survey. IEEE Communications Surveys and Tutorials
15, 1 (2013), 402–427.

[10] Kohavi, R., and Provost, F. Glossary of terms.
editorial for the special issue on applications of
machine learning and the knowledge discovery process.
Machine Learning 30, 2/3 (1998).

[11] Kwapisz, J. R., Weiss, G. M., and Moore, S. A.
Activity recognition using cell phone accelerometers.
SIGKDD Explor. Newsl. 12, 2 (2011), 74–82.

[12] Mannonen, P., Karhu, K., and Heiskala, M. An
approach for understanding personal mobile ecosystem
in everyday context. In Effective, Agile and Trusted
eServices Co-Creation — Proceedings of the 15th
International Conference on Electronic Commerce
ICEC 2013 (2013), vol. 19 of TUCS Lecture Notes,
pp. 135–146.

[13] Monreale, A., Pinelli, F., Trasarti, R., and
Giannotti, F. Wherenext: A location predictor on
trajectory pattern mining. In Proceedings of the 15th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2009), KDD,
pp. 637–646.

[14] Zhang, J., Xu, J., and Liao, S. S. Aggregating and
sampling methods for processing gps data streams for
traffic state estimation. IEEE Transactions on
Intelligent Transportation Systems 14, 4 (2013),
1629–1641.

314

Crowd Density Estimation for Public Transport Vehicles

Marcus Handte,
Muhammad Umer Iqbal,

Stephan Wagner,
Wolfgang Apolinarski,

Pedro José Marrón
NES

University of Duisburg-Essen
first.last@uni-due.de

Eva Maria Muñoz
Navarro,

Santiago Martinez
Investigacion y Desarrollo

ETRA
(emunoz|smartinez).etra-

id@grupoetra.com

Sara Izquierdo
Barthelemy,

Mario González
Fernández

Proyectos Europeos
EMT de Madrid

first.last@emtmadrid.es

ABSTRACT
Existing information systems for urban public transporta-
tion are empowering travelers to optimize their trips with
respect to travel duration. Experience with such systems
shows that this is a viable approach. However, we argue
that solely relying on trip duration as the primary indicator
for satisfaction can be limiting. Especially, in urban settings
providing additional information such as the expected num-
ber of passengers can be highly beneficial since it enables
travelers to further optimize their comfort. As technical ba-
sis for determining the number of passengers, we have built
an inexpensive hard- and software system to estimate the
current number of passengers in a vehicle. Furthermore,
we have deployed the system in several buses in the city of
Madrid. In this paper, we describe the overall design ratio-
nale, the resulting system architecture as well as the under-
lying algorithms. Furthermore, we provide an initial report
on the system’s performance. The initial results indicate
that the system can indeed provide a reasonable estimate
without requiring any manual intervention.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
WLAN Monitoring, Presence Detection, Intelligent Trans-
port Systems, Smart Cities

1. INTRODUCTION
Today, most information systems for urban public trans-

portation are empowering travelers to optimize their trips
with respect to travel duration. To do this, they integrate
static information about routes and schedules with dynamic
information about unexpected delays. On top of this they

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

provide planing engines that compute shortest paths in or-
der to minimize the trip duration for the travelers.

Clearly, past experiences with such systems shows that
this is a viable approach that is useful for many travelers.
However, we argue that solely relying on trip duration as the
primary indicator for traveler satisfaction can be limiting as
it hides many other facets that impact the travelers comfort.
Examples may include environmental information such as
the accessibility of different vehicles for travelers with special
needs or dynamic information such as the likelihood of being
able to get a seat in a particular vehicle.

Especially, in urban settings where the same destination
can be reached over multiple routes or where the same route
is traversed by different vehicles frequently, providing addi-
tional information can be highly beneficial. For example,
considering the former case, a traveler might simply be able
to slightly adjust his route whereas in the latter case, a trav-
eler might simply have to start a trip earlier or later in order
to improve his or her level of comfort.

Besides from trip duration, a main influential factor for
the overall level of satisfaction with a particular public trans-
port option is the overall crowdedness of the vehicles. How-
ever, in the absence of a mandatory reservation system or a
fine-grained trip-based payment system, capturing the num-
ber of passengers is a challenging and costly task that is
typically done by means of manual counting. Yet, in order
to provide real-time information on a city-scale such manual
approaches are clearly ill-suited.

In this paper, we describe an alternative approach to de-
termine the number of passengers in a vehicle. Based on this
approach, we have built an inexpensive hard- and software
system to estimate the current number of travelers in a ve-
hicle. Furthermore, we have deployed the system in several
buses in the city of Madrid. In addition to the estimation of
number of travelers, our system also estimates the location
of buses between the bus stops. Based on this deployment,
we provide an initial report on the system performance. The
results indicate that the system can indeed provide a reason-
able estimate for the number of passengers inside the vehicle
as well a reasonable estimate of the location of buses between
two stops.

The remainder is structured as follows. In the next sec-
tion, we briefly discuss the underlying design rationale. There-
after, in Section 3, we outline the overall approach. In Sec-
tion 4, we describe details of our implementation and in Sec-
tion 5, we report initial results of our deployment in the city
of Madrid. In Section 6, we discuss related work and finally,

315

in Section 7 we conclude the paper with a short summary
and an outlook on future work.

2. DESIGN RATIONALE
As described previously, our goal is to provide a system to

determine the number of passengers in a particular vehicle
of a public transportation system in order to provide the
resulting crowd density information to the travelers. As a
result of this overarching goal, we can derive the following
five sub goals:

• Sufficient accuracy: To provide meaningful informa-
tion, the system should be able to determine the num-
ber of passengers accurately. Thereby, it is important
to note that given the typical capacity of vehicles the
system does not have to be perfect. Instead, smaller
deviations can be tolerated as long as the overall ten-
dency of the crowd density reflects the real situation.

• Full automation: To be reliable and feasible to deploy,
the system should not rely on manual intervention by
passengers. Furthermore, it should not put additional
stress on the support personnel such as the driver or
the guards. Instead, the system should be able to de-
termine the number of passengers automatically.

• Low cost: To be scalable to a city level, the hardware
cost of the system should be minimal. As a result,
the system should only consist of low-cost off-the-shelf
components and it should optimally leverage the ex-
isting infrastructure.

• Low latency: To provide fresh information to the trav-
elers, the system should be able to report changing
numbers of passengers quickly such that it can not
only be used for advance planing based on historical
data but also to support ad hoc decisions by travelers
based on the current state.

• Low privacy impact: To be acceptable for the passen-
gers of the public transport system, the system should
be non-intrusive from a privacy perspective. Further-
more, it should only gather information that is needed
to provide the service and ideally, it should be hard to
retrofit the information for non-related use cases.

3. APPROACH
Based on the five goals, we describe our overall approach

in the following. To do this, we first describe the basic idea
and the resulting system architecture. Thereafter, we de-
scribe the details of the algorithms used for crowd density
estimation and vehicle tracking. In the next section, we
describe the implementation details for our deployment in
several buses in the city of Madrid.

3.1 Overview and Architecture
Our approach for estimating the number of passengers in

a vehicle can be considered a specialized variant of the smart
phone tracking approach described in [6]. The basic idea is
that WLAN-enabled mobile devices are periodically sending
so-called probe requests as part of their IEEE802.11 proto-
col operation to detect the access points that are present
in their surroundings. In order to completely cover the fre-
quency spectrum during their scans, the devices typically

Figure 1: System Architecture

repeat their probe request on all available channels. Thus,
given adequate network monitoring hardware, it is possible
to overhear these request by simply tuning into one of them.
Moreover by continuously monitoring the presence and ab-
sence of the probe requests, it is possible to accurately count
the mobile devices that are in the vicinity of the network
monitoring hardware.

Once the number of passengers has been estimated, it
needs to be made accessible to the travelers. To do this, it
is first transmitted to a central server where it is then com-
bined with the associated segment of the current route of
the vehicle. To compute this association, we rely on the po-
sitioning information provided by the vehicle itself by means
of a built-in GPS receiver. We then combine with the static
route information managed by the public transport operator
with the GPS position to determine the current route seg-
ment that the bus is traversing. As a last step, we then store
the vehicles route segment with the associated crowd-level
and a timestamp. Finally, the resulting data is made acces-
sible to travelers which can then retrieve the crowd density
estimations for the public transportation system for different
times of day through their mobile devices.

The overall system architecture is depicted in Figure 1.
It consists of three main components, namely the system
inside the vehicle which is responsible for determining the
crowd density and capturing the current GPS position, the
public transport information system which is responsible for
providing geo-spatial information about the routes that the
vehicles are operating on as well as a crowd density infor-
mation system which integrates the information and makes
it accessible to travelers. While there are many possible
options to split up the responsibility of determining crowd
density from WLAN signals, we decided to keep all compu-
tations regarding probe requests local to the system inside
the vehicle. This means that apart from GPS position, the
system solely transfers the current crowd density. The rea-
son for this is twofold. First, this reduces the overall band-
width requirements when compared to transferring all probe
requests to the server. Second, it also protects the privacy
of the passengers since the transfered data is hard (and in
most cases impossible) to attribute to individual passengers.

In the following, we describe the two main issues, namely
the crowd density estimation in the vehicle as well as the
vehicle tracking at the server-side in more detail.

316

Figure 2: Detected Devices over 14 Day Period

3.2 Crowd Density Estimation
As indicated previously, our approach to crowd density

estimation is based on the idea that WLAN-enabled devices
are periodically sending probe requests in order to detect
the access points that are nearby. In order to completely
cover the frequency spectrum during probing, the devices
typically repeat their probe request on all available channels.
Using a WLAN device that is put into monitoring mode, it is
possible to receive the probe requests of nearby devices by
simply monitoring a particular channel. By keeping track
of the MAC addresses of the devices sending out the probe
requests, it is then possible to determine the time duration
that a certain device is close to the monitoring device.

When applied to public transportation, an important dif-
ference between prior work and our scenario is that in our
case, the monitoring WLAN device is a) mobile – since it
mounted inside a vehicle – and b) often moving through a
densely populated area. As a consequence, we can expect
that the monitoring device will not only receive signals from
mobile devices that are located in the vehicle but it will also
receive signals from devices that are simply nearby the ve-
hicle. This problem is amplified by the fact that in typical
public transportation networks, stops at important locations
(e.g. in the city center) are targeted by multiple lines. Thus,
when a vehicle is stopping in order to allow passengers to
enter and exit the vehicle, passengers waiting for another
vehicle from another line will be detected as well.

To demonstrate this problem and to develop a solution
for it, we have installed a WLAN monitor in one bus op-
erating in the city of Madrid, Spain during a period of 14
days. During the time, the bus was operated for 224 (out of
336) hours and while it was operating, we logged the probe
requests received by the monitor. To avoid duplicate detec-
tions of the same requests sent out multiple times, we limited
the amount of logged probe requests to 1 request per MAC
address per second.

In total, the monitor logged 384874 probe requests from
85212 unique MAC addresses. However, as indicated in
Figure 2, from these unique MAC addresses approximately
40000 where only seen once and an additional 15000 ad-
dresses were only seen twice. These numbers clearly demon-
strate the fact that a significant fraction of mobile devices
were most likely not traveling in the bus. Instead, it is more
likely that they were located at a crowded bus stop or some-
where close to the street where the bus was driving.

Figure 3: Probe Request Interval Distribution

To filter out these MAC addresses, while still being able
to report changes quickly, we decided to integrate a sliding
window mechanism that would remove addresses that were
not detected over a longer period of time. In order to con-
figure the windowing period, we further analyzed the logs to
determine the typical rate at which we would detect probe
requests from devices.

Figure 3 shows the results extracted from the logs. As in-
dicated, the vast majority of probe requests - approximately
185000 - are transmitted within one minute. From these re-
quests, roughly 12500 are transfered within 15 seconds or
less, meaning that they are most likely repeated requests
that were not filtered out by our 1s rate limitation. The
remaining 60000 requests, however, are sent at least 15 sec-
onds later which indicates that they might be new requests.
Looking at the overall slope indicated by the histogram in
Figure 3, it seems apparent that the vast majority of con-
secutive probe requests are heard typically within 1 and at
most within 3 minutes. Interestingly, the histogram also
shows that there is a significant number of consecutive probe
requests that are repeated within an time frame above 10
minutes. However, we attribute these to stationary devices
that are picked up multiple times during the 14 day period
when the bus traverses routes multiple times.

Given these results, we configure our sliding window mech-
anism for the crowd density estimation to 3 minutes. In or-
der to avoid the counting of devices that are not within the
bus, we suppress devices that have not been detected for at
least 1 minute and we continue to count them until their sig-
nals are no longer contained in the window - meaning that
the WLAN monitor has not received a probe request for at
least 3 minutes.

3.3 Vehicle Tracking
Once the crowd density has been estimated, it needs to

be assigned to a particular route and segment (i.e. the pair
of previous stop and next stop of the vehicle). However,
in European cities, estimating the route that a vehicle is
taking by simply connecting the different stops will result
in a very coarse grained estimate of the route. Instead, it is
necessary to model the route by means of a more detailed
representation such as a polygonal path that defines multiple
waypoints between the stops.

To determine the current location of the vehicle using the
possibly imprecise GPS, we rely on basic geometric opera-

317

Figure 4: Vehicle Tracking Approach

tions on top of an accurately modeled polygonal paths rep-
resenting the routes. Thereby, the basic idea is to compute
the shortest paths to all line segments as depicted in Figure
4. Technically, this is done in three steps. First, we com-
pute the closes point to each line segment of the path. Note
that this is either the perpendicular line between the line
segment and the GPS position (left) or in cases where the
perpendicular line does not intersect within the segment, it
is one of the two points defining the line segment (right).
Then, we compute the distance between the GPS position
and the closest point for all line segments and finally, we
use the segment with the shortest distance as the current
position on the route which identifies the previous and the
next bus stop.

To minimize the computational overhead of the result-
ing computations in a spherical coordinate system, we sim-
ply interpret the GPS coordinates as Cartesian coordinates.
While this may result in imprecisions when applied to larger
distances, we did not find this problematic at a city level. To
test this, we tracked three buses over the course of 2 weeks
and verified the validity of the resulting bus stop sequences
by comparing them with the route information. In all cases,
the bus stop sequences were matching the sequences of the
route, however, due to the limited update rate of 2 posi-
tion updates per minute, some bus stops were sometimes
skipped.

4. IMPLEMENTATION
In the following, we briefly describe a number of imple-

mentation issues that we had to tackle in order to deploy
the system. To put these issues into a meaningful context,
we first describe the existing infrastructure before discussing
the details of our implementation.

4.1 Infrastructure
The Madrid bus system encompasses roughly 2000 ve-

hicles that operate more than 200 routes. All buses are
equipped with WLAN access points that provide free Inter-
net access to the travelers. For this, the access points are
equipped with a 3G network card. In addition, all buses
are equipped with a GPS system. A central system polls
the GPS information from the buses regularly at 30 second
intervals. The gathered GPS information is then used to
estimate arrival times and to dispatch new buses if delays
are detected.

Figure 5: Bus System Hard- and Software

4.2 Bus System
To implement the crowd density estimation inside the

buses, we rely on an additional low cost off-the-shelf access
point (TP-Link 3020) as WLAN monitor which we equip
with a USB memory stick to increase its internal memory for
logging purposes. In order to connect the access point to the
Internet, we connect it to the existing bus systems (i.e. the
existing access point that provides 3G Internet connectivity
to passengers). To be able to monitor the WLAN network,
we replace the firmware of the device with a custom built of
OpenWRT that is tailored to our needs.

Besides from packet capturing support via TCPDUMP,
we install a number of system services depicted in Figure
5. To acquire an IP address from the existing access point
in the bus, we run a DHCP client. In order to enable re-
mote administration despite the firewall of the 3G network
provider, we connect to one of our servers through AutoSSH
and establish a tunnel to the device’s SSH server. Finally,
since this device does not exhibit a real-time clock, we rely
on NTP in order to set its clock upon restart.

On top of this, we install JamVM with GNU Classpath in
order to execute Java code. This enables us to use the NARF
Component System [2] to handle the actual crowd-density
measurements. To do this, we rely on existing components
from the NARF component toolkit to handle the data trans-
mission and windowing which we extend with a component
that taps into TCPDUMP and interprets its output. Since
our access point does not exhibit a real-time clock, we con-
figure the device to boot up with its date set to 2012. When
the NTP client on the device has successfully determined
the current time at least once, this date will be adjusted to
the current date (i.e. a date in 2013). In the crowd-density
estimation code, we check the current time and suppress all
further actions until the time is set to 2013. This effectively
avoids stale readings and allows us to buffer crowd density
estimations on the device together with a correct time stamp
in case that the 3G connection is temporarily unavailable.

4.3 Public Transport Information System
To associate the crowd density information with a partic-

ular segment of a bus line, we extend the existing transport
information system with 3 web services that expose some of
its information. The first web service makes a list of routes
available. The second service enables the retrieval of detailed

318

{
”Id ”: 4281 ,
”LineId ”: 1 7 ,
”Loc ”:

{
”Lat ”: −0.001534102118749 ,
”Lon”: −7.489303515333618

} ,
”Route ”:33342

}

Figure 6: Bus Information Output Example

route information including bus stops and the polygonal line
that connects them. Finally, the third service exposes the
real-time information about the current bus location as well
as the route that it is operating on.

All web services expose the information as JSON strings
which are compact and easy to parse in most programming
languages. An example for the bus information output pro-
vided by the real-time service is depicted in Figure 6. Be-
sides from the bus id (Id) and current bus location (Loc), the
output also contains the id of the bus line (LineId), which
reflects the id used by the citizens and a pointer to the cur-
rent route (Route) which enables the retrieval of the stops
and waypoints using the route information web service.

4.4 Crowd Density Information System
The last component of our implementation is the crowd

density information system. Implemented as a set of Java
Servlets, the system ties together the bus and route infor-
mation provided by the Public Tansport Information System
and the crowd density estimation provided by the Bus Sys-
tem. To do this, it provides a web service that enables the
WLAN monitor in the bus to upload its latest crowd den-
sity measurements. Furthermore, it continuously polls the
Public Transport Information System in order to acquire the
latest bus information.

When the Servlets are initialized or when a route change
is detected, the system downloads the new route information
for the bus and begins (or continues) the vehicle tracking.
Whenever a new GPS coordinate for a bus is retrieved, the
coordinate is matched against the polygonal path describing
the route to determine the current route segment. The route
segment is then associated with a timestamp and buffered
in memory for future use. When a Bus System performs
an upload of some crowd density information through the
web service offered by the Crowd Density Information Sys-
tem, the system uses the timestamp that has been assigned
on the Bus System when the estimation was created to de-
termine the buffered route segment that corresponds to the
reading. The resulting crowd density report for a particular
route segment is then stored in a database for later retrieval
through travelers.

At the present time, our implementation of the Crowd
Density Information System simply provides a map-based
visualization of the route information that has been captured
over different time intervals. An example for this is shown
in Figure 7. The black lines indicate bus routes through
the city of Madrid for which crowd density information has
been captured. The thickness of the lines indicate the crowd

Figure 7: Crowd Density Visualization Example

level for a particular segment of the bus route. As our next
step we plan to integrate this information into a mobile bus
navigation application for Android devices as part of the
prototype development in the GAMBAS European FP7 re-
search project.

5. EVALUATION
In the following, we evaluate our approach to crowd den-

sity detection with respect to the design goals identified in
Section 2. To do this, we first discuss the system character-
istics with respect to automation, cost and privacy impact.
Thereafter, we provide an initial report on the latency as
well as the level of accuracy achieved by our system.

5.1 Discussion
As described in Section 2, we attempt on supporting full

automation, low cost while ensuring a low privacy impact.
Given the approach and its implementation described in Sec-
tion 3 and Section 4, these design goals are addressed as
follows:

• Full automation: The presented approach for crowd
density estimation is based on overhearing the probe
requests that are sent by IEEE802.11 enabled mobile
devices. These requests are automatically transmitted
by the devices as part of their normal protocol opera-
tion. As a result, the approach will work without the
installation of any additional software and thus, there
is no need for passengers to be actively involved in the
collection process at any point. Similarly, due to the
integration with the existing services operated by the
public transport provider, there is also no need for any
manual intervention from drivers or other personnel.
Instead, once it is installed, the complete system is
fully automated.

• Low cost: In order to deploy our crowd density infor-
mation system, we try to optimally leverage the exist-
ing infrastructure - i.e. the 3G connectivity and the
GPS receiver - that is already available in the vehicles.
However, in order to perform the actual monitoring we

319

extend the infrastructure with one additional access
point. At the time of writing, the cost for the device
and the USB memory stick which we are using ranges
well below 50 Euros. At the server side, we intro-
duce additional services built on top of J2EE technol-
ogy. Given the platform agnostic nature of Java, they
should be easy to integrate into an existing web-based
infrastructure. As a result, we are convinced that the
overall deployment cost of the system is reasonably low
- especially, when compared to other alternatives such
as camera systems, for example.

• Low privacy impact: Due to the fact that our system
applies passive monitoring of IEEE802.11 enabled de-
vices, it is possible to uniquely identify travelers across
all vehicles of the complete public transport system.
As a result, the chosen approach can be considered
quite invasive from a privacy perspective. To mini-
mize the possible negative impact on the privacy of
the travelers, our implementation of the approach is
distributed. Instead of collecting all raw messages at
a central system, each WLAN monitor is set up to be
able to compute a crowd density estimation locally.
Once an estimate has been computed by the monitor,
it only transmits its id, a global timestamp and the
number of passengers in the bus - which is then pro-
cessed and stored centrally. As a result, we argue that
the privacy impact on the user is minimal. Although it
may be possible to track individuals in cases where the
vehicle utilization is very low (i.e. close to 1 passen-
ger), in cases were the utilization is higher, identifying
individual travelers is most likely very hard – if not
impossible.

5.2 Experiments
To determine the degree of fulfillment with respect to the

design goals of achieving a low latency and a high accuracy,
we have deployed the WLAN monitors in 3 buses that are
operating in the city of Madrid, Spain. At the time of writ-
ing, these buses have been collecting data for 3 weeks using
the approach and implementation described in Section 3 and
4. In the following, we briefly describe our experiences with
respect to latency and accuracy.

5.2.1 Latency
Based on the size of our windowing mechanism which uses

a 3 minute window in order to determine the density of the
crowd, our crowd density estimation approach introduces
at least a three minute time difference. However, due to
changes in network connectivity of the monitored vehicle,
this latency can become temporarily higher in cases where
the computed crowd density cannot be transmitted imme-
diately. In order to visualize the probability of such cases,
Figure 8 depicts the inter-reporting arrival time differences
of the 75985 reports collected by our buses.

Since we configured our monitors to report crowd levels
every 30 seconds (which reflects the GPS update interval of
the existing transport information system), we would expect
that if the vehicles 3G connection is reliable, the resulting
arrival time difference would lie around 30 seconds as well.
Out of the 75985 reports, 72028 reports (94.7 %) are re-
ported with an arrival time of less then a minute and 75175
(98,9 %) are reported within 1.5 minutes or less. As a con-
sequence, in the vast majority of all cases our crowd density

Figure 8: Crowd Density Reporting Latency

reports are available at the Crowd Density Information Sys-
tem within less than 5 minutes. Consequently, we think that
the system is broadly applicable from a latency perspective.

5.2.2 Accuracy
In order to determine the accuracy of the system, we per-

formed an initial analysis by means of manual counting the
persons in one of our three buses over a 30 minutes trip
from the start to the end of the bus’ route. After the trip,
we compared the reported crowd density measured by our
system with the manually gathered information. During the
experiment the bus contained between 22 and 52 passengers.
Given the total capacity of 65 passengers, the bus was some-
times rather crowded. During the test, the system was able
to continuously detect around 20% of the passengers on av-
erage.

To put this number in perspective, it is important to note
that according to comScore, there are approximately 22.6
million smart phones in Spain1 and the total Spanish popu-
lation is estimated around 46.7 million persons2. Thus, we
would expect that the number of persons captured by our
approach would typically level off at around 49%. In ad-
dition, several smart phone users may have turned off their
phone’s WLAN interface in order to save power. Thus, given
the rather stable 20% over trip, we believe that the approach
can be used to gather reasonable crowd density estimates -
however, it is clear that a more extensive study is necessary
to confirm these initial results.

6. RELATED WORK
For a traveler two important pieces of information include

when the desired vehicle is going to arrive at his/her stop and
how crowded it will be. These two pieces of information pose
challenges for two separate domains namely crowd density
estimation and the estimation of the actual arrival time of
the vehicle. For the later, this in turn requires information
about the current position of the vehicle over time. In the
following we give a brief overview of related work for these
two domains.

1Number of smart phones in Spain available at:
http://www.comscoredatamine.com/2013/01/what-are-
the-spanish-doing-on-their-smartphones/
2Current estimate of the Spanish population available at:
http://en.wikipedia.org/wiki/Spain

320

6.1 Crowd Density Estimation
Estimating crowd density in indoor and outdoor locations

is an active area of research. A number of techniques has
been used to estimate the crowd density with high accu-
racy. These techniques can be mainly classified into image
processing and radio frequency based techniques. Some of
the work using image processing techniques includes [8],[5],
[12],[14] and [4]. [8] estimates crowd density in an outdoor
environment by extracting image features using a grey level
dependency matrix, minkowski fractal dimension and trans-
lation invariant orthonormal chebyshev moments. The ex-
tracted features are classified using self-organizing maps. [5]
uses pixel counting approach for segmenting the foreground
image from the background image and derives and proves
that the geometric correction for the ground plane can be di-
rectly applied to foreground pixels. [14] provides a survey on
crowd analysis techniques based computer vision and image
processing. These camera based techniques though reason-
ably accurate requires careful mounting of cameras in buses
such that maximum visual coverage is attained. Moreover,
once installed further modifications of their placements is
difficult to achieve and thereby is a costly and a time con-
suming process.

Recently crowd estimation using radio frequency based
techniques have gained attention from the research commu-
nity. Some of the recent work includes [11],[13], [6],[7]. [11]
uses the Bluetooth transceivers on mobile phones for esti-
mating the number of people. The approach taken by the
authors is based on the assumption that considerable num-
ber of people have the Bluetooth transceiver on their mobile
phones in discoverable mode. The approach relies on dif-
ferent information such as number of visible devices, links
between visible devices, the ratio of number of devices in
the current scan to the number of devices in the previous
scan, device visibility durations, etc. The authors report to
achieve accuracy of more than 75% in their testing scenario.
[6] uses a WiFi based solution for detecting and tracking
users. The system relies on detecting WiFi probes sent by
mobile phones and received by WiFi monitors installed at
different places. However, the WiFi probes sent by mobile
phones exposes the MAC address of the device which can
be used to violate user’s privacy. [7] provides an insight
on the vulnerability of user privacy because of exposition of
such explicit identifiers. [13] uses wireless sensor network
based solution for estimating crowd density. The approach
employs an iterative process which includes collection and
analysis of received RSSI values from the network, construc-
tion of training database using K-means algorithm and de-
sign of a spatial-temporal stability calibration mechanism to
minimise noise. Apart from image processing and radio fre-
quency based solutions there has been some work on using
audio samples for estimating crowd density. [3] suggests an
audio tone counting solution in which each device (mobile
phone) sends a unique tone and at the same time receive
tones from other devices. The sent and received tones cor-
responds to a bit pattern which is then combined to generate
new bit pattern. The process continues until the counting is
completed.

In our system presented in this paper, we have employed
a radio frequency based solution. Specifically our system
estimates the crowd level in the bus by keeping track of
WiFi probes sent by the mobile phones of users in the bus.
In this way our approach resembles with the one mentioned

in [6]. However, in contrast to that approach, our system
specializes in estimating the crowd density in moving buses
which requires filtering of incorrect information when the
bus pass through different parts of the city. This incorrect
information, in our case are the WiFi probes sent by the
mobile phones in the vicinity of the bus.

6.2 Vehicle Tracking
In the recent years vehicle tracking has been the focus of

research community. Some of the examples include [15],[1],
[9], [11] and [10]. [15] presents a participatory sensing sys-
tem in which users on the bus share their locations using
their mobile phones with a central system which then com-
municate this information to other users waiting for the bus.
The information is then used to predict the bus arrival time.
In order to capture the user location the system relies on
GSM cell tower information. For the ground truth the bus
routes are divided into different segments where each end
of segment is marked with three strongest GSM cell towers.
The system them matches the GSM cell tower information
to which the user is connected to and compare it with the
ground truth to predict the location of the bus which in
turn is used to predict the bus arrival time. The detection
of user’s presence on bus is done by detecting the audio beep
generated by the ticket checking machines installed at the
entrance door of the buses. [1] is a bus tracking and arrival
time prediction system. The system requires smart phones
to be installed on the buses. Smart phones convey the GPS
coordinates of the bus and send them to a back end server.
The back end server uses this information and calculates the
arrival time of the bus to a particular stop and convey this
information to the interested user(s). [9] is also a participa-
tory system which require its users to install an app on their
phone. The app serves two purposes, it detects whether the
user is in a bus and if yes then it start sending the user’s lo-
cation to a back end server which then computes the arrival
time for a particular stop. The detection of users presence
on the bus is done by the combination of accelerometer and
GPS sensors.

In our system presented in this paper the location of buses
is acquired through GPS modules already installed on buses.
A GPS module transmits the location of bus every 30 sec-
onds. Our system collects this information through web ser-
vices offered by the bus transportation company and using
the technique described in Section 3.3 calculates the location
of the bus between two stops.

7. CONCLUSIONS
Today, most information systems for urban public trans-

portation are empowering travelers to optimize their trips
with respect to travel duration. However, solely relying on
trip duration as the primary indicator for satisfaction can
be limiting. In urban settings providing more information
such as the expected number of passengers can be beneficial
since it enables travelers to further optimize their comfort.
In this paper, we described a scalable and fully automated
approach for determining the number of passengers in a ve-
hicle. Furthermore, we discussed our experiences with a
deployment of the resulting system in the city of Madrid.
Our initial report on the system performance indicates that
it can indeed provide a reasonable performance at low cost
while preserving the travelers privacy.

At the present time, our implementation of the system

321

provides a rather simple map-based visualization of the route
information that has been captured recently. As our next
step, we are integrating the crowd information into a mobile
bus navigation application for Android devices as part of
the developments in the GAMBAS European FP7 research
project. This application will integrate the crowd density
estimations directly into the output of a trip planing engine
which will enable travelers to take more informed decisions
when considering the route and time of a trip. In the long
run, we hope that applications like this can help to balance
the load on the overall public transport system which – be-
sides from improving the comfort of travelers – could reduce
the operational costs of the network.

Acknowledgments
This work is supported by UBICITEC e.V. (European Cen-
ter for Ubiquitous Technologies and Smart Cities) and GAM-
BAS (Generic Adaptive Middleware for Behavior-driven Au-
tonomous Services) funded by the European Commission
under FP7 with contract FP7-2011-7-287661. The authors
would like to thank the remaining members of the GAMBAS
consortium for their work on and support for this paper.

8. REFERENCES
[1] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson.

Easytracker: Automatic transit tracking, mapping,
and arrival time prediction using smartphones. In
Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’11, pages 68–81,
New York, NY, USA, 2011. ACM.

[2] M. U. Iqbal, M. Handte, S. Wagner, W. Apolinarski,
and P. J. Marron. Enabling energy-efficient context
recognition with configuration folding. In
International Conference on Pervasive Computing and
Communications (PerCom), March 2012.

[3] P. G. Kannan, S. P. Venkatagiri, M. C. Chan, A. L.
Ananda, and L.-S. Peh. Low cost crowd counting
using audio tones. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems,
SenSys ’12, pages 155–168, New York, NY, USA,
2012. ACM.

[4] V. Kostakos, T. Camacho, and C. Mantero. Wireless
detection of end-to-end passenger trips on public
transport buses. In Intelligent Transportation Systems
(ITSC), 2010 13th International IEEE Conference on,
pages 1795–1800, 2010.

[5] R. Ma, L. Li, W. Huang, and Q. Tian. On pixel count
based crowd density estimation for visual surveillance.
In Cybernetics and Intelligent Systems, 2004 IEEE
Conference on, volume 1, pages 170–173 vol.1, 2004.

[6] A. B. M. Musa and J. Eriksson. Tracking unmodified
smartphones using wi-fi monitors. In Proceedings of
the 10th ACM Conference on Embedded Network
Sensor Systems, SenSys ’12, pages 281–294, New
York, NY, USA, 2012. ACM.

[7] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and
D. Wetherall. 802.11 user fingerprinting. In
Proceedings of the 13th Annual ACM International
Conference on Mobile Computing and Networking,
MobiCom ’07, pages 99–110, New York, NY, USA,
2007. ACM.

[8] H. Rahmalan, M. Nixon, and J. Carter. On crowd
density estimation for surveillance. In Crime and
Security, 2006. The Institution of Engineering and
Technology Conference on, pages 540–545, 2006.

[9] A. Thiagarajan, J. Biagioni, T. Gerlich, and
J. Eriksson. Cooperative transit tracking using
smart-phones. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’10, pages 85–98, New York, NY, USA, 2010.
ACM.

[10] A. Thiagarajan, L. Ravindranath, K. LaCurts,
S. Madden, H. Balakrishnan, S. Toledo, and
J. Eriksson. Vtrack: Accurate, energy-aware road
traffic delay estimation using mobile phones. In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 85–98,
New York, NY, USA, 2009. ACM.

[11] J. Weppner and P. Lukowicz. Bluetooth based
collaborative crowd density estimation with mobile
phones. In Pervasive Computing and Communications
(PerCom), 2013 IEEE International Conference on,
pages 193–200, 2013.

[12] J. H. Yin, S. A. Velastin, and A. C. Davies. Image
processing techniques for crowd density estimation
using a reference image. In Invited Session Papers
from the Second Asian Conference on Computer
Vision: Recent Developments in Computer Vision,
ACCV ’95, pages 489–498, London, UK, UK, 1996.
Springer-Verlag.

[13] Y. Yuan, C. Qiu, W. Xi, and J. Zhao. Crowd density
estimation using wireless sensor networks. In Mobile
Ad-hoc and Sensor Networks (MSN), 2011 Seventh
International Conference on, pages 138–145, 2011.

[14] B. Zhan, D. N. Monekosso, P. Remagnino, S. A.
Velastin, and L.-Q. Xu. Crowd analysis: A survey.
Mach. Vision Appl., 19(5-6):345–357, Sept. 2008.

[15] P. Zhou, Y. Zheng, and M. Li. How long to wait?:
Predicting bus arrival time with mobile phone based
participatory sensing. In Proceedings of the 10th
International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, pages
379–392, New York, NY, USA, 2012. ACM.

322

Traffic Incident Detection Using Probabilistic Topic Model

Akira Kinoshita
The University of Tokyo

2-1-2 Hitotsubashi, Chiyoda,
Tokyo, Japan

kinoshita@nii.ac.jp

Atsuhiro Takasu, Jun Adachi
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda,
Tokyo, Japan

{takasu,adachi}@nii.ac.jp

ABSTRACT
Traffic congestion is quite common in urban settings, and is
not always caused by traffic incidents. In this paper, we pro-
pose a simple method for detecting traffic incidents by using
probe-car data to compare usual and current traffic states,
thereby distinguishing incidents from spontaneous conges-
tion. First, we introduce a traffic state model based on a
probabilistic topic model to describe traffic states for a vari-
ety of roads, deriving formulas for estimating the model pa-
rameters from observed data using an expectation–maximi-
zation algorithm. Next, we propose an incident detection
method based on our model, which issues an alert when a
car’s behavior is sufficiently different from usual. We con-
ducted an experiment with data collected on the Shuto Ex-
pressway in Tokyo over the 2011 calendar year. The results
showed that our method discriminates successfully between
anomalous car trajectories and the more usual, slowly mov-
ing traffic. However, our method does sometimes classify
abnormally fast-moving cars as traffic incidents.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining, Spatial databases and GIS

General Terms
Algorithms

Keywords
Anomaly detection, automatic incident detection, proba-
bilistic topic model, probe-car data, traffic state estimation

1. INTRODUCTION
Automatic incident detection (AID) is a crucial technol-

ogy in intelligent transport systems, particularly in terms
of reducing congestion on freeways [10]. Traffic incidents of-
ten cause traffic congestion, causing great inconvenience and

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

economic loss to society. A technology that can detect traf-
fic incidents in real time and alert people accordingly would
therefore be a desirable way of reducing these ill effects.

Against this background, there have been many studies
on AID, e.g., [2, 13]. Most of the approaches exploit data
sent from stationary sensors and cameras installed on roads.
However, the installation and maintenance of such sensors
is expensive, with only the main routes likely to have them
[17]. On the other hand, probe-car data (PCD), on which
we focus in this paper, are becoming increasingly important,
as the number of probe cars and the size of the associated
data archives increase. PCD includes timestamps and the
locations of vehicles, and may contain additional values such
as the probe cars’ speed and direction. Although a PCD sys-
tem cannot monitor all cars, it enables traffic administrators
to watch a vast area at a lower cost than by using stationary
sensors. In addition, a PCD system can follow a probe car’s
sequence of movements in detail, which is hard to achieve
via stationary sensors, and trajectory mining can be applied
to the collected data.

Using PCD for freeways, it is easy to detect any reduction
in speed, which sometimes implies congestion, by analyzing
the speeds of the probe cars. However, this method is less
applicable to local streets where there are many crossings
and traffic lights that cause cars to stop frequently but nor-
mally. Moreover, speed reduction is not always an abnormal
circumstance, even on freeways, and is not always caused by
incidents such as accidents, which we would regard as sud-
den and unusual traffic events in this paper.

There are two types of congestion: spontaneous and ab-
normal [2]. Detecting spontaneous congestion is less impor-
tant, as it originates in road design and urban planning.
Any road may have potential bottlenecks, such as upslopes,
curves, junctions, tollgates, and narrow sections. Vehicles
are likely to slow down at the bottlenecks, with vehicular
gaps shortening and drivers in the following cars having to
brake. Congestion will then occur even without a traffic
incident [7]. Spontaneous congestion also occurs when the
traffic demands exceed the traffic capacity of such bottle-
necks, and it is not resolved until the demand drops below
the capacity [12]. The drivers may be familiar with the lo-
cations of such potential bottlenecks, and they can avoid
them. On the other hand, abnormal congestion originates
in traffic incidents, which need to be detected in real time
to prevent or resolve any sudden heavy congestion.

In this paper, we propose an AID method for detecting
traffic incidents by discovering abnormal car movements,
distinguishing such movements from those occurring in spon-

323

taneous congestion. Our method measures differences be-
tween the current and usual traffic states, and has two as-
pects; namely, traffic state estimation and anomaly detec-
tion. First, we employ a probabilistic topic model [4] to
model generation of PCD, which is influenced by hidden traf-
fic situations, such as “smooth” and “congested.” The model
introduces a single set of several hidden component states,
that are associated with probabilistic distributions over the
PCD values, and all the road segments have their respec-
tive mixing coefficients. Using archived PCD, maximum-
likelihood parameters of the model are estimated by an ex-
pectation–maximization (EM) algorithm. The estimated
model reflects the usual state over the whole observation
period. Our incident detection method simply follows the
intuitive meaning of “anomaly.” To detect incidents, the
proposed method estimates the hidden state behind an ob-
served PCD value and compares this current state with the
usual state. If the current state is significantly different from
the usual state, it is recognized as an anomaly.

We conducted an experiment using PCD observed for three
of the routes of the Shuto Expressway system in Tokyo over
the 2011 calendar year. The experiment showed that the
proposed method can be effective for AID.

The main contributions of this paper are as follows.

• We propose a method for estimating traffic states by
applying a probabilistic topic model to PCD, whereby
road segments are characterized in terms of their ex-
pected performance.

• We propose a new method for detecting anomalous car
trajectories according to the differences between the
estimated states behind the trajectory and the usual
states indicated by the learned model, whereby the
detection is conducted adaptively in terms of the seg-
ments.

• Our experiment showed that the usual traffic state
could be estimated using the observed PCD, and that
our AID method had good selectivity for anomalous
behavior by cars encountering incidents.

2. RELATED WORK
Although many studies have considered the traffic state

estimation problem, there is no general agreement about a
formal definition of a“traffic state.” Some research estimates
the traffic state in terms of vehicular speed [11, 19], and
this kind of estimation characterizes states, i.e., quantized
speeds, as“free”or“congested” [6]. Yoon et al. [17] proposed
two feature values based on vehicular speed to detect a“bad”
traffic state, i.e., slow traffic. In contrast, Kerner et al. [8]
used travel time. Xia et al. [15] used a clustering method to
identify congested traffic in a feature space involving traffic
flow, speed, and occupancy, which has been well studied in
traffic engineering [12].

AID can be considered to be an application of anomaly
or outlier detection. Zhu et al. [20] applied the outlier de-
tection methods to feature vectors carefully extracted from
PCD using heuristics. If an incident occurs, cars upstream
of the incident will travel slower and downstream cars will
travel faster. In addition, a car passing before the incident
will travel faster at that position than one passing just after
the incident. If v(d, t, l) is the vehicular speed in link l at
time t on date d, Zhu et al. proposed the following four

Table 1: Notation
Notation Definition
K Number of traffic states.
k Index of a traffic state.
S Number of segments.
s Index of a segment.
xsn n-th data in the s-th segment.
Ns Number of observations in the s-th segment.
θk Parameter of the k-th distribution.
πs Mixing coefficient vector in segment s.
Λ ({πs}s=1,··· ,S , {θk}k=1,··· ,K).
σ(s, x) Traffic state in s when x was observed.
σ(s) Usual traffic state in s.
d(s, x) Divergence of σ(s, x) from σ(s).
Xs Set of data observed in the s-th segment,

i.e., Xs = {xs1, xs2, · · · , xsNs}.
X Whole set of data, i.e., X = {X1, · · · , XS}.
Xc Data sequence from car c,

i.e., Xc = ⟨(s1, x1), (s2, x2), · · · , (sNc , xNc)⟩.
D(Xc) Divergence of Xc.

features: v(d, t, l), v(d, t, l) − v(d, t − 1, l), v(d, t, l − 1) and
v(d, t, l + 1) − v(d, t, l), where link l − 1 is the next link up-
stream of l, and l + 1 is the next link downstream. These
feature vectors are filtered using the heuristics above and an-
alyzed by distance-based outlier detection. In another AID
study, Akatsuka et al. [2] proposed an alternative feature
vector. From the viewpoint of machine learning, AID can
be regarded as a classification problem. Abdulhai et al. [1]
used neural networks, and Yuan et al. [18] used support
vector machines, to classify the observed vectors from sta-
tionary sensors as being incident based or otherwise. AID
can also be regarded as an application of the change-point
detection problem in time-series analysis, with Wang et al.
[13] developing a hybrid method using time-series analysis
and machine learning.

In this paper, we regard the AID problem as an anomaly
detection problem. Previous work exploits characteristics
of congested traffic, such as slowdown, in which vehicular
speed decreases even in the absence of a traffic incident. We
take another approach to follow the intuitive meaning of
“anomaly”; namely, an event different than usual. For this
purpose, the traffic should be described by a probabilistic
model. We therefore exploit the idea of probabilistic topic
models, which was originally studied in the field of natural
language processing [5, 4]. The proposed method estimates
both a set of traffic states over an entire route and the mix-
ing coefficients for each road segment, with a traffic state
corresponding to a topic.

3. METHODOLOGY
Table 1 summarizes the notations used in this paper.
This section describes our traffic state model and incident

detection method. We first introduce a method for applying
a probabilistic topic model to PCD. Our task is to estimate
the model parameters using a PCD archive and to identify
incidents by comparing the usual and current traffic states,
which are obtained from the learned model.

3.1 Traffic State Model
Intuitively, we can identify some traffic states as “smooth”

324

or “congested” regardless of location. Vehicles travel fast in
smooth states and behave in a stop-and-go fashion in heavily
congested states. When observing the speed of a probe car,
the value is likely to be small if the car is in “congested
traffic,” or large if the traffic is “smooth.” The value will
also be affected by geographical conditions, such as curves
and slopes. In short, the behavior of a car is affected by
the surrounding traffic state, and the observed values for
the probe car will change, whereas the traffic state is latent
and varies according to the time and place. This relation
between traffic states and PCD can be modeled using the
latent Dirichlet allocation [5], the simplest topic model [4].

Traffic states are strongly related to roads, so we introduce
the segment as the unit for watching traffic. The segment
is defined independently of the PCD by the spatiotemporal
space of observation. For example, one such segment could
be defined as the section between Interchanges A and B
on the inbound direction of Route 3 between 6 a.m. and
9 a.m. PCD includes timestamps and location data, that
are obtained via GPS and are represented by longitude and
latitude, and each probe-car observation can be assigned to
a predefined segment.

PCD also has information on values such as speed and
direction that can be recorded directly in the PCD or cal-
culated using sequential observation. Here, all the observa-
tions are aggregated for each segment, and a set Xs of the
observed data for the s-th segment is obtained. The symbol
xsn, the n-th value of Xs, might have either a scalar or a
vector value. For simplicity in this paper, we assumed that
xsn was a scalar value, but our method could be extended
to observe vector values.

Our model associates a traffic state with a probability
distribution. Let K be the number of states, with the k-th
traffic state corresponding to the parameter θk. The prob-
ability distribution for the s-th segment, given by p(x|s), is
described in terms of a mixture of these K distributions and
can be described as follows:

p(x|s) =

K∑

k=1

πskp(x|θk), (1)

where πsk is the mixing coefficient for the k-th state and
satisfies the conditions:

0 ≤ πsk ≤ 1,

K∑

k=1

πsk = 1 (2)

for each s. The state parameters {θ1, · · · , θK} are identi-
cal for all segments, but the mixing coefficient vector πs =
(πs1 · · · πsK)T is different for each segment. By using a global
θk, we can compare and characterize segments in terms of
local πs. For example, straight sections are dominated by
“smooth” states, with sections that include tollgates that are
dominated by “congested” states.

Finally, for each segment, the generative process for this
model was as follows.

1. Choose a hidden state k ∼ multinomial probability
distribution Multi(πs).

2. Generate the value xsn ∼ p(xsn|θk).

3.2 Parameter Estimation
Our model is described by a mixture distribution, with

its maximum-likelihood parameters estimated by an EM al-

gorithm, using X as training data [3]. For simplicity, we
introduce the symbol Λ as a set of all parameters in the
model. For the entire set X of observed data, the likelihood
under the model introduced above is given by the following
equation:

L(X) =

S∏

s=1

Ns∏

n=1

K∑

k=1

πskp(xsn|θk). (3)

The update equations are derived by considering the maxi-
mization of the following Q function under constraint (2):

Q(X, Λ, Λ̂) =

S∑

s=1

Ns∑

n=1

K∑

k=1

p(k|xsn, Λ̂) log p(k, xsn|Λ), (4)

where

p(k|xsn, Λ̂) =
π̂skp(xsn|θ̂k)

K∑

k=1

π̂skp(xsn|θ̂k)

≡ γsnk (5)

p(k, xsn|Λ) = πskp(xsn|θk), (6)

and Λ̂ refers to the parameters estimated in the previous
EM iteration.

This Q is maximized by introducing Lagrange multipli-
ers and setting its partial derivative to zero. The update
equation for θk is then derived by solving the equation:

S∑

s=1

Ns∑

n=1

γsnk

p(xsn|θk)

∂

∂θk
p(xsn|θk) = 0. (7)

For example, assume a Poisson distribution for p when any
xsn values, e.g., speed, are nonnegative integers, then:

p(xsn|θk) ≡ p(xsn|λk) =
λk

xsne−λk

xsn!
, (8)

where λk is both the mean and variance, and is the only
parameter of p. In this case, by solving equation (7), the
update equation for λk is derived as:

λk =

S∑

s=1

Ns∑

n=1

γsnkxsn

S∑

s=1

Ns∑

n=1

γsnk

. (9)

For the mixing coefficient πs for the s-th segment, we obtain,
regardless of p, the equation:

πsk =

Ns∑

n=1

γsnk

Ns
. (10)

We now have the EM algorithm for estimating the param-
eters of our traffic state model: After generating Λ at ran-
dom, the EM iteration alternates between the E step, which
calculates all γsnk using equation (5), and the M step, which
updates Λ according to equations (7) and (10), until the log
likelihood log L(X) converges.

3.3 Incident Detection
We have now described our traffic state model and its pa-

rameter estimation method. Given the estimated parameter

325

segment

Xc

σ(s, x)

σ(s)

route

G:Good, M:Moderate, S:Stop

-
1

G

2

x1

G

G

3

x2

G

G

4

x3

M

G

5

x4

S

G

6

x5

S

M

7

x6

S

S

8

x7

G

G

9

G

6?

Figure 1: Concept of divergence comparison

Λ and the value x observed in segment s, the posterior dis-
tribution is given by p(k|x, s). We now define the current
traffic state when x was observed, denoted by σ(s, x), as
the maximum probable state given x. Using the posterior
distribution with Bayes’ theorem, σ(s, x) is estimated as:

σ(s, x) = arg max
k

{πskp(x|θk)} . (11)

Meanwhile, the learned model itself reflects the usual state
over the whole observation period because the parameters
are estimated to fit the distribution in the dataset. We can
therefore define the usual traffic state for the s-th segment,
denoted by σ(s), as the maximum probable state:

σ(s) = arg max
k

πsk. (12)

We now have the usual and the current traffic states for
each segment. Figure 1 describes our idea of incident de-
tection via divergence comparison. For example, the usual
state σ(s) may indicate smooth traffic in a straight mid-
night segment, congested traffic in a rush-hour segment, or
stop-and-go traffic in segments that contain tollgates for any
time of day. If σ(s) indicates congested traffic and σ(s, x) is
also congested, the current traffic remains usual and would
not be considered an anomaly. If the usual state σ(s) indi-
cates free-flowing traffic and the current state σ(s, x) indi-
cates stop-and-go traffic, then it would be suspected that an
anomaly caused by an incident has occurred.

Our AID method measures the degree of anomaly for each
probe car’s trajectory. Assume that a probe car c traverses a
road, observing a set of Nc values. Let Xc be the sequence of
data such that each is a tuple of segment and value observed
by c as described in Table 1. Let xn be an observed value
in a segment sn. Of course, we can count how many times
σ(sn, xn) differs from σ(sn), but this approach regards ma-
jor differences in the same light as minor differences, which
perhaps stem from individual variation rather than from a
traffic incident. We therefore introduce the divergence of the
current state from the usual state, denoted by d(sn, xn), to
quantify the difference between the two states. Because in
our model each state is associated with a probability distri-
bution, we measure this difference in terms of the Kullback–
Leibler divergence of the current state’s distribution from
the usual state’s distribution. The k-th state corresponds to
the probability distribution p(x|θk), and therefore:

d(sn, xn) =
∑

x

p(x|θσ(sn,xn)) log
p(x|θσ(sn,xn))

p(x|θσ(sn))
, (13)

where p is discrete. For example, assume Poisson distribu-

Figure 2: Three routes of Shuto Expressway within
the Tokyo area

tion for p as equation (8). The divergence is derived as:

d(sn, xn) = λσ(sn) − λσ(sn,xn) + λσ(sn,xn) log
λσ(sn,xn)

λσ(sn)
.

(14)
The behavior of a car c is determined as anomalous if

the estimated state behind the observed data sequence Xc

is quite different from the usual state. We define the di-
vergence of Xc from the usual state, denoted by Dall(Xc),
as:

Dall(Xc) =

Nc∑

n=1

d(sn, xn). (15)

The more a car behaves differently from its usual behav-
ior, the larger Dall(Xc) will be. Dall(Xc) is considered as
a score of the degree of anomaly, with c being determined
as anomalous when Dall(Xc) is sufficiently large, i.e., larger
than a predefined threshold.

There are two points to consider about Dall(Xc). First,
Dall(Xc) will also increase the longer the car c runs, and any
car would eventually be determined as being anomalous. We
therefore define the normalized divergence D(Xc) as the sum
of the largest N divergences d(sn, xn) if Nc is not less than
N . Otherwise, D(Xc) is equivalent to Dall(Xc). We have
used D instead of Dall in the rest of the paper. Second,
when a car generates values periodically, no observation or
multiple observations in a trajectory can be assigned to a
single segment. Our idea of divergence comparison in Figure
1 assumed that one segment corresponded to one current
state, which might require interpolation or aggregation of
data for each segment.

4. EXPERIMENT

4.1 Dataset and Preprocessing
Our probe-car dataset was obtained from probe cars trav-

eling on three routes on the Shuto Expressway system in
Tokyo during 2011. The route information is displayed in
Figure 2, with the three routes being shown as thick red
lines on a map of Tokyo.

Data preprocessing comprised four phases: 1) segment
definition, 2) map matching, 3) trajectory identification, and
4) interpolation. These procedures are described below.

326

4.1.1 Segment Definition
Traffic state information is strongly related to geograph-

ical conditions. We defined road segments by partitioning
each route on the expressway every 50 m for estimation at a
finer level of granularity. The direction was noted. This
experiment did not consider temporal partitioning, even
though the traffic in some places changed considerably over
time. Therefore, each segment represented a certain 50-m
length of roadway for a certain direction on a certain express-
way route, and all data for a segment were treated without
any consideration of time.

4.1.2 Map Matching
Despite the above definition of a segment being based on

an expressway route, location data in PCD were described
in terms of the two-dimensional (2-D) coordinates of longi-
tude and latitude, with the original observation not being
related to any particular segment. It was therefore neces-
sary to identify the segment that the probe car was in from
the time and position for every observation, even though in
this experiment we did not consider the timestamps. Map
matching is a technology for identifying the road segment
on which the vehicle is traveling and for locating the vehi-
cle within that segment [9], and several methods have been
proposed [14, 16]. In this experiment, map matching was
conducted in the simplest way: a probe car’s observation
was matched with the nearest segment to the car’s location.
The direction was estimated from the angular difference be-
tween the probe car’s heading azimuth in the PCD and the
segment’s azimuth for each direction, and then choosing the
direction that gave the smaller angle.

4.1.3 Trajectory Identification
After map matching, each probe-car observation whose lo-

cation was represented by coordinates in the 2-D space was
matched with the nearest-neighbor segment, as defined in
the first phase of preprocessing. However, the observations
form a collection of punctuated data, with each observation
being separate from the others. Therefore, the continuous
movement of the car, i.e., its trajectory, is not directly avail-
able. To identify trajectories, we grouped all observations
in the probe-car dataset by the car’s ID and sorted them
by timestamp for each group, before concatenating them in
chronological order whenever the time gap between two con-
secutive observations was 10 min or less. A probe car does
not always travel the entire length of a route, because it can
enter or exit the route at intermediate junctions. For a car
traveling on a single route, its trajectory can be visualized in
terms of a time–space diagram [12]. Figure 5 is an example
of such a diagram and will be described in detail later.

After the trajectory identification, we labeled each trajec-
tory, using the traffic log made available by the administra-
tor of the Shuto Expressway. This traffic log is recorded via
stationary sensors on or alongside the roads every 5 min, to-
gether with notations about incidents such as accidents and
construction. A trajectory was labeled as anomalous when-
ever a car passed a stationary sensor that had recorded an
incident at that time. Table 2 summarizes the statistical
information for our probe-car dataset after trajectory iden-
tification. The number of anomalies means the number of
trajectories for a probe car passing the scene of an incident
when the incident occurred but does not indicate the num-
ber of unique incidents.

0 20 40 60 80 100 120

Speed [km/h]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
is

tr
ib

u
ti
o
n

Shibuya line, inbound, Seg. #25

Figure 3: Histogram of speed of probe cars in a
segment and estimated Poisson mixture

4.1.4 Interpolation
We used a probe car’s speed as the observed value in this

experiment. However, as mentioned in Section 3.3, our de-
tection method estimated the current state for each trajec-
tory for each segment that the car had passed. Our 50-m
segment was too short for fast-moving probe cars to conduct
observations in every segment, whereas a slow-moving car
generated multiple data in a single segment. We therefore
formed an observation sequence for a trajectory by linear
interpolation, giving a sequence of consecutive observations
at 50-m intervals.

4.2 Parameter Estimation
In this experiment, the observed values represented the

speed of probe cars as nonnegative integers. We therefore
assumed a Poisson distribution for the probability distribu-
tion corresponding to each traffic state.

We also assumed K, the number of traffic states, to be 8.
In a preliminary experiment, we estimated the parameters of
our traffic model while varying the value of K up to 100, and
we used the Akaike information criterion (AIC) to evaluate
the model. However, the effect of K was substantially less
than that of the likelihood for improving the AIC, with AIC
being almost the same regardless of K. If K is assumed
to be large, there is a tendency for multiple states to have
almost the same distribution.

We implemented the EM algorithm described in Section
3.2 using OpenMP for multiprocessing. The estimation was
executed on our 32-core Xeon computer for each route of the
Shuto Expressway. It took about 1 min for each direction of
the Shibuya and Shinjuku routes, and about 2 min for each
direction of the Ikebukuro route. Figure 3 shows the actual
histogram for a segment of the inbound Shibuya route as a
step line chart and the estimated Poisson mixture as a solid
curved line. Each of the eight Poisson distributions was
multiplied by the mixing coefficients πsk, and each is also
shown in Figure 3 as dashed curves. The estimated curve
almost fits the actual histogram for the training dataset.

4.3 Incident Detection
Using the estimated traffic model, we examined whether

the proposed method could identify anomalous trajectories.
We calculated the divergence for each trajectory and sorted
the trajectories in order of their divergence. The divergence

327

Table 2: Statistics on trajectories in our probe-car dataset

Routes
Shibuya route Shinjuku route Ikebukuro route

Inbound Outbound Inbound Outbound Inbound Outbound
Period January 1, 2011 – December 31, 2011 (365 days)
of trajectories 100,581 95,386 95,293 88,345 128,789 114,942
of anomalies 4,259 2,475 4,365 3,891 6,089 5,603
Average travel distance [km] 5.7 5.8 6.4 6.7 7.5 8.1

Table 3: AID results

Routes
Shibuya route Shinjuku route Ikebukuro route

Inbound Outbound Inbound Outbound Inbound Outbound

AUC
Our method 0.912 0.812 0.927 0.919 0.902 0.933
Baseline [20] 0.802 0.794 0.846 0.780 0.823 0.805

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T
P

R Proposed method

Baseline

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Proposed method

Baseline

(a) Ikebukuro route, outbound (the best case)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T
P

R Proposed method

Baseline

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Proposed method

Baseline

(b) Shibuya route, outbound (the worst case)

Figure 4: ROC curves (upper frames) and precision vs. false positive rate (lower frames)

of a trajectory was calculated by summing the top N di-
vergences among the observations. In a preliminary exper-
iment, we conducted the detection for several values of N ,
obtaining the best result when N was 20. Because we were
using 50-m segments, the divergences of trajectories were
normalized to 1-km equivalents.

For comparison, we implemented a second method based
on Zhu et al. [20], which was described in Section 2. The
method was modified to enable its application to our data-
set, and although it detected outlier segments represented
by the pair of time and position, our system was evaluated
in terms of anomalous cars. Therefore, we judged that a de-
tection event was successful if the detected car was labeled
as an anomaly in our dataset, even if the detected segment
for the detected car was not a segment involving an incident.

Our detection method gives an alert when the divergence
of a trajectory exceeds a given threshold, and the compared
method gives an alert when the average distance of a fea-
ture vector from other vectors exceeds a given threshold.
The lower the threshold, the more alerts will be issued. We
evaluated the selectivity performance of the two methods
in terms of a receiver-operating characteristic (ROC) curve.
An ROC curve is drawn by plotting the true positive rate
(TPR), which is equivalent to recall, against the false posi-
tive rate (FPR). The area under the curve (AUC) indicates
the discrimination performance, with larger AUC values in-
dicating better discrimination.

The results are displayed in Table 3 and Figure 4. Table
3 reports the AUC of the proposed and baseline methods on

our probe-car datasets. The results showed that our method
had better selectivity for cars that have passed incident lo-
cations, despite using fewer heuristics about anomalies than
the baseline method. Figure 4 shows the ROC curves in the
upper frames and the precision against FPR in the lower
frames. Although the ROC curve should connect points
(0,0) and (1,1), that of the baseline method broke off be-
fore (1,1) was reached, because the method filtered out some
feature vectors, with the number of subject trajectories be-
ing less than the total number of trajectories. The AUC of
the baseline method was calculated by interpolating linearly
between the right-hand end of the ROC curve and (1,1). Fig-
ure 4(a) shows the curves for the outbound Ikebukuro route,
which was the best case in our experiment. The precision
exceeded 80% for the worst 1,000 trajectories. Figure 4(b)
shows the curves for the outbound Shibuya route, which was
the worst case.

Figure 5 shows examples of trajectories for the outbound
Shibuya route that had much divergence in terms of their
time–space diagram. Each plot shows the position of a probe
car against time. The position is represented as the dis-
tance from the origin of the line: the bottom corresponds to
the Tokyo interchange, the westernmost along the Shibuya
route, and the top corresponds to the Tanimachi (eastern-
most) junction. Horizontal pink lines indicate the positions
of interchanges and junctions. The inbound direction is the
direction from the bottom to the top in this diagram. There-
fore, trajectories downward and to the right involve travel-
ing along the outbound Shibuya route. The color of the plot

328

03:00 03:10 03:20 03:30 03:40 03:50 04:00

Time

Tokyo
Yoga

Sangenjaya

Ikejiri
Ohashi

Shibuya

Shibuya

Takagicho

Tanimachi
Shibuya route (2011/12/29)

(a) True positive example: a car involved in an accident

04:00 04:10 04:20 04:30 04:40 04:50 05:00

Time

Tokyo
Yoga

Sangenjaya

Ikejiri
Ohashi

Shibuya

Shibuya

Takagicho

Tanimachi
Shibuya route (2011/05/04)

(b) False positive example: an abnormally fast car

Figure 5: Time–space diagrams for probe cars

indicates the speed of the probe car at that point. Green
represents high speed (100 km/h), red is moderate speed (50
km/h), and blue is “almost stopped” (0 km/h). The color
changes gradually according to the speed. The trajectory
marked with an arrow in Figure 5(a) was the most anoma-
lous trajectory, with this car being directly affected by an
incident. The diagram shows that this car was “stop-and-
go” between Sangenjaya and Yoga. On the other hand, the
marked trajectory in Figure 5(b) was ranked as no. 301
among the anomalous trajectories. This car did not en-
counter an incident. The diagram shows the car traveling
rapidly along the route.

5. DISCUSSION
In Figure 4(b), the TPR of the proposed method was slug-

gish when the TPR was around 0.1, indicating that the pro-
posed method rarely detected anomalous cars correctly even
when the threshold was lowered to some degree. Cars whose
trajectories became anomalous at this point traveled rapidly,
with the car of the marked trajectory in Figure 5(b) being
an example of such cars. This car traversed the route be-
fore dawn, when the traffic is usually smooth. One of the
possible reasons for such false positives is that our experi-
ment did not consider temporal partitioning in the segment
definition, even though the traffic changed considerably over
time. The spatial length of a segment, as well as parameters
K and N , should also be determined in future studies.

The following discussion demonstrates another analysis on
the abovementioned false positives based on the estimated
traffic states. In this experiment, we used the speed of the
probe car, and the traffic state was represented by the Pois-
son distribution, which was characterized by the mean and
variance parameter λ. The stacked area chart in Figure 6
shows the estimated mixing coefficients for the eight Pois-
son distributions for each segment of the outbound Shibuya
route. The horizontal axis shows the position along the
route, and cars travel from left to right. The colored ar-
eas show the mixing coefficient for each state varying with
position. They are in order of λ, with the bottommost be-
ing the slowest, and the topmost being the fastest. From
Tanimachi to Ikejiri, the top three fastest states were dom-
inant, which means that cars usually travel quickly in this

section. However, from Ikejiri to Yoga, the coefficients for
the faster states decrease as the slower states begin to domi-
nate, because the cars usually travel more slowly in this sec-
tion. Therefore, although the marked trajectory in Figure
5(b) does not seem to include any incidents, this behavior
was quite different from the usual running pattern, and our
method identified this as an anomaly. It is noteworthy that
our traffic state model has enabled this sort of analysis, with
every segment being characterized using a single set of traffic
states. Although we used the data sequence to give observa-
tions at 50-m intervals for each probe car, stationary sensors
can also generate similar data except for tracking informa-
tion for each car. Because parameter estimation does not
require such information, this road characteristics analysis
can be conducted using stationary sensors, and its output
might be applied to other problems; e.g., route guidance.

The Shuto Expressway system has many bottlenecks, such
as curves and narrow sections that involve frequent changes
in vehicular speed, unlike freeways. We speculate that this is
the reason that our intuitive method found that “unusual”
car behavior worked better than a heuristic method that
pays attention to changes in speed. On the other hand, a
significantly fast car can be surely determined as an anomaly
if its behavior is statistically unusual relative to the past
observations, although this kind of “unusualness” is not a
problem for drivers. Anomalies accompanying a slowdown
in vehicular speed can be regarded as a subset of the anom-
alies discussed in this paper. The administrator and drivers
have the option to filter the outcome of our detection al-
gorithm using additional heuristics. However, a particular
incident is hard to detect by the proposed method if the traf-
fic behavior in the incident is just like regular spontaneous
congestion. We are currently conducting investigations into
detailed issues as a further study, expanding our dataset
sphere from only three routes to all the routes on the Shuto
Expressway system.

6. CONCLUSION
We have studied the problem of detecting traffic incidents

using probe-car data. Although congestion can be detected
by monitoring vehiclar speeds, it is chronic in some spots
and does not necessarily indicate the occurrence of an in-

329

To
ky

o
Yo

ga

Sangenja
ya

Ik
ejir

i

O
hash

i

Shib
uya

Shib
uya

Ta
ka

gich
o

Ta
nim

ach
i

Route −→

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

in
g

c
o

e
ffi

c
ie

n
t

Figure 6: Mixing coefficients for eight Poisson dis-
tributions for each segment of the outbound Shibuya
route

cident. To detect traffic incidents, we propose an approach
that compares the current traffic state with the usual one for
that location in terms of anomalous car movements, using
a probabilistic topic model to describe the state of moni-
tored traffic. We proposed an incident detection method
that measured the difference between the usual and current
states. Our method was applied to real probe-car data that
were collected on the Shuto Expressway system in Tokyo,
and the discrimination performance was evaluated. The re-
sults showed that our method could discriminate trajecto-
ries affected by incidents from other trajectories, although
abnormally fast cars were also reported as anomalies, giving
a low precision for certain routes.

7. ACKNOWLEDGMENTS
The traffic log used in our experiment as the ground truth

for incident occurrence was made available by Metropolitan
Expressway Co., Ltd.

8. REFERENCES
[1] B. Abdulhai and S. G. Ritchie. Enhancing the

universality and transferability of freeway incident
detection using a bayesian-based neural network.
Transportation Research Part C: Emerging
Technologies, 7(5):261–280, 1999.

[2] H. Akatsuka, A. Takasu, K. Aihara, and J. Adachi.
Highway incident detection based on probe car data.
In International Conference on Information Systems
(Information Systems 2013), pages 103–110, 2013.

[3] C. M. Bishop. Pattern Recognition and Machine
Learning, chapter 9. Springer, 2006.

[4] D. M. Blei. Probabilistic topic models. Commun.
ACM, 55(4):77–84, Apr. 2012.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
Mar. 2003.

[6] C. de Fabritiis, R. Ragona, and G. Valenti. Traffic
estimation and prediction based on real time floating
car data. In Proceedings of the 11th International
IEEE Conference on Intelligent Transportation
Systems, pages 197–203, 2008.

[7] East Nippon Expressway Co., Ltd. Generation
mechanism of traffic congestion caused by traffic
concentration. http://www.e-nexco.co.jp/activity/
safety/mechanism.html. Accessed: 2013-12-06.

[8] B. Kerner, C. Demir, R. Herrtwich, S. L. Klenov,
H. Rehborn, M. Aleksic, and A. Haug. Traffic state
detection with floating car data in road networks. In
Proceedings of the 8th International IEEE Conference
on Intelligent Transportation Systems, pages 44–49,
2005.

[9] M. A. Quddus, W. Y. Ochieng, and R. B. Noland.
Current map-matching algorithms for transport
applications: State-of-the art and future research
directions. Transportation Research Part C: Emerging
Technologies, 15(5):312–328, 2007.

[10] J. M. Sussman. ITS: A short history and a perspective
on the future. In Perspectives on Intelligent
Transportation Systems (ITS), pages 3–17. Springer
US, 2005.

[11] S. Tao, V. Manolopoulos, S. Rodriguez Duenas, and
A. Rusu. Real-time urban traffic state estimation with
a-gps mobile phones as probes. Journal of
Transportation Technologies, 2(1):22–31, 2012.

[12] M. Treiber and A. Kesting. Traffic Flow Dynamics.
Springer Berlin Heidelberg, 2013.

[13] J. Wang, X. Li, S. Liao, and Z. Hua. A hybrid
approach for automatic incident detection. IEEE
Transactions on Intelligent Transportation Systems,
14(3):1176–1185, 2013.

[14] C. E. White, D. Bernstein, and A. L. Kornhauser.
Some map matching algorithms for personal
navigation assistants. Transportation Research Part C:
Emerging Technologies, 8(1âĂŞ6):91–108, 2000.

[15] J. Xia, W. Huang, and J. Guo. A clustering approach
to online freeway traffic state identification using its
data. KSCE Journal of Civil Engineering,
16(3):426–432, 2012.

[16] J.-s. Yang, S. Kang, and K.-s. Chon. The map
matching algorithm of gps data with relatively long
polling time intervals. Journal of the Eastern Asia
Society for Transportation Studies, 6:2561–2573, 2005.

[17] J. Yoon, B. Noble, and M. Liu. Surface street traffic
estimation. In Proceedings of the 5th international
conference on Mobile systems, applications and
services, MobiSys ’07, pages 220–232, New York, NY,
USA, 2007. ACM.

[18] F. Yuan and R. L. Cheu. Incident detection using
support vector machines. Transportation Research
Part C: Emerging Technologies, 11(3–4):309–328,
2003. Traffic Detection and Estimation.

[19] Y. Yuan, J. W. C. Van Lint, R. Wilson, F. van
Wageningen-Kessels, and S. Hoogendoorn. Real-time
lagrangian traffic state estimator for freeways. IEEE
Transactions on Intelligent Transportation Systems,
13(1):59–70, 2012.

[20] T. Zhu, J. Wang, and W. Lv. Outlier mining based
automatic incident detection on urban arterial road.
In Proceedings of the 6th International Conference on
Mobile Technology, Application & Systems, Mobility
’09, pages 29:1–29:6, New York, NY, USA, 2009.
ACM.

330

Predictive Trip Planning – Smart Routing in Smart Cities

Thomas Liebig
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany
thomas.liebig@tu-

dortmund.de

Nico Piatkowski
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany

nico.piatkowski@tu-
dortmund.de

Christian Bockermann
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany

christian.bockermann@tu-
dortmund.de

Katharina Morik
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany

katharina.morik@tu-
dortmund.de

ABSTRACT
Smart route planning gathers increasing interest as cities
become crowded and jammed. We present a system for in-
dividual trip planning that incorporates future traffic haz-
ards in routing. Future traffic conditions are computed by a
Spatio-Temporal Random Field based on a stream of sensor
readings. In addition, our approach estimates traffic flow
in areas with low sensor coverage using a Gaussian Process
Regression. The conditioning of spatial regression on in-
termediate predictions of a discrete probabilistic graphical
model allows to incorporate historical data, streamed online
data and a rich dependency structure at the same time. We
demonstrate the system and test model assumptions with a
real-world use-case from Dublin city, Ireland.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Multivariate statistics,
Stochastic processes, Time series analysis; H.4.2 [Information
Systems Applications]: Types of Systems—Logistics; J.7
[Computer in Other Systems]: Real time

1. INTRODUCTION
The incentive for the creation of smart cities is the increase

of living quality and performance of the city. This is often
accompanied with various mobile phone apps or web services
to bring new services to the people of a city – advertising
events, spreading city information or guiding people to their
destinations by providing smart trip planning based on the
city’s spirit.

With the unpleasant trend of growing congestion in mod-
ern urban areas, smart route planing becomes an essential

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

service in the smart city development. Existing trip plan-
ning systems consider current traffic hazards and historical
speed profiles which are recorded by personal position traces
and mobile phone network data [27]. The traffic message
channel (TMC) is a radio service that transmits hazards to
personal navigation devices. Due to technical limitation it
can just address locations which are situated foremost at
inter-urban highways [15]. Besides the limited spatial gran-
ularity of TMC and its broadcast of past traffic states, TMC
is a phasing out technology as the advent of digital radio su-
persedes submission of RDS-TMC messages via VHF/FM
[32].

The fast moving traffic situations in urban areas demand
for a thorough routing that incorporates as fresh informa-
tion about the city’s infrastructure as possible. This work
presents an approach to situation dependent trip planning
that incorporates real time information gained from smart
city sensors and combines this data with a model for esti-
mating future traffic situations for route calculation. The
proposed system provides three components: (1) an interac-
tive web-based user interfaces that is based on the popular
OpenTripPlanner project [22]. The web interface allows for
users to specify start and target location and triggers the
route planning and provides a REST-ful service (REpresen-
tation State Transfer, introduced in [26]) interface to inte-
grate such services into mobile applications. (2) A real-time
backend engine, based on the streams framework [6], which
provides data stream processing for various types of data.
We provide input adapters for streams to read and process
SCATS data [1] emitted from automatic traffic loops (city
sensors). This allows us to maintain an up-to-date view of
the city’s current traffic state. (3) A sophisticated dynamic
traffic model that is integrated into the backend stream en-
gine and which provides traffic flow estimation at unobserved
locations at future times.

The combination of these components is a trip planner
that incorporates the latest traffic state information as well
as using a fine-grained future traffic flow estimation for ur-
ban trip planning. We test our trip planner in a use case
scenario in the city of Dublin. The city is amongst the
most jammed cities in Europe [2]. The city holds about
630 SCATS sensors, each providing current traffic flow and

331

vehicle speed at the sensor location.
The paper is structured as follows. In the second section

we describe the general architecture of the presented system
regarding the input and output of the trip planner, the data
analysis and the stream processing connecting middleware.
The third section deals with the application of our proposed
trip planner to a use case in Dublin, Ireland. In the fourth
section we provide a discussion of the work together with
future directions. The fifth section presents related work.

2. GENERAL ARCHITECTURE
We give an overview of the system developed to address

the veracity, velocity and sparsity problems of urban traf-
fic management. The system has been developed as part
of the INSIGHT project. This section describes the input
and output of the system, the individual components that
perform the data analysis, and the stream processing con-
necting middleware.

2.1 System Components
As already noted in the introduction, we built the sys-

tem aiming real time streaming capabilities. Based on the
streams framework, the core engine is a data flow graph that
models the data stream processing of the incoming SCATS
data. This graph can easily be defined by means of the
streams XML configuration language and features the inte-
gration of custom components directly into the data flow
graph. As can be seen in Figure 1, this data flow graph
contains the SCATS data source as well as several nodes
that represent preprocessing operations. A crucial compo-
nent within that stream processing is our Spatio-Temporal
Random Field (STRF) implementation1, which is used in
combination with the sensor readings to provide a model for
traffic flow prediction.

With the service layer API provided by streams, we export
access to the traffic prediction model to the OpenTripPlan-
ner component. The OpenTripPlanner provides the inter-
face to let the user specify queries for route planning. Based
on a given query (v, w) with a starting location v and a des-
tination w, it computes the optimal route v → p0 . . . pk → w
based on traffic costs. Here we plug in a cost-model for the
routing that is based on the traffic flow estimation and the
current city infrastructure status. This cost-model is queried
by OpenTripPlanner using the service layer API.

2.2 Traffic Model
The key component of our system is the traffic model. It

combines two machine learning methods in a novel way, in
order to achieve traffic flow predictions for nearly arbitrary
locations and points in time. This traffic model addresses
multiple facets of the trip planning problem:

• sparsity of stationary sensor readings among the city,

• velocity of real-time traffic readings and computation,
and

• veracity of future traffic flow predictions.

Based on a stream of observed sensor measurements, a Spatio-
Temporal Random Field [25] estimates the future sensor val-
ues, whereas values for non-sensor locations are estimated

1The C++ implementation of STRF and the JNI interface
can be found at: http://sfb876.tu-dortmund.de/strf

Figure 1: A general overview of the components of
the predictive trip planning system. The real time
engine continuously manages a up-to-date state of
the city infrastructure and exports the traffic esti-
mator as prediction service to the OpenTripPlanner.
Best viewed in color.

Gt+1

Gt

Gt−1

Figure 2: Simple spatio-temporal graph. The under-
lying spatio graph G0 is a simple circle of 6 nodes.

using Gaussian Processes [20]. To the best of the authors
knowledge, streamed STRF+GP prediction has not been
considered until now and is therefore a novel method for
traffic modelling. A comparable method is proposed in the
same workshop [29] that combines a linear dynamic system
with Gaussian Processes for near-time forecasts. Comparing
these two models in terms of precision and speed is open for
future work.

Spatio-Temporal Random Field for Flow Prediction
In order to model the temporal dynamics of the traffic flow
as measured by the SCATS sensors (Figure 5), a Spatio-
Temporal Random Field is constructed. The intuition be-
hind STRF is based on sequential probabilistic graphical
models, also known as linear chains, which are popular in
the natural language processing community. There, consec-
utive words or corresponding word features are connected
to a sequence of labels that reflects an underlying domain
of interest like entities or part of speech tags. If a sen-
sor network, represented by a spatial graph G0 = (V0, E0),
is considered that generates measurements over space and

332

time, it is appealing to identify the joint measurement of all
sensors with a single word in a sentence and connect those
structures to form a temporal chain G1 − G2 − · · · − GT .
Each part Gt = (Vt, Et) of the temporal chain replicates
the given spatial graph G0, which represents the underly-
ing physical placement of sensors, i.e., the spatial struc-
ture of random variables that does not change over time.
The parts are connected by a set of spatio-temporal edges
Et−1;t ⊂ Vt−1 ×Vt for t = 2, . . . , T and E0;1 = ∅, that repre-
sent dependencies between adjacent snapshot graphs Gt−1

and Gt, assuming a Markov property among snapshots, so
that Et;t+h = ∅ whenever h > 1 for any t. The resulting
spatio-temporal graph G, consists of the snapshot graphs Gt

stacked in order for time frames t = 1, 2, . . . , T and the tem-
poral edges connecting them: G := (V,E) for V := ∪T

t=1Vt

and E := ∪T
t=1{Et ∪ Et−1;t}. This construction is shown in

Figure 2. There, a simple circle of 6 nodes serves as spatial
graph G0.

Finally, G is used to induce a generative probabilistic
graphical model that allows us to predict (an approxima-
tion to) each sensors maximum-a-posterior (MAP) state as
well as the corresponding marginal probabilities. The full
joint probability mass function is given by

pθ(X = x) =
1

Ψ(θ)

∏

v∈V

ψv(x)
∏

(v,w)∈E

ψ(v,w)(x).

Here, X represents the random state of all sensors at all T
points in time and x is a particular assignment to X. It
is assumed that each sensor emits a discrete value from a
finite set X . By construction, a single vertex v corresponds
to a single SCATS sensor s at a fixed point in time t. The
potential function of an STRF has a special form that obeys
the smooth temporal dynamics inherent in spatio-temporal
data.

ψv(x) = ψs(t)(x) = exp

⟨
t∑

i=1

1

t− i+ 1
Zs,i, ϕs(t)(x)

⟩

The STRF is therefore parametrized by the vectors Zs,i that
store one weight for each of the |X | possible values for each
sensor s and point in time 1 ≤ i ≤ T . The function ϕs(t)

generates an indicator vector that contains exactly one 1
at the position of the state that is assigned to sensor s at
time t in x and zero otherwise. For a given data set, the
parameters Z are fitted by regularized maximum-likelihood
estimation.

As soon as the parameters are learned from the data, pre-
dictions can be computed via MAP estimation,

x̂ = arg max
xV \U ∈X

pθ(xV \U | xU), (1)

where U ⊂ V is a set of spatio-temporal vertices with known
values. The nodes in U are termed observed nodes. Notice
that U = ∅ is a perfectly valid choice that yields the most
probable state for each node, given no observed nodes. To
compute this quantity, the sum-product algorithm [17] is
applied, often referred to as loopy belief propagation (LBP).
Although LBP computes only approximate marginals and
therefore MAP estimation by LBP may not be perfect [14],
it suffices our purpose.

Gaussian Process Model for Flow Imputation
We model the junction based traffic flow values within a
Gaussian Process regression framework, similar to the ap-
proach in [20]. In the traffic graph each junction corresponds
to one vertex. To each vertex vi in the graph, we introduce
a latent variable fi which represents the true traffic flow at
vi. The observed traffic flow values are conditioned on the
latent function values with Gaussian noise ϵi

yi = fi + ϵi, ϵi ∼ N (0, σ2) . (2)

We assume that the random vector of all latent function
values follows a Gaussian Process (GP), and in turn, any
finite set of function values f = fi : i = 1, . . . ,M has a mul-
tivariate Gaussian distribution with mean and covariances
computed with mean and covariance functions of the GP.
The multivariate Gaussian prior distribution of the function
values f is written as

P (f |X) = N (0,K) , (3)

where K is the so-called kernel and denotes the M ×M co-
variance matrix, zero mean is assumed without loss of gen-
erality.

For traffic flow values at unmeasured locations u, the pre-
dictive distribution can be computed as follows. Based on
the property of GP, the vector of observed traffic flows (v
at locations −u) and unobserved traffic flows (fu) follows a
Gaussian distribution

[
y
fu

]
∼ N

(
0,

[
K̂−u,−u + σ2I K̂−u,u

K̂u,−u K̂u,u

])
, (4)

where K̂u,−u are the corresponding entries of K̂ between the

unobserved vertices u and observed ones −u. K̂−u,−u, K̂u,u,

and K̂−u,u are defined equivalently. I is an identity matrix
of size | − u|.

Finally the conditional distribution of the unobserved traf-
fic flows are still Gaussian with the mean m and the covari-
ance matrix Σ:

m = K̂u,−u(K̂−u,−u + σ2I)−1 y

Σ = K̂u,u − K̂u,−u(K̂−u,−u + σ2I)−1 K̂−u,u .

Since the latent variables f are linked together in a graph
G, it is obvious that the covariances are closely related to
the network structure: the variables are highly correlated
if they are adjacent in G, and vice versa. Therefore we can
employ graph kernels [31] to denote the covariance functions
k(xi, xj) among the locations xi and xj , and thus the covari-
ance matrix.

The work in [20, 19] describes methods to incorporate
knowledge on preferred routes in the kernel matrix. Lacking
this information, we decide for the commonly used regular-
ized Laplacian kernel function

K =
[
β(L+ I/α2)

]−1
, (5)

where α and β are hyperparameters. L denotes the combi-
natorial Laplacian, which is computed as L = D−A, where
A denotes the adjacency matrix of the graph G. D is a
diagonal matrix with entries di,i =

∑
j Ai,j

2.3 OpenTripPlanner
OpenTripPlanner (OTP) is an open source initiative for

route calculation. The traffic network for route calculation

333

Figure 3: OpenTripPlanner User Interface. Map
view is on the right side including a green pin which
indicates the start location and a red pin that indi-
cates the target. Best viewed in color.

is generated using data from OpenStreetMap and (eventu-
ally) public transport schedules. Thus, OpenTripPlanner
allows route calculation for multiple modes of transporta-
tion including walking, bicycling, transit or its combinations.
However, vehicular routing is possible, but for data quality
reasons in OpenStreetMap concerning the turning restric-
tions [28] it is not advisable.

The default routing algorithm in OTP is the A∗ algo-
rithm [13] which utilizes a cost-heuristic to prune the Dijk-
stra search [8]. At every considered intermediate location
(between start and target location) the cost-heuristic esti-
mates a lower bound of the remaining travel costs to the
target. The cost estimate for traversing this intermediate
location is calculated using the sum of the costs to the loca-
tion and the estimated remaining costs.

OpenTripPlanner consists of two components an API and
a web application which interfaces the API using REST-
ful services. The API loads the traffic network graph, and
calculates the routes. The web application provides an in-
teractive browser based user interface with a map view. A
user of the trip planner can form a trip request by selecting
a start and a target location on the map, see Figure 3 for
a Screenshot of the user interface. Besides the web applica-
tion there exist OpenTripPlanner user interfaces for mobile
devices. The variety of existing user interfaces stresses the
sustainability of our decision for OpenTripPlanner.

2.4 The streams Framework
The need for real time capabilities in today’s data process-

ing and the steady decrease of latency from data acquisition
to knowledge extraction or information use from that data
led to a growing demand for general purpose stream pro-
cessing environments. Several such frameworks have evolved
– Storm, Kafka or Yahoo!’s S4 engine are among the most
popular open-source approaches to streaming data. They all
feature slightly different APIs and come with slightly differ-
ent philosophies. Focusing on a more middle-layer approach
is the streams framework proposed in [6], which aims at pro-
viding a light-weight high-level abstraction for defining data
flow networks in an easy-to-use XML configuration. It comes
with its own execution engine, but also features the trans-
parent execution of data flow graphs on existing engines such

as Storm. We base our decision for the streams framework
on its recent applications that highlight its high throughput
capabilities [9] and the built-in data mining operators [5].

SCATS Data Processing with streams
Within the streams framework, a data source is represented
as a sequences of data items, which in turn are sets of key-
value pairs, i.e. event attributes and their values. Processes
within a streams data flow graph consume data items from
streams and apply functions onto the data. The data flow
graph for manipulation, analysis and filtering of the streams
is formulated in an XML-based language that streams pro-
vides. A sample XML configuration is given in Figure 4.

<container>
<stream id="scats:data" url="http://..."

class="eu.insight.input.ScatsStream" />

<process input="scats:data">
<!-- .. custom functions .. -->
<eu.insight.data.DataNormalization />
<eu.insight.traffic.TrafficEstimator

id="predictor" />
</process>

</container>

Figure 4: XML representation of a streams con-
tainer with a source for SCATS data and a process
that applies a normalization to each data item and
then forwards it to a traffic estimation processor.

The process setup of Figure 4 defines a single data source
that provides a stream of SCATS sensor data. A process is
attached to this source and continuously reads items from
that source. For each of the data item, it applies a sequence
of custom functions (so called processors) that reflect data
transformations or other actions on the items. In the exam-
ple above, we include a SCATS specific DataNormalization
step as well as our custom TrafficEstimator implementation
directly into the data flow graph.

Service Level API
The streams runtime provides a simple RMI-based service
invocation of data flow components that do provide remote
services. The TrafficEstimator defines such a remote inter-
face and is automatically registered as a service with iden-
tifier “predictor”. This allows service methods of that es-
timator to be asynchronously called from outside the data
flow graph, i.e. from within our modified OpenTripPlanner
component.

The service method that is defined by the TrafficEstimator
is exactly the cost-retrieval function that is required within
the A∗ algorithm of the OpenTripPlanner:

getCost(x, y, t)

where x and y are the longitude and latitude of the location
and t is the time at which the traffic flow for (x, y) shall be
predicted.

3. EMPIRICAL EVALUATION
In this section we present the application of our proposed

trip planner to a use case in Dublin, Ireland. We used real
data streams obtained from the SCATS sensors of Dublin

334

Figure 5: Locations of SCATS sensors (marked by
red dots) within Dublin, Ireland. Best viewed in
color.

Figure 6: Spatial graph G0 that is derived from the
SCATS sensor locations. Each vertex is connected
to its 7 nearest neighbors in order to include short-
and long-distance dependencies.

city. The stream was collected between January and April
2013 and comprises ≈ 9GB of data. The SCATS dataset
includes 966 sensors, see Figure 5 for their spatial distribu-
tion among the traffic network. SCATS sensors transmit
information on traffic flow every six minutes. The data set
is publicly available2.

For the experiments in Dublin, the traffic network is gen-
erated based on the OpenStreetMap3 data. In the prepro-
cessing step the network is restricted to a bounding window
of the city size. Next, every street is split at any junction
in order to retrieve street segments. In result we obtain a
graph that represents the traffic network. The SCATS lo-
cations, are mapped to their nearest neighbours within this
street network.

In the preprocessing step the sensor readings are aggre-
gated within fixed time intervals. We tested various inter-
vals and decided for 30 minutes, as lower aggregates are too
noisy, caused by traffic lights and sensor fidelity.

The spatial graph G0 that is required for the STRF is con-

2Dublin SCATS data: http://www.dublinked.ie
3OpenStreetMap: http://www.openstreetmap.org

structed as k-nearest-neighbor (kNN) graph of the SCATS
sensor locations. In what follows, a 7NN graph (Figure 6)
is used, since a smaller k induces graphs with large discon-
nected components and a larger k results in more complex
models without improving the performance of the method.
The fact that no information about the actual street network
is used to build G0 might seem counterintuitive, but undi-
rected graphical models like STRF do not use or rely on any
notion of flow. They rather make use of conditional inde-
pendence, i.e. the state of any node v can can be computed
if the states of its neighboring nodes are known. Thus, the
kNN graph can capture long-distance dependencies that are
not represented in the actual street network connectivity.
The maximum traffic flow value that is measured by each
SCATS sensor in each 30-minutes-window is discretized into
one of 6 consecutive intervals. A separate STRF model for
each day of the week is constructed and each day is further
partitioned into 48 snapshot graphs, since we can divide a
day into 48 blocks of 30 minutes length. The model param-
eters are estimated on SCATS data between January 1 and
March 31 2013 and evaluated on data from April 2013.

The evaluation data is streamed as observed nodes into
the STRF which computes a new conditioned MAP predic-
tion (Equation 1) for all unobserved vertices of the spatio-
temporal graph G whenever time proceeds to the next tem-
poral snapshot. The discrete predictions are then de-discre-
tized by taking the mean of the bounds of the correspond-
ing intervals and subsequently forwarded to the Gaussian
Process which uses these predictions to predict values at
non-sensor locations. Notice that although the discretiza-
tion with subsequent de-discretization seems inconvenient
at a first glance, it allows the STRF to model any non-
linear temporal dynamics of the sensor measurements, i.e.
the flow at a fixed sensor might change instantly if the sensor
is located close to a factory at shift changeover.

Application of Gaussian Processes requires a joint multi-
variate Gaussian distribution among the considered random
variables. In our case, these random variables denote the
traffic flow per junction. Literature on traffic flow theory [18,
7] tested traffic flow distributions and supports a hypothesis
for a joint lognormal distribution. We test our dataset for
this hypothesis. Thus, we apply the Mardia [21] normality
test to the preprocessed data set. The test checks multivari-
ate skewness and kurtosis. We apply the implementation
contained in the R package MVN [16]. The tests confirmed
the hypothesis that the recorded traffic flow (obtained from
the SCATS system) is lognormal distributed. Thus, appli-
cation of Gaussian Processes to log-transformed traffic flow
values is possible. The hyper-parameters for the GP are
chosen in advance using a grid search. Best performance
was achieved with α = 1/2 and β = 1/2. The STRF provides
complete knowledge on future sensor readings which is nec-
essary for our GP. As the STRF model performs well [25],
we set the noise among the sensor data in our GP to a small
variance of 0.0001. For easy tractability, we set the GP up
to model about 5000 locations among the city of Dublin.

The OpenTripPlanner creates a query for the costs at a
particular coordinate in space-time. The query is transmit-
ted from the route calculation to the traffic model. There,
the query is matched to the discrete space. The spatial co-
ordinates are encoded in the WGS84 reference system [24].
To avoid precision problems during the matching between
the components, the spatial coordinate is matched with a

335

Figure 7: Results of route calculations for fixed start
and target at different timestamps (from top to bot-
tom: 7:00, 8:00, 8:30). Best viewed in color.

nearest neighbour method using a KDTree data structure
[23]. The nearest neighbor matching offers also the possibil-
ity to query costs for arbitrary locations. The timestamp of
the query is discretized to one of the 48 bins we applied in
the STRF.

We apply our trip planner for a particular Monday in data
set (8th April 2013) and compute routes from a fixed start
to a fixed target at different time stamps. Figure 7 shows
that different routes are calculated depending on the traffic
situation.

4. DISCUSSION AND FUTURE WORK
Within this paper we presented a novel approach for trip

planning in highly congested urban areas. Our approach
computes intelligent routes that avoid traffic hazards which
did not yet occur. The proposed trip planner consists of a

continuous traffic model based on real-time sensor readings
and a web based user interface. We combined the real-time
traffic model and the trip calculation with a streaming back-
bone. We applied the trip planner to a real-world use case
in the city of Dublin, Ireland. The city is amongst the most
congested ones and jam avoidance is a natural goal of the
citizens.

Our traffic model combines latest advances in traffic flow
estimation. On the one hand, prediction of future sensor val-
ues is performed with a spatio-temporal random field, which
is trained in advance. Based on these estimates, the traffic
flow for unobserved locations is performed by a Gaussian
Process Regression. We successfully applied the Regularized
Laplacian Kernel. In literature, also other kernels have been
successfully applied to the problem, [19, 30]. Exploration of
different kernel methods is subject for future research.

The route calculation component of our approach is based
upon the OpenTripPlanner project as it provides a separa-
tion among the trip planner and the user interface. The
OpenTripPlanner interface for mobile devices4 guides the
direction for further extension of our approach to a personal
navigation device.

We perform trip calculation with the A∗ algorithm, an
speedup using contraction hierarchies (a speedup heuristic
that introduces shortcuts in the traffic network, compare
[11]) is promising. This allows the extension to multi-modal
trip planning (compare [4]) and computation in embedded
devices. Prediction of delays in the public transport network
are another important direction for multi-modality.

Besides the SCATS data also other data sources provide
useful information for dynamic cost estimation. The inte-
gration of bus travel times or user generated (crowdsourc-
ing and social network) data in our model is possible by
dynamically changing the traffic network (in case of road
blockages) or introducing dynamic weights (in case of a ac-
cident or flooding on a street segment). Future studies need
to explore these directions.

One still might argue that if all people use our trip planner
and all people use the same alternative way to avoid a jam it
will occur somewhere else. This hypothesis needs to be val-
idated. The effect might not be so strong as the individual
persons do not start at the same time and do not have same
start and target locations thus traffic distributes differently
among the traffic network. If our STRF model is updated
regularly the jams might be prevented. Another path, we
follow in future is individual route calculation, which adds
some minor perturbations to the route in order to avoid oc-
currence of unexpected jams that result from route delivery.

The real-world application of the trip planner was per-
formed as part of the INSIGHT project [3]. Aim of the
European funded project (grant number 318225) is not just
congestion reduction, but also the real-time prediction of up-
coming hazards and proactive control. The city of Dublin is
subject to many floods that cause problems for urban traffic.
Our trip planner is basis for further extensions that avoid
flooded areas based on flood observations and predictions.

5. RELATED WORK
Previous sections already discussed related approaches.

Here, we present briefly recent work on dynamic cost es-

4OpenTripPlanner for Android: https://github.com/
cutr-at-usf/opentripplanner-for-android/wiki

336

timation for trip planning in smart cities. Recent work
[10] addresses travel time forecasts based on the delays in
the public transportation system. Main drawback of their
method is that buses have extra lanes at most junctions and
their movement follows a regular pattern. The inclusion of
traffic loop readings was motivated in their section on future
work. The dynamic traffic flow estimation is a major prob-
lem in traffic theory. Common approach is the usage of a
k-Nearest Neighbour algorithm which calculates traffic flow
estimates as weighted average of the k nearest observations
[12]. In contrast, our approach models future traffic flow
values based on their temporal patterns, correlations and
dependencies. Foremost, our model requires less memory as
k-NN which has to store all previously seen sensor values
for continuous traffic flow estimation. Another paper that
compares two prediction models for traffic flow estimation
is presented in [29]. By combining a Gauss Markov Model
with a Gaussian Process, their work provides a faster model
which is suitable for near time predictions (as required for
automatic signal control). The model estimates future val-
ues by consecutive application of the model. In contrast,
the hereby presented work estimates all future time slices
at once. In result, we could build the valuable trip planner
application on top of the traffic estimation model and high-
lighted its usability. Improvement of the estimation method,
and comparison of estimation accuracy is subject for future
work.

6. ACKNOWLEDGMENTS
This research has received funding from the European

Union’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 318225, INSIGHT – “In-
telligent Synthesis and Real-time Response using Massive
Streaming of Heterogeneous Data”. Additionally, this work
has been supported by Deutsche Forschungsgemeinschaft
(DFG) within the Collaborative Research Center SFB 876
“Providing Information by Resource-Constrained Data Anal-
ysis”, project A1. We acknowledge Dublin city council and
Dominik Dahlem for data collection and preparation of the
SCATS dataset. We thank Jakub Marecek for assistance
with the OpenTripPlanner project, and the anonymous re-
viewers for their inspiring feedback.

7. REFERENCES
[1] SCATS. Sydney Coordinated Adaptive Traffic System,

Available: http://www.scats.com.au/ [Last accessed:
27 June 2013], 2013.

[2] TomTom European Congestion Index. TomTom,
Available:
http://www.tomtom.com/lib/doc/congestionindex/2013-
0322-TomTom-CongestionIndex-2012-Annual-EUR-
mi.pdf [Last accessed: 26 June 2013],
2013.

[3] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis,
T. Liebig, N. Piatkowski, C. Bockermann, K. Morik,
V. Kalogeraki, J. Marecek, A. Gal, S. Mannor,
D. Gunopulos, and D. Kinane. Heterogeneous stream
processing and crowdsourcing for urban traffic
management. In Proceedings of the 17th International
Conference on Extending Database Technology, page
(to appear), 2014.

[4] H. Bast, M. Brodesser, and S. Storandt. Result
Diversity for Multi-Modal Route Planning. In
D. Frigioni and S. Stiller, editors, 13th Workshop on
Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems, volume 33 of OpenAccess
Series in Informatics (OASIcs), pages 123–136,
Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] C. Bockermann and H. Blom. Processing Data
Streams with the RapidMiner Streams-Plugin. In
Proceedings of the 3rd RapidMiner Community
Meeting and Conference, 2012.

[6] C. Bockermann and H. Blom. The streams framework.
Technical Report 5, TU Dortmund University, 12
2012.

[7] G. Davis. estimation theory approach to monitoring
and updating average daily traffic. Technical Report
mn/rc 97-05, minnesota department of transportation,
office of research administration, january 1997.

[8] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[9] A. Gal, S. Keren, M. Sondak, M. Weidlich, H. Blom,
and C. Bockermann. Grand challenge: The techniball
system. In Proceedings of the 7th ACM International
Conference on Distributed Event-based Systems, DEBS
’13, pages 319–324, New York, NY, USA, 2013. ACM.

[10] L. Gasparini, E. Bouillet, F. Calabrese, O. Verscheure,
B. O’Brien, and M. O’Donnell. System and analytics
for continuously assessing transport systems from
sparse and noisy observations: Case study in dublin.
In Intelligent Transportation Systems (ITSC), 2011
14th International IEEE Conference on, pages
1827–1832, 2011.

[11] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. In C. McGeoch,
editor, Experimental Algorithms, volume 5038 of
Lecture Notes in Computer Science, pages 319–333.
Springer Berlin Heidelberg, 2008.

[12] X. Gong and F. Wang. Three Improvements on
KNN-NPR for Traffic Flow Forecasting. In
Proceedings of the 5th International Conference on
Intelligent Transportation Systems, pages 736–740.
IEEE Press, 2002.

[13] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, 1968.

[14] U. Heinemann and A. Globerson. What cannot be
learned with bethe approximations. In Proceedings of
the 27th Conference on Uncertainty in Artificial
Intelligence, Barcelona, Spain, 2011.

[15] ISO 14819-1:2003. Traffic and Traveller Information
(TTI) – TTI messages via traffic message coding –
Part 1: Coding protocol for Radio Data System –
Traffic Message Channel (RDS-TMC) using
ALERT-C. International Organization for
Standardization, 2003.

[16] S. Kormaz. MVN: Multivariate Normality Tests, 2013.
R package version 1.0.

[17] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger.
Factor graphs and the sum-product algorithm. IEEE

337

Transactions on Information Theory, 47(2):498–519,
2001.

[18] G. Lay. Handbook of Road Technology, Fourth Edition.
taylor & francis, 2009.

[19] T. Liebig, Z. Xu, and M. May. Incorporating mobility
patterns in pedestrian quantity estimation and sensor
placement. In J. Nin and D. Villatoro, editors, Citizen
in Sensor Networks, volume 7685 of Lecture Notes in
Computer Science, pages 67–80. Springer Berlin
Heidelberg, 2013.

[20] T. Liebig, Z. Xu, M. May, and S. Wrobel. Pedestrian
quantity estimation with trajectory patterns. In P. A.
Flach, T. Bie, and N. Cristianini, editors, Machine
Learning and Knowledge Discovery in Databases,
volume 7524 of Lecture Notes in Computer Science,
pages 629–643. Springer Berlin Heidelberg, 2012.

[21] K. V. Mardia. Measures of multivariate skewness and
kurtosis with applications. Biometrika, 57:519–530,
1970.

[22] B. McHugh. The opentripplanner project. Technical
Report Metro RTO Grant Final Report, TriMet,
August 2011.

[23] A. Moore. An introductory tutorial on kd-trees.
Technical Report Technical Report No. 209, Computer
Laboratory, University of Cambridge, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA,
1991.

[24] National Imagery and Mapping Agency. Department
of Defense World Geodetic System 1984: its definition
and relationships with local geodetic systems.
Technical Report TR8350.2, National Imagery and
Mapping Agency, St. Louis, MO, USA, january 2000.

[25] N. Piatkowski, S. Lee, and K. Morik. Spatio-temporal
random fields: compressible representation and
distributed estimation. Machine Learning,
93(1):115–139, 2013.

[26] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Series. O’Reilly Media, Incorporated, 2007.

[27] R.-P. Schäfer. IQ Routes and HD Traffic: Technology
Insights About Tomtom’s Time-dynamic Navigation
Concept. In Proceedings of the the 7th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC/FSE ’09, pages
171–172, New York, NY, USA, 2009. ACM.

[28] S. Scheider and J. Possin. Affordance-based
individuation of junctions in open street map. Journal
of Spatial Information Science, 4(1):31–56, 2012.

[29] F. Schnitzler, T. Liebig, S. Mannor, and K. Morik.
Combining a gauss-markov model and gaussian
process for traffic prediction in dublin city center. In
Proceedings of the Workshop on Mining Urban Data at
the International Conference on Extending Database
Technology, page (to appear), 2014.

[30] B. Selby and K. M. Kockelman. Spatial prediction of
traffic levels in unmeasured locations: applications of
universal kriging and geographically weighted
regression. Journal of Transport Geography, 29:24–32,
May 2013.

[31] A. Smola and R. Kondor. Kernels and regularization
on graphs. In Proc. Conf. on Learning Theory and
Kernel Machines, pages 144–158, 2003.

[32] TISA Executive Office. Provision of a free minimum
universal traffic information service. Technical Report
EO12004, The Traveller Information Services
Association, May 2012.

338

Addressing the Sparsity of Location Information on Twitter

Dimitrios Kotzias
University of Athens

dkotzias@di.uoa.gr

Ted Lappas
Stevens Institute of

Technology
tlappas@stevens.edu

Dimitrios Gunopulos
University of Athens

dg@di.uoa.gr

ABSTRACT
Micro-blogging services such as Twitter have gained enor-
mous popularity over the last few years leading to massive
volumes of user generated content. In combination with the
proliferation of smart-phones, this information is generated
live from a multitude of content contributors. Interestingly,
the content and timestamp of tweets is not the only infor-
mation that can produce useful knowledge. The location
information of users is of great significance since it can be
utilized in a variety of applications such as emergency iden-
tification, tracking the spread of a disease and advertising.
Unfortunately, information regarding location is very rare
since many users do not accurately specify their location,
and fewer posts have geographic coordinates. In this work,
we aim to confront this data sparsity issue. Utilizing Twit-
ter’s social graph and content, we are able to obtain users
from a specific location. We optimize our method to work
with minimum amount of queries considering the large vol-
ume of data in such settings. We also provide a mechanism
for geo-locating a tweet within a city and present the quali-
tative enrichment in our data, achieved by our method.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; J.4 [Social
and Behavioural Sciences]: Sociology

General Terms
Algorithms

Keywords
Social Networks, Data Sparsity, Location Profiling

1. INTRODUCTION
Over the last decade on-line platforms where individuals

generate and contribute content have gained massive popu-
larity. In most of these platforms individuals are connected,
establishing social networks. Such networks attracted in-
terest from various scientific fields due to the numerous re-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

search challenges and the plethora of potential applications.
A typical example is Twitter currently hosting more than
200 million users contributing more than 400 million tweets
per day [12]. Twitter is unique among the social networks
since it propagates information to an immense amount of
people very quickly, in fact many times, faster than conven-
tional news networks [23]. Combined with the increasing
popularity of smart phones, and mobile internet availabil-
ity, users generate content from a variety of locations in real
time, creating a very diverse and spatio-temporarily spread-
out network of information.

Naturally, with the formation of such a network, there
has been an increase in research as well as applications for
spatio-temporal data [18, 13, 8]. These applications utilize
the content, time of creation as well as location of data. Lo-
cation information is important as it can transfer knowledge
from the online back to the real world, and aid towards per-
sonalized and localized information services. It is invaluable
for a variety of applications such as discovering the way dis-
eases spread [6], emergency identification and response [25],
localized event detection and relevant news propagation [28],
analysis of the behavioural patterns and mobility of people
within a city [8, 10] as well as online advertising [1]. Further-
more, social networks themselves are also adopting a local-
focus philosophy, with examples of Twitter recently starting
reporting local trends1, while search engines consider your
location among other factors when returning results2.

Despite the fact that user contributed content in such plat-
forms is always characterized by a well defined timestamp,
unfortunately location information is very sparse. Research
in Twitter suggests that a big percentage of users either do
not provide their location information in their profiles, or
input noisy data [7], with only 48% of users providing an
actual location with city or lower level accuracy [11]. More-
over, the number of tweets with geographical coordinates
is much lower, in the order of 1% [26]. Reasonably, this
sparsity of information constitutes a major issue for all the
aforementioned applications that require it.

In this paper, we address the problem of sparsity of loca-
tion data by providing a framework that utilizes information
from the content of a users’ tweets, as well as the social graph
around her. Considering the large volume of data in such
settings and the fact that our system works with the Twit-
ter API, we take into account the limitations set by such
systems and optimize our method for the minimum amount
of queries. Our contribution is threefold:

1https://blog.twitter.com/2010/now-trending-local-trends
2http://www.google.com/landing/now/

339

• We formalise the problem of location identification us-
ing both social graph information and text information
as a resource utilization optimization problem in the
context of the limitation in the Twitter system.

• We analyse the locality of the social graph in Twitter,
and the connectivity between users who live in geo-
graphical proximity.

• We provide a framework for (i) identifying more users
at a location of a city-level granularity, (ii) attaching
geographical coordinates to individual tweets within
that city.

In addition to the precision of our model, we also perform
quantitative and qualitative analysis on how the increase in
users, and thus tweets, enriches our data by extracting topic
models and analysing them. We chose to apply our method
on Twitter due to (i) its increased academic interest, (ii)
large volume of active users and tweets and (iii) its unique
nature as a fast information and events propagator.

2. RELATED WORK
Related work can be broadly divided into research done

for identifying the location of a user, or the location of each
individual tweet.
In the first category, Eisenstein et al. attempt to solve the
problem through geographical topic models [9]. They cap-
ture the difference in the use of language for a specific topic,
between people from distant areas. They are able to predict
the location of a user with an error mean distance of 900
km, and achieve a 27% accuracy when predicting the state
of a user. Their results indicate that people have different
ways of discussing a topic in different areas, however, there
has to be a significant distance between these areas. Within
a city level granularity, people are more likely to have sim-
ilar conversational habits. More recently, Ahmed et al. in
[2] proposed a tree-like hierarchical structure of topics, at
which the lower levels of the tree, represent more specific
versions of the general topics at the parent nodes. This way,
they are able to extract location specific topics, and place
users with an average error of 298 kilometers in the same
dataset. Cheng et al. in [7] utilized the locality of phrases
rather than topics, and manage to pinpoint the city of 51%
of users, within 100 miles of their actual location. Mahmud
et. al. in [22] improve upon this method by identifying
named local words. These terms are very local terms such
as the name of a location or the name of places, retrieved
from services such as foursquare. They use a Multimonial
Naive Bayes classifier and test hierarchical algorithms that
first predict the country and then the state of a user, to es-
timate the city of a user. They achieve an accuracy of 58%
for 100 miles radius.

These approaches take advantage of the difference in the
use of language about specific topics or words which iden-
tify the location of users, however in cases of smaller ar-
eas, where there are not many language differences, these
methods would not perform well. Our work differentiates
at two fundamental levels. Firstly, we take advantage of a
users writings as well as the relationships in the social graph,
which enables us to predict location with greater geograph-
ical detail. Secondly we also propose a way to attach exact
geographical coordinates in a tweet level, after we have iden-
tified the location of the user who created it.

In the second category, Ikawa et. al in [14] attempt to esti-
mate the location of a tweet by associating expressions with
locations. For each query tweet, they find the location with
the closest word list and place it there. However, the under-
lying assumption that people will tweet about the place they
are in, and then express their feelings about it, does not al-
ways hold, and they achieve an accuracy of 14% for a radius
of 5 kilometres. Li et, al achieve a better precision for the
same problem as they attempt to identify Places of Interest
(POI) a tweet may belong to. [21]. They build a Language
Model for each POI, based on tweets that occurred there
and information crawled from websites, and then rank the
KL-divergences for each query tweet, to identify the candi-
date POI’s. They test their method for the 10 top POIs at
a city, and reach an accuracy of more than 60% for their
best case. However, their accuracy fluctuates greatly based
on the number of tweets about a POI, and their premise
is somehow unrealistic, since in a real-world scenario, there
are much more than 10 possible locations within a city. Kin-
sella et. al provide a framework, which is closer to our work
since it is used to pinpoint the location of both users and
tweets in a variety of granularities in [15]. They build lan-
guage models for each location and test a Query Likelihood
model, in order to predict the location of a tweet. Their
best results accomplish an accuracy of 31.9% for users for
a town granularity and 13.9% for tweet location in zip-code
granularity. In their work, they use the same model to solve
both problems, while we discriminate between the two and
mostly take advantage of the social graph for user location
prediction and term-models for tweet location prediction,
which enables us to create a more robust system.

Ren et. al [24] take the social graph into account in or-
der to identify a users’ location. They place each user to
the location of the majority of his friends. They achieve a
precision of 59.3%, however they only test it for 704 users.
Working on a much larger dataset from facebook data, Back-
strom et. al [4] suggest a correlation between friendship and
distance on the map, and build a more elaborate model to
find the probability of a users home location, given the lo-
cation of his contacts. They place 67.7% of users correctly,
however, both these methods, assume that we know all the
friends of the user we are trying to locate, which in very large
graphs such as those created by social media is rarely the
case. Our method aims to minimize the number of queries
at the social graph, and more importantly operates without
the knowledge of the location of all the friends of a user.

To the best of our knowledge, despite the large number
of relevant papers which focus on estimating the location of
a single user, the problem of identifying more users from a
specific location, has yet to be solved. In contrast to most
of the previous work done in this area we: (i) attempt to
identify the location of a user in a city level accuracy, which
is much more limited than 100 miles radius, set this far, (ii)
combine this information to attach geographical coordinates
to a tweet, by taking under consideration both the relation-
ships of users in the social graph as well as the content of
their writings, and (iii) use a computational model based on
the Twitter system, optimized for the number of queries.

3. PROBLEM DEFINITION
Location data in twitter are rare, and given the value of

such information we attempt to discover more users at a spe-
cific location. We analyse data about a city as whole, and

340

we set two interconnected goals: (i) Discover more users
that live in that city and (ii) create a system that is able
to attach exact coordinates on a Tweet level within that
city. Moreover, we assume that we incur a cost each time
we make a query about the connections or the location of
a user. This assumption is pragmatic because social net-
works have limitations on how many times one can inquire
about such information within a specific time frame. For
instance Twitter only allows for 15 queries per 15 minutes
for the friends of user. Taking under consideration the size
and increase rate of social networks today, this constitutes a
practical constrain as well, since it is computationally expen-
sive to process the entire graph. The problems are formally
defined below:

Problem 1 - User Level
Given set of users U who tweeted from a specific city C,
identify as many users from the same city as possible,
by asking at most k -queries about the social graph.

Problem 2 - Tweet Level
Given a set of tweets T1 from a specific city C for which
we know their exact geographical location, and a set
T2 for which we do not have such information, attach
geographical coordinates to T2.

We consider the two problems to be interconnected, be-
cause by following a hierarchical scheme, the tweets of users
identified in C, can be considered as T2 and be geo-located
on the map, with the solution to problem 2.

4. PRELIMINARIES

4.1 Twitter
Twitter consists of messages which have a maximum length

of 140 characters, which may or may not include location in-
formation. With the proliferation of mobiles phones, many
users tweet from a variety of locations. However, there is a
wide array of topics and uses for a tweet, which in combi-
nation with the limited text size, render most of them im-
possible to analyse and categorize. Users have the ability to
have a static location in their profiles, however, according to
[11] the location field of Twitter users many times is empty
or contains inaccurate or in-comprehensive information.

4.2 Graph Analysis and Motivation
Previous work has indicated that there is a correlation

between proximity on the real world and proximity on the
online social graph[16, 28, 20, 4]. Furthermore the small
world effect is even greater in local communities [3], hence
we question whether these effects continue to intensify in a
more local level; the area of a city.

We collected tweets from a specific area using the Twit-
ter streaming API, which provides, two types of tweets; a
set which has exact geographical coordinates attached to
each tweet and one which occurred within the bounds we
set, but only has an approximate location. However, not all
users who post a tweet from a city, live there. Some may
have declared non-existing locations or nothing in their pro-
files, while others could be just visiting the city. In order to
identify the location of a user we used a gazetteer provided
by the GeoNames (www.geonames.org), from which we col-
lected locations names from within our specified area, and
checked if they matched a users’ location. Understandably

our evaluation method is not perfect, since location names
to not correspond to unique places on the map, however this
is an insignificant percentage in our dataset.

In order to test whether locality in the real world is corre-
lated to locality in the network, we apply a set of filters in our
data. Initially we re-create a part of the social graph, only
considering edges that are bidirectional. Most real world re-
lationships by far exceed the energy of a mere follow back,
and thus people that are connected in real life, are more
likely to have a bidirectional edge than a unidirectional.
The latter are more likely to occur when the two parties
do not really know each other in the real world. Further-
more, we discarded very popular users which we defined as
having more than f = 30000 followers or friends, to avoid
celebrities, who tend to be very central nodes, with very lit-
tle location information.
Our first filter, was then to extract the largest connected
component of the sample graph, formed from users who
tweeted within C.
Secondly, we applied a measure in an attempt to remove
users who are just visiting a city, we only kept users who
tweeted more than n times in a period greater than h hours.
For this experiment, we set n = 4 tweets and h = 100 hours.

Figure 1: User Analytics for Each City.

The first column of Figure 1 indicates statistics for users,
for three different cities, namely Dublin,Manchester, and
Boston. As expected in all three cases, more than 50% (the
two top boxes) have the field empty or in a location which
does not correspond to an area in the city. In contrast only
a percentage in the order of 30% has a city level accuracy
in their profiles, while the rest belong to a much larger re-
gion which includes out target city. We consider as regions,
Ireland for Dublin, England for Manchester and the state of
Massachusetts for Boston.
Interestingly, these numbers change significantly when we
apply our first filter with all location categories being re-
duced, except for the percentage of people in the city. Since
this is only a sample of the graph, being connected in this
case, translates to stronger connectivity in the complete
graph, which reaffirms that there is a correlation between
locality in the real world and the online, and local commu-
nities seem to have a high clustering coefficient.
The third column illustrates the data after our third fil-
ter. Interestingly the users who pass this filter, and users in
the largest connected component have many common nodes,
who are mostly users who indeed live in the city. This fact
holds true across all three cities which indicates that sample
connectivity is a good pruning filter for local users.

341

Our intuition, based on our analysis, is that local com-
munities on the real graph will form clusters with a high
clustering coefficient in the social graph since there is a sug-
gested correlation between location and friendship. From
the data given above we can conclude that (i) the majority
of users who live and tweet from the same city, are part of
a strongly connected graph, with users that live there, and
(ii) that connectivity from a sample is a good measure to
prune users that do not belong in a city.

5. OUR APPROACH
Our approach formalizes the algorithm which considers

the limited resources one has for the Twitter API. For this
purpose, we built our methods considering our analysis of
the social graph as well as the restrictions one can have in
similar settings. Based on these observations, we built a
method that is able to identify users from a specific city,
by asking the minimum number of queries about the social
graph.

5.1 Problem 1: User Discovery
For our first problem we use the MaxEdge Algorithm: From

our set of tweets T that have geo-location within the area
of a city C, we extract the users who created them. We
then perform some enhacement assessments, based on our
Analysis in 4.2 on them and consider this group of users
to be our ground truth, from now on referred as seed. We
then perform our graph discovery with the following algo-
rithm: We create edges with weights from the seed to their
friends, and create the rest of the known graph, referred to
as frontier. In our method, initially all the edge weights
are set to 1.0. Each of the nodes in the frontier has a score
equal to the sum of the weights of the seed connected to
it fj =

∑
wij . We then start to crawl by discovering the

node with the maximum score. We query for his location
and if this person is located in C we add him to our seed,
query about his connections and update our social graph.
We proceed in the same way until we exhaust our limit of
k -queries.

Essentially our method is an enhanced first step of a BFS
algorithm. Given that the graph in Twitter is mostly con-
nected, a DFS is bound to escape the users living in area
quite soon, simulating a random walk. Following this crawl-
ing method, at each step we create the most strongly con-
nected graph possible, by maximizing the clustering coef-
ficient of the seed. Given our analysis in Section 4.2, this
increases the likelihood of finding users in the same city. In
addition we minimize conductance, which is a measure in-
dicating the quality of the community structure a part of a
graph has [19]. In our case it is defined as the number of
edges between the seed and the frontier over the number of
edges inside the seed, which implies that a good community
has low conductance. Our method’s efficiency is based on
the fact that it only queries the nodes that maximize the
seed connectivity and minimize the conductance.

A representation of the graph formulated by the users we
crawled, is in Figure 2. In this figure, the nodes on the
left side, within the bounding box, represent the seed nodes
denoted as s, which are users who tweeted from the city.
As mentioned in section 4.2 a big part of these nodes are
connected, while there are also smaller connected parts and
nodes with few or no internal edges at all. The red nodes
on the right side, represent our current frontier. These are

Algorithm 1 MaxEdge Algorithm

Input: A set of users U who tweeted from within C, k
Output: New users in C

seed← ∅
for all <Ui in T> do

if Assess(Ui) is true then
seed += Ui

updateFrontier(FriendsOfUi)
end if

end for
while k > 0 do
NewUser ←MaxWeight(frontier)
if NewUser in C then

updateFrontier(FriendsOfNewUser)
end if
k ← k − 1

end while

nodes we have not queried yet, however they have at least
one link with one node in the seed, hence we know of their
existence, from the edge list of the s. Currently the node
with the most edges to s has 4 edges, and if we discover
and accept this node as being in C, there is a node with
3 edges who will then have 4 and will be our next query.
Our method does not require us to maintain any internal
edges within the seed, or nodes without external edges, thus
limiting the space requirements and making it plausible to
maintain in memory the information needed for a single city.

h

j

i

g

a

f

c

e

b

d

4

2

3

3

3

C
o

n
n

e
ct

e
d

 C
o

m
p

o
n

e
n

t
N

o
t

C
o

n
n

e
ct

e
d

Edge between Known Nodes

Edge between Unknown Nodes

Future Edge

Border of Known Nodes

Future Border

0

Figure 2: Seed and Frontier Example

5.2 Problem 2: Tweet Location Discovery
Our goal in this problem is to identify the geographical

coordinates of a tweet. We evaluate two methodologies, one
assuming we only have knowledge regarding the text of a
tweet, and the other assuming we have information about
the user who created it as well. For both methods, initially
we segment the area, into squares of equal length a.
For the first approach, which we denote as QL we consider
the Query Likelihood Model as defined in [17], since it pro-
vided the best results in [15]. However, instead of having
different locations as different documents, we considered all
the tweets that occurred in the same box as a document,
and assign a query tweet to the box that has the maximum
likelihood of having produced that tweet.
For our second method we exploit information about the
users and his tweeting habits, to create the method QLU.
In this method we assign to each square a probability that
the user u tweeted from the box b as

p(Useru|Boxb) =
|Tweetsu ∈ b|∑

Tweetsu

342

(a) Dublin (b) Manchester (c) Boston

Figure 3: Users in C v Number of Queries in Twitter

and choose the box with the maximum probability p. If
information regarding the user u is not available, we return
to the QL method to locate it.

We consider this method as the next step of the User
Discovery problem in a hierarchical model in order to iden-
tify the originating location of tweets. Adding geographical
coordinates to a text works better if the possible area is lim-
ited, especially in the case of tweets, which contain mostly
common words and very few location information.

6. EXPERIMENTS

6.1 Datasets
We run our experiments on geolocated tweets from 3 dif-

ferent cities. Our data were collected between April and Au-
gust 2013, and their details are presented in Table 1. New
Users, refers to the number of extra users we crawled with
our method, that were from the same city. The Dublin All
dataset, refers to all the tweets from users we were able to
crawl that live in Dublin, which was used for the topic model
experiments described in section 6.4

Tweets Users Area New Users

Dublin 1.9 M 43 k 1224 km2 179 k

Manchester 1.3 M 40 k 462 km2 70 k

Boston 1.5 M 55 k 1521 km2 73 k

Dublin All 71 M 220 k 1224 km2 -

Table 1: Dataset Details

6.2 User Discovery Results
In this experiment we measured how well our method, per-

forms in discovering users from the a city, and illustrate our
results for Boston, Dublin and Manchester, for k = 50000.

Initially we define as seed s all the users who tweeted from
within C with an exact geo-location in their tweets.
Simple refers to the algorithm described in 5.1 which takes
all these users as its seed.
City Seed differentiates by considering as seed, the largest
connected component of users who declare their in their pro-
files that they live in C.
TimeTweets(n, t) considers as seed the city users who tweeted
at least n = 4 times with a difference of t = 100 hours be-
tween the first and last tweet.
Feedback refers to a more complex version of our algorithm,
which rewards the nodes that pointed to a correct user,
and penalises those that pointed to an incorrect one. More

specifically, when updating the frontier, we increase or re-
duce the weights of the edges, of such nodes, by multiplying
their current weight with a coefficient 1± c. For our exper-
iments we set c = 0.01. This algorithm uses the same seed
as City Seed.

6.2.1 City Precision
Figure 3 illustrates that our method works well for the

first 10 - 15 thousand queries, while filters in our initial seed
outperform it slightly. After this point however, the part
of the graph which we are trying to maximize its cluster-
ing coefficient, becomes too large and too connected with
non-local users, and thus our method slowly begins to crawl
non-city users. The exact number of dilution in the users,
depends heavily on the size of the city, as smaller cities are
more interconnected locally while larger cities tend to have
more connections to outside communities [4].
This effect can be tackled by using our Feedback algorithm,
which gave us the highest most stable precision in all cases,
finishing with a precision of 62.9% for Dublin, 63.0% for
Manchester and 65.6% for Boston. The results indicate that
our intuition is correct, users in proximity can be discov-
ered by maximizing connectivity, however after a number of
queries, the seed becomes too diluted. Feedback essentially
crawls the user, who is most likely to belong to a city, by
the ”majority vote” of all the users who live there.
Precision inevitably drops after a many queries, because the
most certain users are already in the seed, and many users
will have common connections from the outside world. The
Feedback algorithm however, learns which users are more in-
clined to have connections with non local users and assigns
less weight to their ”votes”.

6.2.2 Region Precision

Figure 5: Users in Region v Number of Queries

Figure 5 represents the accuracy for regional results. The

343

(a) QL method Accuracy (b) QLU method Accuracy (c) Sensitivity to Training Size

Figure 4: Size of Area - Boston: 39x39km, Manchester: 21x22km, Dublin: 34x36km

question we asked for this experiment, is whether focusing in
a local area, will produce good precision, when accounting
for users living in a greater region. We tested the Feedback

algorithm, for a greater region surrounding our city. The
precision here is higher, in the order of 80% however not
proportionally to the increase in the real world size. This
indicates that users are indeed more connected with others
in the greater area of their location, however they are also
connected globally.

6.3 Tweet Location Discovery Results

QL Method
This experiment evaluates how topical tweets are, and whether
we can utilize their content in order to identify their exact
geographical locations. For the QL method we preprocessed
the data, by removing stopwords and performing a stem-
ming function (through lucene K-Stemmer stemmer), which
slightly improved our accuracy across all configurations. We
tested for linear interpolation, however because of the small
size of the query (maximum 140 characters) the best results
were yielded when λ = 0. For each experiment we performed
a 10-fold cross validation, by splitting the dataset in 10 sub-
sets randomly, and for each experiment training with the 9
parts and tested with the other. The reported figure is the
average precision, which had a trivial deviation.

Results of the QL method, for a = 4000 reach a precision
of 33% for Dublin, 34% for the city of Manchester and 27%
for Boston, while they drop slightly as we reduce the size
of the boxes. Figure 4(a) illustrates the accuracy for each
city, for the tested granularities. We can observe, that al-
though the number of possible boxes quadruples from each
level of detail to the next, the accuracy of our method de-
creases in much slower fashion, even for the very specific
granularity of 500m. It is also noticeable that Boston is al-
ways clearly lower than the other two cities, which can be
attributed to the fact that the area we chose for Boston is
almost four times the size of the area we chose for Manch-
ester, as it is a much larger city. In addition, despite the fact
that the area for Manchester is much smaller than the one
for Dublin, they have very similar accuracies. This occurs
due to the landscape of each city, since some of the area
we selected for Dublin, inevitably contains a portion of sea,
without any tweets. Table 2 contains more detailed informa-
tion about the total number of tweets, the number of empty
and reported squares, as well as the average Error Distance
in kilometres for each city; for a = 1000m. Interestingly,

the average distance is only slightly reduced, when precision
is increased which indicates that our method often chooses
neighbouring boxes for smaller granularities. Our method
reports the majority of squares, which indicates that it is
not affected by the skewed distribution. However this bi-
ased distribution cannot be exploited to locate tweets. In
order to illustrate that, we created a method that assigns
a tweet to a location with a probability proportional to the
number of tweets in that box, which yielded an accuracy of
less than 1%.

Grid Size Tweets Empty Reported Error
Dublin 34 x 36 1099904 309 868 11.604
Manchester 21 x 22 798779 20 442 8.301
Boston 39 x 39 1014232 117 1521 14.822

Table 2: Details for QL experiments

6.3.1 QLU Method
In this experiment we evaluate whether users are topical,

and tend to tweet from the same places, when they do so by
their phones. Figure 4(b) presents the same information as
the previous section, for the method QLU which yielded a
precision of 80% for boxes of side 4000m in Dublin, which
was reduced only by 10% when reducing the size of the re-
ported area to 1/64 of the original. This result indicates
that users, across cities, tweet in a spatial routine pattern,
with a very big portion of their tweets from the same speci-
fied area.
Table 4(c) shows the sensitivity of our method when using
various percentages of the dataset as training. The upper
lines represent the accuracy QLU method while the bottom
ones represent QL. The latter is sensitive for tweet num-
ber, however QLU is not, which indicates the strength of
people’s habits to tweet from nearby locations.

6.4 Evaluation through Topic Models
This experiment illustrates how well we can summarize

the information from all the tweets we crawled, as well as
the effectiveness and necessity of our methods since we can
extract more meaningful and accurate topic models through
LDA [5]. Summarizing tweets through topics is important,
especially in the case of emergency identification. Modelling
the topics of discussion in a city, can aid towards defining
which are usual topics of discussion in a city, and thus the
ability to spot abnormal ones. Furthermore it can be used
to identify the rate with which people change topics of dis-

344

cussion, and identify a city-wide emergency in case of an
abrupt change, directions we are eager to investigate in the
future.

For the city of Dublin, we initially used the geo-Located
tweets we received from Twitter, and then those we were
able to download from the new users we discovered with our
method. Assuming that one wants to know what the major
topics of discussion in a city C are, during a time interval
t, we identify the difference between the two datasets. As a
measure of performance of LDA, we use perplexity as defined
in [27]. Perplexity essentially tells us how well our proba-
bility distributions over the topics, represent the testing set.
Our results indicate that the set of GeoLocated Tweets is
much more perplexed than the complete dataset, for various
training percentages, across different total number of topics.
Except for the case of the complete dataset being a training
set, the rest of the samples are non inclusive.

(a) GeoLocated Tweets (b) Tweets from all Users

Figure 6: Perplexity v Number of Topics, for various
percentages of the Dataset (lower is better)

Figure 6(a) shows the perplexity of the geo-Tweets when
divided with the perplexity of the complete set and most
topics which is the lowest. We can observe that the perplex-
ity drops significantly when using a bigger dataset, which
is of-course expected. However in the second case (Figure
6(b), which is the dataset with all the tweets, the perplexity
is at all levels much lower and less sensitive. This indicates
two things: Firstly, LDA creates better topic models given
our more holistic dataset, and secondly that even with a
small percentage of that data, we are able to create and re-
trieve a more coherent picture about the topics discussed in
a city than just with geo-located tweets. In other words, the
tweets which are geo-located are not enough to accurately
depict what the topics of conversation in a city are.

We also performed a qualitative test, by manually la-
belling the topics and determining how many can poten-
tially be annotated with a coherent topic of discussion. We
labelled the 20% and 100% of both datasets. After consid-
ering the results from the largest dataset as ground truth,
since it contains all other datasets, we evaluated how many
topics from each dataset are relevant to the this. The re-
sults are in Table 3 . We present some indicative topics and
annotations for each case in Table 4.

Relevant Annotated
20% Geo 10 32
100% Geo 18 37
20% All 27 42
100% All 45 45

Table 3: Relevant and Annotated Topics

7. CONCLUSIONS
Identifying information for a specific location is an impor-

tant problem. In this regard we analysed the structure of so-
cial networks for users that live in proximity and concluded
that there is a correlation between strong connectivity in the
social graph and proximity in the real world. We created a
method that captures the dynamic relations on such a graph,
and can locate users who live in a specific area, optimized for
minimum number of queries in the graph. Furthermore we
created a method for precise geo-location of tweets within a
city with high accuracy and provided extensive experimen-
tation on a real social network, regarding the effectiveness
of our method as well as the quantitative and qualitative
benefit from the newly found data.

8. ACKNOWLEDGMENTS
This work has been co-financed by EU and Greek Na-

tional funds through the Operational Program ”Education
and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Programs: THALIS
- GeomComp, THALIS - DISFER, ARISTEIA - MMD” and
the EU FP7 funded project INSIGHT (www.insight-ict.eu).

The authors would like to thank Myrto Vlazaki and Ioan-
nis Katakis for their their valuable insights and recommen-
dations

9. REFERENCES
[1] A. Agarwal, K. Hosanagar, and M. D. Smith.

Location, Location, Location: An Analysis of
Profitability of Position in Online Advertising
Markets. Journal of Marketing Research (JMR),
48(6):1057–1073, 2011.

[2] A. Ahmed, L. Hong, and A. J. Smola. Hierarchical
geographical modeling of user locations from social
media posts. In Proceedings of the 22nd international
conference on World Wide Web, WWW ’13, pages
25–36, 2013.

[3] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and
S. Vigna. Four degrees of separation. In WebSci, pages
33–42, 2012.

[4] L. Backstrom, E. Sun, and C. Marlow. Find me if you
can: improving geographical prediction with social
and spatial proximity. In Proceedings of the 19th
international conference on World wide web, WWW
’10, pages 61–70, 2010.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
Mar. 2003.

[6] H. S. Burton, W. K. Tanner, G. C. Giraud-Carrier,
H. J. West, and D. M. Barnes. Right time, right place
health communication on twitter: Value and accuracy
of location information. J Med Internet Res, 14(6):156,
November 2012.

[7] Z. Cheng, J. Caverlee, and K. Lee. You are where you
tweet: a content-based approach to geo-locating
twitter users. In Proceedings of the 19th ACM
international conference on Information and
knowledge management, CIKM ’10, pages 759–768,
2010.

[8] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: user movement in location-based social

345

20% Geo abortion ireland women abortion vote france vinb law issue politics country bill pro europe reading point government tax people bank

20% Geo tourism dublin ireland bar park photo guin dub street post tha cliath howth aerfort st bhaile square hotel temple green

20% Geo football united mufc great castle de enjoy day pal weekend love mate massive yea matchday stanakatic caskett hun

20% Geo rugby lion leinster rugby ihl fitness lions coybib gatland trx bod fitfam pm ym seaofre final match anglotape fella heinekencup

20% Geo ? donegal christina tom bloomsday roscommon fe casa kenny patrick theapprentice hill floor princess rackard ding alley min

100% Geo places dublin ireland bar guin dub tha cliath aerfort bhaile pic hotel airport temple storehouse pub st pint trinity college

100% Geo football: uk player united season game play arsenal football sign team haha league fan goal win suarez man mate mufc chelsea

100% Geo music show check play rt music gig album video film listen show eventsindublin live song awesome watch band festival game cat

100% Geo rugby lion game great win match play final gaa leinster team rugby golf ireland today wimbledon player murray congrats dub

100% Geo ? watch man life show call god car made hit kid years laugh mr tom men face jesus dream break

20% all irish jobs business ireland job dublin social jobfairy marketing digital media hire great tip irishjob startup network tech sales online company

20% all Politics:EC ireland bank tax eu people europe pay report government uk protest minister year state home court news service job

20% all food food restaurant wine lunch taste special beer coffee free cocktail dinner menu delicious chef recipe bar eat lovely yum

20% all abortion abortion vinb life women ireland bill vote seanad pro people baby politics law party dail fg debate prolife labour

20% all ? ur ya ye im goin yea dont wat tho pal ha gettin il wit ill ah nite jus bout

100% all Politics: EC ireland bank tax news eu britain report uk government police protest europe belfast human gold syria attack year minister

100% all research ireland great today health support student research eu event conference school day people children education week work launch europe

100% all abortion abortion ireland vinb women vote life people bill seanad law party support politics pro dail debate woman gay marriage

100% all irish jobs job dublin ireland business jobfairy irishbizparty manager hire sales recruit cork company bizhub engineer developer senior service client

100% all ? ur ya ye ha goin haha wat tho gettin il wit im dat de jus day yea nite

Table 4: Topics from the LDA for each dataset, and their annotation

networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’11, pages 1082–1090, 2011.

[9] J. Eisenstein, B. O’Connor, N. A. Smith, and E. P.
Xing. A latent variable model for geographic lexical
variation. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’10, pages 1277–1287, 2010.

[10] G. Fuchs, G. Andrienko, N. Andrienko, and
P. Jankowski. Extracting personal behavioral patterns
from geo-referenced tweets. 2013.

[11] B. Hecht, L. Hong, B. Suh, and E. H. Chi. Tweets
from justin bieber’s heart: the dynamics of the
location field in user profiles. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’11, pages 237–246, 2011.

[12] R. Holt. Twitter in numbers, Mar. 2013.
http://www.telegraph.co.uk.

[13] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and
K. Tsioutsiouliklis. Discovering geographical topics in
the twitter stream. In Proceedings of the 21st
international conference on World Wide Web, WWW
’12, pages 769–778, New York, NY, USA, 2012. ACM.

[14] Y. Ikawa, M. Enoki, and M. Tatsubori. Location
inference using microblog messages. In Proceedings of
the 21st international conference companion on World
Wide Web, WWW ’12 Companion, pages 687–690,
2012.

[15] S. Kinsella, V. Murdock, and N. O’Hare. ”i’m eating a
sandwich in glasgow”: modeling locations with tweets.
In Proceedings of the 3rd international workshop on
Search and mining user-generated contents, SMUC
’11, pages 61–68, 2011.

[16] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In
Proceedings of the 19th international conference on
World wide web, WWW ’10, pages 591–600, New
York, NY, USA, 2010. ACM.

[17] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of the 24th annual
international ACM SIGIR, SIGIR ’01, pages 111–119,
2001.

[18] T. Lappas, M. R. Vieira, D. Gunopulos, and V. J.
Tsotras. On the spatiotemporal burstiness of terms.

Proc. VLDB Endow., 5(9):836–847, May 2012.

[19] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.
Mahoney. Statistical properties of community
structure in large social and information networks. In
WWW, pages 695–704, 2008.

[20] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C.
Chang. Towards social user profiling: unified and
discriminative influence model for inferring home
locations. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’12, pages 1023–1031, 2012.

[21] W. Li, P. Serdyukov, A. P. de Vries, C. Eickhoff, and
M. Larson. The where in the tweet. In Proceedings of
the 20th ACM international conference on
Information and knowledge management, CIKM ’11,
pages 2473–2476, 2011.

[22] J. Mahmud, J. Nichols, and C. Drews. Where is this
tweet from? inferring home locations of twitter users.
In J. G. Breslin, N. B. Ellison, J. G. Shanahan, and
Z. Tufekci, editors, ICWSM. The AAAI Press, 2012.

[23] S. Murray. Twitter breaks news of whitney houston
death 27 minutes before press, Feb. 2012.
http://mashable.com.

[24] K. Ren, S. Zhang, and H. Lin. Where are you settling
down: Geo-locating twitter users based on tweets and
social networks. In Information Retrieval Technology,
volume 7675 of Lecture Notes in Computer Science,
pages 150–161. 2012.

[25] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes twitter users: real-time event detection by
social sensors. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages
851–860, 2010.

[26] G. Valkanas and D. Gunopulos. Location extraction
from social networks with commodity software and
online data. In ICDM Workshops, pages 827–834,
2012.

[27] H. M. Wallach, I. Murray, R. Salakhutdinov, and
D. Mimno. Evaluation methods for topic models. In
Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pages
1105–1112, 2009.

[28] S. Yardi and D. Boyd. Tweeting from the town square:
Measuring geographic local networks. In ICWSM,
2010.

346

Efficient Dissemination of Emergency Information using a
Social Network

Iouliana Litou
Department of Informatics

Athens University of
Economics and Business,

Athens, Greece
litou@aueb.gr

Ioannis Boutsis
Department of Informatics

Athens University of
Economics and Business,

Athens, Greece
mpoutsis@aueb.gr

Vana Kalogeraki
Department of Informatics

Athens University of
Economics and Business,

Athens, Greece
vana@aueb.gr

ABSTRACT
In the recent years social networks have undergone explosive
growth. They have been used as major tools for the spread
of information, ideas and notifications among the members
of the network. In this paper we aim at exploiting this new
communication channel for emergency notification, to de-
liver emergency information to all appropriate recipients.
We develop ESCAPE, our system for efficient dissemination
of emergency information in social networks. We propose
an approach that investigates the interactions and relation-
ships established between the members of the social group,
and develops a scalable dissemination mechanism that se-
lects the most efficient routes to maximize the information
reach. Our experimental results illustrate the feasibility and
performance of our approach.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]

Keywords
Distributed Systems, Social Networks, Information Dissem-
ination

1. INTRODUCTION
In the recent years social networks such as Facebook, Twit-
ter and Google+ have undergone an explosive growth, enu-
merating large numbers of subscribers. For example, Face-
book counts over 900 million active users, followed by Twit-
ter with over 550 million users and Google+ with over 170
million users1. They have been used as major tools for the
spread of information, ideas and notifications among the
members of the network. Recent studies reveal that social
networks can be used efficiently not only for “viral market-
ing” [17] to promote new products to targeted sets of users

1http://www.go-gulf.com/social-networking-users.jpg

(c) 2014, Copyright is with the authors.
Published in the Workshop Proceedings of the EDBT/ICDT 2014 Joint
Conference (March 28, 2014, Athens, Greece) on CEUR-WS.org (ISSN
1613-0073). Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

which further propagate the products through the “word-of-
mouth” effect to reach a larger audience, but also for discov-
ering emergent topics[1], emergency alerting, management
and public safety [16].

Consider for example the emergency event of an earthquake.
People in the vicinity of earthquakes are sharing anecdotal
information that earthquake alerts lagged behind firsthand
notification sent through Twitter, a popular Internet-based
service for sending and receiving short text messages[2, 9].
The study reveals that depending on the size and location
of the earthquake, scientific alerts can take between two to
twenty minutes to publish, while using Twitter’s notification
capabilities people were notified about the occurrence of the
earthquakes shaking within seconds of their occurrences.

Combining geographic coordinates with social networks, en-
ables social networks to interact with users relative to their
locations, or connect users with local events, places or groups
that match their interests. This is becoming increasingly
popular in several geosocial applications such as Facebook
Places2 and Foursquare3, where users are allowed to share
their geographic locations as well as make and receive recom-
mendations for a set of venues. In an emergency scenario,
such geosocial networks contribute not only to develop a
collective situational awareness about the event, but also al-
low users to coordinate around geotag information related
to hazards and disaster aid activities.

Thus, social networks (i.e., Twitter4, Facebook5, LinkedIn6)
are opening new avenues for massive emergency notification
due to their ability to (1) reach millions of social network
users, especially family and friends, (2) become alternative
communication mediums when wireless and telecommuni-
cation networks are congested during emergencies, and (3)
provide cost-effective solutions as they have the ability to
reach massive amounts of users without added infrastruc-
ture costs.

However, adopting social networks as an effective commu-
nication medium for emergency alerting raises considerable
challenges in the level of availability and responsiveness ex-

2https://www.facebook.com/about/location
3http://www.foursquare.com
4https://twitter.com/
5https://www.facebook.com/
6http://www.linkedin.com/

347

pected from these infrastructures in delivering notifications
to reach all recipients interested in receiving this informa-
tion (these can be people located in the area of the event i.e.,
students in a campus, as well as their relatives and friends).

In this paper we illustrate the problem of how to leverage
the social network for efficient dissemination of emergency
information. Our objective is stated as follows: Given a
social network comprising a number of users, the social re-
lationships of the users and the set of recipients , our goal is
to select an appropriate subset of the users to propagate the
emergency information such that (1) the expected spread of
information is maximized among interested users, (2) costs
are considered. Cost is defined as the amount of messages
that need to be exchanged among users. Thus, it could be
translated as either monetary cost (for an SMS) or resource
allocation cost.

We approach the problem by following discrete procedures
where user profiles are built, social relationships are inferred
and dissemination paths among the nodes of the social net-
work are computed and during the occurrence of an emer-
gency event, a small number of seed nodes is selected to
efficiently disseminate the emergency information to all in-
terested recipients during the event.

Current influence maximization approaches are not adequate
to solve these problems. The problem of maximizing the
spread of influence in social graphs has been addressed in
[8, 19, 24, 13], but none of these works has study the prob-
lem in the context of emergency notification. Furthermore,
they aim at maximizing the influence in the entire network
rather than identifying and informing an appropriate subset
of nodes that would be most interested to the event.

Emergency response outside social networks has also been
studied. The use of geographical notification systems has
been considered in [14]. The system described is meant pri-
mary for constructing overlays that support location-based
regional multicasting where they also consider issues of pro-
viding reliable storage of social information events under
extreme regional conditions. Traditional approaches such
as multicast [21, 11] and publish/subscribe systems [18] are
not appropriate for our setting since they will inform only
subscribed users, while we need to alert all users associated
with the emergency event. In our system, we consider users
are already subscribed to the network. Moreover, the set
of users to be informed by our system is not determined
based only on locational criteria, but also on relationship
criteria, so its not considered to be a strictly location-based
approach.

On the other hand, approaches like flooding and gossiping
[4, 6, 7] will inform most of the users interested in the event,
but they will also produce a large amount of spamming to
the other users, thus adding extra cost to the network.

Our paper makes the following contributions:

• We present ESCAPE (Efficient diSsemination using
soCiAl graPh for Emergency response), a system that
solves the problem of efficient dissemination of emer-
gency information in social networks. We show that

the problem of selecting an appropriate influential set
of individuals to maximize the spread of information
is NP-hard and provide a greedy algorithm to solve
it. We do not aim at spread maximization as previ-
ous works, but rather at reachability maximization of
a subset of users with the least cost.

• We perform experiments to validate our approach. Our
experimental results illustrate that our approach is
practical and effectively addresses the problem of in-
forming the maximum amount of users with the least
messages when an emergency event occurs, and out-
performs its competitors.

2. BACKGROUND
Kempe et al.[13] were the first to propose cascade models in
Social Networks. They define two models describing the way
influence is propagated in Social networks, namely the In-
dependent Cascade Model and the Linear Threshold Model.

Both models require that a weighted graph representing the
social network is given. In the graph, nodes represent users,
edges represent influence flow between users and weights rep-
resent the probability that the influence propagation is suc-
cessful among nodes connected with that edge.

In the Linear Threshold Model, aside from the weights to the
edges, a threshold is also associated with each user. That
threshold expresses the susceptibility of a user to the in-
fluence. Nodes that are already influenced are referred as
active nodes and the remaining as inactive. A node in the
Linear Threshold Model in considered to be activated when
the sum of the edges of its currently active neighbors reaches
the threshold.

Unlike the Linear Threshold Model, in the Independent Cas-
cade Model no thresholds are considered. The cascade is
progressing in steps and at each step, currently active nodes
have the chance to influence their neighbors. Nodes have
only a single chance of activating their neighbors, and the
probability that they succeed is defined by the weight of the
edge.

In this work we consider the Independent Cascade Model to
be more appropriate of describing the way the information
is spread.

3. PROBLEM DEFINITION
We now provide a formulation of the problem and prove its
NP-completeness. Consider a social graph G = (V, E, W),
where each vertex u ∈ V represents a user, each edge euv ∈
E denotes a social relation between a pair of users (u, v),
and wuv corresponds to the strength of the relationship be-
tween the users. The relations between the users are as-
sumed to take place over the lifespan of the network (an
edge occurs between a pair of users if and only if the two
users are connected socially in some manner). Given a so-
cial graph G = (V, E, W), a subset of the vertices S ⊂ V ,
and a positive integer k < |V |, our goal is to find a seed
set M ⊂ V , such that the expected number of nodes in S
informed by M is maximized, and |M | ≤ k.

Thus, the problem to be solved is how to maximize the

348

amount of nodes n ∈ S that will be informed given a max-
imum amount of k seeds that can be used. Note however
that not all nodes are constantly connected to the system.
Thus, we aim at maximizing the information spread by se-
lecting at most k vertices from V to efficiently disseminate
the messages, under the condition that these nodes are con-
nected.

Our problem differs from traditional influence maximization
problems, such as the Independent Cascade (IC) Model [13].
The difference is that our goal is to inform a subset of nodes,
S ⊂ V , referred as interested nodes, which are closely af-
fected by the event. Thus, we aim at maximizing the number
of nodes n ∈ S that will be informed, rather than informing
all the nodes in the graph. The key challenge here is that
the reachability of the nodes, in terms of physical connec-
tivity, introduces constraints on the availability of the nodes
in the graph, since there may only be a subset R of nodes
that can be reached. Thus, not all nodes of the network are
candidate seeds.

Similarly to the IC model, whenever a node is informed,
there exists only one chance that this node forwards the
message to its neighbors. The problem as stated above is
NP-complete. The reduction from Hitting-Set to this prob-
lem is quite trivial. The Hitting-Set problem is defined as
described below.

Hitting-Set: Given a set A = a1, ..., an and a collection
B1, ..., Bm of subsets of A and a number k. There exists
a Hitting-Set H ⊆ A of size k such that H

⋂
Bi 6= ∅,

1 ≤ i ≤ n.

Proof: Reduction from Hitting-Set problem. If we
consider the original set V of nodes and subsets of V B1, B2,..,
Bm constructed in a way that if one node in Bi is informed
then all others in Bi are informed too, which is an assump-
tion that makes the problem easier, then we need to find a
set H ⊆ V of size k such that H

⋂
Bi 6= ∅, 1 ≤ i ≤ m.

Without considering the assumption H ⊆ R the problem is
NP-Complete. The restriction just makes it harder.

Since the problem is NP-Complete we develop an approxi-
mation algorithm to solve the problem efficiently.

3.1 Overview of the ESCAPE System
In this section we provide an overview of our ESCAPE (Ef-
ficient diSsemination using soCiAl graPh for Emergency re-
sponse) system. In order to achieve maximum reachability
of interested users, the system implements the following pro-
cedures: i)Profiling of users based on past actions, ii) Social
Strength assignment, denoted as the weights of the edges
among users in the social graph and iii) a Dynamic Noti-
fication of a subset of users (referred as seeds) to initially
receive the information when an event occurs, and further
propagate it.

As users connect to the social network, it is possible to ex-
tract user information by exploiting the networks created
and the messages exchanged among the users. The Profiling
procedure (further discussed in 4.1) is responsible for build-
ing user profiles and maintain user statistics. It uses the raw
data of the user interactions to generate a list Iu for each

user u ∈ V , that contains the interactions of user u with any
other user in the network. The weights of the social graph
G(V, E, W) are inferred based on the information extracted
by the Profiling procedure and it characterizes the social re-
lationships among the users based on past interactions, thus
it denotes the Social Strength among a pair of user in the
graph.

Finally, when an event occurs the Dynamic Notification pro-
cedure is triggered. Information computed and maintained
by the Social Graph that is formed among users is utilized
to identify the initial receivers of the message so as to maxi-
mize the spread of information to the interested users, while
using the least amount of messages.

The overall architecture and the interaction between differ-
ent procedures is depicted in Figure 1 and the corresponding
functionalities are described in the following sections.

4. EFFICIENT DISSEMINATION OF
EMERGENCY INFORMATION

In this section we start by describing the metrics we use to
identify and characterize the social relationships among the
users in the social graph and then we present our dynamic
notification algorithm that aims at selecting a subset of the
users to propagate the information.

4.1 Profiling
To construct the social graph, the first step is to identify and
characterize the social relationships through the messages
exchanged among the users. We build user profiles for each
user u ∈ V . Each user u is associated with a unique id, this
for example might be the user’s id in the social network, and
is used each time the user logs into the system.

Whenever user u sends a message to a user v, the list of
interactions Iu of user u is updated. The form of the tuples
in the Iu list is: < v, mv, timestampv >, where v is the id
of the receiver of the message mv, timestampv denotes the
unix timestamp when the message was sent.

The data retrieved from the user profiles is used for the
Social Graph construction G(V, E, W). This is represented
as a directed weighted graph. The graph is not required
to be updated in a continuous manner, but in discrete time
intervals. Each user u in the Social Network forms a node in
the graph. For each node v in the Iu list of user u, an edge
is instantiated in the graph between u and v. We associate a
weight with each edge in the graph to represent the“strength
of the relationship” among the users in the social network.
The weight takes values in the range between (0, 1], where a
value of 1 denotes a strong relationship between the users.
The weights wuv are assigned according to one of the metrics
described below. We note that there are several mechanisms
for assigning weights to edges as stated in the related work
section [10, 22, 25]. Although in our work we focus on the
metrics described below, the model is generic enough and
can be extended so that several metrics can be considered.

To compute the weights of the edges we consider a simple
metric, that represent the “social strength” of the relation-
ship between two users:

349

Figure 1: The ESCAPE Architecture. Figure 2: The Node Types.

• Frequency of communication (FC). Usually people that
are strongly connected to each other, communicate
more often. Thus, the frequency of the communica-
tion captures the strength of the relationship between
the users. The frequency is not defined as an absolute
value for all users (i.e. twice a day) as some users are
more sociable than others, and that should be taken
into account. So, the frequency of communication be-
tween a pair of users (u, v) is defined as:

fuv = |mv| ∈ Iu/
∑

i∈Iu

mi (1)

Thus, fuv, for user u, denotes the amount of messages
exchanged with user(v), denoted as mv, out of the to-
tal messages that user u has sent to every other user
i, mi. In the case of the Twitter social network, the
strength of the user relationships is perceived through
the tweets exchanged. It is important to note that fuv

differs from fvu, since Twitter presents large asymme-
try in the relations due to broadcasters and miscreants
[15].

• Regularity of communication (RC). It is known that
people having strong social bonds may not necessarily
communicate very often, but they may be communi-
cating at regular time intervals. So regularity of com-
munication is also considered as an important factor
in calculating the strength of a relationship. The reg-
ularity metric is defined as:

fuv = 1/ log (duv + 1) (2)

where duv represents an average time lapse (e.g. days)
between user communication. For instance, if user u
interacts at each time lapse (e.g. daily) with user v
then duv equals 1. The regularity is time-window based
and considers the regularity of communication within
this time window.

We compute the normalized weight so that it is insensitive
to the user’s special characteristics and does not depend on
the set of data measured for a specific user as:

wuv = fuv/max{fuv′ : v′ ∈ neighbor(u)} (3)

Note, though, that the above mechanisms aim at deriving
the strength of a relationship among users automatically,
without user involvement. However, in some cases, it is de-
sirable that users are given the opportunity to define their
own set of individuals to be informed in cases of emergency.
In this case, the user defines the list of emergency contacts
and the corresponding weights of those edges equal 1, re-
gardless of the metric.

For our experiments we use the FC metric for characterizing
the weights among users in the network, since it is more ap-
propriate for our dataset, as RC may require data collected
for a longer time to appropriately and stably characterize
the strength.

4.2 Dynamic Notification
Whenever an event occurs we identify the following roles
among the users (shown in Figure 2): (a) Interested nodes
are all nodes that are interested in the occurrence of the
event. These are nodes that are more important in informa-
tion spreading process and the ones we aim to reach. They
are subset of the original graph and we represent them as
the nodes belonging to the white cloud in the figure. They
represent users within the area of the event or users related
to them or to the area in someway, but are not physically
there. (b) Reachable nodes are the nodes that can be
reached after the occurrence of the event, i.e. information
can be directly sent to them and they can be either inter-
ested or not. These nodes are the ones that belong to the
blue cloud. (c) Seed nodes are the nodes to which infor-
mation is initially sent, so they are the nodes that we aim at
identifying to initiate the propagation process. These nodes
are subset of the reachable nodes and we illustrate them as
green nodes.

The basic functions of the Dynamic Notification process is
to determine the users interested in the event, and select an
initial set of nodes (seeds) that have will be informed for the
event and initialize the propagation process to reach inter-
ested users. That is accomplished using a greedy approxi-
mation algorithm in order to maximize the finally reached
nodes given the size of seed nodes. It is noted that seeds
are nodes that can be accessed during the occurrence of the

350

event, thus consists of the reachable nodes in figure 2.

4.2.1 Seed Selection
When an event occurs, the seed selection process is trig-
gered. The first step of the process is to determine the in-
terested nodes. These can be determined in various ways
based on geosocial criteria. They could be: (i) users who
are physically located to the place of the event, (ii) related
to users (i.e. relatives), (iii) related to the place of the event
(i.e. students). The next step is to determine the reach-
able nodes in the network i.e. nodes that are connected
and are accessible, that is they are connected in the social
network immediately after the event (e.g. these can be ob-
tained when a user logs into the network). Let R be the
set of reachable nodes and S be the set of interested to the
event users. For nodes in R we determine the paths that
start at node u ∈ R and terminate at node v ∈ S. For those
paths the probability p(u,v) that a message initialized be u
traverses the path and reaches v is calculated. The proba-
bility that the path is traversed can be calculated in various
ways. For our experiments we define the probability as the
product of the weights of all edges that must be traversed
from u in order to reach v. After probabilities are calculated
the greedy step for the seed selection process follows.

Greedy Node Selection: Consider a set of seeds M , a set of
nodes A that we expect that will be informed by M , thus
M ⊆ A, the set of interested nodes S, the set of reachable
nodes R, and a candidate seed u ∈ R to be added in M .
The greedy step for the selection of u is:

M ∪ u s.t. σ(u) = max{σ(v) : ∀v ∈ R \ A} (4)

where σ(u) =
(
∑

v∈S\A p(u, v))2

|S \ A|

Intuitively, σ(u) computes the number of interested nodes
v ∈ S informed when u is selected as the root of the dis-
semination process, while taking into account the average
probability that those nodes are effectively informed. Nodes
that are possibly informed by previous seeds selected are
not computed to the efficiency of u. Thus, the algorithm
may produce a seed set that has multiple seeds reaching the
same node in S, i.e. consider nodes in u1, u2 ∈ M that
both have paths to node v ∈ S. This case is not undesirable
since the chance of v being informed is increased. Possibly
informed nodes are computed using Monte-Carlo simulation
while considering as seed only the latest node added in the
seed set.

The above function for seed selection can be proved to be
monotonous and submodular, and thus approximates the
best solution.

4.2.2 Dissemination of Information
Assuming a set of seed nodes M , our model propagates the
emergency information in a number of steps. Let At be the
set of nodes informed at step t. At the beginning, the seed
nodes are the only ones informed and thus A0 = M . At step
t+1, every node u ∈ At is able to inform each of its currently
uninformed neighbors v and the probability that u informs
v is given by the probability denoted by the weight of the

edge (u, v), wuv. Each node has a single chance of informing
its currently uninformed neighbors about the event.

The above described procedures are summarized in algo-
rithm 1.

Algorithm 1 Efficient Dissemination

S1 → Directly connected to the event users
S2 → Compute Indirectly Connected to the Event (S1)
S → S1

⋃
S2

R → get reachable nodes(G)
Seeds → ∅ //nodes that will act as propagation starters
(Subset of R)
A → ∅ //nodes possibly informed by previously selected
seeds
while (|Seeds| < k) do

newseed → get most effective node(G, R, S, A)
A → add possibly informed users(newseed)

return Seeds

5. EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We have implemented our ESCAPE system and tested it
with a real-world dataset.

Our Twitter dataset is composed of 513.449 tweets posted
by 175.974 unique users in the city of Dublin for a four-
month period (Dec 2012 to Mar 2013). We collected tweets
using the Streaming API 7 of Twitter, where we applied a
filter so that only tweets geographically located in Dublin
are extracted. The filtering is based on the “Location” field
set by the user and is either expressed as GPS coordinates
or as part of the text of the tweet[23]. Tweets that were
posted and had GPS location(Latitude, Longitude) provided
by the devices’ GPS sensor are also extracted. After tweets
related to Dublin are extracted, users that posted tweets
are gathered and by using the REST API 8 and the user
ids, all tweets for each user are requested. A tweet has the
following structure <Tweet ID, User ID, UTC/GMT times-

tamp, Latitude, Longitude, ID of tweet replying, ID

of user replying, Number of retweets, Source (iPad,

Android), Text>. From this structure, the User ID is used
to obtain the screen name of the user, the UTC/GMT times-
tamps are used to compute the regularity metric and the
Text is used to extract the users mentions with the ’@’ sym-
bol. No further information related to the users is used. We
do not consider any anonymization issue [5] since we assume
that the authority that executes the system can be trusted
(e.g., the case of a campus social network). Twitter users can
be classified into three major clusters as previously shown in
[15]. These clusters are the broadcasters, the acquaintances
and miscreants. Due to this asymmetry presented between
users the graph that is formed is a directed weighted graph.

The experimental evaluation focuses on the following param-
eters: (i) Number of Informed Nodes from the users that are
interested to be alerted for the event and (ii) Performance
under different amount of Reachable users.

7https://dev.twitter.com/docs/streaming-apis
8https://dev.twitter.com/docs/api

351

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

A
m

o
u

n
t

O
f

U
s
e

rs

Amount Of Friends

Figure 3: Friends of Users

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

A
m

o
u
n
t
O

f
T

w
e
e
ts

Amount Of Users

Figure 4: Tweets of Users

5.1.1 IRIE Overview
Jung et al. proposed IRIE[12], an algorithm that incorpo-
rates Influence Ranking and Influence Estimation for the in-
fluence maximization problem in the IC and IC-N (negative
opinion propagation) model, which is proved to run faster
than previous algorithms aiming to solve the problem of In-
fluence Maximization (IM). They use a greedy algorithm for
selecting the most influential nodes as in previous works on
IM, but the process of estimating the influence integrates
a system of linear equations whose solutions are computed
iteratively. They compute influence rank of nodes, and for
each node added to the seed set they compute the influence
estimation of the seed set, using Monte-Carlo simulations for
their experiments, though they note that other techniques
for influence estimation can be deployed. For the weighting
of the graph’s edges the trivalency and the weighted cascade
(WC) models are used.

5.2 Experimental Results
5.2.1 Twitter Data
We present Figures 3,4 to better understand the form of
our Dataset in terms of number of users connected in the
network and social relationships between users. In figure 3
we show the sets of users and their corresponding amount
of friends. As can be observed from the figure, the majority
of the users have friends that range from 1 to 100, while the
amount of users with higher number of friends is small. In
figure 4 the amount of tweets for the corresponding size of
users is presented. This figure illustrates that the amount
of tweets decreases as the amount of users increase and that
only a few users have a great amount of tweets.

5.2.2 ESCAPE Evaluation
In this section we present the performance of our approach
and we compare it with the state-of-the-art algorithm IRIE,
which is the fastest algorithm in the literature that we know
of and is able to perform influence maximization equally
effectively to its competitors.

In the first set of experiments we present our approach when
we set that 10% of the users are reachable (2371) out of the
interested set (this corresponds to a set of 23710 nodes).
In figure 5 we present the percentage of interested nodes
that each approach is able to inform, relative to the users

informed if all reachable nodes were selected as seeds. ES-
CAPE manages to inform more users than IRIE at all times,
with a percentage that ranges from 8% to 13%.

In the second set of experiments we have the same setting
but we consider that 20% of the users is reachable (this cor-
responds to 4742 users). Figure 6 presents the percentage
of interested nodes that were informed and we see that the
percentage has decreased. That is because when sending
to all 20%, more interested nodes would be informed, com-
pare to 10% since the size of reachable users set is doubled.
The above results are relative to the users that would be in-
formed if all reachable nodes were used as seeds. However,
the percentage of users that ESCAPE manages to inform is
more than 9 units percent over IRIE at all times. As can
be observed, as the number of seeds goes up the gab be-
tween ESCAPE and IRIE becomes slightly smaller. That is
due to the fact that the intersection of seeds sets for both
algorithms contains more nodes. We expect that they will
converge later when all reachable nodes are added as seeds.
We add 50 seeds per iteration, so that is why the angle is
presented in figures 5 and 6. When no seeds are selected,
no users are informed. IRIE requires about 4427 seconds
for determining 500 seeds while ESCAPE requires only 385
seconds when reachable modes are set to 20%, and 5158 sec-
onds against 292 seconds respectively when reachable nodes
are set to 10%. That makes ESCAPE more appropriate for
emergency response. Due to the sparsity presented in the
social graph, we notice a stabilized performance for both
algorithms when more seeds are added.

6. RELATED WORK
Using social networks as dissemination tools has attracted
interest in recent years in various application domains, in-
cluding viral marketing campaigns and voting systems. In
the majority of the applications the key point is influence
maximization, i.e., spreading the information to as many
people as possible[13] or maximizing the likelihood that some-
one is being informed for a particular issue[10]. In all related
works, the social network was represented as a weighted
graph, with users as nodes and relationships between them
as edges.

Several efforts have focused on inferring edge weights in so-

352

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

In
fo

rm
e

d
 F

ro
m

 R
e

a
c
h

e
d

Seeds

ESCAPE

IRIE

Figure 5: Informed From Reached - 10% Reachable

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

In
fo

rm
e
d
 F

ro
m

 R
e
a
c
h
e
d

Seeds

ESCAPE

IRIE

Figure 6: Informed From Reached - 20% Reachable

cial graphs. These take into account various information
crawled by the social network related to users or the types
of actions among the users. Recently, Facebook announced a
metric called Edgerank, used to determine the items to pop-
ulate at a users news feed. Edgerank considers the affinity
of users, the actions made between users’ profiles and time
elapsed since the last interaction to determine the strength
of the bond between different users and order news feeds ac-
cording to the Edgerank metric[22]. Goyal et al [8] consider
a number of models, including a Weighted Cascade (WC)
model where the probability on an edge (v, u) is defined
as 1/in − degree(u), a Trivalency model where probabili-
ties are randomly and uniformly selected from the set {0.1,
0.01, 0.001}, and the model where probabilities learned from
a training set using the Expectation Maximization (EM)
based method suggested by Saito et al [20]. Unlike the
Edgerank affinity, the number of users is not considered in
this metric and different types of actions are not defined.
Hangal et al in [10] suggest metrics for weighting the edges
of a Social Graph so that the asymmetry presented in the
network is captured. They also argue the fact that the short-
est paths are eventually the strongest ones. They prove that
utilizing edge weights may well improve global social search.
Perhaps a more sophisticated metric that aims in predict-
ing the strength of a relationship based on interaction and
user similarity is established by Xiang et al. [25]. A la-
tent variable model is considered in which the relationship
strength forms the latent variable. An unsupervised model
to estimate relationship strength from interaction activity
and user similarity is developed. However, the model pro-
posed requires data that may not be publicly available due
to users privacy settings, thus, it is not applicable to all
types of social networks.

Maximization of spread, given the weight of the edges al-
ready computed, is studied in [13]. The two models proposed
are the Independent Cascade Model and the Linear Thresh-
old model. The problem of influence maximization with the
least effort (i.e., using k or less nodes as starters), is stated as
an NP-Hard problem, so provable approximation guarantees
are obtained. In both models suggested by Kempe, nodes
have two states, either active or inactive. When a node is
active it means that the information has reached the node
and the node is in position of forwarding it to its neighbors.

They explore the above described models when a set of k ini-
tial nodes is being activated (targeted). It is proved that a
greedy hill-climbing algorithm for both models gives a good
approximation as long as the influence function has certain
properties which, as proved, is true. Influence probability
and propagation is also a case of study in [3].

In [24] they propose variations for the independent cascade
model so as to minimize computational cost. Paths whose
probabilities is below a given threshold θ are excluded, with
θ being tunable. Contrary to our approach, these efforts
(1) assume that the influence graph is known and aim at
maximizing the influence in the entire network rather than
identifying and informing an appropriate subset of nodes
most interested to the event, and (2) they focus on cases of
viral marketing campaigns or voting systems, rather than
emergency response situations.

Gomez-Rodriquez and Schölkopf [19] study the efficient in-
fluence maximization in time diffusing networks. They con-
sider the influence maximization problem where informa-
tion or influence can spread at different rates across different
edges and analytically compute and efficiently optimize the
influence avoiding the use of heuristics. The greedy algo-
rithm in combination with the Lazy Evaluation, Localized
Source Nodes and Limited Transmission Paths are proposed
as speed-ups for the computations.

Kyungabaek et al [14] define two types of correlated to an
event users. The ones located to the area of the event and
those that have social ties with them. The notification sys-
tem proposed for alerting users in case of an emergency event
is aware of the geographies the message needs and social ties.
Their system has a prior knowledge of Global Target Geog-
raphy (GTG). Nodes are classified as physical nodes (PN-
odes) and trusted physical nodes (T-PNodes) that represent
some sort of authority or public figure. After the occurrence
of an event Possibly Affected Region (PAR) is defined as a
sub-region of GTG and Possibly Damaged Region (PDR)
as sub-region of PAR. They define two types of overlays.
The Delivery Overlay which aims in reaching PNodes and
the Information Overlay which is responsible for maintain-
ing information about social entities. They customize the
social diffusion process so that good initiators are selected.

353

7. CONCLUSIONS
In this paper, we have presented our ESCAPE system that
investigates the relationships and interactions among the
members of a social group, and develops a dissemination
mechanism to maximize the information reach to a target set
of users, when an emergency event occurs. As we illustrate
in our experimental evaluation ESCAPE with its intelligent
seed node selection process, manages to inform more inter-
ested users than the state-of-the-art technique IRIE, that
aims in Influence Maximization.

Acknowledgment
This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through
the Operational Program“Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF) -
Research Funding Programs: Aristeia-MMD Aristeia-Inception
Investing in knowledge society through the European So-
cial Fund, the FP7 INSIGHT project and the ERC IDEAS
NGHCS project.

8. REFERENCES
[1] F. Alvanaki, S. Michel, K. Ramamritham, and G. Weikum.

See what’s enblogue: real-time emergent topic identification
in social media. In EDBT, pages 336–347, Berlin, Germany,
March 2012.

[2] J. P. Bagrow, D. Wang, and A.-L. Barabasi. Collective
response of human populations to large-scale emergencies.
CoRR, abs/1106.0560, 2011.

[3] F. Bonchi. Influence propagation in social networks: A data
mining perspective. IEEE Intelligent Informatics Bulletin,
12(1):8–16, 2011.

[4] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M.
Kermarrec. Whatsup decentralized instant news
recommender. In IPDPS, Boston, MA, May 2013.

[5] S. Das, Ö. Egecioglu, and A. El Abbadi. Anónimos: An
lp-based approach for anonymizing weighted social network
graphs. IEEE Trans. Knowl. Data Eng., 24(4):590–604,
2012.

[6] P. Eugster, P. Felber, and F. Le Fessant. The “art” of
programming gossip-based systems. SIGOPS Oper. Syst.
Rev., 41(5):37–42, Oct. 2007.

[7] R. Friedman, D. Gavidia, L. Rodrigues, A. C. Viana, and
S. Voulgaris. Gossiping on manets: the beauty and the
beast. SIGOPS Oper. Syst. Rev., 41(5), Oct 2007.

[8] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based
approach to social influence maximization. volume 5, pages
73–84, Seattle, WA, August 2011.

[9] M. Guy, P. Earle, C. Ostrum, K. Gruchalla, and
S. Horvath. Integration and dissemination of citizen
reported and seismically derived earthquake information
via social network technologies. In IDA, pages 42–53,
Tucson, AZ, 2010.

[10] S. Hangal, D. MacLean, M. S. Lam, and J. Heer. All friends
are not equal: Using weights in social graphs to improve
search. In SNA-KDD, Washington, DC, July 2010.

[11] M. Iqbal, X. Wang, D. Wertheim, and X. Zhou. Swanmesh:
A multicast enabled dual-radio wireless mesh network for
emergency and disaster recovery services. JCM,
4(5):298–306, 2009.

[12] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust
influence maximization in social networks. In ICDM, pages
918–923, Brussels, Belgium, December 2012.

[13] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In SIGKDD,
pages 137–146, Washington, DC, USA, August 2003.

[14] K. Kim, Y. Zhao, and N. Venkatasubramanian. Gsford:
Towards a reliable geo-social notification system. In SRDS,

pages 267–272, Irvine, CA, October 2012.
[15] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps

about twitter. In WOSN, pages 19–24, Seattle, WA, USA,
August 2008.

[16] A. M. Lesperance, M. A. Godinez, and J. R. Olson. Social
networking for emergency management and public safety.
Pacific Northwest National Laboratory Richland, WA, 2010.

[17] B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained
influence maximization in social networks. In ICDM, pages
439–448, Brussels, Belgium, December 2012.

[18] J. J. Ordille, P. Tendick, and Q. Yang. Publish-subscribe
services for urgent and emergency response. In
COMSWARE, pages 8:1–8:10, Dublin, Ireland, June 2009.

[19] M. G. Rodriguez and B. Schölkopf. Influence maximization
in continuous time diffusion networks. In ICML,
Edinburgh, Scotland, June 2012.

[20] K. Saito, R. Nakano, and M. Kimura. Prediction of
information diffusion probabilities for independent cascade
model. In KES, pages 67–75, Zagreb, Croatia, Sep 2008.

[21] J. Singh and J. Bacon. Event-based data control in
healthcare. In Middleware, pages 84–86, Leuven, Belgium,
December 2008.

[22] D. Taylor. Everything you need to know about

facebookâĂŹs edgerank. The Next Web, 9, May 2011.
[23] G. Valkanas and D. Gunopulos. Location extraction from

social networks with commodity software and online data.
In ICDMW, Brussels, Belgium, December 2012.

[24] C. Wang, W. Chen, and Y. Wang. Scalable influence
maximization for independent cascade model in large-scale
social networks. Data Mining and Knowledge Discovery,
25(3):545–576, 2012.

[25] R. Xiang, J. Neville, and M. Rogati. Modeling relationship
strength in online social networks. In WWW, pages
981–990, Raleigh, NC, USA, April 2010.

354

Crowdsourcing turning restrictions for OpenStreetMap

Alexandros Efentakis
Research Center “Athena”

Artemidos 6, Marousi 15125, Greece
efentakis@imis.athena-innovation.gr

Sotiris Brakatsoulas
Research Center “Athena”

Artemidos 6, Marousi 15125, Greece
mprakats@ceid.upatras.gr

Nikos Grivas
Research Center “Athena”

Artemidos 6, Marousi 15125, Greece
grivas@imis.athena-innovation.gr

Dieter Pfoser
∗

Department of Geography and
GeoInformation Science

George Mason University
4400 University Drive, MS 6C3

Fairfax VA 22030-4444
dpfoser@gmu.edu

ABSTRACT
The abundance of GPS tracking data due to the emergence and pop-
ularity of smartphones has fuelled significant research around GPS
trajectories and map-matching algorithms. Unfortunately, none of
this previous research addresses the issue of identifying turning re-
strictions in the underlying road network graph. Our latest research
endeavour remedies this, by proposing a novel, straightforward and
effective way to infer turning restrictions for OpenStreetMap data,
by utilizing historic map-matching results from an existing fleet
management service. Our experimental evaluation based on the re-
sults acquired for three European cities within an one-year period,
proves the robustness and credibility of our method.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering;
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Design

Keywords
Crowdsourcing, Turning Restrictions, Map-matching, OpenStreetMap

1. INTRODUCTION
Our latest research efforts of [22] aimed towards combining state-

of-the-art research about road networks, Floating Car Data, map-
matching, historic speed profile computation, live-traffic assess-
ment and time-dependent shortest-path computation to provide an
efficient, yet economical fleet management solution. This process

∗On leave from Research Center “Athena”, Greece.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

was documented in [5] and its result, our fully functional Sim-
pleFleet fleet management system and its accompanying demo [7]
now cover the urban regions of three European metropolitan cities
namely: Athens (Greece), Berlin (Germany) and Vienna (Austria).
Creating the actual service required several intermediate steps such
as: Creating road network graphs from OpenStreetMaps data, col-
lecting a large amount of Floating Car Data (FCD) from fleet ve-
hicles, applying state-of-the-art map-matching algorithms on this
data for aligning the GPS traces to the road network graph and
consequently producing high-quality historic speed profiles along
with frequently updated live-traffic assessment. This combination
of live-traffic information and speed profiles was subsequently used
to provide up-to-date live-traffic shortest-path and isochrone com-
putation (refreshed every 5 minutes). In addition, our recent work
of [6] has already combined the live-traffic isochrone functionality
of this system with demographic / business data to showcase the
impact of traffic fluctuations in a geomarketing context. There, one
can see in a quantitative way the considerable importance of traffic
and how it should affect geomarketing decisions.

It is obvious that the success of every fleet management solution
depends highly on the quality of the road network graph. Although
OpenStreetMap (OSM) is a crowdsourced, high-quality, frequently
updated road network dataset, an entire year of running the Sim-
pleFleet service for its three urban regions has revealed a inherent
limitation of the OSM dataset: Its limited information for turning
restrictions, i.e., a transition from one network edge to another (via
an intersection node) that is prohibited due to local traffic rules.
It is not that OSM data does not support turning restrictions: an
additional relation tag (Relation:restriction [19]) is defined for de-
scribing such restrictions. The problem is that only a small number
of users contribute to this information. While OSM includes more
than 2.1 billion Nodes, Ways and Relations [17], less than 230,000
relations actually represent turning restrictions [19]. This is even
more obvious, when we look at our individual test cases: For the
city of Athens and its road network of 277K nodes, only 214 turn-
ing restrictions have been recorded by OSM users. This lack of data
is to be expected: there are no public datasets for traffic signs easily
found (if any), satellite imagery cannot reveal this information and
adding turning restrictions even for a single road is extremely time-
consuming. Keep in mind that turning restrictions do not include
one-way streets. Such streets are easily modeled in every directed
graph representation, are easily recognized by users and OSM data
has extensive coverage for them.

355

Turning restrictions on road networks are especially important
for any routing / isochrone service. While a lot of scientific lit-
erature has focused on time-dependency on road networks (due to
the fluctuation of traffic) and consequently the implementation of
efficient shortest-path algorithms that address this issue, there is a
limited number of works that deal with turning restrictions. This
is mostly due to the fact that “no publicly-available realistic turn
data exist”[4]. Note that turning restrictions have a more dramatic
impact on shortest paths provided by mapping services than traffic:
While ignoring traffic returns a valid, yet suboptimal route to the
user, ignoring turning restrictions returns erroneous paths that may
lead to accidents. As a result, providing an efficient method for au-
tomatically identifying turning restrictions is extremely important.

When searching existing scientific literature for solving this is-
sue, we found a significant body of work based on Floating Car
Data (FCD) in various areas (see [29] for a partial overview on GPS
related research). The only previous works relevant to solving (or
even acknowledging) our actual problem also use FCD for calcu-
lating turn delays [1, 13, 23, 27, 28]. It was really a surprise, when
we did not find any literature devoted to the results of the map-
matching (MM) algorithms, as though those results may strictly be
used for travel-time estimation. In this sense, we beg to differ, be-
cause the main focus of this work is to automatically identify / infer
turning restrictions in the OSM dataset by utilizing historic map-
matching results, i.e., we crowdsource the identification of turning
restrictions to local vehicle drivers by mining the map-matching re-
sults produced by them, when traversing the road network graph.
This is also the true novelty of our contribution: instead of using the
GPS trajectories directly, we use the map-matching results derived
from them. Our approach makes sense: In comparison to raw GPS
traces, map-matching results are: a) more condensed, since instead
of random locations in the plane we have edge sequences and b)
less error-prone (if an efficient map-matching algorithm is used)
since they are interpolated with the actual road network. Therefore
it is logical to utilize those historic results to extrapolate this addi-
tional meaningful information, instead of using raw FCD like most
previous works. To the best of our knowledge, we are the first to
utilize map-matching results for such a task. Although our method
uses OSM data, it may also be used for any road network dataset,
in cases where the road network evolves faster than typical map up-
dates. In those cases, identifying added turn-restrictions, as soon as
they occur, is extremely important.

The outline of this work is as follows. Section 2 describes pre-
vious research in relation to our work. Section 3 describes our sci-
entific contribution towards identifying turning restrictions in the
OSM dataset by utilizing historic map-matching results. Section 4
summarizes the results of our approach. Finally, Section 5 gives
conclusions and directions for future work.

2. RELATED WORK
Recently, real-time Floating Car Data (FCD) collected by oper-

ating vehicles equipped with GPS-enabled devices has become the
mainstream in traffic study because of its cost-effectiveness, flex-
ibility and being the “the only significant traffic data source with
the prospect of global coverage in the future”[10]. Typically a GPS
trajectory describing a vehicle movement, consists of a sequence of
measurements with latitude, longitude and timestamp information.
However, this data is inherently imprecise "due to measurement
errors caused by the limited GPS accuracy and the sampling error
caused by the sampling rate" [20]. Therefore the observed GPS po-
sitions often need to be aligned with the road network graph. This
process is called map-matching. As a result, a map-matching (MM)
algorithm accepts as input a vehicle’s GPS trajectory and outputs a

path / ordered sequence of road network graph edges that this vehi-
cle has traversed, along with travel time information, i.e., how long
did it take for the specific vehicle to traverse the calculated path. In
our SimpleFleet service [5] we used two different MM algorithms:
the Fréchet-distance-based curve matching algorithm of [2, 25] and
the [11] implementation of the ST-matching algorithm [14]. How-
ever, both implementations were significantly enhanced to handle
live incoming FCD streams.

Despite their inherent imprecision and the usually low sampling
rate of available datasets, latest years saw an explosion of research
around GPS trajectories ([29] presents a partial overview of GPS
related research). Nevertheless, so far, only a limited portion of
this research focused on road network intersections. This is a ma-
jor oversight, since intersections are important components of ur-
ban road networks and contribute much to the total travel time cost
[16, 24]. [16] concludes that intersection delays i.e., the turn cost
associated with the continuation of travel between edges via an in-
tersection node [26] contribute to 17-35% of the total travel time,
according to a conducted survey in the Copenhagen urban area.

The few research works around road network intersections that
actually exist, focused on estimating intersection delays based on
the available Floating Car Data. Some researchers have utilized the
historical mean method to calculate the intersection delays ([23],
[28]), while other authors employ piecewise linear interpolation
([1], [27]). Additional works employed the principal curves method
[9] to overcome data sparseness of Floating Car Data and calculate
turn delays tables for the region of Beijing [13].

Although turn costs / intersection delays are a generalization of
turning restrictions (i.e., a turning restriction is a turn with delay
set to ∞) previous works are fundamentally different from our ap-
proach in several levels. First of all, for previous approaches to cal-
culate turn cost for a specific turn, many vehicles need to actually
use it. On the contrary, we identify turning restrictions by focus-
ing on turns with no available data. Second, previous approaches
use GPS trajectories; we use map-matching results. Third, since
they are based on data mining techniques they may only verify re-
sults by dividing the original GPS dataset into a training and a test
set. We use an independent mapping service to verify our findings.
Lastly, most publicly available GPS datasets are either simulated
[12], focused on a specific city [3, 15] or for limited time periods
(a day, week or month for [12, 15, 3] respectively). Contrarily, our
conclusions are based on three different European cities and fleets
of 2, 000−5, 000 vehicles per city covering a full 12-month period.
Since our results are almost identical for each city (see Sec. 4) it is
obvious that our method is both realistic and robust.

In the next section we will describe the basic methodology with
all the practical details of our implementation.

3. CROWDSOURCING TURNING
RESTRICTIONS

In this section we are going to present basic information about
the OpenStreetMap dataset and the methodology we used to infer
information about turning restrictions from historic map-matching
results, as well as the verification process used.

3.1 Preliminaries
In the discussion that follows, a road network is represented by

a directed weighted graph G(V, E, l), where V is a finite set of ver-
tices / nodes, E ⊆ VxV are the edges of the graph and l is a posi-
tive weight function E → R+. Typically, the weight l represents the
travel time required to traverse the edge. In other cases, l may refer
to the length of the edge in meters (for travel distances metric).

356

(a) Prohibited U-turn (b) Prohibited left turn

(c) Prohibited right
turn

(d) No entry sign

Figure 1: Prohibitory traffic signs for turning restrictions

The degree of a vertex u, denoted as deg(u), is the number of
edges incident to the vertex. Intersection nodes are the road net-
work vertices with node degree larger than two, i.e., I = {vi ∈ V,
deg(vi) > 2}. A turning restriction is an ordered sequence of two or
more network edges connected via intersection nodes that is pro-
hibited due to local traffic rules. Such turning restrictions are rep-
resented in the road network as traffic signs (see Fig. 1). For the re-
mainder of the paper, we only deal with those edge sequences that
consist of a single ordered pair of two edges connected via a sin-
gle intersection node, since those represent the majority of turning
restrictions on typical road networks. Note that turning restrictions
do not refer to one-way streets, because a) even a single edge may
be marked as unidirectional and b) turning restrictions may refer
to roads that are bidirectional but it is only their sequence that is
prohibited. In addition, unidirectional streets are easy to model in
every directed graph representation, whereas turning restrictions is
a distinguishing trait of road networks that differentiates them from
most other real-world networks.

A GPS trajectory describing a vehicle movement, consists of a
sequence of measurements with latitude, longitude and timestamp
information for the same vehicle ID. Map-matching is the process
of aligning such a trajectory against the underlying road network
graph. Consequently, a map matching algorithm accepts as input a
single vehicle’s trajectory and outputs a path / ordered sequence of
road network graph edges that this vehicle has traversed, along with
travel time information, i.e., how long did it take for the specific
vehicle to traverse the calculated path. For the remainder of the
paper, when we are talking about map-matching results we only
refer to the calculated vehicle’s path and not the associated travel
time information.

3.2 OpenStreetMap and turn restrictions
OpenStreetMap [18] is a free, editable map of the entire world.

Unlike proprietary datasets, the OpenStreetMap license allows free
access to the full map dataset. This massive amount of data may be
downloaded in full but is also available in other useful formats such
as mapping, geocoding or other web services. Users participate
in the OpenStreetMap (OSM) community by providing feedback
and editing the map. Although OpenStreetMap contains an appro-
priate relation tag (Relation:restriction [19]) for describing turning

Table 1: Turning restrictions added in OSM per year for the
cities covered by our service

city 2009 2010 2011 2012 2013 Total
Athens - 11 1 75 127 214
Berlin 8 26 101 386 147 668
Vienna 33 36 99 307 324 799

Table 2: OSM road networks of the three cities covered by our
service

intersection
intersection vertices for

vertices roads <=10
city # vertices # edges total % total %

Athens 277,719 329,444 100,422 26% 34,921 13%
Berlin 89,598 103,486 51,935 58% 21,119 24%
Vienna 100,579 112,478 44,874 45% 16,104 16%

restrictions, only a small number of OSM users contribute to this
information, due to its inherent difficulty. This statement was easy
to confirm for the three European cities (Athens, Berlin, Vienna)
covered by our service. Results retrieved in September 2013 are
shown in Table 1.

Table 1 shows that available data for turning restrictions is par-
ticularly low, especially in comparison to the sizes of the OSM road
networks of the three cities covered by our service, as shown in Ta-
ble 2. We got similar results (or even worse) for other European
cities, especially for countries with less detailed maps (e.g., Alba-
nia, Montenegro). Given the above issue, we decided to take advan-
tage of the large amount of historic map-matching results created
through our fleet management service and infer / identify turning
restrictions in the OSM road network. Our method is straightfor-
ward and efficient: We aim to discover turns that, although they are
allowed in the original dataset, in practice they are rarely, if ever,
used by the vehicle drivers. Such turns that exhibit such low usage
frequency have a very high probability to be actually prohibited.

3.3 Methodology
The basic methodology for inferring / identifying OSM turning

restrictions by using historic map-matching results created by our
fleet management service may be described by the following sim-
plified diagram of Fig. 2. The independent stages of this process
will be thoroughly discussed in the following sections.

3.3.1 Input data
In our SimpleFleet service [5], GPS traces of fleet vehicles for

the three European cities, arrive in a streaming fashion. Specif-
ically, for each of those urban areas, we are dealing with 2,000-
5,000 fleet vehicles producing a data point (GPS position sample)
every 60 -180s. GPS trajectories for each vehicle are subsequently
map-matched, in order to align those GPS traces to the underlying
OSM road network graph. The result of this process is an ordered
sequence of road edges that a vehicle has traversed. The traffic data-
store of the service, including the OSM road network graphs, Float-
ing Car Data and map-matching results is implemented by PostGIS
enabled PostgreSQL databases (one database instance per city) for
permanent storage.

As a vehicle moves in the road network, it traverses roads of
varying importance to traffic (refer to Table 3 for the distribution of
the OSM road networks per their respective category for the three
SimpleFleet cities). However, not all these roads are important to

357

Figure 2: Methodology for identifying OSM turning restric-
tions by using historic map-matching results

Table 3: Road categories for the OSM road networks
CategoryID Road category Athens Berlin Vienna

1 motorway 4287 1420 2410
2 motorway link 3747 2012 4386
3 trunk 1343 111 171
4 trunk link 567 0 227
5 primary 16210 5203 8913
6 primary link 1257 347 422
7 secondary 42881 21250 12894
8 secondary link 0 45 0
9 tertiary 58722 9678 11576
10 tertiary link 0 6 0
11 unclassified 13484 2792 3060
12 road 395 28 0
13 residential 186459 58338 67482
14 living street 92 2256 937

traffic, so it made sense to reduce the bulk of data stored. Towards
this goal, a separate process eliminates map-matched edges that
belong to edges of road category greater than 10 (i.e., OSM cate-
gories for unclassified, road, residential and living street - see Table
3). Depending on the time period and the traffic patterns in each
city, about 12-15% of the map-matched records are subsequently
dropped after the map-matching process.

Since map-matched records are primarily used to offer real-time
information for the current traffic situation, older data is periodi-
cally removed from the respective PostgreSQL datastores (every 5
minutes) and archived into csv files for offline use. At the end of
each day, a batch process compresses those csv files created during
the day. A copy of this compressed file is then sent to a backup
server for permanent storage. Table 4 indicates the typical size of
compressed archives produced per day and month for each city.

After one year of running the service (from Oct 2012 to end of
September 2013), we have accumulated several Gb of compressed
historic map-matching results for each of the cities covered by our
service. The challenge is how to utilize this significant wealth of

Table 4: Typical size of compressed MM results archives
Size Athens Berlin Vienna

per day 22.3 MB 224 MB 76.3 MB
per month 0.67 GB 6.74 GB 2.29 GB

Table 5: Total counted instances for all examined turns between
Oct 2012 and September 2013

intersection # instances per
vertices for #examined # total inters. vertex

city roads <=10 turns instances for roads <=10
Athens 34,921 75,552 144,451,729 4,137
Berlin 22,119 44,636 2,054,969,090 97,304
Vienna 16,104 36,484 610,902,632 37,935

data to infer turning restrictions for the respective OSM road net-
works. This process will be described in the following sections.

3.3.2 Parsing map-matching results and optimizations
The basic focus of our work is to identify those turns (i.e., or-

dered pair of edges connected via an intersection node) that exhibit
unusually low frequency of usage by vehicles. The frequency of us-
age will be determined by parsing the compressed archives of the
historic map-matching results produced for the three cities during
the operational period of our service (Oct 2012 to end of Septem-
ber 2013). Since, the respective OSM road networks comprise of
hundreds of thousand of nodes and edges (see Table 2) we need to
somehow limit the possible turns that need to be examined.

The first optimization is to identify those pairs of consecutive
edges that connect at intersection vertices. There is no need to ac-
cumulate information for vertices of degree 2 (with just one incom-
ing and one outgoing edge) or lower, since in those vertices the
driver has no choice but to continue in one direction. The second
optimization had to do with the available input data. Since map-
matching results only include larger roads that correspond to OSM
categories ≤ 10 (see Section 3.3.1), we are only interested in those
intersection vertices connected to such roads. This way we miss
some intersection vertices (strictly connected to smaller categories
roads) but this is a necessary compromise to minimize our scope. In
addition, intersection vertices that connect to major roads are more
likely to be used by many vehicle drivers and as a result they signif-
icantly influence traffic behaviour. Table 2 shows that the number
of intersection vertices connecting major roads are less than 25%
of total vertices for all cities covered by our service.

As a result of those two optimizations, the number of unique
turns / pairs of consecutive edges we need to examine is signifi-
cantly smaller than the available road network edges, which is a
considerable improvement (see Table 5). Since the OSM road net-
works of each city are stored in the respective PostgreSQL datas-
tores, determining intersection vertices of interest and their corre-
sponding turns is easily accomplished with plain SQL commands.

After determining the unique turns for examination, we imple-
mented a custom Java app that parses the compressed archives of
historic map-matching results in our disposal (see Section 3.3.1),
counts the instances encountered for each turn and stores results in
the respective PostgreSQL datastores. The total counted instances
for all examined turns during our one-year testing period (starting
Oct 2012) are shown in Table 5. Results also show, that on average
for every intersection vertex connected to major roads (i.e., their
road category ≤ 10), we have 4,137 (Athens) - 97,304 (Berlin)
counted instances of turns, which means that we have a sufficiently
large number of measurements per intersection vertex.

358

3.3.3 Identifying candidate turning restrictions
After enumerating instances for every unique turn we needed to

examine, we must discover which of those turns are rarely used.
Since both turns and results of the enumerating process are stored
in the respective datastores, it is easy to group results / turns by
entrance edge and direction (for bidirectional edges) . Each such
group contains all possible turns a vehicle may follow after travers-
ing a specific entrance edge (and a specific direction). Subsequently,
each turn belongs to only a single group of turns. Since we know
the number of instances encountered for each one of the turns be-
longing to the same group, it is easy to calculate the percentage of
usage for each one. An example group for a specific entrance edge
is shown in Fig. 3.

Figure 3: A simple example of grouping turns per entrance
edge (A, B) at an intersection vertex (B) for calculating usage
percentage per turn

As we notice in the example group of Fig. 3, most drivers con-
tinue straight when they traverse the entrance edge (A, B) that leads
to the intersection vertex B. Some others prefer to turn right. But a
very small percentage of them (2%) turn left. This is a very strong
indication that this low percent actually represents erroneous map-
matching results (even the most efficient MM algorithm has a small
error rate) and indeed this particular left-turn is prohibited, even if
OpenStreetMap lacks this information.

Next, we made the rather logical assumption that turns with lower
frequency percentage than an implicit 5% threshold are probably
prohibited. Of course this threshold is arbitrary but as results will
show, it is pretty accurate as well. Table 6 shows the number of the
candidate turning restrictions we have discovered for each city for
both 5% and 2.5% thresholds.

However, estimating candidate turning restrictions is not enough.
For each such turn, we need to additionally calculate its direction,
to conclude if it is a straight, right, left or U-turn. The direction
calculation is very easy, since we have already stored the inclina-
tion of each edge in the respective datastore, since this information
was needed for the isochrone functionality of our service. Table 7
shows the percentages of the turns direction categorization for the
candidate prohibited turns we have extracted. As expected, most of
them (particularly in Berlin and Vienna) represent left-turns.

Table 6: Number of candidate turning restrictions discovered
for 5% and 2.5% thresholds

turning turning
restrictions restrictions (%)

city # turns 5% 2.5% 5% 2.5%
Athens 75,552 5,287 3,596 7.00% 4.76%
Berlin 44,636 2,653 1,582 5.94% 3.54%
Vienna 36,484 1,739 1,261 4.77% 3.46%

Table 7: Categorization of candidate turning restrictions per
direction for 5% threshold

turning
city restrictions straight left right U-turn

Athens 5,287 6.5% 45.4% 41.6% 6.5%
Berlin 2,653 1.6% 64.6% 18.6% 15.2%
Vienna 1,739 10.5% 44.8% 30.0% 14.7%

Still, after determining the candidate prohibited turns for each
city covered by our service, we still need to find additional means
to verify the validity of our claims. This process is discussed in the
following section.

3.4 Verifying results
There are two basic ways to validate the discovered candidate

turning restrictions. Firstly, we can visualize each one of those
candidate restrictions. Secondly, we can use an external mapping
service and cross-check if we get similar results to ours. We used
both ways: Results are presented in the following sections.

3.4.1 Visual Inspection
In order to confirm our results, we need to visualize the candidate

restricted turns. Each such turn may be represented with the appro-
priate traffic sign (depending on the direction of the turn according
to Table 7) located in the corresponding intersection vertex coor-
dinates. For that purpose, we used QGIS [21], a popular, free and
open source GIS application that runs in all major operation sys-
tems. We used a Google Maps Layer in QGIS as the background
map layer, in order to compare results to an external mapping ser-
vice. Figure 4 shows some typical examples of the results of our
visualization process for some of the candidate turning restrictions:

• Figure 4(a) depicts an intersection familiar to most local dri-
vers in the center of Athens. This type of restrictions were
easily verified by our personal experience and they effec-
tively demonstrate how important and critical turning restric-
tions are discovered through our method.

• Figure 4(b) shows a case of a prohibited U-turn in the Berlin
area. There, many disallowed U-turns are missing from the
OpenStreetMap dataset.

• Figure 4(c) shows that the Google Maps layer visually con-
firms the discovered turning restriction.

Conclusively, visual inspection of our findings shows that Open-
StreetMap data (despite its high quality) is still missing some vi-
tal information, especially as turning restrictions are concerned.
By taking advantage of historic map-matching results, we have
tracked and visualized many such problematic cases. As a result,
our methodology may be used to further enrich the collection of
turn-restrictions available in OpenStreetMap. Yet, to further ver-
ify and quantify results, an additional high quality mapping service
could be used for cross-checking the validity of our findings. This
process will be described in the following section.

359

(a) Turning restrictions visualization in
Athens

(b) Turning restrictions visualization in
Berlin

(c) Turning restrictions visualization in Vi-
enna

Figure 4: Visualizing turning restriction with QGIS

3.4.2 Sourcing an external mapping service
Although visual inspection is a convincing, qualitative way to

validate results, it would be best if we could further verify and
quantify our findings through an automatic process. One solution
to this problem is to use the Google Directions API [8]. Although
Google Maps is not guaranteed to be perfect, yet, it is a global,
popular, commercial, alternative solution to the crowdsourced user-
generated data of OpenStreetMap.

The Google Directions API is a service that calculates directions
between locations using HTTP requests. Users may search for di-
rections for several transportation modes, include transit, driving,
walking or cycling. Directions may specify origins, destinations
and waypoints either as text strings or as latitude/longitude coordi-
nates. The Directions API can return multi-part directions using a
series of waypoints [8].

The Google Directions API allows only 2,500 directions requests
per 24 hour period from a single IP address (for free users). This
is the reason, why it was important to first identify (a rather lim-
ited number) of candidate turning restrictions, so that the required
requests to the API could finish in a few days. In any such HTTP
request to the API, certain parameters are required while others
are optional. As is standard in URLs, all parameters are separated
using the ampersand (&) character. The most important required
parameters (relative to our problem) are:

• Origin - The address or textual latitude/longitude value FROM
which we wish to calculate directions.

• Destination - The address or textual latitude/longitude value
TO which we wish to calculate directions.

Two additional, optional parameters useful to our purpose are:

• Mode (defaults to driving) - Specifies the mode of transport
to use when calculating directions. The value can be “driv-
ing”, “walking”, “bicycling” or “transit”.

• Waypoints - Specifies an array of waypoints. Waypoints al-
ter a route by routing it through the specified location(s). A
waypoint is specified as either a latitude/longitude coordinate
or as an address which will be geocoded.

Since our requests concern driving directions, there is no need
to specify the “mode” parameter as it defaults to “driving”. As for
waypoints, we only need one waypoint per request. This waypoint

http://maps.googleapis.com/maps/
api/directions/json?origin={A_
coordinates}&destination={C_
coordinates}&waypoints=via:{B_
coordinates}&sensor=false

Figure 5: A sample Google Directions API request

should not be a stopover but serves just to influence the route. This
may be done by prefixing the waypoint with the prefix “via:” (in
the respective API call). This way, a single-part route is returned.

Given the above and with reference to Fig. 3, in which the
Turn(A→ C via B) has a low frequency usage, an HTTP request to
verify this candidate turning restriction would be similar to Fig. 5.
This request returns a JSON object with the proposed route by the
API. The process for verifying the turning restriction is described in
Algorithm 3.1, which compares the distance (in meters) calculated
by the Google Directions API with the sum of lengths of edges
(A, B) and (B,C). If the Google distance is significantly greater
(over 10%) than OSM’s distance, then we may safely assume that
indeed there is a turning restriction and the Google Directions API
has to follow a much longer route than simply (A, B)→ (B,C).

Algorithm 3.1: VerifyTurn(Turn(A→ C via B))

GooglePath← DirectionsAPICall(A→ C via B)
if dist(GooglePath) >> dist(A→ B) + dist(B→ C)

then
{
Turn(A→ C via B) is veri f ied

In order to access the Google Directions API, we implemented a
Java command-line application that retrieves turns below a thresh-
old frequency usage (5% in our case) from the datastore, constructs
an appropriate request string similar to Fig. 5 for each turn and re-
trieves the distance of the route returned by the API. To avoid over-
loading Google’s servers and getting rejected requests, we have en-
forced a 500 ms gap between requests. API distance results are also
stored in the respective PostgreSQL datastore for easy accessing.

An obvious problem to this approach for verifying results, is the
usage limits of the Google Directions API. Although we are dealing
with road networks with hundreds of thousands of nodes, edges and

360

Table 8: Number of verified restrictions for 5% and 2.5% im-
plicit threshold

candidate turning
restrictions # verified verified (%)

city 5% 2.5% 5% 2.5% 5% 2.5%
Athens 5,287 3,596 3,517 2,471 67% 69%
Berlin 2,653 1,582 1,510 1,016 57% 64%
Vienna 1,739 1,261 1,172 880 67% 70%

possible turns, through our optimizations (see Section 3.3.2) and
by restricting the usage of the API to strictly confirm the candidate
prohibited turns found by our proposed method, we only need to
check a few thousands turns. Even by not bypassing Google API’s
limits (by using different IP addresses) this process only takes 1-3
days per city (e.g., for Vienna it requires only a few hours). As a
result, the API usage limits easily suffice for confirming our results.
These results are presented in the following section.

4. RESULTS
This section summarizes the results produced by the Google Di-

rections API verification process for all candidate turning restric-
tions in comparison to the original OpenStreetMap datasets.

4.1 Verified turning restrictions
The method used for comparing results of Google Directions

API and the OSM distances for each turn was thoroughly explained
in Section 3.4.2. In Table 8, we present the number of restrictions
verified for both 5% and 2.5% implicit usage threshold, as well as
their respective percentages in comparison to the total candidate
restrictions. Keep in mind that usually the paths returned by the
Google Directions API are significantly larger (85-90% of the ver-
ified restrictions give at least two-times larger paths) than the sum
of lengths (A, B) and (B, C), which further proves the validity of
the verification method used.

As we notice, the majority of the candidate restrictions are suc-
cessfully verified by the Google Directions API. In fact, in Athens
and Vienna more than 67% of the extracted turning restrictions are
verified. In Berlin, the verified restrictions are about 57% for the
5% threshold and 64% for the 2.5% threshold. Another useful re-
mark is that moving from the 5% to the 2.5% threshold, the veri-
fied restrictions’ percentage is slightly increased but, in fact, we are
missing a significant number of restrictions (compare columns “#
verified” for 5% and 2.5%). This means, that there is a respectable
amount of existing (and verified) restrictions even in the turn usage
interval between 2.5% and 5%.

Finally, Table 9, compares total turns, examined turns, candidate
and verified turning restrictions in comparison to the turning re-
strictions existing in the original OpenStreetMap datasets for the
three respective cities. Results are quite impressive: Instead of
examining hundreds of thousands of turns, by focusing on inter-
section nodes connecting major roads and utilizing historic map-
matching results, we discovered only a few thousand candidate
turning restrictions in need of verification. Next, by using the Goo-
gle Directions API most of the candidate turning restrictions were
successfully verified. But the most impressive fact of all, is that
the number of verified turning restrictions is significantly larger
than the restrictions existing in the original datasets. Especially
in Athens, the number of verified turning restrictions is 16 times
larger than those existing in the original OSM dataset. Even, in Vi-
enna and Berlin the number of the verified prohibited turns is still
1.7 - 2.2 times larger than those existing in the original data. Our

Table 9: Total turning restrictions results for 5% implicit
threshold in comparison to existing OSM’s restrictions

candidate verified OSM
total examined turning turning turning

city turns turns restrictions restrictions restrictions
Athens 900,397 75,552 5,287 3,517 214
Berlin 252,271 44,636 2,653 1,510 668
Vienna 256,185 36,484 1,739 1,172 799

results lead us to assume that in cities of European countries with
less detailed maps (e.g., Albania, Montenegro) the situation will be
similar to Athens or even worse.

4.2 False positives?
Another pending question is what can we really infer for those

turning restrictions that were not verified by the Google Directions
API. Most of the times, for those turns, the distance returned by
the Google Directions API is quite similar to the sum of lengths
(A, B) and (B, C). Still, there is also a non- negligible number of
routes (5% for Athens, 2% for Berlin and 8% for Vienna of those
unverified restrictions) where the distance returned by the API is
less than 80% of the sum of lengths of edges (A, B) and (B, C).
When we searched for those strange cases, most of the times there
were serious inconsistencies between the two maps. In that case, if
the turn is actually allowed or not is very debatable.

Still, even if we assume that all unverified turning restrictions are
indeed allowed (i.e., our method produces false-positives) there is
one fact we cannot ignore: A very small percent of drivers actually
use them. In that case, a perfect shortest-path solution would still
have to penalize (by increasing the respective turn cost) such “un-
appealing” turns. In this sense, even unverified turning restrictions
returned by our method are still useful in revealing typical drivers’
patterns and behaviors.

5. CONCLUSION AND FUTURE WORK
In this work we have proposed a new and efficient, semi-automatic

way to infer / identify turning restrictions for OpenStreetMap data
by utilizing historic map-matching results from an existing fleet
management service, covering three major European cities, span-
ning a period of twelve months . Our method has proved solid:
57-67% of the turning restrictions we have extracted may be suc-
cessfully verified. However, the most important result is that we
have identified and verified 2-16 times more turning restrictions
than those existing in the original datasets. This impressive feat
proves the validity and credibility of our method.

To the best of our knowledge, we are the first to utilize historic
map-matching results for such a task. This is after all, the main
novelty of our work, since the few existing works that deal with
the similar subject of intersection delays base their research on raw
GPS trajectories. In addition, most previous works used either sim-
ulated data or data covering smaller time periods (up to a month)
and were focused on a particular area. Our results are based on
three European cities, originate from three medium / large fleets
of 2,000-5,000 vehicles per city and cover an entire year of opera-
tion. Results for the three areas were almost identical, which fur-
ther proves the robustness of our method. Moreover, by comparing
our results with an external mapping service (the Google Direc-
tions API) we have shown the correctness of our approach. On a
quite similar note, we also experimented with two fundamentally
different map-matching algorithms and our results showed that our
method produces similar results regardless of the map-matching al-
gorithm used.

361

We can give the following directions for future work. Since the
proposed method is able to identify and confirm turning restric-
tions in the OSM data we can expand it to automatically contribute
those confirmed restrictions back to the OpenStreetMap project.
This way, the product of our work could be shared by the related
mapping community. Additionally, our results could be proven ex-
tremely useful to further improving the quality of existing map-
matching algorithms. Many of those algorithms use partial shortest-
path calculations to align the raw GPS traces to the road network
graph. Up until now, those SP computations do not take turning
restrictions into account. Since, our approach identifies such re-
strictions, those newly found constraints could be integrated back
in the map-matching algorithms to further improve their results.
That way a self-improving, evolutionary map-matching algorithm
might be possible after all.

Acknowledgments
The research leading to these results has received funding from the
European Union Seventh Framework Programme “SimpleFleet”
(http://www.simplefleet.eu, grant agreement No. FP7-ICT-
2011-SME-DCL-296423).

The authors would additionally like to thank Kostas Patroumpas
for his work on the map-matching algorithms and his useful insight.

6. REFERENCES
[1] J. Ban, R. Herring, P. Hao, and A. M. Bayen. Delay pattern

estimation for signalized intersections using sampled travel
times. Transportation Research Record, pages 109–119,
2009.

[2] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In Proc. 31st VLDB
Conference, pages 853–864, 2005.

[3] Complex Engineered Systems Lab. Taxi Trajectory Open
Dataset [Online].
http://sensor.ee.tsinghua.edu.cn/datasets.php,
2010.

[4] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck.
Customizable route planning. In Proceedings of the 10th
international conference on Experimental algorithms,
SEA’11, pages 376–387, Berlin, Heidelberg, 2011.
Springer-Verlag.

[5] A. Efentakis, S. Brakatsoulas, N. Grivas, G. Lamprianidis,
K. Patroumpas, and D. Pfoser. Towards a flexible and
scalable fleet management service. In Proceedings of the
Sixth ACM SIGSPATIAL International Workshop on
Computational Transportation Science, IWCTS ’13, pages
79:79–79:84, New York, NY, USA, 2013. ACM.

[6] A. Efentakis, N. Grivas, G. Lamprianidis, G. Magenschab,
and D. Pfoser. Isochrones, Traffic and DEMOgraphics. In
Proc. 21st ACM SIGSPATIAL GIS conf., 2013.

[7] A. Efentakis and G. Lamprianidis. SimpleFleet Deliverable
D6.5. SimpleFleet Online Demo [Online].
http://www.simplefleet.eu/?page_id=84, 2013.

[8] Google. The Directions API [Online].
https://developers.google.com/maps/
documentation/directions/.

[9] T. Hastie and W. Stuetzle. Principal curves. Journal of the
American Statistical Association, 84(406):502–516, 1989.

[10] R. Herring, P. Abbeel, A. Hofleitner, and A. Bayen.
Estimating arterial traffic conditions using sparse probe data.
Proceedings of the 13th International IEEE Conference on

Intelligent Transportation Systems, September 19-22,
Madeira Island, Portugal, pages 929–936, 2010.

[11] L. Kabrt. Travel Time Analysis. http://code.google.
com/p/traveltimeanalysis/source/browse, 2010.

[12] Laboratory for Software Technology, Computer Science
Department, ETH Zurich. Realistic Vehicular Traces
[Online]. http://www.lst.inf.ethz.ch/research/
ad-hoc/car-traces/index.html#traces, 2011.

[13] X. Liu, F. Lu, H. Zhang, and P. Qiu. Estimating beijing’s
travel delays at intersections with floating car data. In
Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science,
IWCTS ’12, pages 14–19, New York, NY, USA, 2012. ACM.

[14] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang.
Map-matching for low-sampling-rate gps trajectories. In
Proc. 17th ACM SIGSPATIAL GIS conf., GIS ’09, pages
352–361, New York, NY, USA, 2009. ACM.

[15] Microsoft Research. T-Drive trajectory data sample [Online].
http://research.microsoft.com/apps/pubs/?id=152883, 2011.

[16] O. A. Nielsen, R. D. Frederiksen, and N. Simonsen. Using
expert system rules to establish data for intersections and
turns in road networks. International Transactions in
Operational Research, 5(6):569 – 581, 1998.

[17] OpenStreetMap. Stats - OpenStreetMap wiki [Online].
http://wiki.openstreetmap.org/wiki/Stats#
OpenStreetMap_Statistics_Available, 2011.

[18] OpenStreetMap. [Online].
http://www.openstreetmap.org/, 2013.

[19] OpenStreetMap. Relation:restriction [Online].
http://wiki.openstreetmap.org/wiki/Relation:
restriction, 2013.

[20] D. Pfoser and C. S. Jensen. Capturing the uncertainty of
moving-object representations. In Proceedings of the 6th
International Symposium on Advances in Spatial Databases,
SSD ’99, pages 111–132, London, UK, UK, 1999.

[21] QGIS. A Free and Open Source Geographic Information
System [Online]. http://www.qgis.org/.

[22] SimpleFleet. Democratizing Fleet Management [Online].
http://www.simplefleet.eu, 2013.

[23] L. Sun. An approach for intersection delay estimate based on
floating vehicles. Dissertation for Master Degree. Beijing:
Beijing University of Technology(in Chinese), 2007.

[24] F. Viti and H. J. van Zuylen. Modeling queues at signalized
intersections. Transportation Research Record: Journal of
the Transportation Research Board, (1883):68–77, 2004.

[25] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for
map-matching speed: Localizing global curve-matching
algorithms. In Proc. 18th SSDBM conf., pages 379–388,
2006.

[26] S. Winter. Modeling costs of turns in route planning.
GeoInformatica, 6(4):345–361, 2002.

[27] H. Zhang, F. Lu, L. Zhou, and Y. Duan. Computing turn
delay in city road network with gps collected trajectories. In
Proceedings of the 2011 International Workshop on
Trajectory Data Mining and Analysis, TDMA ’11, pages
45–52, New York, NY, USA, 2011. ACM.

[28] M. Zhao and X. Li. Deriving average delay of traffic flow
around intersections from vehicle trajectory data. Frontiers
of Earth Science, 7(1):28–33, 2013.

[29] Y. Zheng and X. Zhou, editors. Computing with Spatial
Trajectories. Springer, 2011.

362

Big data analytics for smart mobility: a case study

Roberto Trasarti1 Barbara Furletti1

Lorenzo Gabrielli1

1 KDD Lab - ISTI - CNR
Pisa, Italy

name.surname@isti.cnr.it

Mirco Nanni1 Dino Pedreschi1,2

2 University of Pisa
Pisa, Italy

pedre@di.unipi.it

1. APPLICATION SCENARIO
This paper presents a real case study were several mobility
data sources are collected in a urban context, integrated and
analyzed in order to answer a set of key questions about mo-
bility. The study of the human mobility is a very sensitive
topic for both public transport (PT) companies and local
administrations. This work is a contribution in the under-
standing of some aspects of the mobility in Cosenza, a town
in the South of Italy, and the realization of corresponding
services in order to aswer to the following questions identi-
fied in collaboration with the PT experts.
Question 1: How is PT able to substitute private mobility?
The objective is to compare public and private mobility to
verify the capability of PT to satisfy the user mobility needs.
Question 2: How different zones of the city are reach-
able using PT? This question focuses on understanding how
much different zones of the city are served by PT consider-
ing different times of the day.
Question 3: Are there usual time deviations between real
travel times and official time tables? We want to verify if
usual time deviations between real travel times and official
time tables exist highlighting chronic delays in the service.
Question 4: Can we spot visitors and commuters by their
behavior? We aim at identifying important categories of
people estimating their segmentation in order to evaluate
the corresponding demand of services.
For this case study we use data from Cosenza area: a GSM
dataset 1, a GPS dataset 2, and data from the PT system
3. GSM data contains 25 mln of phone calls made by about
350K distinct users from 15 October to 9 November 2012.
GPS dataset contains about 1.5 mln of private vehicle tracks
gathered in February-March and July-August 2012, while
PT data consist of a set of GPS logs obtained by the on-
1Wind Telecom S.p.a http://www.wind.it/
2Octotelematics S.p.a. http://www.octotelematics.com/
3Amaco S.p.a. http://www.amaco.it/

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

board tracking system of the Cosenza’s PT and the PT offi-
cial time table containing the scheduled times of the arrival
of the buses at their stops.

2. METHODOLOGY AND RESULTS
To answer the questions posed by the PT manager we devel-
oped and implemented a set of methodologies and processes,
and we integrated the corresponding services in M-Atlas [3],
a larger mobility data analysis framework developed in our
laboratory.

For Question 1 we study the PT capabilities to replace the
private mobility in a city. We use the GPS logs of the buses,
a real time table computed starting from the real buses
movements, and the GPS tracks of the private vehicles. We
map the PT system to a spatio-temporal network, where
nodes are bus stops labeled with name and position, while
edges are the connections labeled with origin-destination
stops and timestamp. Then, we map the GPS tracks on
the PT network and we compute the shortest way to satisfy
the users’ mobility using an agent-based algorithm that sim-
ulates the human mobility in a network [1]. To evaluate the
efficiency of the PT we compute the percentage of travels
satisfied by the public transport considering a temporal and
spatial tolerance (Coverage), and the distribution of delays
accumulated by the user using the PT instead of the car
(Distribution of time deviations). Using a maximum walk-
ing distance of 2 km and applying a temporal constraint of
1 hour as maximum delay, we obtain that the percentage of
the user’s car travels fully made by using PTs without taking
more than 1 hour of extra time is 24%. If we further investi-
gate the delay of the PTs travels w.r.t. the car ones, we find
that the delay distribution is affected by the seasonality: in
summer the average delay is 29 minutes (with a variance
of 26), while in winter is 16 minutes (with a variance of
15). Going back to the trajectory data and extracting the
starting points of the users which are not served by the pub-
lic transport, we can discover which areas are disconnected
from the network. By using a clustering algorithm on the
starting points of GPS tracks that are not fully covered by
the PT we identify two peripheral areas, one industrial and
one residential, that are not reached by the bus service (Fig.
1). This result suggests the introduction of new lines or
the addition of new bus stops to an existing line passing
near those areas. This service is very effective in discover-
ing the real needs of the population and how the network

363

can handle them, and the analysis may highlight potential
customers which can be served by the public transport and
therefore good candidates for specific marketing campaign.

Figure 1: Areas that are not served by the PT ser-
vice (blue dots are bus stops).

For Question 2 we try to understand which areas of the city
can be reached starting from a specific bus stop at a specific
time of the day, having a fixed amount of time on the PT
network. As a result we find that particular areas of the city
can be reached by the PTs in a fixed amount of time only
in certain time slots, as shown in Fig. 2. This service allows
the PT manager to add lines or modify the bus schedule for
analyzing the impact of his choice in the PT system.

Figure 2: The reachability of the city starting from
the darker point at 7:00 am (A), and 4:30 (B) and
having 30’ of time available.

We answer to Question 3 by computing the differences be-
tween the expected duration of the bus as stated in the of-
ficial time table and the one inferred by the bus log. Fig 3
shows that almost all the buses are late in a range [10, −10]
min. except for bus CVR A which has an average delay of 17
min. with a very small variance. This kind of information is
very useful to spot problems in the buses management, i.e.
to improve the service or to highlight too strict schedules
which can’t be respected by the buses in reality. As a re-
sult we draw a complete map of the typical behaviors of the
buses and we identify the most critical lines. The last con-
sideration is about the buses which makes the travel faster
than expected, these are clearly buses which try to reduce
the delay accumulated in previous travels. This behavior is
harmful and makes the time table unreliable.

To answer to Question 4 we apply the analytic process de-
scribed in [2] which analyzes the calling behavior of the users
in order to classify them into three categories: Resident,
Commuters and Visitors. People that appear only once (i.e.
that make only one call in all the period of observation) be-

Figure 3: Official schedule vs. inferred one.

fore disappearing are separately classified in the In Transit
category. We obtain the following segmentation: 23.12%
of Residents, 14.56% of Commuters, 26.45% of Visitors, and
28.74% of In transit. The 7.13% are unclassified due to their
unclear profile. GSM data are a good proxy to compute peo-
ple presence in a territory with a certain regularity and with
an economic convenience because survey campaigns are ex-
pensive and time consuming. Our indicator based on GSM
data helps to manage and re-arrange the resources and ser-
vices w.r.t. the user demand.

The collaboration with the public administration helped us
to identify several key questions concerning the mobility
needs and the transportation offers. By exploiting the pe-
culiarities of the different data sources that were available
in the application context we answered producing a set of
analyses and implementing a set of services for extracting
useful and new knowledge. The results have been tested on
the field, allowing a continuously monitoring of the general
status and health conditions of the urban traffic, in terms of
impact of PT, actual mobility demand, and mobility profiles
of citizens living in the area. We consider this as a prelimi-
nary work towards the definition of a sort of dashboard for
a mobility manager composed of a set of end-user services
and indexes to evaluate the transport system of a city.

3. ACKNOWLEDGMENTS
This work has been partially funded by the European Union
under the National Operational Program Research and Com-
petitiveness 2007-2013: Project Tetris n. PON1_00451; and
under the FP7-ICT Program: Project DataSim n. FP7-
ICT-270833.

4. REFERENCES
[1] F. Pinelli et all. Space and time-dependant bus

accessibility: a case study in Rome. Proc. of the 12th
IEEE Conf. on ITS, 2009.

[2] B. Furletti et all., Analysis of GSM Calls Data for
Understanding User Mobility Behavior. IEEE Big Data,
2013

[3] F. Giannotti et all., Unveiling the complexity of human
mobility by querying and mining massive trajectory
data. VLDB Journal Special issue on Data
Management for Mobile Services (2011).

364

Smart Applications for Smart City:

a Contribution to Innovation

Simona Citrigno

Centro di competenza ICT-SUD
87036 Rende CS

simona.citrigno@cc-ict-sud.it

Francesco Lupia
Università della Calabria

87036 Rende CS

lupia@dimes.unical.it

Sabrina Graziano
OKT srl

87036 Rende CS

sabrina.graziano@okt-srl.com

Domenico Saccà
Università della Calabria

87036 Rende CS

sacca@unical.it

ABSTRACT

Main research activities and results of the project “TETRis –

TETRA Innovative Open Source Services” are described that are

aimed at enabling innovative services for Smart City/Smart

Territory by means of technological tools and intelligent platforms

for collecting, representing, managing and exploiting data and

information gathered from sensors and devices deployed in the

territory. Technological tools and intelligent platforms are

integrated into two smart environments for monitoring of

respectively mobility and environmental resources and for

providing advanced services to citizens as well as to urban

operators. The general architecture and goals of the two smart

environments are illustrated and some insights on the prototype

for the mobility monitoring environment are reported.

Categories and Subject Descriptors

K.6.1 [Management of Computing and Information Systems]:

Software and People Management – strategic information systems

planning, systems analysis and design, systems development.

General Terms

Management, Design, Experimentation, Human Factors,

Measurement.

Keywords

Urban Monitoring, Urban Mobility, Intelligent Platforms

1. INTRODUCTION
The activities described in this paper are related to the design

and prototypal implementation of innovative services aimed at an

intelligent management of an urban territory for novel smart city

application scenarios. Within these activities, a number of

solutions and advanced technology platforms have been identified

that enable the various entities operating in the area of interest

(municipalities, provinces, regions, universities, etc.), as well as

citizens and urban operators, to effectively cooperate for an

efficient usage of urban resources.

The innovation scenarios and solutions described in this paper

have been realized within the project PON 2007 2013 - Research

and Competitiveness "TETRis - TETRA Innovative Open Source

Services" according to reference general frame of "Internet of

Things" for supporting Smart City/Smart Territory [1], in which

the acquisition of data by objects is applied to large territorial

areas by exploiting the widespread availability of communication

networks [2]. The collected data, properly enhanced and enriched,

foster innovative services oriented to the production and exchange

of knowledge among the different actors interconnected in urban

and regional networks. The development of these services has

been realized through a smart environment enabling the

cooperation of smart devices and objects as well as of operators

and users of the services themselves.

Two smart environments have been designed to handle two

relevant smart city application scenarios: (i) Urban Mobility

Monitoring and (ii) Territory Monitoring, Control and

Maintenance. The general architecture and the goals of the two

environments are described in Section 2. In addition some

insights on the design and prototype implementation of the smart

environments on Urban Mobility Monitoring are reported in

Section 3. Conclusions are withdrawn in Section 4.

2. TWO SMART ENVIRONMENTS FOR

SMART CITY
Each of the two smart environments has been designed as a

knowledge-based digital/physical system that is richly and

invisibly interwoven with sensors, actuators, displays, and

computational elements, embedded seamlessly in stationary and

mobile smart objects with embedded intelligence and in smart-

phones, and connected through a continuous network. The

specific goals of the two smart environments are described next:

Smart Environment for Urban Mobility Monitoring: it

concerns the implementation of a model for the detection of

mobility problems in urban areas through the use of stationary

smart objects deployed in the territory and mobile ones installed

in public transportation buses. Data from smart objects are

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

365

collected and aggregated into a data warehouse feeding a Mobility

Intelligence platform defined through the design of innovative

techniques of space-temporal data analysis and mining of complex

data, including trajectories [3]. The model also includes amenities

to deliver services to operators and citizens through the use of

mobile devices. The environment has been experimented in the

town of Cosenza in Southern Italy.

Smart Environment for Territory Monitoring, Control and

Maintenance: it is based on networks of physical sensors

connected to smart objects as well as of "social" sensors (smart-

phones driven by citizens and urban operators) to detect the status

of the territory in real time. These so-collected data are stored and

aggregated into a data warehouse feeding a Territory Intelligence

platform, which enables the extraction and processing of

knowledge for monitoring the territory. Other important

components of the environment are contextual applications and

web portals for citizens and operators. The environment has been

experimented in the town of Rende in Southern Italy.

3. A PROTOTYPE FOR URBAN

MOBILITY MINING
The smart environment for Urban Mobility Monitoring

includes a prototype for urban mobility mining based on advanced

data mining techniques that are used into two tasks: (1) a pre-

processing task (i.e., extracting data from spatio-temporal

databases and converting them into a process log) and (2) a

mining task (i.e., building a process model for a given input log).

During the pre-processing task, a number of possible

anomalies are detected for which it is necessary to perform an in-

depth analysis to discover causal dependencies that hold over

them. To this end, starting from an input log, the mining task

builds a dependency graph (e.g., a Petri Net) that represents the

background knowledge in terms of precedence constraints over

the causal dependencies that, in many cases, are available to the

analyst. This is particularly useful in order to circumvent the

problems emerging when frequent incompleteness of logs. Note

that "traditional" process discovery methods do not provide any

support to deal with prior knowledge.

A relational database is used to initially store data on bus

mobility in the urban area of Cosenza. Then these data are filtered

and reorganized in the form of specific sequences of events so

that they can be seen as traces of a process. In more detail, each

tuple of the database is a triple of the form <x, s, t> where x is an

object identifier, s is spatial position and t is a timestamp (i.e., the

time at which the event has been recorded). Then this set of

spatio-temporal tuples are converted into a set of transition

instances consisting of three properties: a route identifier, a

starting instant of the instance of transition and a measure

associated with the instance of transition (e.g., travel time).

Two consecutive tuples (w.r.t. the temporal order) Ri = (x,si,ti)

and Rj = (x,si+1,ti+1) of the same object x are seen as an instance of

transition for the route si_sj if the difference ti+1 - ti is below a

certain threshold (e.g. events that have occurred in the same day).

For example, in the specific case of a tuple for urban transport

system mobility, the transition si_sj corresponds to the pair of

stops si and sj for which there exists a line that connects si and sj.

Next step is to generate a set of classes/intervals, according to

which anomalies can be classified and events can be thereafter

clustered according to their class ids. Basically, each class

specifies how the measure associated with the event/activity,

exceeded the average value associated with the aggregate view of

the same event.

Finally, a cluster and a time interval duration attribute are

chosen that will help to generate a trace id to label a set of

unexpected related events forming a trace. In particular, two

events Ei and Ej belong to the same trace if:

- both events occurred in a "fixed" time interval;

- there exists another event Ez which connects Ei and Ej.

Given the input log generated as described above, classical mining

techniques have been applied. It is to be noticed that some of the

process models presented two types of conceptual problems:

- congestion models (see Figure 1) on which causality between

two routes, one after another, follow driving direction (traffic

propagates causally in the opposite driving direction w.r.t.

the origin of the obstruction).

- congestion models (see Figure 2) with causality between

routes that are geographically distant.

Figure 1. Inverted causal dependency example

Figure 2. Causal dependency between distant routes

Finally using ad-hoc mining techniques developed in the research

activities of the TETRis project, it was possible to encode the

domain knowledge, thus restricting flow models to those that do

not present the above-mentioned problems.

4. CONCLUSION
Some of the activities and results of the TETRis project have

been illustrated that concern the definition and experimentation of

innovative solutions for monitoring urban contexts according to

the emerging integrated strategic vision of the Smart City and for

providing ubiquitous services to both citizens and urban

operators.

5. REFERENCES
[1] Komninos N., Schaffers H., Pallot M., “Developing a Policy

Roadmap for Smart Cities and the Future Internet”,

eChallenges e-2011 Conference

[2] European Commission, “Smart Cities and Communities –

Support for a better future”, 2013:

http://ec.europa.eu/eip/smartcities/

[3] Giannotti F., Nanni M., Pedreschi D., Pinelli F., Renso C.,

Rinzivillo S., Trasarti R.: Unveiling the complexity of human

mobility by querying and mining massive trajectory data.

VLDB Journal Special issue on Data Management for

Mobile Services (2011).

366

Analysis of Relationships Between Road Traffic Volumes
and Weather: Exploring Spatial Variation
Jaakko Rantala

Department of Real Estate, Planning and
Geoinformatics
Aalto University
Espoo, Finland

jaakko.rantala@aalto.fi

James Culley
Department of Real Estate, Planning and

Geoinformatics
Aalto University
Espoo, Finland

james.culley@aalto.fi

ABSTRACT
Weather is known to have a strong effect on traffic volumes. In
this paper, we suggest a spatial approach to the modelling of
traffic volumes. The relationship between weather variables and
traffic volume is first modelled at a global level in a regional city
centre in Finland. As strong a spatial dependency is found
between the variables in the model, spatial variation is
incorporated into the model. This local approach provides a more
accurate model, as well as new insights into the data.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Correlation and regression
analysis

General Terms
Measurement, Theory.

Keywords
Weather, traffic volume, spatial modelling.

1. INTRODUCTION AND BACKGROUND
The modelling of traffic flows and volumes has been an
important topic of research in varied fields and has previously
been studied with the use of a raft of methods and techniques [3,
5]. One element that is lacking in previous studies into how the
weather affects traffic volumes is the incorporation of spatial
variation.
Previous studies that have examined the influence of weather
variables upon traffic volumes have assumed that any
relationships that are determined hold constant for the whole
study area. In this paper we explore whether this assumption is
valid or whether there are intrinsic differences in the
relationships affecting traffic volumes which can be identified at
disparate locations across the study area.

2. DATA
Traffic volume data was received from the city of Oulu, Finland.
The data is for the whole of 2012 and consists of the daily totals

of traffic volumes from 59 crossroads as measured by sensors
located at each of them.

Weather data was received from the Finnish Meteorological
Institute. From the data measured every ten minutes we obtained
variables relating to the daily average temperature, amount of
precipitation, and average road friction.

3. MODEL DESCRIPTION
3.1 Ordinary least squares
Ordinary least squares (OLS) regression is applied to the data
first. This is a global model that results in a single estimation of
each parameter for the entire study area [2]. The classic OLS
regression model is written as

Yi = b0 + ∑k bkXik + ɛi

where Y is the dependent variable, Xk is the kth explanatory
variable, and b are the regression coefficients to be estimated by
the model from the observed data.
In the model we adopted, the normalised traffic volume is the
dependent variable. The explanatory variables are the days of the
week, school and public holidays, the summer period, and
weather variables for temperature, precipitation, and friction.

3.2 Local model
The most common method for modelling spatially non-stationary
relationships is through geographically weighted regression
(GWR) [1]. Whilst we would have liked to use GWR for our
study, the data does not lend itself favourably to an analysis, with
59 crossroads locations, with 365 events at each location.
Therefore we propose two solutions to this problem. First, we
will run a separate regression at each location to study the spatial
autocorrelation. Second, we will use a simple form of GWR: A
regression model is calibrated on all data that lies within the
distance d of the regression point, a crossroads, and the process
is repeated at all the regression points. We shall term moving
window regression MWR in this paper.

4. RESULTS
4.1 Global model
All the coefficients in the global regression model are
statistically significantly different from zero. The R2 value, which
is a goodness-of-fit statistic that shows how much variation in the
traffic volume is explained by the model, is 0.76.

The results show that on days when there was precipitation there
was 2% more traffic. A rise in temperature of 10 degrees Celsius

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

367

results in 0.6% more traffic and the maximum possible increase
in friction equals a 6% increase in traffic compared to the median
in the model.

4.2 Local model
To study if spatial dependency exists in the data, first, regression
models are created for all the crossroads individually. Moran’s I
values [4] are then calculated for the coefficients to study the
spatial autocorrelation.

All the Moran’s I values for the coefficients show a positive
spatial autocorrelation. Thus the relationship between the
weather variables (as well as the time variables) and the amount
of traffic varies spatially. This indicates that when studying the
effect of these variables upon traffic volumes we need to take the
location into account.

For the MWR we need to determine a suitable bandwidth
distance d to use in the model. Different values were tested and
the results presented here were calculated with the value of 1500
metres.

The coefficients from the local models can be shown on a map to
study how the variables explain the traffic volumes in different
areas.

Figure 1 presents the local coefficients for the precipitation
variable. It shows that in the central area and northern part of
Oulu the coefficients are bigger than in the other areas on the
outskirts, which means that in those areas the traffic increase on
days when there is precipitation is bigger, up to almost 4%. One
reason for this may be that cyclists in the Oulu area switch to
cars when it rains or snows and there are more cyclists in the
centre than in the outskirts. The local coefficients for the other
weather variables show a similar pattern.

Figure 1. Local coefficients for the precipitation variable.

The temporal variables can be studied in a similar manner to
reveal the effects of different days of the week, as well as
holidays. For example, on weekdays the increase in traffic is at
its biggest south of the centre. One reason for this is that the area
has lots of industrial, commercial, and office buildings.

The goodness of fit can also be studied locally by plotting the
local R2 values. The values are better than for the global model,
except in the central areas. Thus it seems that in the central area
there are possibly explanatory variables missing from the model.

5. CONCLUSION AND DISCUSSION
This study strongly indicates that modelling the correlation
between traffic volumes and weather variables needs a spatial
approach. This is because the relationship between the variables
depends on location. The centre of the city is especially different
from other areas.

Possibly the biggest constraint for the research is the time span
for the data. As only the data from one year is used, seasonal
variation is not analysed and long-term trends cannot be seen.
The results help when predicting traffic volumes in Oulu. As the
amount of traffic affects travelling time, this can be used for
navigational purposes. In order to create a better spatial model,
more sensors are needed outside the city centre.

Because the concept of spatially non-stationary relationships is
scarce in the traffic modelling literature, we decided to approach
the topic with a simple method, suitable for preliminary
investigation. The purpose of adopting this technique was to
identify whether there was any evidence to support the concept of
non-stationary spatial relationships in the traffic modelling. The
next stage in this research will be to determine a more suitable
technique to investigate the apparent spatial aspects.

6. ACKNOWLEDGEMENTS
This research was performed as a part of the Data to Intelligence
(D2I) project funded by Tekes, Finland. We are also grateful to
the city of Oulu and the Finnish Meteorological Institute.

7. REFERENCES
[1] Brunsdon, C., Fotheringham, A. and Charlton, C. 1996.

Geographically weighted regression: A method for exploring
spatial nonstationarity. Geogr. Anal. 28, 4 (Oct. 1996), 281-
298.

[2] Fotheringham, A., Brunsdon, C. & Charlton, M. 2002.
Geographically Weighted Regression: the analysis of
spatially varying relationships. Wiley, Chichester.

[3] Koetse, M. J. and Rietveld, P. 2009. The impact of climate
change and weather on transport: An overview of empirical
findings. Transport. Res. D-Tr. E. 14, 3 (May 2009), 205-
221.

[4] Moran, P. A. P. 1950. A test for the serial independence of
residuals. Biometrika. 37, 1 (June 1950), 178-181.

[5] Rakha, H., Farzaneh, M., Arafeh, M., Hranac, R., Sterzin,
E., and Krechmer, D. 2007. Empirical studies on traffic
flow in inclement weather. Technical report. Virginia Tech
Transportation Institute.
http://www.mautc.psu.edu/docs/VPI-2005-01.pdf.

368

SiCi Explorer: Situation Monitoring of Cities
in Social Media Streaming Data

Andreas Weiler, Michael Grossniklaus, and Marc H. Scholl
Database and Information Systems Group, University of Konstanz

Box D188, 78457 Konstanz, Germany
firstname.lastname@uni-konstanz.de

ABSTRACT
The continuous growth of social networks and the active
use of social media services result in massive amounts of
user-generated data. More and more people worldwide re-
port and distribute up-to-date information about almost any
topic. Therefore, we argue that this kind of data is a good
basis to observe ongoing situations in cities as well as related
situations from outside about these cities in real-time.

This paper presents a visualization for monitoring the sit-
uation (current topics and emotions) in cities and about
cities, which is reflected in the live message stream of the
social microblogging service Twitter, by using continuously
updating and with sentiment colored TagClouds.

1. INTRODUCTION AND MOTIVATION
The high volume and distribution speed of tweets makes

it difficult for users to follow the evolution of topics within
the continuous data flow. It is a big challenge to discrim-
inate between normal behavior of the social sensor or un-
usual and abnormal behavior, which usually is an indicator
for an interesting event in the area. However, the amount of
useful information in the generated data increases as well.
Another advantage of user-generated data is the automatic
enrichment of the textual information by geographical infor-
mation of the user’s mobile device. Hereby, it is possible to
classify the incoming information as local report or report
about a city from outside.

In this paper, we present a visualization for monitoring
situations in cities and surrounding areas, which is filtered
by geographical coordinates, and the situation, which is re-
ported from outside by filtering for keywords, in the live and
continuous streaming data of Twitter. Our work presents a
compact visualization for time series event data, which sup-
ports users to identify interesting data points inside the cities
and about these cities from outside. This supports users in
following the evolution of topics and emotions of locals in
defined geographical areas and also to visualize the evolu-
tion of topics and emotions of people about the area. It also

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

supports the users in differentiating between the situation
inside the area and the situation from outside.

2. DESIGN
To visualize the evolution of topics and the emotion in

and about a city over time, we use different layers of gran-
ularity displayed on a map. Each layer is split into two
parts. The first part (inside the oval area, filtered by geo-
coordinates) reflects the situation inside the area of the city
and the second part (inside the rectangle area without the
oval area, filtered by keywords) reflects the situation from
outside about the city. The TagClouds of both parts are
adjusted to the shape of the area, by using a processing li-
brary1, and so no overlapping terms between the two areas
exists. The upper layers are divided into slices, which re-
flect the sentiment from the underlying layers. Hereby, it is
possible to recognize interesting points in time in underlying
layers even if the user just observes the top layer.

Top-Layer: The lowest granularity layer reflects the topics
and emotions in hourly frames. To reflect the sentiment of
the middle-layer both areas are split into six slices. These
six slices are colored in the corresponding sentiment of the
middle-layer.

Middle-Layer: The middle granularity layer reflects the
situation in ten minute frames. Both areas are split into
ten slices, which reflect the corresponding sentiment from
1 minute frames from the bottom-layer.

Bottom-Layer: The highest granularity layer reflects the
topics and emotions in one minute frames in real-time.

The emotion of a time frame is visualized by using the
color dimension. The fill color of the shape signifies the av-
erage sentiment (red = negative, green = positive) of the
tweets in the data window. The value of the sentiment for
a tweet is obtained by using an external library2, which an-
alyzes the text of the message and returns sentiment values
between −5 (extremely negative) and 5 (extremely positive).

3. USE CASE
The use case describes the observation of the city Boston

(filtered for 5 miles around the city center and the keyword
“boston”) on the day of the 15th April 2013. Figure 1 shows
the overview of the whole use case for the hours from 5PM
to 9PM. The most important term “marathon” in the first

1http://wordcram.org/
2http://sentistrength.wlv.ac.uk/

369

Figure 1: Process of the use case for the city Boston on 15th April 2013, from 5PM to 9PM (UTC).

hour signifies the ongoing sports event in the city and also
reflects a very positive emotion for inside the city and from
outside. Further indicators for the Marathon are terms like
“running”, “finish”, “desisa” (name of the male winner), and
“jeptoo” (name of the female winner). The second hour also
shows very positive emotion for the first five segments of the
hour. However, in the sixth segment, the last ten minutes of
the hour, the emotion shifts to negative for inside the area
and from the outside. Also, the term“explosion”can be seen
in the outside and inside part. By looking at the two fol-
lowing hours, we notice that the negative emotion increases
sharply in both areas. Further terms like“bombs”, “prayers”,
and “thoughts” indicate that a bad event happened in the
city of Boston. An interesting observation is that the terms
“prayers” and “thoughts” are more frequent on the outside.
Since the second hour shows this abnormal behavior and we
are further interested in the evolution of the situation, we
zoom into the second hour of the visualization. In this more
detailed view, we can see that the term“marathon” is always
very frequent, however in the last ten minutes of the hour
the terms “explosion”, “finish”, and “line” on the outside and
the terms “explosions”, “happened”, and “finish” on the in-
side reflect the just happened Boston Marathon Bombings.
After analyzing the middle layer of the visualization, we are

further interested in the situations in the last ten minutes of
the second hour. Therefore we zoom into the last ten min-
utes of the middle-layer, where we can identify that the term
“explosion” appears in both areas in the second minute. In
contrast, the emotion is still positive at that time, because
the event not yet widely spread. We can summarize that
by using the visualization the explosion can be identified by
terms only two minutes after the event took place. How-
ever, the emotion changes only slightly in the first minutes,
but then the negative emotion increases and gives a good
indication about the extent of the tragedy.

4. CONCLUSIONS
In this paper, we demonstrated a visualization for mon-

itoring the situation (current topics and emotions) within
and about cities, which is reflected in the live message stream
of the social microblogging service Twitter. Our use case
shows that it is possible to visualize the current and past
topics and emotions for cities. We can also conclude that
the live observation can support local people and news re-
porters in getting up-to-date information about the state of
emotion and topics in and about a city.

370

A Cascading Wavelet-Feed Forward Neural Network
Approach for Forecasting Traffic Flow

Md. Mostafizur Rahman
National Institute of

Informatics
Tokyo 101-8430, Japan

mostafizur du27@yahoo.com

Atsuhiro Takasu
National Institute of

Informatics
Tokyo 101-8430, Japan

takasu@nii.ac.jp

Hafiz Md. Hasan Babu
University of Dhaka

Dhaka-1000, Bangladesh
hafizbabu@hotmail.com

ABSTRACT
Predicting Traffic flow in the busiest cities has become a
popular research area in the past decades. The rapid devel-
opment of intelligent traffic management system attracts the
software industry to come up with efficient tools for traffic
prediction over the roads. In this study, Discrete Wavelet
Transformation (DWT) is employed with Artificial Neural
Network (ANN) to forecast the traffic flow over the roads by
analyzing loop sensor’s data. An Information Theoretic Ap-
proach has been extended for choosing the number of nodes
in hidden layer of Neural Network for the proposed model.
The proposed hybrid model was compared with standard
Artificial Neural Network (ANN) model. The forecasted re-
sults showed that proposed joined Wavelet and Feed For-
ward Neural Network (WFFNN) worked much well over the
experimental data than ANN model.

Keywords
Time series, Discrete wavelet transformation, Feed forward
neural network, Traffic flow.

1. INTRODUCTION
Significant statistical information for both past and near

future can be extracted by analyzing time-series data. Traf-
fic congestion, volumes, origins, routes and other road-traffic
performance metrics are useful for designing urban traffic
control systems and these types of data typically exhibit a
periodicity in time. Traffic data can be collected manually
or via static sensors such as traffic cameras and loop detec-
tors. In this paper, we analyzed time-series loop sensor data
and proposed a model for daily traffic forecasting (traffic
condition around the day in specific time-gaps) for next up-
coming weeks. Two datasets (Dodgers and TSF generated
data) have been used for testing purpose of the proposed
model [3, 2]. We analyzed and trained the model with 18
weeks traffic counts (car counts of every 5 minutes in a day)
obtained from Dodgers loop sensor dataset and forecasted
the traffic condition of upcoming seven weeks. Each day

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Figure 1: Schematic diagram of the proposed
WFFNN model.

contains 288 time-slice predictions. In the similar way, we
trained our model with the average velocity of 4000 obser-
vations (recorded the average velocity in every five seconds)
obtained from TSF generated data and forecasted what will
be the next 1000 observations or average velocity of the sim-
ulation model. So, the main focus of this paper is analyzing
time-series loop sensor traffic data and examine the appli-
cability of wavelet-feed forward neural network based mod-
eling.

In this study, an algorithm has been proposed based on
theoretic approach (Jump Method) and it is observed that
proposed algorithm works well for choosing the best number
of neurons for a neural network. Wavelet-Neural Network
approach can be useful for different application fields. Here,
we used the technique in analyzing traffic data and added
data filtering for different sub-signals before summing up the
sub-signals and an algorithm for determining the optimal
number of neurons on the training period of the proposed
model.

Wavelets analysis is localized in both time and frequency
while the Fourier transform is only localized in frequency.
So, combine model of wavelets and neural network has been
used for analyzing time series data and enhance the pre-
diction performance of neural networks. This paper deals
with loop sensor’s data and forecasts the traffic congestion
by counting the cars or average velocity of vehicles. The
main purpose was employing wavelets to analyze large loop
sensor time-series traffic information and extract the traffic
condition over time.

2. MODELING STRATEGY OF WFFNN
This study employed Discrete Wavelet Transformation cas-

caded with Feed Forward Neural Network. Here, Mallat
Discrete Wavelet Transformation has been adopted. Mal-

371

Table 1: Testing results of Dodgers loop sensor
dataset.
Number of Proposed WFFNN Model ANN

Neurons MSE RMSE MAPE(%) MSE RMSE MAPE(%)

7 8.1524 2.8552 3.9605 37.0948 6.0906 20.9647
8 7.0129 2.6482 3.7494 35.7893 5.9824 16.7499
9 7.1152 2.6674 4.0770 28.7240 5.3594 11.4475
10 7.1354 2.6712 4.1003 32.2587 5.6797 19.8356

Table 2: Testing results of TSF generated data.
Number of Proposed WFFNN Model ANN

Neurons MSE RMSE MAPE(%) MSE RMSE MAPE(%)

4 5.1040 2.2592 2.2678 23.3926 4.8365 12.2045
5 4.9098 2.2158 1.9827 24.2849 4.9279 14.3829
6 4.9194 2.2180 2.2012 20.3916 4.5158 9.5893
7 5.0923 2.2566 2.2156 19.2938 4.3924 6.1047

lat’s algorithm can be expressed as follows [5]:

aj+1 = Qaj where j=0,1,2,...,J

dj+1 = Gaj where j=0,1,2,...,J
(1)

Here, in the equation Q and G are low pass filter and
high pass filter respectively. If ao represents the original
time series T, then T can be decomposed to d1, d2, d3, ..., dj
and aj , where J is the scale. aj and dj are the approximated
coefficients and detail coefficients of original time series.

Firstly, the input data (Ct, car counts in every five min-
utes in Dodgers loop sensor data and Vt, average velocity in
TSF generated data) have been decomposed into a certain
number of sub-time series components by DWT. Input time
series first decomposed into approximation and detail coef-
ficients. In this way decomposition process is iterated and
successive approximation signals being decomposed in turn.

Best results for two data sets have been obtained by three
decomposition level. Input data have been decomposed with
Haar wavelet function and Daubechies wavelet function. Con-
sequently, D1, D2, D3 were detail time series and A3 was
approximation time series. To get more accurate results we
employed Interquartile Range (IQR) for clustering and find-
ing the outliers and extreme values [1]. In this study, outliers
have been replaced with mean values of respective data sets.
Extreme values have been normalized.

In this study, the wavelets sub series {D1, D2, D3, A3},
were summed together after removing insignificant coeffi-
cients , which is similar as [4], and feed to a Feed Forward
Neural Network at time t and original time series at time
(t+ tf) are outputs of FFNN, where tf is the length of time
to forecast. Predicted output sets were later compared with
the actual values. Number of neurons of the hidden layer of
FFNN has been chosen by proposed algorithm (Algorithm
1) and it is observed that proposed algorithm was very effec-
tive for the experimental datasets. The schematic diagram
of proposed model is shown in figure 1.

3. EXPERIMENTAL RESULTS
To compare the efficiency of the proposed model, we gen-

erated ANN model and tested with the same inputs. Per-
formance indices were presented in Table 1 for Dodgers loop
sensor data and Table 2 for TSF generated data. It is clear
from Table 1 and Table 2 that MSE (Mean Square Error),
RMSE (Root Mean Square Error) and MAPE (Mean Abso-

Algorithm 1 Extended Jump Method for Finding Neurons

The MSE (Mean Square Error) dk equals the variance of
residuals generated by fitting the neural network model
with k nodes.
for k=1 to kmax do

Calculate MSE, dk
end for
for k=1 to kmax do

Calculate priority factor Pk for dk (Assigning priority
value or weight based on MSE value).

end for
Choose two positive numbers v > 0, called the transfor-
mation power and b > 0, called priority bias factor.
for k=1 to n do

if k=1 then
Jk = b.Pk.d

−v

else
Jk = b.Pk.d

−v
k − d−v

k−1

end if
end for
The best number of nodes is the number k lies be-
tween two highest picks such that Node number of
(Jsecond highest) <= k <= Node number of (Jtop highest).

lute Percentage Error) values for proposed WFFNN (results
of using Haar wavelet have been presented in two tables)
model are much better than ANN model.

Although the forecasting accuracy of ANN model in re-
spect of MAPE is 11.4475% for Dodgers loop sensor data and
6.1047% for TSF generated data. Best result for the Dodgers
loop sensor data by using WFFNN model found at neuron
number 8 with Haar wavelet and MAPE is 3.7494%. Best
result for TSF generated data came up with Haar wavelet
function by using 5 neurons in the hidden layer and there
MAPE value is 1.9827%, which is very much acceptable.

4. CONCLUSION
This paper presented a hybrid prediction approach and

it’s application based on discrete wavelet transformation and
feed-forward neural network. Our proposed model can pro-
vide good accuracy in predicting real time traffic and works
well over loop detector or sensor data. It can be used as a
useful tool for Advanced Intelligent Transport Systems.

5. REFERENCES
[1] F. M. Dekking. A Modern Introduction to Probability

and Statistics: Understanding why and how. Springer,
2005.

[2] P. Gora. Traffic simulation framework. In Computer
Modelling and Simulation (UKSim), 2012 UKSim 14th
International Conference on, pages 345–349. IEEE,
2012.

[3] J. Hutchins. Freeway Performance Measurement
System (PeMS), “http://pems.eecs.berkeley.edu”.

[4] O. Kisi and M. Cimen. A wavelet-support vector
machine conjunction model for monthly streamflow
forecasting. Journal of Hydrology, 399(1):132–140, 2011.

[5] S. G. Mallat. A theory for multiresolution signal
decomposition: the wavelet representation. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 11(7):674–693, 1989.

372

Combining a Gauss-Markov model and Gaussian process
for traffic prediction in Dublin city center

François Schnitzler
Technion

Fishbach Building
32000 Haifa, Israel

francois@ee.technion.ac.il

Thomas Liebig
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany
thomas.liebig@tu-

dortmund.de
Shie Mannor

Technion
Fishbach Building
32000 Haifa, Israel

shie@ee.technion.ac.il

Katharina Morik
TU Dortmund University

Artificial Intelligence Group
Dortmund, Germany

katharina.morik@tu-
dortmund.de

ABSTRACT
We consider a city where induction-based vehicle count sen-
sors are installed at some, but not all street junctions. Each
sensor regularly outputs a count and a saturation value. We
first use a discrete time Gauss-Markov model based on his-
torical data to predict the evolution of these saturation val-
ues, and then a Gaussian Process derived from the street
graph to extend these predictions to all junctions. We con-
struct this model based on real data collected in Dublin city.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes, mul-
tivariate statistics, stochastic processes, time series analysis;
I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing ; J.7 [Computer in Other Systems]: Real time

Keywords
traffic prediction, Gaussian Process, Gauss-Markov, autore-
gressive, smart cities, time series, spatio-temporal

1. INTRODUCTION
In the Greater Dublin Area, 750 (4%) junctions are cov-

ered by one or several SCATS (Sydney Co-ordinated Adap-
tive Traffic System) vehicle count sensors. Our goal is to
provide estimates of the saturation at each junction, for the
current and future times, whereas our previous work [1] only
did so for each junction at the current time.

High traffic saturation (cars/km) co-occurs with low traf-
fic flux (cars/hour) and is an indicator for congestions [3].

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

observed measurement, at current time

predicted measurement for a future time step

current time

future time steps

Gauss-
Markov

Section 2

Gaussian
Process

Section 3

predicted value for an unobserved junction

Figure 1: Future measurements are estimated by
a Gauss-Markov process (Section 2). Estimates for
junctions without sensors, are provided by a Gaus-
sian Process (Section 3).

Our work can be used for online signaling and trip planning.
The urban street network is a graph (V,E), where the

vertices V are the junctions and the edges E the street seg-
ments. Let u be the set of unobserved junctions, with no
SCATS sensor, and −u = V \u the junctions with sensors.
The saturation of a junction vi at a time t is a continuous
random variable yi,t. Furthermore, yu,t ≡ {yi,t}i:vi∈u.

We combine two components to obtain an estimate of the
saturation of all junctions at future time steps, yV,t+∆t , con-
ditioned on the current observations, y−u,t (∆t ∈ N0).

The first one, P (y−u,t+∆t |y−u,t), models historical mea-
surements. It can estimate future measurements ŷ−u,t+∆t ,
based on the current observations ŷ−u,t:

ŷ−u,t+∆t = E(y−u,t+∆t |ŷ−u,t) . (1)

The second is a Gaussian Process (GP) based on the street
network and defining a multivariate Gaussian distribution
P (yV,t) over the saturations at all junctions. Conditioning
this distribution on y−u provides P (yu,t+∆t |y−u,t+∆t) and
allows to estimate saturations at junctions without sensors:

P (yu,t+∆t |y−u,t) ≈ P (yu,t+∆t |ŷ−u,t+∆t) . (2)

Figure 1 illustrates the resulting prediction procedure.

373

2. GAUSS-MARKOV
A linear dynamical system models the evolution of a set

of state variables y ∈ Rp, where we omit the subscript −u:

yt+1 = Atyt + wt (3)

wt ∼ N (w̄t,Σwt) . (4)

x1 ∼ N (ȳ0,Σ0), a multivariate Gaussian distribution of
mean ȳ0 and covariance matrix Σ0. The Kalman filter can
compute P (yt+∆t |yt) = N (ŷt+∆t , Σ̂t+∆t) recursively.

Sensor measurements were collected from 2013-01-01 to
2013-05-141 by 512 (470 non trivial ones) vehicle count sen-
sors located in central Dublin. We average all measurements
received on non-overlapping 4 minutes intervals, because of
missing values, and model the resulting averages from 5am
to 12am. The parameters At, w̄t, Σwt change for every time
step but are identical for every day. So are ȳ0 and Σ0.

Following the methodology of [6], each matrixAt is learned
using (averaged) measurements for t′ ∈ {t − δt, . . . , t + δt},
weighted by a Gaussian kernel: exp(−(t− t′)2/δt). We arbi-
trarily use δt = 3. For each matrix At, each row ri,t is esti-
mated using an elastic net [7] and ten-fold cross-validation.
Σ0 and each Σwt are diagonal covariance matrices estimated
by maximum likelihood. Alternatively, penalized estimation
algorithms such as the graphical lasso [2] could be used.

3. GAUSSIAN PROCESS
P (yu,t+∆t |y−u,t+∆t) is derived from a GP regression frame-

work modeling traffic saturation values of all junctions at a
given time, similar to [5]. Multiple sensors at a junction are
averaged. For each vertex vi, we introduce a latent variable
fi, the true traffic saturation at vi:

yi = fi + εi (5)

εi ∼ N (0, σ2) . (6)

We assume that the random vector of all latent variables
follows a GP: any finite set f = {fi}i=1,...,M has a multivari-
ate Gaussian distribution. Therefore, the vector of observed
traffic saturations (y−u) and unobserved traffic saturations
(du) follows a Gaussian distribution

[
y−u

du

]
∼ N

(
0,

[
K−u,−u + σ2I K−u,u

Ku,−u Ku,u

])
, (7)

where I is an identity matrix, K the so-called kernel and
Ku,−u, K−u,−u, Ku,u, and K−u,u the corresponding entries
of K. Conditioning on y produces P (yu,t+∆t |y−u,t+∆t).

We use the common regularized Laplacian kernel function

K =
[
β(L+ I/α2)

]−1
, (8)

where α and β are hyperparameters. L denotes the combi-
natorial Laplacian, L = D − G. G denotes the adjacency
matrix of the graph G and D a diagonal matrix with entries
di,i =

∑
j Gi,j . Variables adjacent in G are highly correlated.

4. DISCUSSION
We have described a combination of two models able to

respectively predict future traffic saturations at junctions
with sensors and to extend these predictions to junctions
without sensors, in a city. To the best of our knowledge, no
similar model has been proposed before.

1http://dublinked.ie/datastore/datasets/dataset-305.php

A similar approach was proposed to provide dynamic cost
predictions for a trip planner in the same workshop [4]. In-
stead of a linear dynamical system (LDS), a spatio-temporal
Markov random field (STMRF) is used. It models discretized
saturation values only, and inference is approximated by be-
lief propagation whereas it is computationally tractable and
performed exactly in LDS. Our model also has a finer tem-
poral resolution. Therefore, it can be used for signaling or
online adaptation of the route in addition to offline trip plan-
ning. Comparing these two models in terms of precision and
speed would be interesting.

The Gauss Markov model assumes the dynamics are lin-
ear, first-order Markov and perturbed by Gaussian noise.
More refined models could be considered and might lead to
better estimations.In particular, we could assume the mea-
surements are noisy observations of a hidden process.

Other information could also be leveraged. For example,
the street network could be used to derive a prior on the co-
efficient of the transition matrix, influencing the model only.
Irregular, pointwise traffic estimation (for example based on
mobile phones or GPS) could be integrated into the Gaus-
sian Process to produce finer saturation estimates. Finally,
different dynamics could be estimated and used in the pres-
ence or the absence of rain, modifying both the model and
the estimation process.

5. ACKNOWLEDGMENTS
This work was supported by the European FP7 project

INSIGHT under grant 318225.

6. REFERENCES
[1] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis,

T. Liebig, N. Piatkowski, C. Bockermann, K. Morik,
V. Kalogeraki, J. Marecek, A. Gal, S. Mannor,
D. Gunopulos, and D. Kinane. Heterogeneous stream
processing and crowdsourcing for urban traffic
management. In Proceedings of the 17th International
Conference on Extending Database Technology, page (to
appear), 2014.

[2] J. Friedman, T. Hastie, and R. Tibshirani. Sparse
inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441, 2008.

[3] W. Leutzbach. Introduction to the Theory of Traffic
Flow. Springer, 1988.

[4] T. Liebig, N. Piatkowski, C. Bokermann, and K. Morik.
Predictive trip planning – smart routing in smart cities.
In Workshop Proceedings of the EDBT/ICDT 2014
Joint Conference, 2014.

[5] T. Liebig, Z. Xu, M. May, and S. Wrobel. Pedestrian
quantity estimation with trajectory patterns. In
Machine Learning and Knowledge Discovery in
Databases, volume 7524 of Lecture Notes in Computer
Science, pages 629–643. Springer Berlin Heidelberg,
2012.

[6] L. Song, M. Kolar, and E. P. Xing. Time-varying
dynamic bayesian networks. Advances in Neural
Information Processing Systems, 22:1732–1740, 2009.

[7] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2005.

374

Sensing Urban Soundscapes

Tae Hong Park1, Johnathan Turner1, Michael Musick1, Jun Hee Lee1,
Christopher Jacoby1, Charlie Mydlarz1,2, Justin Salamon1,2

1Music and Audio Research Lab (MARL) 2Center for Urban Science and Progress (CUSP)
The Steinhardt School 1 MetroTech Center, 19th floor

New York University New York University
New York, NY 10012 USA New York, NY 11201 USA

{thp1, jmt508, musick, junheelee, cbj238, cmydlarz, justin.salamon}@nyu.edu

ABSTRACT
Noise pollution is one of the most serious quality-of-life is-
sues in urban environments. In New York City (NYC),
for example, more than 80% of complaints1 registered with
NYC’s 311 phone line2 are noise complaints. Noise is not
just a nuisance to city dwellers as its negative implications
go far beyond the issue of quality-of-life; it contributes to
cardiovascular disease, cognitive impairment, sleep distur-
bance, and tinnitus3, while also interfering with learning
activities [21]. One of the greatest issues in measuring noise
lies in two of the core characteristics of acoustic noise it-
self — transiency and structural multidimensionality. Com-
mon noise measurement practices based on average noise
levels are severely inadequate in capturing the essence of
noise and sound characteristics in general. Noise changes
throughout the day, throughout the week, throughout the
month, throughout the year, and changes with respect to its
frequency characteristics, energy levels, and the context in
which it is heard. This paper outlines a collaborative project
that addresses critical components for understanding spatio-
temporal acoustics: measuring, streaming, archiving, ana-
lyzing, and visualizing urban soundscapes [28] with a focus
on noise rendered through a cyber-physical sensor network
system built on Citygram [23, 24].

General Terms
Algorithms, Measurement, Design, Reliability, Experimen-
tation, Security, Human Factors, Standardization, Theory.

1“Improving Our Quality of Life: Operation Silent Night,”
http://www.nyc.gov
2http://www.citymayors.com/environment/nyc_noise.
html
3http://www.euro.who.int/__data/assets/pdf_file/
0008/136466/e94888.pdf

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Keywords
Cyber-physical sensor network, data mining, data stream-
ing, big data, acoustics, noise, mobile/distributed comput-
ing, mobile data management, soundscapes, machine learn-
ing.

1. INTRODUCTION
In 1800, a mere 1.7% of the global population lived in

cities of 100,000 or more; at the beginning of the 1950s, that
number rose to 13% [17], and as of 2013, there are 24 megac-
ities4, each inhabited by more than 20 million people. By
2050, the projection is that 68% of the global population
will dwell in urban areas, which will include more than 37
megacities [31]. The growth of cities has been incredible and
when megacities began to emerge in the 1970s (there were
only two: NYC and Tokyo [31]), interest in the quality-of-life
of city dwellers began to garner the attention of researchers.
In the United States, for example, the shift from considering
noise as a mere nuisance and an artifact of city-life began
to change in the 1970s resulting in Congress putting forth
The Noise Pollution and Abatement Act5. Research on the
impact of noise on urban inhabitants by environmental psy-
chologists also began during this period [6, 5, 10]. Today in
NYC, urban noise comprises approximately 80% of all 311
complaints where approximately 40% of the noise complaints
are related to loud music, 18% construction noise, and 13%
loud talking6. With the annual doubling of the world’s popu-
lation, increases in urban noise complaints have the potential
to reach alarming levels. However, measuring noise is not
trivial. One of the most comprehensive noise codes in the
world is The Portland Urban Noise Code7, which is based
on spatio-temporal metrics of sound. That is, noise is de-
scribed in terms of location, time, and acoustic energy mea-
surements and is supervised by a control officer with codes
enforced by the police department. Noise, however, cannot
simply be defined by measuring the decibel (dB) levels at
a specific time and place. Furthermore, manually and con-
tinuously measuring urban soundscapes is impractical and

4Cities that have a population in excess of roughly 20 million
people.
542 USC § 4901, 1972
6https://nycopendata.socrata.com
7Herman, Paul. Portland, Ord. No. 139931. 1975,
amend. 2001. http://www.nonoise.org/lawlib/cities/
portland_or

375

for all intents and purposes, unfeasible. Our project aims
to contribute in developing a comprehensive cyber-physical
system to automatically measure, stream, archive, analyze,
explore, and visualize acoustic soundscapes with a focus on
noise. We begin our paper with a survey of related works,
an introduction to the Citygram cyber-physical system and
its various modules, and a summary and outline of future
work.

1.1 Related Work
Quite a few “sound mapping” examples exist including

The BBC’s Save Our Sounds8, NoiseTube [18], and Locus-
tream SoundMap [16]. Most of the soundmaps are, how-
ever, non-real-time and are based on “click and play au-
dio snapshot” interfaces. An example is Save Our Sounds,
which puts forth the idea of archiving “endangered sounds”.
NoiseTube and WideNoise are two other examples that use
crowd-sourcing concepts while utilizing cell-phones’ micro-
phones to measure and share geolocalized dB(A) levels. The
Locustream SoundMap project is one of the few sound maps
that stream real-time audio using an “open mic” concept.
In Locustream, participants (known as “streamers”) install
the developer-provided custom boxes in their apartments
and share “non-spectacular or non-event-based quality of
the streams.” Other examples include da sense project [29],
which provides a platform for data acquisition, processing,
and visualization of urban sensor data (sound, tempera-
ture, brightness, and humidity). Their publicly available
NoiseMap Android application crowd-sources acoustic en-
ergy data from participants’ smartphones, which is presented
on an online mapping interface with an accompanying pub-
lic API for data sharing with a daily update rate. Their
online platform can also accept data from static sensor net-
works and has collected over 40,000 data points to date.
Commercially available noise monitoring sensors have also
been utilized in spatio-temporal urban noise assessments
[29]. The discontinued Tmote Invent noise-monitoring sen-
sor was used to sample sound levels and transmit them wire-
lessly at regular intervals. The study focused on the power
consumption of these remote sensors, identifying significant
power savings when the data transmission strategy is modi-
fied, at the cost of increased system latency. A final example
is a project called Sensor City9, which aims to deploy hun-
dreds of static sensing units equipped with acoustic monitor-
ing equipment around a small city in the Netherlands. This
solution utilizes its own dedicated fiber-optic network and
high-end calibrated audio recording devices. The project is
taking a soundscape analysis approach and is looking to in-
vestigate human perception and evaluation of acoustic envi-
ronments within urban settings. The project aims to qualify
soundscapes through the development of machine learning
algorithms that will analyze incoming data from the sensor
network.

2. THE CYBER-PHYSICAL SYSTEM
Our interest in this project began in 2011 when observ-

ing that current topological mapping paradigms were typ-
ically static and focused on visualizing city layouts char-
acterized by slowly changing landmarks such as buildings,

8http://www.bbc.co.uk/worldservice/specialreports/
saveoursoundsintro.shtml
9http://www.sensorcity.nl

roads, parking lots, lakes, and other fixed visual objects.
Three-dimensional physical shapes, however, do not only
define urban environments; they are also defined by “in-
visible energies” including acoustic energy. Noticing the
underrepresentation of sound in modern mapping systems,
we began to explore ways to capture spatio-acoustic dimen-
sions and map them on conventional online mapping inter-
faces. The Citygram project currently involves collabora-
tors from New York University’s (NYU) Steinhardt School,
NYU’s Center for Urban Science and Progress (CUSP), and
the California Institute of the Arts (CalArts) with support
from Google. The project was launched in 2011 to de-
velop methodologies, concepts, and technologies to facili-
tate the capture and visualization of urban non-ocular en-
ergies. The first iteration of Citygram is specifically fo-
cused on acoustic data — with such applications as cre-
ating dynamic soundmap overlays for online systems, such
as Google Maps. Many modern mapping systems have no
need to address the issue of temporality. Roads, buildings,
and parks do not change on a regular basis; the image up-
date rate for Google Earth, for example, is typically be-
tween 1 to 3 years10. Such slow update rates, however, are
grossly inadequate for mapping sound due to its inherent
temporality. The project’s main goal began as an effort to
contribute to existing geospatial research by embracing the
idea of time-variant, poly-sensory cartography via multi-
layered and multi-format data-driven maps based on con-
tinuous spatial energies captured by terrestrially deployed
remote sensor devices (RSDs). The project’s goals have
revolved around creating dynamic, spatio-acoustic maps to
help us better understand urban soundscapes and develop
technologies to automatically capture man-made, environ-
mental, and machine-made sounds.

NYU CUSP was formed in fall 2013 to utilize “New York
City as its laboratory and classroom to help cities around
the world become more productive, livable, equitable, and
resilient.” CUSP aims to observe, analyze, and model cities
“. . . to optimize outcomes, prototype new solutions, formal-
ize new tools and processes, and develop new expertise/
experts.”11 One of the projects that CUSP has started
to focus on is noise in NYC. This has brought together
NYU Steinhardt’s Citygram project and CUSP’s initiatives
in noise research.

2.1 Citygram: System Overview
The Citygram system, which includes three main modules,

is shown in Figure 1. The three modules include the RSDs
on the left, the server in the middle, and users on the right-
hand side. In the following subsections we summarize each
module starting with the sensor network and remote sensing
devices.

2.2 Sensor Network and RSDs
The RSDs form the sensor network which capture, com-

pute, and stream spatio-acoustic data and metadata to the
server. The server collects, archives, manages, and analyzes
data received from RSDs. We employ two main RSD de-
ployment strategies to create our sensor network as shown
in Figure 2: (1) fixed RSDs and (2) crowd-sourced RSDs.
Fixed RSDs are installed at fixed locations, which allows

10http://sites.google.com/site/earthhowdoi/Home/
ageandclarityofimagery

11http://cusp.nyu.edu/about/

376

Figure 1: Cyber-physical system.

Figure 2: Sensor network showing different RSD
types.

for continuous, consistent, and reliable data steams via sen-
sor devices, further detailed below. Difficulties in creating
a large-scale, fixed sensor network include selection of ap-
propriate RSDs, as further detailed below, as well as issues
concerning deployment in public spaces as discussed in the
Future Work section. To create a robust and growing sen-
sor network in lieu of the fixed RSD deployment strategy,
we also employ crowd-sourced RSDs to address the issue of
coverage expansion, spatial granularity, and engagement of
community and citizen scientists. The crowd-sourced RSDs
are further divided into mobile apps (e.g. smartphones) and
custom software modules for existing personal computer ap-
plications that run on software platforms including Max12

and SuperCollider13. The mobile app-based RSDs currently
run on the Android OS. Personal computing RSDs only
require a microphone and Internet connectivity to stream
acoustic data from the user’s device to our server. This
crowd-sourced RSD strategy allows for additional measure-
ments that can be especially useful in capturing data that
are beyond existing fixed RSD network boundaries.

12http://cycling74.com
13http://supercollider.sourceforge.net

2.2.1 Selection of RSDs
A number of hardware platforms have been considered in

selecting possible candidates for our fixed RSDs including
the Alix system, Raspberry Pi, Arduino, smartphones, and
others. Our approach in selecting an appropriate RSD for
geospatial acoustic monitoring followed nine criteria: (1) au-
dio capture capability, (2) processing power and RAM, (3)
power consumption, (4) flexible OS, (5) onboard storage,
(6) wireless connectivity, (7) I/O options/expandability, (8)
robustness/sturdiness, and (9) cost. Rather than opting to
use custom boards such as the Raspberry Pi, the solution
decided upon was Android-based hardware devices includ-
ing Android mini-PCs. A sub $50 Android mini-PC, for
example, contains the following specifications: quad-core
CPU, 2GB RAM, onboard Wi-Fi, Bluetooth, built-in micro-
phone and camera, an HDMI port, and multiple USB ports.
A selection of smartphones and mini-PC’s was chosen and
run through a preliminary set of objective and subjective
tests to determine their suitability for acoustic monitoring
in terms of their frequency response and recording quality.
The devices are shown in Figure 3, from top left to bottom
right: (a) HTC Evo 4G, (b) Samsung Star, (c) KD812, (d)
Cozyswan MK812, and (e) Measy U2C. One of the goals of
our project is the automatic classification of sound events in
urban spaces as further discussed in Section 2.6. To avoid
the loss of information, potentially important for the ma-
chine learning stage, it is imperative to use appropriate mi-
crophones, sampling rates, and bit resolution. During the
process of short-listing RSD candidates, we also considered
audio capture specifications specifically used in automatic
sound classification. The literature seems to suggest varying
sampling frequencies. For example, work in classification of
soundscape-based sound events in [9] used a 12 kHz sampling
rate and in [32] a 16 kHz and 16 bit resolution system was
used; in other classification and sound detection work where
the focus is on musical signals, filter-banks between 100 Hz–
10 kHz [26] and 27.7 Hz–16 kHz were used [3]. Although it is
difficult to draw conclusions on the minimal requirements of
sample rate and bit resolution parameters, literature in the
field of machine learning pertinent to sound seems to sug-
gest that it is not always necessary to have a granularity of
44.1 kHz/16 bit. As part of determining appropriate sound
capture parameters, we plan to further investigate the influ-
ence of time/frequency resolution on our machine learning
algorithms.

To test the potential RSD candidates, environmental record-
ings were made using all devices simultaneously from a third
floor apartment window overlooking a busy urban inter-
section in Brooklyn, New York. Both of the smartphones
sounded clear and individual sound sources were easily iden-
tifiable. The frequency bands around the voice range, how-
ever, seemed to be accentuated, possibly a result of the de-
vices’ optimization for speech handling. The KD812 and
the Cozyswan mini-PCs clearly showed artifacts of dynamic
compression. The Measy U2C produced far clearer record-
ings than the other mini-PCs, with a better low frequency
response. Reference sine-sweeps (20 Hz to 20 kHz) were
recorded using an Earthworks M30 measurement microphone
mounted on-axis placed one meter from a Genelec 8250a
loudspeaker in an acoustically soundproofed lab. These first
measurements allowed compensation of loudspeaker and room
frequency response coloring. The measurement microphone
was then replaced by each device with microphone ports on-

377

Figure 3: Potential RSDs: (a) HTC Evo 4G, (b)
Samsung Star, (c) KD812, (d) Cozyswan MK812,
and (e) Measy U2C.

102 103 104

−40

−20

0

Frequency (Hz)

R
el

at
iv

e
dB

 (a
lig

ne
d

at
 1

kH
z)

HTC Evo 4G
Samsung Star

102 103 104

−40

−20

0

Frequency (Hz)

KD812
Cozyswan MK812
Measy U2C

Figure 4: Frequency response of Android devices.

axis to the loudspeaker. The same sine-sweeps were then
repeated for each device. Impulse responses were extracted
from each sweep using deconvolution techniques, generat-
ing device frequency responses as shown in Figure 4. Each
device response was level-normalized at 1 kHz.

All devices show a relatively poor response at lower fre-
quencies. This is especially the case for Cozyswan MK812
mini-PC. The large peak in the device’s frequency response
at 1–3 kHz highlights the perceived coloration of the envi-
ronmental recording. The enhanced high frequency response
from the HTC and Samsung smartphone devices can also
be observed. Between 2–10 kHz the response varies between
device types with the most amount of high frequency drop-
off occurring on the mini-PC’s. All of the microphones on
the mini-PC’s were mounted on the internal printed circuit
board facing up, explaining the filtering effects caused by
the small microphone port coupled to the relatively large
internal cavity of the device. Based on our tests, the smart-
phones seemed to provide the preferred solution. However,
to match the processing power of the mini-PC’s, a high-end
smartphone would be required. Furthermore, audio record-
ing quality of the Measy U2C’s built-in microphone is com-

parable to the tested smartphones with the added benefit
of increased processing power and expandability. This ex-
pandability allows for the connection of external USB micro-
phones, providing the potential for consistent and enhanced
audio quality as well as flexibility in microphone placement.
The external USB microphone allows the device itself to be
kept modular and separate from the mini-PC, allowing flex-
ibility in its placement and replacement. We are currently
in the process of investigating the use of external USB audio
peripherals.

2.3 Signal Processing and Feature Extraction
The RSDs autonomously capture audio in real-time and

employ distributed computing strategies to address efficiency
and scalability issues by running various computational tasks
including feature extraction. This strategy alleviates stress
on the server in the context of sensor network scalability and
efficiency. Blurred acoustic data and non-invertible low-level
acoustic features are streamed to the server.

Our current custom Android software, which runs both on
our fixed sensor network as well as on conventional Android-
based smartphones, uses OpenSL ES14 to record audio blocks
using circular buffering techniques. As shown in Figure 5,
feature vectors are transmitted as JSON15 objects via HTTP
posts. The raw audio signal is compressed and streamed
to the server where users can then monitor soundscapes in
real-time. Before transmission to our server, the raw au-
dio is passed through a speech-blurring algorithm as further
detailed below. For development of machine learning algo-
rithms we also have the option to stream raw audio data
using libsndfile16 with FLAC codec17, which is separately
archived on the server and inaccessible by the public.

To enable users to hear the “texture” and characteristics
of spaces without compromising the privacy of people in the
monitored areas, we employ a modified granular synthesis
technique [27] to blur the spectrum of the voice. This is
achieved prior to streaming the raw audio data to our server
where users can access the blurred audio streams. To ac-
complish these conflicting tasks — blurring the audio while
retaining the soundscape’s texture — a multi-band signal
processing approach was devised. The audio signal is first
divided into three sub-bands using overlapping filter win-
dows with cascaded third-order Butterworth filters. The
middle band represents the voice band. The isolated voice
band is then segmented into 32 windows, or “grains”, with
50% window overlap. Blurring is achieved by randomizing
the temporal order of the windows. The randomized grains
are then used to construct the blurred voice band signal via
overlap-and-add [4, 25]. The final audio signal sent to the
server is a sum of the unaltered lower/upper bands and the
modulated voice band. Not shown in Figure 5 is a sepa-
rate audio thread and audio streaming block that transmits
raw audio data for machine learning research purposes. This
module will eventually be removed from our system once our
algorithms are fully developed.

2.4 Server and Database
The basic structure of the Citygram system is comprised

of users, RSDs, and the Citygram server. A user may reg-

14http://www.khronos.org/opensles
15http://www.json.org
16http://www.mega-nerd.com/libsndfile
17http://xiph.org/flac

378

Figure 5: Block diagram of the Android software.

ister multiple RSDs enabling simultaneous streaming from
multiple locations. The server currently uses MySQL to
store all data and metadata. The information submitted
by each RSD is stored in our database where feature val-
ues and references are stored in tables. Feature vectors in-
clude time- and frequency-domain data, a compressed rep-
resentation of the audio’s discrete Fourier transform, and
UTC18 timestamps. For timestamp synchronization across
platforms, each RSD uses OS-specific timing libraries that
provide microsecond granularity; a server-side cron job regu-
larly updates and synchronizes its internal clock to network
UTC time. Metadata information for all the RSDs is also
stored in tables and includes RSD latitude and longitude
drawn from the Google Maps Geolocation API19, and the
device’s activity status. Additionally, the Citygram website
holds a separate database of all user data, including number
of RSDs and platform information. Feature pushing is ac-
complished through simple HTTP POST requests using the
cURL library20 and pulling is accomplished using a GET
request. All requests are formatted using JSON. This rel-
atively simple mechanism allows for consistency across all
platforms.

2.5 User Interaction and Visualization
The entry point for becoming a streamer is the Citygram

website21. The website is the central hub for management
and communication between devices and users. A user regis-
ters through the site and creates a username and password.
This registration information, along with details involving
location and platform type, are stored in the database be-
fore being linked to specific RSDs. Within this portal, a
user may edit the location of their RSDs as well as view an
interactive visualization of the currently streaming devices.
Beyond administrative roles, two types of users exist on the
Citygram site: default user and researcher. A default user

18http://www.time.gov
19https://developers.google.com/maps/documentation/
business/geolocation

20http://curl.haxx.se
21http://citygram.smusic.nyu.edu

Figure 6: Dynamic soundmap snapshot.

Figure 7: Screenshot of interface.

may register up to 50 RSDs and is restricted in their access
to historical data. In contrast, a “research user” has no cap
on the amount of devices that can be registered and may
access all historical data. Additionally, researchers may also
register other users.

In order for Citygram to attract potential streamers, users,
urban scientists, the general public, and artists, we have de-
veloped a number of interfaces and software applications.
This includes tools for commonly used software environ-
ments such as MATLAB, Max, Processing, and SuperCol-
lider. Once registered through the Citygram website, a user
may easily enter their username and device ID during the
initialization of a streaming session. This will allow a num-
ber of different interaction modes with our server including
pulling data from select RSDs.

The Citygram system currently provides quasi-real-time
(subject to network and buffering latency) visualizations
via standard web browsers such as Google Chrome. The
interface dynamically visualizes RSD-streamed audio fea-
tures and also provides the ability to visualize historical data
stored in the database.

The web interface is designed to function as a spatio-
acoustic exploration portal. By default, data from all RSDs
on the map are visualized. However, it is also possible for
a user to select a specific area on the map to visualize only
a subset of RSDs. Our maps are built on the Google Maps
API. Each RSD is represented by a marker, which is user-
selectable for additional information and extended function-

379

Figure 8: Data animation in Citygram.

ality. Clicking on the marker brings up a window pop-
ulated by the latitude/longitude coordinates and address,
real-time feature vector values, photo snapshot from Google
Street View, the precise feature timestamp, and an audio
monitoring button that allows the user to hear RSD-specific
real-time audio streams. Our current visualizations utilize
heatmaps to dynamically display low-level acoustic feature
data streamed by RSDs as shown in Figure 6.

Additional features include controls that can be used to
enable/disable feature visualizations. Once a user selects
features for visualization, the client computer queries the
server for its current timestamp and synchronizes its ani-
mation to this timecode. This timecode is used to query
the list of available RSDs. A two second buffer is created,
containing data from RSDs that are active for the specified
time duration. This list is returned to the client, which cur-
rently animates the 2-seconds worth of samples at a rate
of 10 frames per second (cf. Figure 6). These parameters
are adjustable. If an RSD streams at a lower rate than the
visualizer’s frame rate, frame compensation takes place: a
sample-and-hold technique is employed to previous samples,
which are held across animation frames. Additionally, the
control menu has an optional section in which to enter a
start and end time for historical animation. The playback
speed of historical data is controllable by a slider facilitating
browsing of past data sets.

2.6 Analytics
One of the key goals of the project is to automatically

analyze and classify audio data captured by our sensor net-
work. This includes identifying urban sounds such as sirens,
car horns, street music, children playing, dogs barking, wind
blowing, and automobiles humming and idling. In the con-
text of measuring and identifying sounds that can be consid-
ered noise, the initial stages of our research is framed within
soundscape analysis and auditory scene analysis [7, 14, 28,
34]. This allows us to go beyond the somewhat simplistic
“more decibels equal more noise” paradigm. Soundscape re-
search typically begins with source identification [8], and as
such, we believe automatic source identification to be a key
research component for our project. Automatic source iden-

tification can be further divided into acoustic event detec-
tion (AED) and acoustic event classification (AEC) where
the former refers to providing a semantic label [1, 13, 12]
and the latter assigning temporal level segmentation that
can then be used for AEC [1, 9, 12, 19].

In order to develop supervised learning systems, we re-
quire large annotated datasets. Annotated datasets for mu-
sic, speech, and birds are readily available. For example,
for music there exists the Million Song Dataset [2], CAL500
(500 songs with multiple annotations) [33], Last.fm (960,000
tags) [15], McGill Billboard dataset22; bird sound examples
include HU-ASA [11], Cornell-Macaulay Library of Natu-
ral Sounds, Peterson Field Guides, Common Bird Songs,
and Mirtovic’s database. For general acoustic events (espe-
cially outdoor spaces) databases are currently scarce. Only
a few exist and include the CLEAR23 and C4DM D-CASE
dataset [12]. Both datasets, however, only contain anno-
tated sound samples primarily recorded within office spaces.
We are, therefore, in the process of collecting and anno-
tating data. One of the data sources we are using in the
meantime is Freesound24 which provides an API for access-
ing crowd-sourced and annotated audio samples that are
keyword searchable (e.g. city + noise). There are a num-
ber of issues with Freesound as a source for ground-truth
data including singular annotations, varying audio quality,
and potentially erroneous or irrelevant labeling. In parallel
to collecting and creating annotated datasets, we are also
working on the development of an urban sound taxonomy to
determine classes of sound sources we are interested in hav-
ing our AED/AEC system identify. The taxonomy efforts
will also serve in contributing towards creating a coherent
framework for dealing with sounds both within the project
and when relating to the existing literature on soundscape
research.

3. SUMMARY
NYC is one of the largest, busiest, and most complex cities

in the world. In the past two years, the city has on aver-
age received 227 noise complaint calls per day, made by city
dwellers utilizing NYC’s 311 hotline. In the years to come,
these statistics are projected to get worse as city popula-
tion growth is expected to increase significantly on a global
scale. The current state of noise measurement and control
infrastructures based on average dB levels are ineffective in
capturing the spectral, temporal, and spatial characteristics
of noise. Our early efforts and interest in cyber-physical sys-
tems to address this issue began with research and develop-
ment of dynamic cartographic mapping systems to explore
non-ocular urban energies. This resulted in creation of the
Citygram project in 2011. In its first iteration, Citygram’s
focus was aimed towards acoustic energy — i.e. soundscapes
that included all types of sound. More recently, in collabora-
tion with NYU CUSP, however, we have narrowed our scope
of research to spatio-acoustic noise. In this paper, we have
outlined our cyber-physical system that addresses the ac-
quisition, archival, analysis, and visualization of sound cap-
tured from urban spaces. The various components discussed
in our paper included cross-platform remote sensing devices
(RSDs), data acquisition and crowd-sourcing strategies for

22http://ddmal.music.mcgill.ca/billboard
23http://www.clear-evaluation.org
24http://www.freesound.org

380

data streaming, sensor network designs, summarizing our
database architecture, our Internet exploration portal, and
work concerning analytics. We expect that our research
and development outcomes will contribute towards creating
multimodal interactive digital maps based on poly-sensory
RSDs to quantitatively measure and represent soundscapes
and acoustic noise in real-time; provide interactive spatio-
acoustic software tools for researchers, educators, the gen-
eral public, and citizen scientists; and also contribute to ur-
ban planning, noise city code development, and improving
the quality-of-life of city inhabitants.

4. FUTURE WORK
To address the complexities related to sensor network de-

ployment and scalability, the next stage of the project will be
focused on small-scale RSD deployment. Two NYC parks
have been chosen for deployment of 40 RSDs. These two
sites will allow the project infrastructure to be rigorously
tested under outdoor weather conditions, which will help
us gain valuable insights into Wi-Fi connectivity, equip-
ment malfunction/damage, system performance under var-
ious weather conditions, and power supply issues. We also
plan to set up another sensor network of 30 RSDs on the
CalArts campus near Los Angeles. Our RSDs will stream in-
situ raw indoor and outdoor soundscape data to our server in
an effort to create a large ground truth dataset: this dataset
will be annotated and labeled.

Permanently fixed mounting locations are also presently
being considered. Ongoing efforts include working with cities
to deploy RSDs through existing infrastructures that already
include communication and power supply solutions. One
such infrastructure is the urban payphone system, which will
become, or already is, functionally irrelevant. NYC, for ex-
ample, is planning to repurpose the payphone system: of the
currently active 12,360 public payphones, 10 have recently
been converted to include free Wi-Fi, with more planned
for the future. This infrastructure is ideal for our project,
as it would quickly lead to the availability of a large num-
ber of nodes throughout the city employing what we call
“mount and play” strategy — mounting inexpensive, highly
sophisticated, and robust RSDs onto existing urban infras-
tructures such as payphones, electronic parking meters, and
traffic control systems.

The acoustic data obtained through our sensor network
will also be used to investigate connections between spatio-
acoustic characteristics and existing geolocated datasets, such
as crime statistics, weather patterns, school attainment met-
rics, municipal/census data and public social network feeds,
and real-estate statistics which can provide rich quantitative
and contextual location-based information. Another type
of information that we are interested in is environmental
emotion/mood. Although this interdisciplinary research is
still in its nascent stages, automatic mood detection has
found increasing interest in the field of music, speech anal-
ysis, face-recognition, and natural language processing [22,
20, 30, 35]. Much of the emotion/mood detection research
for sound has been in the realm of music. However, there is
strong potential that algorithms and methodologies used in
music will translate to urban acoustic signals as: (1) music
is omnipresent in urban spaces and (2) many of the low-
level feature vectors are timbral rather than musical and
reflect acoustic dimensions of sound. Voice blurring will be
another area for further research and development. To im-

prove sound monitoring quality without compromising pri-
vate speech that might be captured by the RSDs, voice activ-
ity detection (VAD) techniques will be explored. Currently,
voice blurring occurs regardless of the absence of speech in
the soundscape. With the inclusion of VAD, blurring will
only occur when speech is detected by an RSD.

Another key goal for the project is developing effective
and informative visualizations by embracing the idea that
“a [moving] picture is worth a thousand [trillions of] words.”
In order to reach our visualization goals, we will: (1) develop
robust and accurate sound classification algorithms, (2) de-
sign interactive visualizations to effectively present an ocean
of data that is continuously in flux, and (3) integrate other
spatial data and provide unified multi-data visualizations.

Today’s megacities we inhabit are very complex. Future
megacities and their soundscapes will become even more
complex and will likely dwarf the noise and loudness lev-
els of today’s cities. To improve the quality-of-life of cur-
rent and future city-dwellers, we need to better understand
urban spaces. However, “you can’t fix what you can’t mea-
sure.” Therefore, our hope is to contribute towards devel-
oping a cyber-physical system to dynamically and quanti-
tatively measure and “sense” urban soundscapes and ulti-
mately help improve the quality-of-life of city communities.

5. ACKNOWLEDGMENTS
Our thanks to Google and NYU CUSP for their support.

6. REFERENCES
[1] J.-J. Aucouturier, B. Defreville, and F. Pachet. The

bag-of-frames approach to audio pattern recognition:
a sufficient model for urban soundscapes but not for
polyphonic music. The Journal of the Acoustical
Society of America, 122(2):881–91, Aug. 2007.

[2] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and
P. Lamere. The million song dataset. In ISMIR 2011:
Proceedings of the 12th International Society for
Music Information Retrieval Conference, October
24-28, 2011, Miami, Florida, pages 591–596.
University of Miami, 2011.

[3] S. Böck, F. Krebs, and M. Schedl. Evaluating the
Online Capabilities of Onset Detection Methods. In
ISMIR, pages 49–54, 2012.

[4] M. Bradshaw and I. Xenakis. Formalized Music:
Thought and Mathematics in Composition. Music
Educators Journal, 59(8):85, Apr. 1973.

[5] A. L. Bronzaft. The effect of a noise abatement
program on reading ability. Journal of environmental
psychology, 1(3):215–222, 1981.

[6] a. L. Bronzaft and D. P. McCarthy. The Effect of
Elevated Train Noise On Reading Ability.
Environment and Behavior, 7(4):517–528, 1975.

[7] A. L. Brown, J. Kang, and T. Gjestland. Towards
standardization in soundscape preference assessment.
Applied Acoustics, 72(6):387–392, 2011.

[8] L. D. Brown, H. Hua, and C. Gao. A widget
framework for augmented interaction in SCAPE. In
Proceedings of the 16th annual ACM symposium on
User interface software and technology, pages 1–10.
ACM, 2003.

[9] C. V. Cotton and D. P. W. Ellis. Spectral vs.
spectro-temporal features for acoustic event detection.

381

In Applications of Signal Processing to Audio and
Acoustics (WASPAA), 2011 IEEE Workshop on,
pages 69–72. IEEE, 2011.

[10] G. W. Evans and S. J. Lepore. Nonauditory effects of
noise on children: A critical review. Children’s
environments, pages 31–51, 1993.

[11] K.-H. Frommolt, R. Bardeli, F. Kurth, and
M. Clausen. The animal sound archive at the
Humboldt-University of Berlin: Current activities in
conservation and improving access for bioacoustic
research. Slovenska akademija znanosti in umetnosti,
2006.

[12] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol,
M. Lagrange, and M. Plumbley. IEEE AASP
challenge: Detection and classification of acoustic
scenes and events. Technical report, Technical Report,
Queen Mary University of London, 2013.

[13] D. Giannoulis, D. Stowell, E. Benetos, M. Rossignol,
M. Lagrange, and M. D. Plumbley. A database and
challenge for acoustic scene classification and event
detection. submitted to Proc. EUSIPCO, 2013.

[14] C. Guastavino. Categorization of environmental
sounds. Canadian journal of experimental psychology
= Revue canadienne de psychologie expérimentale,
61(1):54–63, Mar. 2007.

[15] V. Henning and J. Reichelt. Mendeley-A Last. fm For
Research? In eScience, 2008. eScience’08. IEEE
Fourth International Conference on, pages 327–328.
IEEE, 2008.

[16] J. Joy and P. Sinclair. Networked music & soundart
timeline (NMSAT): a panoramic view of practices and
techniques related to sound transmission and distance
listening. Contemporary Music Review,
28(4-5):351–361, 2009.

[17] J. J. Macionis and V. N. Parrillo. Cities and urban
life. Pearson Education, 2004.

[18] N. Maisonneuve, M. Stevens, and M. E. Niessen.
NoiseTube: Measuring and mapping noise pollution
with mobile phones. Environmental Engineering,
(May), 2009.

[19] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen.
Acoustic event detection in real life recordings. In 18th
European Signal Processing Conference, pages
1267–1271, 2010.

[20] O. C. Meyers. A mood-based music classification and
exploration system. PhD thesis, Massachusetts
Institute of Technology, 2007.

[21] A. Nadakavukaren. Our global environment: A health
perspective. Waveland Press Prospect Heights, IL,
2000.

[22] R. Nagpal, P. Nagpal, and S. Kaur. Hybrid Technique
for Human Face Emotion Detection. International
Journal on Advances in Soft Computing and Its
Applications (IJASCA), 1(6):87–90, 2010.

[23] T. H. Park, B. Miller, A. Shrestha, S. Lee, and
J. Turner. Citygram One: Visualizing Urban Acoustic
Ecology. Digital Humanities 2012, 13(6):313, 2012.

[24] T. H. Park, J. Turner, C. Jacoby, A. Marse,
M. Musick, A. Kapur, and J. He. Locative
Sonification: Playing the World Through Citygram.
ICMC, 2013.

[25] L. R. Rabiner and B. Gold. Theory and application of
digital signal processing. Englewood Cliffs, NJ,
Prentice-Hall, Inc., 1975. 777 p., 1, 1975.

[26] J. Ricard. An implementation of multi-band onset
detection. integration, 1(2):10, 2005.

[27] C. Roads. Introduction to granular synthesis.
Computer Music Journal, 12(2):11–13, 1988.

[28] R. M. Schafer. The tuning of the world. Knopf, 1977.

[29] I. Schweizer, R. Bärtl, A. Schulz, F. Probst, and
M. Mühläuser. NoiseMap-real-time participatory noise
maps. In Proc. 2nd IntâĂŹl Workshop on Sensing
Applications on Mobile Phones (PhoneSenseâĂŹ11),
pages 1–5, 2011.

[30] I. Shafran and M. Mohri. A comparison of classifiers
for detecting emotion from speech. In Proc. ICASSP,
2005.

[31] M. Sivak and S. Bao. Road safety in New York and
Los Angeles: US megacities compared with the nation.
2012.

[32] A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu,
and M. Omologo. Acoustic event detection and
classification in smart-room environments: Evaluation
of CHIL project systems. Cough, 65(48):5, 2006.

[33] D. Turnbull, L. Barrington, D. Torres, and
G. Lanckriet. Towards musical
query-by-semantic-description using the cal500 data
set. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 439–446. ACM, 2007.

[34] D. Wang, G. J. Brown, and Others. Computational
auditory scene analysis: Principles, algorithms, and
applications, volume 147. Wiley interscience, 2006.

[35] Y. Xia, L. Wang, and K.-F. Wong. Sentiment vector
space model for lyric-based song sentiment
classification. International Journal of Computer
Processing Of Languages, 21(04):309–330, 2008.

382

Privacy and Anonymity in the Information
Society (PAIS)

Traian Marius Truta
Li Xiong

Farshad Fotouhi

383

A Hybrid Approach for Privacy-preserving Record Linkage

Murat Kantarcioglu
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080, USA

muratk@utdallas.edu

ABSTRACT

The integration of information dispersed among multiple

repositories is a crucial step for accurate data analysis in various

domains. In support of this goal, it is critical to devise procedures

for identifying similar records across distinct data sources. At the

same time, to adhere to privacy regulations and policies, such

procedures should protect the confidentiality of the individuals to

whom the information corresponds. Various private record

linkage (PRL) protocols have been proposed to achieve this goal,

involving secure multi-party computation (SMC) and similarity

preserving data transformation techniques. SMC methods provide

secure and accurate solutions to the PRL problem, but are

prohibitively expensive in practice for large data sets, mainly due

to excessive computational requirements. Data transformation

techniques offer more practical solutions, but incur the cost of

information leakage and false matches.

In this talk, we discuss how the performance of SMC based PRL

techniques could be significantly improved by combining them

with data sanitization techniques without incurring the cost of

information leakage and false matches. Furthermore, we discuss

how to efficiently handle typographical errors exist in data during

the PRL protocol execution.

BIO

Dr. Murat Kantarcioglu is an Associate Professor in the Computer

Science Department and Director of the UTD Data Security and

Privacy Lab at the University of Texas at Dallas. He holds a B.S.

in Computer Engineering from Middle East Technical University,

and M.S. and Ph.D degrees in Computer Science from Purdue

University. He is a recipient of NSF CAREER award and Purdue

CERIAS Diamond Award for Academic excellence. Currently, he

is a visiting scholar at Harvard Data Privacy Lab.

Dr. Kantarcioglu's research focuses on creating technologies that

can efficiently extract useful information from any data without

sacrificing privacy or security. His research has been supported by

grants from NSF, AFOSR, ONR, NSA, and NIH. He has

published over 100 peer reviewed papers. Some of his research

work has been covered by the media outlets such as Boston

Globe, ABC News etc. and has received two best paper awards.

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

7th International Workshop on Privacy and Anonymity in the

Information Society (PAIS’14) March 28, 2014, Athens, Greece

384

Clustering-based Multidimensional Sequence Data
Anonymization

Morvarid Sehatkar
University of Ottawa
Ottawa, ON, Canada

msehatkar@uottawa.ca

Stan Matwin
1
Dalhousie University
Halifax, NS, Canada

2
Institute for Computer Science of the

Polish Academy of Science
Warsaw, Poland

stan@cs.dal.ca

ABSTRACT

Sequence data mining has many interesting applications in a large

number of domains including finance, medicine, and business.

However, Sequence data often contains sensitive information

about individuals and improper release and usage of this data may

lead to privacy violation. In this paper, we study the privacy

issues in publishing multidimensional sequence data. We propose

an anonymization algorithm, using hierarchical clustering and

sequence alignment techniques, which is capable of preventing

both identity disclosure and sensitive information inference. The

empirical results show that our approach can effectively preserve

data utility as much as possible, while preserving privacy.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration--

Security, integrity, and protection

General Terms

Algorithms, Performance, Experimentation, Security

Keywords

Data anonymization, privacy, multidimensional sequence data,

longitudinal data, clustering, k-anonymity

1. INTRODUCTION
Recent advances in information technology have enabled public

organizations and corporations to collect and store huge amounts

of individuals’ data in data repositories. Such data are powerful

sources of information about an individual’s life such as interests,

activities, and finances. Corporations can employ data mining

techniques to extract useful knowledge from individuals’ data and

exploit this knowledge to improve their strategic decision making,

enhance business performance, and improve services. As a result,

the demand for collecting and sharing data has been rapidly

increased. Among various types of individuals’ data, event

sequence data mining has many interesting applications in a large

number of domains. Sequence data mining enables us to discover

behaviour patterns of individuals through temporal activities.

Such knowledge is precious for planning, detecting behavioral

changes, and commercial purposes. For instance, longitudinal

medical records of patients can be used to analyze patients’

reactions to a new drug or to support a diagnosis. However,

despite all benefits of analyzing event sequence data, this data

often contain sensitive information and may violate privacy of

individuals if published. In event sequence data, every event may

have a number of attributes that act as quasi-identifiers (QIs). Due

to temporal correlation among the events of each sequence, in

addition to the values of QIs within an event, any combination of

QIs values across events along with the temporal information

about these values might lead to privacy breach. For example,

consider Table 1 containing information of multiple visits of

patients in a hospital over the last five years. Every visit

corresponds to a multidimensional event and the ordered list of

these events represents one sequence. Each event has 5 attributes,

including admission year (AdmYr), ZIP code, number of days

since the first visit in each year (DSFC), and the length of stay in

the hospital (LOS), which all act as QIs, as well as one sensitive

attribute diagnosis. An adversary with some background

knowledge about visits of a target individual is able to launch two

types of privacy attacks: identity disclosure and attribute

disclosure. For instance, if the adversary knows that Bob had a

visit in 2009 and he has been living in ZIP code 56230 from 2010,

she can uniquely identify Bob’s record, #6, and consequently

conclude that Bob has HIV. In case of attribute disclosure, if the

adversary knows that Bob had a visit in 2007 and later in 2011 he

was hospitalized for 3 days, then she can conclude that Bob has

HIV since both matching records to her knowledge, #8 and #9,

have HIV in one of their visits.

A common practice for releasing individuals’ data without

violating privacy is data anonymization. Data anonymization

techniques aim to modify data such that no sensitive information

about individuals can be disclosed from published data while data

distortion is minimized to ensure usefulness of data in practice. In

order to effectively anonymize multidimensional sequence data, to

prevent both identity disclosure and attribute disclosure attacks,

temporal correlation among the events of each record should be

considered in anonymization process, and it should be guaranteed

that no combination of values of QIs within an event and across

events of any record leads to privacy breach. In the past years,

several anonymization algorithms were proposed to protect

privacy when publishing different types of data [2]. However,

none of these methods are applicable to anonymize a

multidimensional sequence dataset, like the data in Figure 1 (a).

Recently, a few methods have been designed to anonymize

longitudinal health data which is a case of event sequence data

[1][6][7]. However, authors in [1] and [7] only focused on privacy

protection against identity disclosure. Moreover, in the

longitudinal data, studied in [7], each record contains a sequence

of (ICD, Age) pairs as well as a DNA sequence where ICD

represents the code of the diagnosis made for a patient and Age is

the patient’s age at the time of diagnosis. Considering such data,

background knowledge of an adversary in this method is modeled

as any combination of (ICD, Age) pairs. Obviously, this method

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

385

Table 1 Patient data of a hospital

PID VID AdmYr ZIP DSFC LOS Disease

1 1 2009 56117 0 3 Hepatitis

2 1 2007 56103 0 2 Infection

3 1 2008 56942 0 1 Fever

3 2 2010 56942 0 30 Infection

4 1 2008 56107 0 2 Fever

4 2 2010 56107 0 35 Flu

5 1 2009 56117 0 3 Fever

6 1 2009 56103 0 3 Flu

6 2 2009 56103 10 1 Fever

6 3 2010 56230 0 2 HIV

7 1 2008 56072 0 2 Flu

8 1 2007 56361 0 30 Hepatitis

8 2 2011 56107 0 3 HIV

9 1 2007 56230 0 35 Flu

9 2 2011 56107 0 3 HIV

10 1 2009 56072 0 2 Flu

10 2 2009 56103 13 35 Fever

10 3 2010 56043 0 30 Infection

Table 2 Anonymized patient data satisfying (2, 0.5)-privacy

PID VID AdmYr ZIP DSFC LOS Disease

1 1 2009 56117 0 3 Hepatitis

2 1 [2007:2008] 56*** 0 2 Infection

3 1 [2007:2008] 56*** 0 [0:12) Fever

3 2 [2009:2012] 56*** 0 [0:12) Infection

4 1 [2007:2008] 56*** 0 [0:12) Fever

4 2 [2009:2012] 56107 0 [0:12) Flu

5 1 2009 56117 0 3 Fever

6 1 2009 56*** 0 [0:1) Flu

6 2 2009 56103 [1:2) [0:12) Fever

6 3 2010 56*** 0 [0:12) HIV

7 1 [2007:2008] 56*** 0 2 Flu

8 1 [2007:2008] 56*** 0 [0:12) Hepatitis

8 2 [2009:2012] 56107 0 [0:12) HIV

9 1 [2007:2008] 56*** 0 [0:12) Flu

9 2 [2009:2012] 56*** 0 [0:12) HIV

10 1 2009 56*** 0 [0:1) Flu

10 2 2009 56103 [1:2) [0:12) Fever

10 3 2010 56*** 0 [0:12) Infection

Figure 1 Generalization hierarchy for (a) AdmYr (b) DSFC and LOS

in terms of number of weeks (c) ZIP

is limited to two QIs and fails to consider the multidimensionality

of events in our problem. In [1] it is assumed that adversaries

would not have any information about co-occurrence of values of

quasi-identifiers in one event as well as the order of events of a

target individual. As a result this work fails to model all potential

background knowledge of adversaries. The proposed method in

[6] prevents both identity disclosure and attributes disclosure;

however knowledge of adversaries is assumed to be limited to at

most p values of quasi-identifiers. Although this assumption

decreases information loss, determining the appropriate value of p

is not trivial. As a result the adequate level of privacy protection

may not be achieved. In this paper, we define a new privacy

model called (k,c)-privacy to anonymize multidimensional

sequence data to prevent identity disclosure and attribute

disclosure. This privacy model ensures that every combination of

values of QIs within an event and across events of any sequence is

shared by at least k sequences, and the probability of inferring any

sensitive value is at most c. We achieve (k, c)-privacy by

presenting an anonymization algorithm based on hierarchical

agglomerative clustering [4] and sequence alignment [5]

techniques. We assume that the purpose of data publication is

unknown and so our algorithm anonymizes data by minimizing

overall data distortion. Table 2 shows an anonymized version of

the data in Figure 1(a) satisfying (2, 0.5)-privacy using

generalization hierarchies in Figure 1.

2. PROBLEM DEFINITION
In this section we present the framework which forms the basis of

our anonymization methodology. Specifically, we describe the

privacy model and the utility measure.

2.1 Privacy Model
Suppose a data holder wants to share its multidimensional

sequence data for public use. Let be a set of

attributes and be the corresponding attribute

domains. Each is either a categorical or a numerical attribute.

Also assume there is one sensitive attribute with the domain

values . A multidimensional sequence dataset D is

a collection of records of the form (SID, S), where SID is a unique

id for every individual and S is an ordered list of multidimensional

events, denoted by 〈 〉. Each event e has the form

 where EID is the event’s id, is a domain

value of and s is a value of the sensitive attribute ,

 . Events of every sequence S are ordered with respect to

temporal information of one of the attributes .
We refer to the value of the zth QI attribute of the jth event of the

sequence by and the value of the sensitive attribute in

the jth event of the sequence is denoted by . A subset of

attributes is assumed to be publicly available, so

they act as quasi-identifiers, . The values of

the sensitive attribute are naturally private. We assume an

adversary who knows that the record of a target individual exists

in a released multidimensional sequence dataset. She also has

some background knowledge about the sequential events of a

target individual, i.e. the values of some QIs as well as the order

of these values in some of the events of an individual’s sequence.

Armed with this knowledge, the adversary seeks to find some

matching records to her background knowledge in the released

data. If the number of such records is not “sufficiently” large or

the percentage of sequences among these records containing a

common sensitive value is high, the adversary may infer some

sensitive information about the individual. Since adversaries’

386

knowledge is assumed to be in the form of any combination of

QIs’ values, the worst-case scenario would be an adversary

knowing the values of all QIs’ in all events of a target individual.

Therefore, to protect privacy of individuals the privacy model

should ensure that every sequence in the released data is linked to

a sufficiently large number of other sequences and the percentage

of sequences with the same sensitive value in every group of

indistinguishable sequences is not too high. However, the latter

case may not need to be satisfied for every value of the sensitive

attribute. More precisely, if some values of the sensitive attribute

have less degree of sensitivity and do not need to be kept private,

then we do not need to be worried about these values being too

frequent in a group. For example, in the context of publishing

medical data, it might be allowed to disclose the value “flu” for

the sensitive attribute disease. To effectively handle these cases,

we define a set , called highly-sensitive set, which contains

those values of the sensitive attribute which have a high degree

of sensitivity. In the presence of this set, our privacy model must

ensure that the frequency of sequences which have at least one of

the values in in some of their events is not too high in any group

of indistinguishable sequences. This brings us to the following

definition.

DEFINITION 1 ((k, c)-privacy). Given anonymity threshold k2,

and confidence threshold c(0,1], a multidimensional sequence

dataset D satisfies (k, c)-privacy if i) each sequence in D is

indistinguishable from at least k-1 other sequences with respect to

any combination of QIs and ii) the probability of inferring any

high sensitive value in any group of indistinguishable sequences is

at most c.

2.2 Information Loss
We employ generalization and suppression on the values of QIs to

modify data and form clusters. This anonymization process incurs

information loss because some original values of QIs in every

sequence are either replaced with less specific values or are totally

removed. In order to preserve data utility for data mining tasks,

we should ensure that anonymization cost is minimized. We

consider the scenario where the data analysis task is unknown at

the time of data publication. So, our goal is to anonymize a

multidimensional sequence data to satisfy (k,c)-privacy while

preserving data utility as much as possible. Let D* be an

anonymization of the multidimensional sequence data D. D*

corresponds to a set of clusters C={C1, C2,..., Cp} which is a

clustering of sequences in D. All sequences in a given cluster Cj

are anonymized together. We define the amount of information

loss incurred by anonymizing D to D* as

 ∑

 (1)

where IL(Cj) is the information loss of the cluster Cj, which is

defined as the sum of information loss of anonymizing every

sequence S in Cj:

 ∑

 (2)

where |C| is the number of sequences in the cluster C, and

 is the information loss of anonymizing the sequence S to

the sequence S*.

Each sequence is anonymized by generalizing or suppressing

some of the QIs’ values in some of its events. So, we define

information loss of a sequence based on the information loss of its

events. Let H be generalization hierarchy of the attribute A. We

use the Loss Metric (LM) measure [3] to capture the amount of

information loss incurred by generalizing the value a of the

attribute A to one of its ancestors ̂, with respect to H:

 ̂
 ̂

where is the number of leaves in the subtree rooted at x.

The information loss of each event e is then defined as

 ∑

where is the ancestor of the event e, e(n) is the value of nth QI of

the event e and is its corresponding value in the event .

Hence, the information loss incurred by anonymizing each

sequence is as follows:

 ∑

3. ANONYMIZATION ALGORITHM
We propose a bottom-up anonymization algorithm based on

hierarchical agglomerative clustering. The general idea is to

anonymize data by starting with the trivial clustering that consists

of singleton clusters and then keep merging the two closest

clusters, until all clusters satisfy privacy constraints based on

(k,c)-privacy model. A key factor in any clustering algorithm is

the distance measure. In order to minimize the overall data

distortion due to anonymization, we define the distance between

two given clusters as the change in information loss when we

merge the clusters:

where is the information loss of the merged cluster,

and and are information loss of clusters X and Y

before merge, respectively.

We assume that every cluster has a representative sequence which

is the result of anonymizing all contained sequences. The distance

between two clusters is calculated based on the information loss

of anonymizing their representatives, and the clusters with the

smallest distance are chosen to be merged. In general, two

representative sequences have different number of events. So, the

anonymization of these sequences can be seen as the problem of

finding a matching between the events of these sequences, using

generalization and suppression, such that the anonymization cost

is minimized. The following definition expresses the information

loss of a merged cluster based on the information loss of

anonymizing representatives of two clusters which are being

merged to their best matching.

DEFINITION 2. Let ⃛ and ⃛ be representative sequences of

clusters X and Y and be their best matching. Then the

information loss of the merged cluster is define as

 (⃛) (⃛)

where (⃛) and (⃛) are information loss of

anonymizing representative sequences ⃛ and ⃛ to their best

matching sequence .

Finding the best matching between two sequences is a sequence

alignment problem. The basic principle underlying sequence

alignment methods is to measure the effort it takes, in terms of

specific operations, to make sequences equal. One of the most

common approaches for sequence alignment is dynamic

programming. Dynamic programming is an advanced algorithmic

technique that solves optimization problems from the bottom up

by finding optimal solutions to subproblems. Inspired by [7], we

387

employ dynamic programming to align representatives of clusters

with the goal of minimizing anonymization cost. The operations

which we use to align (anonymize) two sequences are

generalization and suppression. If two values of the attribute

qQI are identical, their generalization is equal to the values

themselves; otherwise both values are replaced with their lowest

common ancestor (LCA) which is the lowest node in the

generalization hierarchy HA that is an ancestor of both v and w.

Given sequences ⃛ and ⃛ as the

representatives of two clusters, the optimal alignment of these two

sequences is the alignment which incurs minimum information

loss considering all QIs. We have three cases for aligning ⃛ and ⃛:

1) aligning and , and generalizing

 and , which means replacing every QI value in xl and its

corresponding QI value in yt with their LCA, 2) aligning
 and , and suppressing , 3)

aligning and , and suppressing

For every qQI we create a score matrix to store the cost of all

sub-problems for aligning two one-dimensional sequences

resulted from projecting sequences ⃛ and ⃛ on q. Each of these

solutions have an anonymization cost and our objective is to find

the best alignment with minimum information loss. The cost of

each solution is calculated as the sum of its cost for every qQI.

Besides the score matrices, we assume a move matrix M where

each cell M[i, j] contains the operation which is chosen to align

the sequence prefix and the sequence prefix

 . To build the sequence MX,Y which is the result of

best alignment of sequences ⃛ and ⃛, we do a “traceback” on

matrix M from cell M[l+1,t+1] to cell M[0,0].

Our clustering algorithm clustering based multidimensional

sequence data anonymizer (CBMSA) is based on agglomerative

hierarchical clustering. We start with the trivial case of singleton

clusters and iteratively merge two closest clusters which are

determined by applying our multidimensional sequence alignment

algorithm. Once, a cluster satisfies (k,c)-privacy, it will not be

merged anymore. In order to reduce information loss, our

preference is to merge two closest clusters which do not violate

the confidence constraint of (k,c)-privacy model when being

merged. When we merge two clusters X and Y with representative

sequences ⃛ and ⃛, all sequences in clusters X and Y are

anonymized with respect to MX,Y. This means that those events

which are suppressed in ⃛ and ⃛ based on the best alignment

result are suppressed in all sequences in clusters X and Y,

respectively. The remaining events of every sequence are then

replaced with their corresponding events in MX,Y. However, since

we only apply generalization on QI values, the values of sensitive

attribute in these events remain unchanged. Since our goal is to

build clusters which satisfy (k,c)-privacy, for every cluster we

should check if it contains at least k sequences and if the

frequency of sequences which have at least one event with a high

sensitive value is not greater than c. When we merge two clusters

X and Y, the size of the new cluster is simply the sum of the

number of sequences in X and Y. For the diversity check, we

should count the number of sequences which have at least one

event with a high sensitive value. In order to efficiently count

these sequences, for every cluster we use a data structure, denoted

by HighSensList, to keep track of these sequences. When we

merge two clusters X and Y, the number of sequences with high

sensitive value in X or Y may decrease. This is due to the fact that

some events may be suppressed in sequences of cluster X or Y. If

the events which are suppressed in a sequence are the only ones

which contain high sensitive value, then this sequence will not

contain any high sensitive value after applying suppression. So it

should be removed from HighSensList of the cluster where it is

consist of. So, after applying anonymization on sequences of

clusters X and Y, we first update HighSensList of these clusters

and then merge two HighSensLists to build the HighSensList of

the new merged cluster. We keep merging clusters till no more

than one cluster left. If the remained cluster does not satisfy

privacy constraints, we remove all sequences contained in this

cluster from data.

4. EXPERIMENTS
In this section, our goal is to evaluate the performance of our

proposed anonymization algorithm in terms of information loss

calculated based on Equation 1 as well as scalability by varying

the anonymity threshold k and the confidence threshold c. We

developed a data generator to generate synthetic multidimensional

sequence data inspired from the Heritage Health Prize (HHP)

claims data set1. In [2], anonymization of the HHP claims dataset

is studied in order to prevent identity disclosure attacks. Authors

identified 6 QIs for the claims dataset among which we selected

two attributes days since first claim in each year (DSFC) and

length of stay (LOS). We did not include attributes diagnosis and

CPTCode2 since these attributes are sensitive attributes in the

framework of our study. Also, we disregarded attributes place of

service and specialty due to not accessing to their possible original

values in the HHP data. Instead, for each claim we included two

other QI attributes, i.e. ZIP code of patients due to the fact that

this information is often updated at every visit and the year in

which a claim took place (AdmYr). We generated multiple

synthetic datasets by varying the number of sequences, average

number of events per sequence (3,5, and 10), and number of QIs

per event (2, 3, and 4). For every set of data characteristics, we

generated 10 datasets, evaluated their performance in terms of

information loss, and took the average of information loss of 10

datasets in each set. We implemented our algorithms in Java and

conducted experiments on a 1.80 GHz Intel core i5 PC with 8 GB

RAM. To illustrate the benefits of our proposed multidimensional

sequence alignment method, we also developed a baseline

algorithm which does not use dynamic programming. If two

sequences X and Y are of the same size, the baseline algorithm

simply applies generalization to every event of two sequences.

Otherwise, it first randomly suppresses n = abs(|X| - |Y|) events in

the longer sequence and then generalizes every remaining events

in two sequences. In the first set of experiments, we evaluate the

information loss IL by varying the value of the anonymity

threshold k while keeping the confidence threshold c fixed. Figure

2 shows the IL for two datasets of size 1000 and 10000 with the

average number of events 5 and three QIs with anonymity

threshold 5 k 50 and a fixed confidence threshold c = 0.7. As k

increases, IL increases for both algorithms. This illustrates the

trade-off between privacy and data utility. In other words, as k

increases, higher level of privacy protection is required to keep

the probability of re-identifying a target individual or inferring

sensitive information about a target individual fairly low.

Therefore, more data distortion occurs. Also, comparing the

information loss of our anonymization algorithm based on

dynamic programming with the baseline algorithm depicts the

benefits of our method. In the second set of experiments we

change c from 0.5 to 0.9 for the fix value k = 5. This setting

allows us to measure the performance of our anonymization

1 http://www.heritagehealthprize.com/c/hhp/data

2 Current Procedural Terminology Code

388

algorithm against attribute disclosure for a fixed k. The resulting

information loss of two algorithms for two datasets is shown in

Figure 3. In general, IL decreases as c increases due to a less

restrictive privacy requirement. Similar trends were observed

between CBMSA and Baseline for the other datasets. The results

are omitted for brevity. In Figure 4, we show the time

performance of our algorithm for two datasets with 5 k 50 and a

fixed confidence threshold c=0.7. For a small dataset with total

number of events about 4500, for every value of k, the total

runtime of our algorithm is less than 30 sec. For a large dataset,

with total number of events about 47000, the execution time of

our algorithm for different values of k is between 2200 sec and

2700 sec. The run time of baseline algorithm for both datasets is

very fast. This indicates that our algorithm spends a large amount

of its running time on multidimensional sequence alignment based

on dynamic programming. Even though the run time of our

algorithm for large datasets is fairly high, we believe it is still

acceptable in practice due to the fact that most anonymization

tasks are off-line procedures.

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed an anonymization algorithm for

multidimensional sequence data using sequence alignment

techniques and agglomerative hierarchical clustering. To the best

of our knowledge, this is the first work for multidimensional

sequence data anonymization which prevents both identity

disclosure and attribute disclosure without making any

assumption about the knowledge of the adversary. Our

experimental results on synthetic data show the effectiveness of

our proposed algorithm for anonymizing multidimensional

sequence data. Our future work includes the following. In this

work we assumed that the goal of data publication is unknown

and we anonymized data by minimizing data distortion for general

data analysis purposes. In our future work, we will consider the

case of publishing data for a specific data mining task such as

classification. This requires employing an appropriate

anonymization cost measure to capture the utility of our algorithm

for data mining tasks. Moreover, in this paper, we studied the

simplest case of a single sensitive attribute in every event of a

sequence. An extension of our work would be the case of multiple

sensitive attributes. Also, we will run experiments on real datasets

to further investigate the effectiveness of our proposed algorithm.

Acknowledgment
The authors would like to thank Dr. Khaled El Emam (EHIL lab)

for his inspiration with this research. The early stages of this work

were partially supported by grants of CIHR and NSERC.

6. REFERENCES
[1] El Emam, K, Arbuckle, L., Koru,G., Gaudette, L., Neri, E.,

Rose, S., Howard, J., and Gluck, J., 2012. De-Identification

Methods for Open Health Data: The Case of the Heritage

Health Prize Claims Data Set. In Journal of Medical Internet

Research, 14:1, DOI:10.2196/jmir.2001, 2012.

[2] Fung, B.C.M, Wang, K, Chen, R. and Yu, P.S. 2010.

Privacy-preserving data publishing: A survey of recent

developments. ACM Comput. Surv. 42, 4, Article 14 (June

2010), 53 pages

[3] Iyengar, V.S. 2002. Transforming data to satisfy privacy

constraints. In KDD '02:Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery

and data mining, 2002, pp. 279-288.

[4] Kaufman L and Rousseeuw, P. J., 1990. Finding Groups in

Data: An Introduction to Cluster Analysis. John Wiley 1990

[5] Needleman, S. B. and Wunsch, C. D. 1970. A general

method applicable to the search for similarities in the amino

acid sequence of two proteins. J. Molecular Biol., vol. 48,

no. 3, pp. 443–453, 1970.

[6] Sehatkar, M. and Matwin S., 2013. HALT: Hybrid

Anonymization of Longitudinal Transactions, Eleventh

Annual International Conference on Privacy, Security and

Trust (PST), Tarragona, Spain.

[7] Tamersoy, A., Loukides, G., Nergiz, M. E., Saygin, Y. and

Malin, B. 2012. Anonymization of Longitudinal Electronic

Medical Records. IEEE Transactions on Information

Technology in Biomedicine, vol. 16, pp. 413-423, 2012

Figure 2. Information loss for (a) Data_1000_5_3 (b)

Data_10000_5_3 with c = 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 25 50

IL

k

CBMSA Baseline

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 25 50

IL

k

CBMSA Baseline

Figure 3. Information loss for (a) Data_1000_5_3 (b)

Data_10000_5_3 with k = 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.6 0.7 0.9

IL

c

CBMSA Baseline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.6 0.7 0.9

IL

c

CBMSA Baseline

Figure 4. Execution time for (a) Data_1000_5_3 (b)

Data_10000_5_3 with c = 0.7

0

5

10

15

20

25

30

5 10 25 50

T
im

e
 (

s
)

k

CBMSA Baseline

0

500

1000

1500

2000

2500

3000

5 10 25 50

T
im

e
 (

s
)

k

CBMSA Baseline

(a)

(b) (a)

(b)

(a) (b)

389

Efficient Multi-User Indexing for Secure Keyword Search

Eirini C. Micheli, Giorgos Margaritis, Stergios V. Anastasiadis
Department of Computer Science and Engineering

University of Ioannina, Greece
{emicheli,gmargari,stergios}@cs.uoi.gr

ABSTRACT
Secure keyword search in shared infrastructures prevents
stored documents from leaking confidential information to
unauthorized users. We assume that a shared index provides
confidentiality if it can only be used by users authorized to
search all the documents contained in the index. We intro-
duce the Lethe indexing workflow to improve query and up-
date efficiency in secure keyword search. Lethe clusters to-
gether documents with similar sets of authorized users, and
only creates shared indices for configurable volumes of docu-
ments with common users. Based on the published statistics
of an existing dataset, we show that Lethe generates an in-
dexing organization that simultaneously achieves both low
search and update cost.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; K.6 [Management of Computing
and Information Systems]: Security and Protection

General Terms
Design, Experimentation, Measurement, Security

Keywords
inverted index, clustering, full-text search, shared data stor-
age, confidentiality

1. INTRODUCTION
Keyword (or full-text) search is an indispensable service

for the automated retrieval of text documents, whether pro-
prietary within an organization, or public across the web.
Over the years, an enormous amount of accumulated text
has gradually expanded keyword search to several contempo-
rary storage environments, such as personal content archives,
online social networks, and cloud facilities. At the same

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
7th International Workshop on Privacy and Anonymity in the Information
Society (PAIS’14) March 28, 2014, Athens, Greece

time, the efficiency benefits of storage consolidation increas-
ingly motivate the maintenance of sensitive data over pub-
lic infrastructures. Indeed, the access control enforced at
the storage level is often presumed sufficient for the neces-
sary confidentiality isolation of co-located users and organi-
zations.

An inverted index is the dominant indexing structure in
keyword search. The stored documents are preprocessed
into a posting list per keyword (or term), which provides
the occurrences (or postings) of the term across all the doc-
uments. A single index shared among multiple users offers
search and storage efficiency. However, it can also leak con-
fidential information about documents with access permis-
sions limited to a subset of the users [5, 13, 10, 3]. The
problem persists even if a query is initially evaluated over
the shared index, and later the inaccessible documents are
filtered out from the final result list before it is returned to
the user [5].

A known secure solution applies a shared index by lim-
iting search to term postings of documents searchable by
the user [5]. During query processing it skips dependen-
cies on inaccessible documents through posting filtering at
extra list processing overhead. In online social networks, re-
cent research applies advanced list-processing operators and
cost models to improve secure search efficiency [3]. First,
it organizes the friends of each user into appropriate groups
based on characteristics of the search workload. Then, dur-
ing query handling, it intersects the list of documents that
contain a term against the list of documents authored by
the querying user and the union of her friend groups.

A different secure solution partitions the document collec-
tion by search permissions, and maintains a separate index
for each partition [13]. The collection ends up indexed by
a limited number of indices, and query handling runs over
all the indices that contain documents searchable by the
querying user. However, minor variations in search permis-
sions of different documents increases the number of indices.
Although smaller indices can be completely eliminated by
replicating their contents to private per-user indices, this
approach increases document duplication across the indices
and the respective update cost.

In this study, we aim to achieve low search latency and
index update cost by limiting both the number of indices per
user and the document duplication across the indices. We
group by search permissions the documents into families,
and cluster together the families with similar permissions.
We maintain one index for the documents searchable by a
maximal common subset of users in a cluster. Cluster docu-

390

Searchers

ClusterFamily

Figure 1: Document families grouped
by searcher similarity Ls into clusters.

Indices

Clusters of
Families

Index
Requests

Searchers & Docs
per Index

Searchers
per Doc

Crawler Clusterer Mapper Indexer

batch1

batch2

batch3

...Searchers

Index Name

User IDs

Doc IDs

Index Name

User IDs

Doc IDs

Index ID

Searcher IDs

Doc IDs

Figure 2: The four stages of the Lethe workflow.

ments whose users lie outside the above subset are inserted
into either per-user private indices or additional multi-user
indices.

Our indexing organization for secure keyword search is
innovative because we (i) skip query-time list filtering via
prebuilt securely-accessible indices, and (ii) effectively re-
duce the number of searched or maintained indices through
configurable partial merging of indices for documents with
common authorized users. In Sections 2 and 3 we present
the Lethe indexing workflow and our prototype implementa-
tion. In Sections 4 and 5 we show some experimental results
and examine previous related work, while in Section 6 we
summarize our conclusions and plans for future work.

2. INDEXING ORGANIZATION
We next provide the basic assumptions and goals of our

work, and describe the stages of the Lethe indexing workflow
that we propose.

2.1 Assumptions and Goals
We target collections of text documents in shared stor-

age environments accessible by multiple users. The system
applies access control to protect the confidentiality and in-
tegrity of the stored documents from actions of unautho-
rized users. We designate as owner the user who creates
a document, and searchers of the document the users who
are authorized to search by keywords for the document and
read its contents. The system preprocesses the documents
content into the necessary indexing structure to enable inter-
active search through keyword criteria set by the searchers.
In our indexing organization we set the following goals:

• Security Ensure that the indexing structure provides
confidentiality of the searched documents with respect
to the document contents and their statistical charac-
teristics (e.g., number of documents, term properties).

• Search Efficiency Minimize the search latency per
query as measured through an appropriate metric (e.g.,
median or high percentile).

• Indexing Cost Minimize the document insertion I/O
activity and indexing storage space required for the
entire collection.

We require that users are authenticated by the system and
authorized to only search documents with the necessary ac-
cess permissions. Accordingly, we build a separate index
for each document subset with common access permissions.
We presently examine secure search in multi-user environ-
ments, but leave outside the study scope the closely related
but complementary problem of search over encrypted stor-
age. In fact, search with encrypted keywords over encrypted

documents conceals the search activity and stored docu-
ments from a storage provider, but it does not necessarily
hide the characteristics of stored content from unauthorized
searchers [13].

2.2 The Lethe workflow
We introduce the Lethe workflow consisting of four basic

stages for crawling, clustering and mapping the documents
to the generated indices.

Crawler In order to realize our goals, we build an appro-
priate indexing organization based on the document search
permissions. Let a text dataset T = (DT , ST), where DT
is the set of all documents, and ST the set of all users
with search permissions over one or more documents of DT .
First we crawl the names (e.g., paths) and permissions (e.g.,
allowed searchers) of documents in T , and assign unique
identifiers to the members of DT and ST . Then we group
into a separate family f = (Df , Sf), each set of documents
Df ⊆ DT with identical set of searchers Sf ⊆ ST .

Clusterer We aim to maintain a single index for the
searchers who are common among similar families. Accord-
ingly, we need to identify those families with substantial
overlap in their searcher sets. We address this issue as a
universal clustering problem over the searcher sets of the
families in the entire dataset (Fig. 1). We parameterize the
clustering method as necessary to assign every family to ex-
actly one cluster, without omitting any families as noise.

Let the searcher similarity Ls ∈ [0, 1] be a configurable
parameter to adjust the number of common searchers across
the families of each created cluster. We generate a set CT
of clusters, where each cluster c ∈ CT contains a set Fc of
families, and each family f ∈ Fc contains the document set
Df ⊆ DT . The document set Dc of cluster c is derived from
the union of the documents contained across all the families
of c, i.e., Dc =

⋃
f∈Fc

Df . Thus, the number of documents
in cluster c is at least as high as the number of families in c,
i.e., |Dc| ≥ |Fc|.

Mapper We strive to map each family f to the mini-
mum number of indices required to securely handle keyword
queries over the documents in Df , but also minimize the
total number of indices in the system. First, we dedicate
to every searcher u ∈ ST the pair Pu = (De

u, {u}), where
De

u ⊆ DT is the set of documents exclusively searchable by
u. Then, we assign to Pu a private index Iu containing the
documents of De

u.
Let the cluster intersection Pc of cluster c ∈ CT be a pair

(Di
c, S

i
c), with Di

c = Dc, and Si
c =

⋂
f∈Fc

Sf the intersection
of searchers in the families of Fc. By family definition, the
documents in Di

c are searchable by all the searchers in Si
c.

If
∣∣Si

c

∣∣ 6= ∅, we dedicate a separate index Ic to the intersec-
tion Pc. For every family f ∈ Fc, we also define a family

391

difference Pf as the pair (Dd
f , S

d
f), where Dd

f = Df and

Sd
f = Sf −Si

c, i.e., Sd
f corresponds to the searchers of family

f not contained in Si
c of Pc. If Sd

f 6= ∅, we have to allow the

users u ∈ Sd
f to securely search for documents d ∈ Dd

f .
An extreme approach to address the above Pf search prob-

lem is to insert every document d ∈ Dd
f to every private

index Iu, u ∈ Sd
f . However, a difference Pf may contain a

relatively large number
∣∣Dd

f

∣∣ of documents searchable by a

considerable number
∣∣Sd

f

∣∣ of users. Hence, the above ap-
proach would end up to a large number of documents dupli-
cated across the private indices of many users. At the other
extreme, we could dedicate a separate index If to every dif-
ference Pf with

∣∣Sd
f

∣∣ 6= ∅. However, this approach runs the
risk of generating in the system a large number of indices,
each serving a small number of documents and searchers.

We introduce the duplication product Rd
f =

∣∣Dd
f

∣∣ ·
∣∣Sd

f

∣∣
to approximate1 the potential document duplication result-
ing from indexing a family difference Pf . Subsequently, the
decision of whether we should create a dedicated index If
depends on how Rd

f compares to the configurable duplication

threshold Td. We assume that Rd
f < Td implies an affordable

cost of inserting the documents d, ∀d ∈ Dd
f , to private in-

dices Iu, ∀u ∈ Sd
f . Instead, Rd

f ≥ Td suggests that devoting
a separate index If to the difference Pf is preferable.

An optimization that we do not examine further due to
its complexity is to pursue additional duplication reduction
by intersecting the searchers of the differences Pf ,∀f ∈ F ′

c,
for appropriate F ′

c ⊂ Fc corresponding to cluster c.
Indexer We insert each document d ∈ DT to the appro-

priate Ic, If , and Iu indices specified by the above map-
ping phase. In order to keep low the necessary I/O activity,
we separately generate each index through a specification
of the contained documents. We experimentally validated
that the alternative approach of specifying to the system
the indices of each document leads to higher I/O activity
due to lower storage locality during the index updates. As
new documents are added to the collection, we look for ex-
isting indices to securely serve all the searchers of each doc-
ument. Periodically, we repeat the previous clustering and
mapping phases to optimize the search over the accumulated
document collection. Deletions or modifications of inserted
documents are handled with the necessary changes of the in-
dex contents and potential reorganization of their mapping
to documents. We summarize the four stages of the Lethe
workflow along with their outputs in Fig. 2.

3. PROTOTYPE IMPLEMENTATION
Based on the above design, our prototype implementation

consists of four components: (i) crawler, (ii) clusterer, (iii)
mapper, and (iv) indexer. The crawler specifies a unique
identifier for each document and gathers information about
the permitted document searchers. The clusterer organizes
the documents into families according to their searchers, and
then clusters the families based on the searcher similarity
Ls. We use the searchers of each document as key to create
the families over a hash table. Thus, all documents with
identical searchers end up at the same entry of the table.

1For increased accuracy of Rd
f over diverse document sizes,

we could replace
∣∣Dd

f

∣∣ with the total number of postings

contained in all documents d ∈ Dd
f .

 1

 10

 100

 1000

 10000

 100000

 1e+06

0 10 20 30 40 50 60 70 80 90 100
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

D
o
c
u
m

e
n
ts

 p
e
r

C
lu

s
te

r

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Searcher Similarity (Ls %)

Documents vs Clusters

Documents
Clusters

Figure 3: For the synthetic dataset based on Do-
cuShare[14], we examine the number of created clus-
ters and the number of documents per cluster across
different Ls values.

Subsequently, we group the families with similar searchers
into the same cluster represented as a vector of family iden-
tifiers. The searchers of a family f are concisely represented
through a searcher bitmap Mf of length equal to the num-
ber of users |ST | in the stored dataset. In bitmap Mf we set
equal to 1 the values at bit positions specified by identifiers
of permitted family searchers u ∈ ST .

Since we do not know in advance the number of clusters,
we use a clustering algorithm that produces this number as
output (e.g., DBSCAN) rather than requiring it as input
(e.g., K-means) [16]. Within each cluster, the mapper iden-
tifies the cluster intersections and family differences. Each
intersection or difference is specified through the contained
documents and authorized searchers. We assign a dedicated
index to each cluster intersection, and we use a dedicated
index or the private indices of the respective searchers for
each family difference according to the duplication threshold
Td. The indexer receives the index specifications from the
mapper, and splits each index into document batches. Then
it communicates with the search engine to insert the docu-
ments of each batch to the respective index, after initializing
it if necessary. Finally, the search engine serves queries by
using the indices permitted to each authorized searcher.

4. EXPERIMENTAL EVALUATION
We use the published statistics of a real dataset to gener-

ate a synthetic workload, and apply a prototype implemen-
tation of the Lethe workflow that we developed. Then we
measure the number of indices per user and document for
different parameters, and analyze the security and efficiency
characteristics of our approach.

4.1 Document Dataset
We generate a synthetic document collection with searcher

lists based on published measurements of an existing dataset
(DocuShare [14]). We set the number of users to 200, user
groups to 131, documents to 50000, and max group size to
50. We specify the sizes of individual groups from the Do-
cuShare statistics, and uniformly pick users as group mem-
bers. Based on the DocuShare statistics, we specify the
number of users and groups allowed to search each docu-

392

 1

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

S
e
a
rc

h
e
r

Searcher Similarity (Ls %)

Search Cost

Td = 0
Td = 500
Td = 1500
Td → ∞

(a)

 1

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

D
o
c
u
m

e
n
t

Searcher Similarity (Ls %)

Update Cost

Td → ∞
Td = 1500
Td = 500
Td = 0

(b)

 0

 20

 40

 60

 80

 100

 1 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

In
d

ic
e

s
 p

e
r

S
e

a
rc

h
e

r

Number of Indices per Document

Search-Update Tradeoff (Ls = 60%)

Td = 0

Td = 500

Td = 1500
Td → ∞

(c)

Figure 4: For the synthetic dataset based on DocuShare[14], we illustrate the number of indices (a) per
searcher and (b) per document across different Ls and Td values. In addition, we show (c) the search-update
tradeoff for different Td values at fixed Ls=60%.

ment, and then uniformly assign to each document specific
users and groups. We implemented the crawler, clusterer
and mapper in C/C++ with STL, and the indexer in Perl
(v5.10.1). For clustering we applied the DBSCAN algorithm
with MinObjs=1 and Eps=Ls [16]. We run the computa-
tions over Linux v2.6.32 on quad-core x86 2.33GHz proces-
sor, 4GB RAM, and 7.2KRPM SATA disks.

4.2 Measurement Results
We applied the Lethe workflow to organize the examined

dataset into clusters of document families. For different Ls

values, in Fig. 3 we show the average number of documents
per cluster and the total number of clusters. The duplica-
tion threshold Td is not included because it only applies to
the subsequent mapping stage. The ideal similarity should
result into family clusters with common searchers per cluster
to be efficiently served by a single index. For instance, set-
ting Ls=60% generates 929 clusters with 53.82 documents
per cluster. At the extreme case of Ls=0%, there is 1 cluster
containing all 1475 families and 50000 documents. At the
other extreme of Ls=100%, there are 1475 clusters, each
containing 1 family with 33.90 documents on average.

We regard the number of indices per searcher as a proxy
of the search cost, because it specifies the number of doc-
ument lists that have to be merged into the final search
result. Accordingly, in Fig. 4a we examine the sensitivity of
the search cost to the values of the Ls and Td parameters.
We experimented with Td values in the range [0,+∞). The
indices per searcher vary between 35 and 79 at Td=500, and
between 11 and 22 at Td=1500. Setting Ls=0% or 100%
usually maximizes the number of indices per searcher. This
follows from the fact that index sharing is limited in a single
cluster of diverse families, or numerous clusters of one family
each. On the contrary, setting Ls=60% leads to non-empty
cluster intersections, and roughly minimizes the number of
indices per searcher. One exception to the above pattern
occurs with Td → ∞, which prohibits index sharing within
family differences, and minimizes the indices per searcher at
Ls=0% or 100% instead of Ls=60%.

The update cost of the indexing organization can be prox-
ied through the average number of indices that contain each

document, and have to be updated during document inser-
tion. In Fig. 4b we examine the sensitivity of the update cost
to Ls and Td. At Ls=60%, we notice that setting Td=1500
or Td → ∞ minimizes the number of indices per document
to 7.80 and 53.48, respectively. Instead, the curves remain
almost flat across different Ls values when Td=0 or 500. If
we combine this observation with the outcome of the previ-
ous paragraph, we conclude that Ls=60% leads to both low
update and search cost.

A striking difference between Figures 4a and 4b is the
opposite effect of Td to the search and update cost. This
tradeoff is further illustrated in Fig. 4c for different Td val-
ues and fixed Ls=60%. We found Td=1500 to provide a
reasonable choice, because it simultaneously achieves a low
number of 11 indices per searcher and 7.8 per document.
Overall, at Ls=60% and Td=1500, the mapper specifies a
total of 298 indices: 84 and 182 shared indices for intersec-
tions and differences, respectively, and 32 private indices. In
early measurements (not shown) that we did over a search
engine, the above results directly translated to low search
and update latency unlike alternative settings.

4.3 Analysis of Results
Our preliminary experiments provide strong evidence for

an improved method to achieve efficient and secure keyword
indexing. The method is secure because a query can only
use indices of documents that the searcher is permitted to
access [5]. The method is also efficient for several reasons.

First, we guarantee that the result returned by an index
does not require any filtering to remove documents inacces-
sible to the searcher. We only require to merge the results
from multiple indices for ranking purposes, as is typically al-
ready done by parallel or distributed search engines. Thus,
we avoid the extra query-time overhead for list processing
required by previous secure methods [3].

Second, the clustering of document families allows the ser-
vice of common searchers in the cluster intersection with a
single index. Thus, we reduce the average number of indices
per searcher, which translates into smaller number of result
lists to be generated and merged during query handling. To
the best of our knowledge, this is the first time that cluster-

393

ing is applied for the efficiency of secure keyword search.
Third, the control of indexing duplication through the

threshold Td prevents the insertion of the same document to
an excessive number of multiple private indices, which was
previously required [13]. Instead, we create extra shared in-
dices whenever the number of documents and their common
searchers justify their cost.

5. RELATED WORK
We compare our work with related research results previ-

ously developed for secure text indexing, remote storage of
encrypted documents, and online social networks.

Security-aware Indexing Büttcher and Clarke exam-
ine the problem of filesystem search with relevance ranking
based on the vector space model [5]. A secure search engine
must only deliver query results dependent on files searchable
by the querying user. Thus, a system-wide index to find and
rank all matching files is insecure, because it can leak the
total number of files matching a term, or term statistics nor-
mally unavailable to a user. As a solution, the authors pro-
pose to restrict query processing to the parts of posting lists
that the querying user is permitted to access. The resulting
performance slowdown can be reduced through appropriate
reordering of query operators.

Singh et al. logically organize the filesystem into sets of
files, called access-control barrels, with identical access priv-
ileges of users and groups [13]. The system constructs a
separate index per barrel, and restricts query handling to
permitted barrels. The authors define the access credentials
of users, groups and barrels, and use them as nodes of the
access credentials graph. The graph includes edges that min-
imally connect users to their groups and searchable barrels.
The authors safely reduce the number of maintained indices
by eliminating from the graph each barrel with number of
files less than a configured threshold. Then, they replicate
the respective index across the minimal set of nodes that
can search the files of the eliminated barrel.

A different study aims to improve metadata search effi-
ciency by hierarchically partitioning the filesystem by access
permissions [10]. This approach creates many small parti-
tions, but the authors leave for future study the full merging
of partitions with identical permissions. However, the above
problem is essentially family clustering with Ls=100% in the
context of the present paper.

Encrypted Storage Song et al. describe techniques to
securely search remote documents maintained in encrypted
form [15]. The client queries the server through a key and
a plaintext or encrypted keyword. The server identifies key-
word locations through linear scan of the encrypted docu-
ments. For large datasets, the server may use inverted index
of encrypted keywords, and encrypted or plaintext posting
lists. In contrast, the Mafdet system inserts keyed hashes
of document keywords into a Bloom filter at the server [1].
Thus, a client only submits keyword hashes to search for
documents at the server.

Chang and Mitzenmacher use an encrypted bitmap to en-
code the presence of particular keywords in a document [6].
The user submits a permuted keyword identifier along with
a key to search for the encrypted documents that contain the
keyword. The only information leaked to the server is the
keyword sharing among the documents. Instead, CryptDB
supports keyword search over individually encrypted words
of a text column in a relational database [12]. PRISM trans-

forms the problem of keyword search over encrypted files
into privacy-preserving map and reduce tasks [4].

Pervez et al. assume that both files and inverted indices
are stored in encrypted form at the cloud [11]. Authorized
users submit encrypted search criteria to a third party, which
homomorphically encrypts them before their transmission to
the cloud server. The cloud server uses a user-specific key
to re-encrypt the index for query evaluation.

Online Social Networks Keyword search in social net-
works is possible through a set of inverted indices with each
index containing keyword occurrences (posting lists) of doc-
uments from particular users. Access control is enforced
through intersection of the search result with the identifiers
(author list) of documents authored by a particular set of
users [2]. The authors examine alternative cost models to
optimally include specific friends in the author list of each
user, and introduce the HeapUnion operator to efficiently
process multiple lists of document identifiers [3].

Hummingbird is a microblogging system that cryptograph-
ically hides from a user the topics on which other users follow
her, and from third parties the fact that a user follows an-
other user on a specific topic [8]. More generally, Cheng et
al. enable fine-grain specification of access-control policies
in user-to-user, user-to-resource and resource-to-resource re-
lationships over social networks [7]. Hails provides data-flow
confinement at the client and server side so that mutually-
untrusted web applications can interact safely [9]. These are
more general issues of access control in social networks, and
lie beyond the scope of our present study.

6. CONCLUSIONS AND FUTURE WORK
We use clustering to identify documents with similar sets

of authorized searchers. Accordingly, we generate shared in-
dices for documents with common authorized searchers of
sufficient volume. We experimentally show that with tun-
able parameters we achieve an indexing organization that
combines low number of indices per user with low number
of indices per document. In our future work we plan to in-
tegrate the Lethe workflow into a distributed search engine
and experiment with a broad collection of datasets from col-
laborative environments, cloud storage and social networks.

7. ACKNOWLEDGEMENTS
This research has been co-financed by the European Union

(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

8. REFERENCES
[1] S. Artzi, A. Kieżun, C. Newport, and D. Schultz.

Encrypted keyword search in a distributed storage
system. Technical Report MIT-CSAIL-TR-2006-10,
CSAIL, MIT, Feb. 2006.

[2] T. A. Bjørklund, M. Götz, and J. Gehrke. Search in
social networks with access control. In Intl. Work.
Keyword Search on Structured Data (KEYS), pages
4:1–4:6, Indianapolis, IN, June 2010.

[3] T. A. Bjørklund, M. Götz, J. Gehrke, and
N. Grimsmo. Workload-aware indexing for keyword
search in social networks. In ACM Intl. Conf.

394

Information and Knowledge Management (CIKM),
pages 535–544, Glasgow, UK, Oct. 2011.

[4] E.-O. Blass, R. D. Pietro, R. Molva, and M. Önen.
PRISM - privacy-preserving search in MapReduce. In
Privacy Enhancing Technologies Symposium, pages
180–200, Vigo, Spain, July 2012.

[5] S. Büttcher and C. L. A. Clarke. A security model for
full-text file system search in multi-user environments.
In USENIX Conf. on File and Storage Technologies
(FAST), pages 169–182, San Francisco, CA, Dec. 2005.

[6] Y.-C. Chang and M. Mitzenmacher. Privacy
preserving keyword searches on remote encrypted
data. In Intl. Conf. Applied Cryptography and Network
Security, pages 442–455, New York, NY, June 2005.

[7] Y. Cheng, J. Park, and R. Sandhu. Relationship-based
access control for online social networks: Beyond
user-to-user relationships. In Intl. Conf. Social
Computing/Intl. Conf. Privacy, Security, Risk and
Trust (SocialCom/PASSAT), pages 646–655,
Amsterdam, Netherlands, Sept. 2012.

[8] E. D. Cristofaro, C. Soriente, G. Tsudik, and
A. Williams. Hummingbird: Privacy at the time of
Twitter. In IEEE Symp. Security and Privacy, pages
285–299, San Francisco, CA, May 2012.

[9] D. G. Giffin, A. Levy, D. Stefan, D. Terei, D. Maziéres,
J. C. Mitchell, and A. Russo. Hails: Protecting data
privacy in untrusted web applications. In USENIX
Symp. Operating Systems Design and Implementation
(OSDI), pages 47–60, Hollywood, CA, Oct. 2012.

[10] A. Parker-Wood, C. Strong, E. L. Miller, and D. D.
Long. Security aware partitioning for efficient file
system search. In IEEE Symp. Massive Storage
Systems and Technologies, pages 1–14, Incline Village,
NV, May 2010.

[11] Z. Pervez, A. A. Awan, A. M. Khattak, S. Lee, and
E.-N. Huh. Privacy-aware searching with oblivious
term matching for cloud storage. Journal of
Supercomputing, 63(2):538–560, Feb. 2013.

[12] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: protecting confidentiality
with encrypted query processing. In ACM Symp.
Operating Systems Principles (SOSP), pages 85–100,
Cascais, Portugal, Oct. 2011.

[13] A. Singh, M. Srivatsa, and L. Liu. Search-as-a-service:
Outsourced search over outsourced storage. ACM
Transactions on the Web, 3(4):13:1–13:33, Sept. 2009.

[14] D. K. Smetters and N. Good. How users use access
control. In Symp. On Usable Privacy and Security
(SOUPS), Mountain View, CA, July 2009.

[15] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In IEEE
Symp. Security and Privacy, pages 44–55, Berkeley,
CA, May 2000.

[16] P.-N. Tan, M. Steinbach, and V. Kumar. Data Mining,
chapter 8. Addison-Wesley, May 2005.

395

Community Detection in Anonymized Social Networks

Alina Campan
Department of Computer Science

Northern Kentucky University
Highland Heights, KY 41099, USA

campana1@nku.edu

Yasmeen Alufaisan
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080, USA
yxa130630@utdallas.edu

Traian Marius Truta
Department of Computer Science

Northern Kentucky University
Highland Heights, KY 41099, USA

trutat1@nku.edu

ABSTRACT
Social media and social networks are embedded in our society to a
point that could not have been imagined only ten years ago.
Facebook, LinkedIn, and Twitter are already well known social
networks that have a large audience in all age groups. Recently
more trendy social sites such as Pinterest, Instagram, Vine,
Tumblr, WhatsApp, and Snapchat are being preferred by the
younger audience. The amount of data that those social sites
gather from their users is continually increasing and this data is
very valuable for marketing, research, and various other purposes.
At the same time, this data usually contain a significant amount of
sensitive information which should be protected against
unauthorized disclosure. To protect the privacy of individuals, this
data must be anonymized such that the risk of re-identification of
specific individuals is very low. In this paper we study how well
anonymized social networks preserve existing communities from
the original social networks. To anonymize social networks we
used two models, namely, k-anonymity for social networks and k-
degree anonymity. To determine communities in social networks
we used a community detection algorithm based on modularity
quality function known as Louvain method. Our experiments on
publically available datasets show that anonymized social
networks satisfactorily preserve the community structure of their
original networks.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration –
Security, integrity, and protection; K.4.1 [Computers and
Society]: Public Policy Issues – Privacy; J.4 [Computer
Applications]: Social and Behavioral Sciences – Sociology.

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Social Networks, Privacy, Anonymization, Community Detection,
Modularity.

1. INTRODUCTION
Social media and social networks are embedded in our society to a
point that could not have been imagined only ten years ago.
Facebook, LinkedIn, and Twitter are already well known social
networks that have a large audience in all age groups. Recently

more trendy social sites such as Pinterest, Instagram, Vine,
Tumblr, WhatsApp, and Snapchat are being preferred by the
younger audience [26]. The amount of data that those social sites
gather from their users is continually increasing and this data is
very valuable for marketing, research, and various other purposes.
At the same time, this data usually contain a significant amount of
sensitive information which should be protected against
unauthorized disclosure. The above social sites treat seriously the
privacy of their members and they provide a series of privacy
controls and a privacy policy regarding of how the collected data
is used. First, the privacy controls allow individuals to set up their
privacy preferences/settings. Using these settings, a user may
choose what personal information is available to each group of
friends or what personal information is available to everyone on
the internet. Second, the privacy policy lists how the social site
will use the data from their users and how this data can be shared
with third party companies such as advertising companies, etc. To
protect the privacy of individuals, this data must be anonymized
such that the risk of re-identification of specific individuals is very
low.

In this paper we focus only on social network data model, which
is one of the most common data models used in social media. The
social network data (also referred as graph data or simply network
data) should be made anonymous before being released in order to
protect the privacy of individuals that are included in this social
network. Due to a wide variety of problem assumptions, a
standard social network anonymization model does not exist. One
important assumption is what constitutes sensitive information
which needs to be protected against disclosure. In general, either
identity of individuals, their relationship, and/or part of their
social network node content is considered sensitive [18]. A second
aspect of anonymization is what anonymization approach is more
appropriate to follow, and there are three choices that are analyzed
in the literature: anonymization via clustering, anonymization via
graph modification, and a hybrid approach [3, 7, 37, 39].
Considering these choices, it is not a surprise that the resulting
anonymized networks are very dissimilar in terms of structure and
in terms of preserving the original graph properties. In this paper
we consider only the identity of individuals being sensitive
information and we analyze two anonymization models. These
models are: k-anonymity for social networks [7], a model from the
anonymization by clustering family, which can be enforced on a
network by using the Sangreea algorithm, and k-degree
anonymity [18], a graph modification approach, enforced by the
Fast K-Degree Anonymization (FKDA) algorithm [19].

The purpose of this work is to study how well anonymized social
network preserve existing communities from the original social
networks. Communities (also known as clusters) are groups of
nodes from a social network which likely have similar proprieties
or characteristics [12] Community detection is well studied in the
literature and many different community detection algorithms

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,
2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

7th International Workshop on Privacy and Anonymity in the
Information Society (PAIS’14) March 28, 2014, Athens, Greece

396

have been presented in social network analysis literature. A good
survey of these algorithms can be found in [12]. For this paper we
focus on a specific community detection method known as
Louvain method [4, 27], which is a heuristic algorithm based on
modularity optimization [23]. The modularity is a quality function
that can be computed for a graph partitioned in communities.
Modularity has received a wide attention in recent years being
used as a quality function in many community detection
algorithms, to assess the stability of partitions [21], in determining
graph visualization layouts [24], and in graph summarization [2].

To study how well communities are preserved in anonymized
social networks we follow several steps. First, we anonymize
several real social networks using Sangreea and Fast K-Degree
Anonymization algorithms. Second, we de-anonymize networks
masked with Sangreea to allow fair comparison between the
original and the anonymized network (details will be provided
later). And third we use Louvain community detection algorithm to
compare how well the communities are preserved between the
original networks and their anonymized (via Fast K-Degree
Anonymization) and de-anonymized Sangreea versions.

The remaining of this paper is structured as follows. Section 2
presents related work. Section 3 describes the anonymity models
used in this paper. Section 4 presents the de-anonymization models
that we used with the anonymization via clustering networks.
Section 5 describes the modularity function, the community
detection algorithm used in this paper, and how we compute the
community preservation. Section 6 contains the experimental
results. Section 7 summarizes our conclusions.

2. RELATED WORK
This paper applies several new findings in data privacy, social
network analysis, and graph generators in a new more practical
problem. To our knowledge this is the first paper that addresses
how well the existing communities in social networks are
preserved when these social networks are anonymized.

Related to this work are a series of papers that analyses the
usefulness of anonymized social network for other social analysis
tasks. Most of the previous works compare how well structural
properties (diameter [14], centrality measures [13], clustering
coefficients [33, 34] and/or topological indices [20]) are preserved
between the original social networks and their anonymized
versions. Three such papers considers anonymization via
clustering in their analysis and they differs in which structural
property are analyzed and how the anonymization/de-
anonymization is performed [1, 31, 32]. Other papers that discuss
structural property preservation focus on how specific graph
modification approaches (k-automorphism [29], k-isomorphism
[11], and k-symmetry [35]) preserve a subset of those structural
properties. In other related work, comparison of the most
influential nodes and the spread of influence in social networks
were performed between the original social networks and the
anonymized/de-anonymized networks [8].

As already mentioned, related to this work are social network
anonymization models, community detection in social networks,
and graph generators models. Each of these topics is well covered
in research literature. A good survey of existing social network
anonymization models as well as other issues regarding privacy in
social networks is covered in [38]. Various community detection
techniques are also well studied in the literature [12, 17]. A survey
of graph generators models is presented in [10]. In this paper we
use the Erdos-Renyi random network model [5] and R-MAT
power law model [9].

3. SOCIAL NETWORK ANONYMITY
MODELS
In this section the two anonymity models used in this paper, k-
anonymity for social networks and k-degree anonymity, are
briefly introduced. Since in this paper our focus is on community
preservation based on the social networks structure, we make the
additional simplifying assumption that the nodes in the social
network do not have quasi-identifier attributes (such as Age and
ZipCode); accordingly, the anonymization process is based on the
social network structure only. Sensitive attribute values that need
to be protected from potential intruders (such as ICD9Code and
Income) are preserved in the social network.

Consider an initial social network modeled as a simple undirected
graph G = (N, E), where N is the set of nodes and E is the set of
edges. Only binary relationships are allowed in this model.
Additionally, all relationships are of the same type and they are
represented as unlabeled undirected edges. These edges are
assumed to be known by an intruder. Based on this graph
structure, an intruder is able to identify individuals and to reveal
their sensitive information due to the uniqueness of their
neighborhoods.

We illustrate an example of social network, labeled G1, in Figure
1. This network has 12 nodes and 12 edges.

Figure 1. Social network example, G1.

3.1 K-Anonymity for Social Networks
In this model, the nodes from the social network are partitioned
into pairwise disjoint clusters based on a similarity criteria. These
clusters are generalized to super-nodes, which may be connected
by super-edges. The goal of this process is to make any two nodes
belonging to the the same cluster indistinguishable based on their
relationships. To achieve this objective, Campan and Truta
developed intra-cluster and inter-cluster edge generalization
techniques that were used for creating super-nodes and super-
edges [7]. To satisfy the k-anonymity for social networks
clustered model – model derived from the well-known k-
anonymity property for microdata [28, 30], each cluster must have
at least k nodes. The algorithm used to create these clusters is
named Social Network Greedy Anonymization (Sangreea). This
algorithm partitions the set of nodes in the social network into a
set of disjoint clusters with size at least k and with nodes as
similar to each other as possible in terms of their neighborhoods.

In the anonymized network, each cluster is replaced by a super-
node and edges from the original network are generalized via an
edge generalization process which preserves the number of edges,
in other words, it does not add or delete edges. The edge

X1 X
5

X
2
 X

3

X
4

X
9

X
6

X
7

X
8

X
10
 X

11

X
12

397

generalization process is divided into two components: edge intra-
cluster generalization and edge inter-cluster generalization.

Edge intra-cluster generalization is a process in which each of the
clusters is generalized into a single super-node and the
information released with it is the pair of values (|cl|, |Ecl|), where
|X| represents the cardinality of the set X, cl represents the set of
nodes in the cluster, and Ecl represents the set of edges that
connect two nodes from cl. An example of such super-node
information would be (4, 3), which means that the cluster has four
of the original nodes with three edge between them. Hiding the
precise connectivity information between nodes in the same
cluster will protect the identity of cluster’s nodes.

Edge inter-cluster generalization is a similar process for edges
between two clusters. In the anonymized graph, the set of inter-
cluster edges between any two clusters is generalized into one
single super-edge. The information released due to this process is
the value |Ecl1, cl2|, where cl1 and cl2 are the two clusters and Ecl1, cl2
represents the set of edges that connect the two clusters. In other
words, each super-edge is described by the number of edges
connecting nodes within the two super-nodes. The time
complexity of Sangreea is O(n2). For complete details of the
Sangreea algorithm please consult [7].

Figure 2 shows the anonymized network, AG1 that was obtained
by applying Sangreea algorithm to the social network G1 (see
Figure 1). This anonymized network satisfies 4-anonymity for
social network property (k = 4).

Figure 2. Anonymized social network, AG1.

3.2 K-Degree Anonymity
K-degree anonymity protects against intruders’ attacks with
background knowledge that is limited to nodes’ degree. A social
network is k-degree anonymous if for every node X in the
network, there are at least k-1 other nodes with the same degree as
the node X [18]. While an initial algorithm to create a k-degree
anonymous network was proposed in [18], we used for this paper
the Fast K-Degree Anonymization (FKDA) algorithm proposed by
Lu et al. [19].

FKDA anonymizes a social network by adding edges in a greedy
fashion until the network is k-degree anonymous. First, the nodes
of the original graph are separated into several groups. Second,
each predetermined group will be anonymized by adding edges to
the nodes in the group until all the nodes in the group have the
same degree. If anonymization cannot be achieved for a group in
this edge creation algorithm, a more relaxed approach of adding
edges is allowed, where nodes in the group being anonymized are
connected to any nodes in the graph. The performing of the

relaxed addition can destroy the anonymity of nodes processed in
previous steps – and if this happens, the whole process is restarted
from scratch. The time complexity for FKDA is O(n2) in the worst
case, where n is the total number of nodes in the network. For
complete details of the FKDA algorithm please consult [19].

Figure 3 illustrate the anonymized network, AG2 that was obtained
by applying FKDA algorithm to the social network G1 (see Figure
1). The dashed lines represent the new relationships added by
FDKA algorithm. In this anonymized network the nodes X1, X2,
X3, and X4 have degree 4; the nodes X5, X6, X7, and X8 have degree
2, and the remaining nodes X9, X10, X11, and X12 have degree 1.
This network satisfies 4-degree anonymity (k = 4).

Figure 3. Anonymized social network, AG2.

4. DE-ANONYMIZATION PROCESS
To compare communities between social networks and k-degree
anonymous social network is easier since both the initial and
anonymized networks have the same number of nodes and only
the number of edges differ (see Figure 1 and Figure 3). This
comparison is more difficult in case of k-anonymous social
networks because the number of nodes in the anonymized
network is reduced by a factor of k from the initial social network.
To avoid this problem we “de-anonymize” k-anonymous social
networks using two different models to try to revert the
anonymization process and create replicas of the original network.
The de-anonymized networks will have the same number of nodes
and edges as the original network, allowing therefore for a fair
comparison of communities.

Two possible de-anonymized social networks of the anonymized
network AG1 (see Figure 2), labeled DG1 and DG2, are shown in
Figures 4 and 5. Notice that they have the same number of nodes
and edges as the initial social network G1, but they have a
different structure.

To de-anonymize a k-anonymous social network we re-use the
two methods presented in [1, 32], Uniform De-anonymization [32]
and R-MAT De-anonymization [1]. Uniform De-anonymization
will randomly create edges between nodes within each super-node
up to the number of edges in that super-node, and between nodes
from different super-nodes until the number of generated edges
corresponds with the super-edge weight (similar with Erdos-Renyi
random graph generator method). The R-MAT De-anonymization
method is based on the assumption that many real-world networks
are scale-free, and their nodes degree distribution follows a
power-law. A complete description of this de-anonymization
method can be found in [1].

cl1={X1,X5,X6,X11}

(4, 4)

cl
2
={X

2
,X

3
,X

4
,X

8
}

(4, 4)

cl
3
={X

7
,X

9
,X

10
,X

12
}

(4, 4) 1
3

X1 X
5

X
2
 X

3

X
4

X
9

X
6

X
7

X
8

X
10

X
11

X
12

398

Figure 4. De-anonymized social network, DG1.

Figure 5. De-anonymized social network, DG2.

5. COMMUNITY DETECTION
In this paper we study how well anonymized social network
preserve existing communities from the original social networks.
We chose to focus on a specific community detection method
known as Louvain method [4, 27] which is a heuristic algorithm
based on modularity optimization [23]. This community detection
method is implemented in the social network analysis software,
Pajek, which we used for our experiments [25]. The modularity is
a quality function that can be computed for a graph partitioned in
communities. This modularity function is defined for a social
network G = (N, E) as follows [23]:

ܳ =
1

2݉ ቆܣ −
݇ ݇

2݉ቇߜ൫ ܿ , ܿ൯

,ୀଵ	
ஷ

,

where

 n represents the number of nodes (n = |G|);

 m represents the number of edges (m = |E|);

 ci and cj represents the communities to which nodes Xi and Xj
have been assigned;

 Aij represents whether there is an edge between nodes Xi and
Xj (Aij ≠ 0) or not (Aij = 0);

 ki and kj represents the degree of nodes Xi and Xj;

 (ci, cj) is 1 if nodes Xi and Xj belong to the same community
(ci = ucj) and 0 otherwise.

Since the terms from the modularity sum are non-zero only for
nodes from the same community, the modularity function can be
rewritten as [12]:

ܳ = ቈ
݈
݉− ൬

݀
2݉൰

ଶ

ୀଵ

,

where

 nc represents the number of communities;

 lc represents the total number of edges joining nodes from
community c (inter-cluster edges);

 dc represents the sum of the degrees of nodes from c.

As stated in [12],

 is the actual fraction of edges in the network

inside the community and ቀ ௗ
ଶ
ቁ
ଶ
 is the expected fraction of edges

that would be there if the network will be a random network with
same expected degree for each node.

This modularity function has a drawback that sometimes creates
communities that contains very dense communities that are
weakly connected [12]. In such case it might be more appropriate
to consider the dense communities as individual communities. To
alleviate this problem, a resolution parameter r was introduced
and the new modularity function is defined as [12]:

ܳ = ቈ
݈
݉− ݎ ൬

݀
2݉൰

ଶ

ୀଵ

.

When resolution parameter is greater than 1 then larger number of
smaller communities is desired, when resolution parameter is less
than 1 then smaller number of larger communities is sought. Of
course, the value 1 is equivalent with the original definition of
modularity function.

A modularity-based community detection algorithm will try to
find a set of communities that will maximize the modularity
function. Unfortunately, the optimal solution is an NP-complete
problem [6], and existing algorithms are based on heuristic
solutions such as greedy techniques, simulated annealing,
extremal optimization, and spectral optimization [12].

In this paper we use a heuristic method based on modularity
optimization known as Louvain implementation [4, 27] from
Pajek 3.14 [25]. While this implementation allows changing the
resolution parameter, we chose to use only the default value, 1, in
other words we used the original modularity function as the
optimization criterion. This algorithm is divided into two phases
that are repeated iteratively. In the first phase each node is
assigned to one community and then nodes are moved between
communities in such a way that the modularity gain is maximized.
After a series of moves no node move will create a modularity
gain. In the second phase, a weighted network is built from the
network obtained at the end of the first phase. In this weighted
network, one node represents a community from the original
network, and weights are added to edges to represent the number
of original edges that are collapsed into a super-edge. Once this
phase is completed, then the first phase of the algorithm will be
reapplied to this new network. The process of repeating these two
phases will stop when the modularity is maximized. More detailed
about this algorithm as well as an example can be found in [4].

X1 X
5

X
2
 X

3

X
4

X
9

X
6

X
7

X
8

X
10

X
11

X
12

X1 X
5

X
2
 X

3

X
4

X
9

X
6

X
7

X
8

X
10

X
11

X
12

399

5.1 Community Preservation
Using Louvain method we can compute communities for the
initial social networks, the k-degree anonymous social networks
(Section 3.2), and the de-anonymized k-anonymous social
networks (Sections 3.1 and 4). To compare the results between an
anonymized social network and the corresponding initial social
network we simply count how many nodes from the original
communities remained in the same community after the processes
of anonymization and de-anonymization. We illustrate this
approach with the following example. Figure 6 shows the initial
social network, labeled SN1. Figure 7 shows a social network that
was obtained from the initial social network by applying Sangreea
algorithm with k = 2 and then the R-MAT de-anonymization
procedure (SN2). Figure 8 shows a 2-degree anonymous social
network obtained by applying FKDA algorithm with k = 2 (SN3).

Table 1 shows the communities and how they are preserved
between SN1 and SN2, in other words for k-anonymity for social
networks privacy model. Table 2 illustrate the communities and
how they are preserved between SN1 and SN3, in other words for
k-degree anonymity privacy model. The communities were
obtained using Louvain method.

Figure 6. Initial social network, SN1.

Figure 7. De-anonymized social network, SN2.

Figure 8. 2-degree anonymous social network, SN3.

To compute the % preservation column, for each community from
SN1 we select a corresponding community from SN2 or SN3 that
contain the maximum number of elements from the initial
community. For instance for the third community from Table 2,
{6, 9, 16, 18}, the best match is the community {6, 9, 18} and the
% preservation is 3/4. To find out an overall community
preservation measure we average the results from the %
preservation column and we obtain the following results:

 CommunityPreservation(SN1, SN2) = 89%

 CommunityPreservation(SN1, SN3) = 93%.

Table 1. Community preservation – k-anonymity for social
networks

Community
ID

Communities
in SN1

Communities in
SN2

%
Preservation

1 1, 3, 10, 15 1, 2, 3, 5, 10, 15 100%
2 2, 4, 5, 7, 8 4, 6, 8, 18 40%
3 6, 9, 16, 18 7, 9, 16 50%
4 11 11 100%
5 12 12 100%
6 13 13 100%
7 14 14 100%
8 17 17 100%
9 19 19 100%
10 20 20 100%

Table 2. Community preservation – k-degree anonymity
Community

ID
Communities

in SN1
Communities in

SN3
%

Preservation
1 1, 3, 10, 15 1, 3, 7, 10 75%
2 2, 4, 5, 7, 8 2, 4, 5, 8, 15, 16 80%
3 6, 9, 16, 18 6, 9, 18 75%
4 11 11, 12 100%
5 12 13 100%
6 13 14 100%
7 14 17 100%
8 17 19 100%
9 19 20 100%
10 20 - 100%

400

6. EXPERIMENTS AND RESULTS
We study the preservation of communities between original and
anonymized/de-anonymized versions of the following publically
available datasets:

 Cond is a collaboration network of scientists [22]. This
network is undirected and consists of 16,726 nodes, 47,594
edges, and 1247 communities. The number of communities is
obtained using Louvain method from Pajek network analysis
tool. Two scientists are considered connected (have an edge
between them) if they coauthored a paper.

 Enron dataset is a network of email exchanges [15, 16]. It is
an undirected network with 36,692 nodes, 183,831 edges,
and 1286 communities. Each node in this network represents
an email address. An edge exists between two nodes if at
least one email was sent from one node to the other from that
edge.

 YouTube dataset is an undirected social network [36]. The
network has 1,157,827 nodes and 2,987,624 edges. Due to
the large number of nodes and edges in the network, we
extracted three sub-graphs from it. Each sub-graph is a well-
defined community from the original network. Again, we
used Louvain method from Pajek to extract the communities.
YouTube network has 30,814 communities. Only six of these
communities have number of nodes in the range between
15,000 and 40,000 which is the range of nodes we look for in
our experiments. We will refer to these communities as the
preferred-communities. When creating a sub-graph for a
community, we retained only the nodes that members of the
specified community and the edges that connect these
selected nodes.

After creating the sub-graphs for the preferred-communities, we
chose three sub-graphs as our initial social networks based on a
unique feature for each one of them. Following is the description
of these networks:
 YouTubeLargest is the largest community in YouTube

preferred-communities. It has 37,530 nodes, 121,337 edges,
and 363 communities. We used the number of nodes to
measure the size of the communities and determine the
largest one.

 YouTubeCompact is the most compact community from
YouTube preferred-communities. We used the Clustering
Coefficient to measure the compactness of the network.
When using Pajek to measure the Clustering Coefficient [33,
34] for YouTubeCompact, Watts-Strogatz Clustering
Coefficient was 0.24883441 and Network Clustering
Coefficient (Transitivity) was 0.04206904, which are the
largest values among the other communities in the preferred-
communities. YouTubeCompact contains 20,272 nodes,
28,026 edges, and 128 communities.

 YouTubeRandom is a community that was chosen
randomly from YouTube network preferred-communities. It
has 22,409 nodes, 27,927 edges and 143 communities.

The steps for the experiments to measure the community
preservation are:

 First, we started with the initial networks (Cond, Enron,
YouTubeLargest, YouTubeCompact, YouTubeRandom)
described previously. We anonymized these networks with

FKDA and Sangreea using several anonymity parameter k: 5,
10, 15, 20, 25, and 50.

 For each k-anonymous social network we generated 5 de-
anonymized networks using Uniform De-anonymization and
5 de-anonymized networks using R-MAT De-anonymization
(Section 4). Repeating the de- anonymization process 5 times
was done because of the randomness of the de-
anonymization process. In this step, we also run the de-
anonymization processes for a k-anonymous social network
with k = n (size of the network), this is equivalent with
executing Uniform and R-MAT de-anonymization without
having any knowledge regarding the initial network structure
except its size (the number of nodes and the number of
edges).

 After that, we extracted the communities of the original
networks using Louvain community detection method in
Pajek using the following steps: Network-> create partition-
>Communities->Louvain Method-> Multi- Level Coarsening
+ Multi- Level Refinement.

 Then, we extracted the communities from k-degree
anonymous networks and the de-anonymized networks as
described in the previous step.

 To compute the community preservation, we mapped every
community detected in the original network to the best match
community in the anonymized/de-anonymized networks. A
best match community would be a community that has the
most nodes from the original community. After that, we
compute the percentage of nodes that remain the same
community before and after the anonymization/de-
anonymization process. Finally, we take the average
community preservation for all the communities in the
original network. An example of this process is shown in
Section 5.

 Since we generated 5 de-anonymized networks for each k-
anonymous social network, the community preservation
determined in those cases is averaged.

The workflow of our experiments is shown in Figure 9. The
average community preservation (% preservation) results for the
community preservation experiments are shown in Figures 10-14
for Cond, Enron, YouTubeLargest, YouTubeCompact, and
YouTubeRandom datasets. The vertical axis represents the
percentage of the average community preservation for the
networks. The last k value represents the size of the network and
we report in this case the community preservation when there is
no k-anonymous social network available; in other words all the
nodes and edges are collapsed into a super-node where the
number of nodes and the number of edges for the entire initial
network are reported. The community preservation for this case
represents the baseline value, and in all experiments the
community preservation is superior to this baseline case.

For Cond network (Figure 10), FKDA had a good preservation of
the communities of the original network and there were a
noticeable decrease only in the case were k = 50. On the other
hand, R-MAT and Uniform de-anonymization had almost
identical preservation for the communities of the original network
except for the case where k = 5, R-MAT had much better
preservation than Uniform.

For Enron network (Figure 11), FKDA preserved the communities
of the original network very well. R-MAT de-anonymization

401

preserved the communities of the original networks well when k
was small and the community preservation started to drop rapidly
as k got larger. Uniform de-anonymization had the lowest
preservation of communities when k was 5 and 10, but for the
larger values of k, Uniform performed slightly better than R-
MAT.

Figure 9. Workflow for community preservation experiments.

Figure 10. % preservation for Cond.

Figure 11. % preservation for Enron.

Figure 12. % preservation for YouTubeLargest.

Figure 13. % preservation for YouTubeCompact.

Figure 14. % preservation for YouTubeRandom.

FKDA also preserved the communities well for YouTubeLargest
network for all k values (Figure 12). And as with Cond network,
R-MAT performed better when k was 5 but for the larger values
of k R-MAT and Uniform had almost the same preservation.

For YouTubeCompact (Figure 13) and YouTubeRandom (Figure
14) we had similar curves for FKDA, R-MAT De-anonymization,
and Uniform De-anonymization. FKDA had the best preservation
of communities followed by R-MAT De-anonymization. For both
of these cases the preservation of communities decreased
continuously. However, Uniform De-anonymization had the worst
community preservation with an almost steady line.

Initial Social
Network

K-Degree Social
Network

K-Anonymous
Social Network

De-anonymized
Networks

De-anonymized
Networks

Compute Community Preservation for the original
and anonymized/de-anonymized networks

FKDA Sangreea

Louvain
Louvain

Louvain Louvain

R-MAT Uniform

402

Figure 15. Improvement factor for Cond.

Figure 16. Improvement factor for Enron.

Based on the results reported in Figures 10-14, we conclude that
FKDA algorithm preserves very well the community structure of
the initial social network. This result is expected since k-degree
anonymity keeps most of the initial structure of the social
network. However, as pointed out in Section 3, k-degree
anonymity is a “weak” anonymity model since it assumes that an
intruder has only knowledge about the degree of individuals in the
network and not about the network structure. The other two
methods used in conjunction with k-anonymity for social network
model (Uniform and R-MAT de-anonymization) while clearly
outperformed by FKDA, also preserves to some extent the
community structure of the original network. As expected R-MAT
de-anonymization is, in general, outperforming Uniform de-
anonymization. Figures 15-19 show the improvement factor of
those two methods compared with the communities that exist in a
random graph (uniform random graph and R-MAT random graph)
with the same number of node and vertices (the improvement
factor for this baseline case is 1).

As expected, the smaller the value of k, the communities are better
preserved. However, this is not true for some of the experiments.
For FKDA, since the results are very similar for all values of k, in
some cases the % preservation increases when k increases. This is
due to addition of edges within original communities for larger k
which contribute to their preservation in the anonymized dataset.
For de-anonymization the only such inversion is detected for
Enron dataset and Uniform de-anonymization method. This is
likely because the Sangreea algorithm breaks larger communities
in super-nodes of size k, and then the Uniform de-anonymization
will generate edges between vertices from different communities

such that the initial communities cannot be found in the final de-
anonymized networks. R-MAT de-anonymization is able to better
preserve such community due to its edge generation procedure
that follows better the degree distribution of the initial network.

It is also worth noting that in all three experiments that use
YouTube dataset, the communities are well preserved in case of
R-MAT de-anonymization and low k values, in particular for
YouTubeCompact and YouTubeRandom, the improvement factor
is over 5 (for k = 5). This is due to a combination of factors. First,
as stated above, the R-MAT de-anonymization is preserving the
original network structure better. And second, the communities
are not well preserved in case of a random graph, thus the %
preservation is very law for the baseline case.

Figure 17. Improvement factor for YouTubeLargest.

Figure 18. Improvement factor for YouTubeCompact.

Figure 19. Improvement factor for YouTubeRandom.

403

7. CONCLUSIONS AND FUTURE WORK
In this paper, we studied how well communities are preserved
when social networks are anonymized. We analyzed two models
k-anonymity for social networks and k-degree anonymity. Our
results show that FKDA algorithm used to create a k-degree
anonymous network preserved very well the communities from
the initial networks. The de-anonymization methods used after the
social networks were anonymized with Sangreea algorithm (to
became k-anonymous social networks) also are able to preserve,
although less successfully than FKDA, the initial communities. In
most experiments the R-MAT de-anonymization outperforms the
Uniform de-anonymization.

From the privacy point of view, k-anonymity for social networks
enforces a much stronger model than k-degree anonymity. K-
degree anonymity only considers the degree of each node as
possible background knowledge for an intruder; so an intruder
with more knowledge about the network structure can breach the
privacy of a k-degree anonymous network. For k-anonymous
networks, an intruder with any background knowledge about the
structure of the network cannot breach the privacy of the network.

There are several future research directions that we want to
pursue. First, the community preservation measure is useful when
the number of communities is roughly the same between the
initial and anonymized social network. When the number of
communities in the anonymized social network decreases it is
likely that the original communities are preserved in larger
communities. Our measure does not distinguish between these
two situations and, therefore, we intend to create a more robust
way of comparing communities’ preservation. Second, the
criterion to construct super-nodes in Sangreea is based on
neighbor similarities between all nodes from the network. We
intend to adapt Sangreea algorithm to create super-nodes with
nodes that belong to one community, and in this way we hope to
increase the community preservation.

8. REFERENCES
[1] Alufaisan Y. and Campan A. 2013. Preservation of centrality

measures in anonymized social networks. Proceedings of the
ASE/IEEE International Conference on Privacy, Security,
Risk, and Trust (PASSAT 2013), Washington D.C., USA.

[2] Arenas A., Duch J., Fernandez A., Gomez S. 2007, Size
reduction of complex networks preserving modularity. New
J. Phys. 9, art. no. 176.

[3] Bhagat S., Cormode G., Krishnamurthy B., and Srivastava
D. 2009. Class-based graph anonymization for social
network data. Proceedings of the International Conference
on Very Large Data Bases (VLDB).

[4] Blondel V. D., Guillaume J.-L., Lambiotte R., Lefebvre E.
2008. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and
Experiment, 1742-5468.

[5] Bollobás B. 2001. Random graphs, 2nd ed., Cambridge
University Press.

[6] Brandes U., Delling D., Gaertler M., Gorke R., Hoefer M.,
Nikoloski Z., and Wagner D. 2008. On modularity
clustering. IEEE Transactions on Knowledge and Data
Engineering, Vol. 20, No. 2, February 2008, 172-188.

[7] Campan A. and Truta T. M. 2008. A clustering approach for
data and structural anonymity in social networks.
Proceedings of the 2nd ACM SIGKDD International

Workshop on Privacy, Security, and Trust in KDD
(PinKDD).

[8] Campan A. and Alufaisan Y. 2013. Social network
anonymization and influence preservation. Proceedings of
the International Conference on Data Mining (DMIN’13),
Las Vegas, Nevada, USA.

[9] Chakrabarti D., Zhan Y., and Faloutsos C. 2004. R-MAT: A
recursive model for graph mining. Proceedings of the SIAM
International Conference on Data Mining (SDM’04), 442-
446.

[10] Chakrabarti D. and Faloutsos C. 2006. Graph mining: laws,
generators, and algorithms. ACM Computing Surveys,
Volume 38, Article 2.

[11] Cheng J., Fu A. W. C., and Liu J. 2010. K-isomorphism:
privacy preserving network publication against structural
attacks. Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, 459-470,
DOI= http://doi.acm.org/10.1145/1807167.1807218.

[12] Fortunato S. 2010. Community detection in graphs. Physics
Reports, Volume 486, Issues 3–5, 75-174,
DOI=http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[13] Freeman L. C. 1979. Centrality in social networks:
conceptual clarification. Social Networks, vol. 1, no. 3, 215-
239.

[14] Harary F. 1994. Graph theory. Addison-Wesley.
[15] Klimmt B. and Yang Y. 2004. Introducing the Enron corpus.

CEAS conference.
[16] Leskovec J., Lang K., Dasgupta A., and Mahoney M. 2009.

Community structure in large networks: natural cluster sizes
and the absence of large well-defined clusters. Internet
Mathematics, Vol. 6, No 1, 29-123.

[17] Leskovec J., Lang K.L, and Mahoney M.W. 2010. Empirical
Comparison of Algorithms for Network Community
Detection. Proceedings of the World Wide Web Conference
(WWW 2010), Raleigh, North Carolina USA, 631-640.

[18] Liu K. and Terzi E. 2008. Towards identity anonymization
on graphs. Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, 93-106,
DOI= http://doi.acm.org/10.1145/1376616.1376629.

[19] Lu X., Song, Y., and Bressan S. 2012. Fast identity
anonymization on graphs. Proceedings of the 23rd
International Conference on Database and Expert Systems
Applications (DEXA), 281-295.

[20] Lukovits I., Nikolic S., and Trinajstic N. 2002. On
relationships between vertex-degrees, path-numbers and
graph valence-shells in trees. Chemical Physics Letter, Vol.
354, 417-422.

[21] Massen C. P., Doye, J. P. K. 2006, Thermodynamics of
community structure. ePrint arXiv:cond-mat/0610077.

[22] Newman, M. E. J. 2001. The structure of scientific
collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404-
409.

[23] Newman M. E. J., Girvan M. 2004. Finding and evaluating
community structure in networks. Physical Review, E 69 (2),
026113.

[24] Noack A. 2009. Modularity clustering is force-directed
layout. Physical Review, E 79 (2), 026102.

404

[25] Nooy W., Mrvar A., and Batagelj V. 2011. Exploratory
social network analysis with pajek. Revised and Expanded
Second Edition, Structural Analysis in the Social Sciences,
Vol. 34, Cambridge University Press, 2011.

[26] Olson, P. 2013. Teenagers say goodbye to Facebook and
hello to messenger apps. The Observer Journal, Saturday 9
November 2013, Online at:
http://www.theguardian.com/technology/2013/nov/10/teenag
ers-messenger-apps-facebook-exodus

[27] Rotta R., Noack A. 2011. Multilevel local search algorithms
for modularity clustering. Journal of Experimental
Algorithms, Volume 16, Article no 2.3,
DOI=http://doi.acm.org/10.1145/1963190.1970376.

[28] Samarati P. 2001. Protecting respondents’ identities in
microdata release. IEEE Transactions on Knowledge and
Data Engineering, vol. 13, no. 6, 1010-1027.

[29] Song Y., Nobari S., Lu X., Karras P., and Bressan S.
2011.On the privacy and utility of anonymized social
networks. Proceedings of the iiWAS’11, Ho Chi Minh City,
Vietnam.

[30] Sweeney L. 2002. K-anonymity: A model for protecting
privacy. International Journal on Uncertainty, Fuzziness,
and Knowledge-based Systems, vol. 10, no. 5, 557 – 570.

[31] Truta T.M., Campan A., Gasmi A., Cooper N., and Elstun A.
2011. Centrality preservation in anonymized social networks.
Proceedings of the International Conference on Data Mining
(DMIN’11), Las Vegas, Nevada, USA.

[32] Truta T.M., Campan A., and Ralescu A.L. 2012. Preservation
of structural properties in anonymized social networks.

Proceedings of the Collaborative Communities for Social
Computing Workshop (CCSocialComp-2012), held in
conjunction with CollaborateCom-2012, Pittsburgh,
Pennsylvania, USA.

[33] Wasserman S. and Faust K. 1994. Social network analysis:
methods and applications. Cambridge: Cambridge University
Press.

[34] Watts D. J. and Strogatz S. H. 1998. Collective dynamics of
‘small-world’ networks. Nature, Vol. 393, 440-442.

[35] Wu W., Xiao Y., Wang W., He Z., and Wang Z. 2010. K-
symmetry model for identity anonymization in social
networks. Proceedings of the Extending Database
Technology Conference (EDBT), 111-122,
DOI=http://doi.acm.org/10.1145/1739041.1739058.

[36] Yang J. and Leskovec J. 2012. Defining and evaluating
network communities based on ground-truth. Proceedings of
the International Conference on Data Mining (ICDM).

[37] Zheleva E. and Getoor L. 2007. Preserving the privacy of
sensitive relationships in graph data. Proceedings of the
ACM SIGKDD Workshop on Privacy, Security, and Trust in
KDD (PinKDD), 153-171.

[38] Zheleva E., Terzi E., and Getoor L. 2012. Privacy in social
networks. Synthesis Lectures on Data Mining Series. Book
published by Morgan and Claypool Publishers.

[39] Zhou B. and Pei J. 2008. Preserving privacy in social
networks against neighborhood attacks. Proceedings of the
IEEE International Conference on Data Engineering
(ICDE), 506-515.

405

Secure Multi-Party linear Regression

Fida Dankar
University of Ottawa

IBM Canada
fidamark@ca.ibm.com

Renaud Brien
University of Ottawa

Rbrie047@uottawa.ca

Carlisle Adams
University of Ottawa

cadams@eecs.uottawa.
ca

Stan Matwin
Dalhousie University

stan@cs.dal.ca

ABSTRACT
Increasing efficiency in hospitals is of particular importance.
Studies that combine data from multiple hospitals/data holders can
tremendously improve the statistical outcome and aid in
identifying efficiency markers. However, combining data from
multiple sources for analysis poses privacy risks. A number of
protocols have been proposed in the literature to address the
privacy concerns; however they do not fully deliver on either
privacy or complexity. In this paper, we present a privacy
preserving linear regression model for the analysis of data coming
from several sources. The protocol uses a semi-trusted third party
and delivers on privacy and complexity.

Categories and Subject Descriptors
D.3.3 [Computers and Society]: Public Policy Issues– Privacy

H.2.8 [Database Management]: Database Applications– Data
Mining.

General Terms
Algorithms, Security, Theory.

Keywords
Linear regression, privacy preserving data mining, secure
multiparty computation.

1. INTRODUCTION
Hospitals are under a lot of pressure to increase their efficiency.
They need to see more patients and reduce their costs without
increasing resources [1]. Increasing the efficiency of critical
resources, such as surgeons and operating rooms, while keeping
the same quality of care is of particular focus [1]. For example,
surgery completion time is an indicator of critical resources
efficiency. Several studies have presented interesting explanation
for the variation in surgery completion times [2]–[4], among the
culprits are individual, team and organizational experience,
learning curve heterogeneity and workload. These studies
however work with raw data coming from a single source.

Combining data from multiple sources or hospitals is necessary to
have high statistical power and sufficient heterogeneity among the
subjects. However, combining data from multiple sources and
performing statistical analysis on the union of the data poses
privacy concerns [5].

A number of protocols have been proposed in the literature to
address the privacy concerns; however, these protocols are either
not completely private [6], [7] or are very demanding of the data
holders involved in terms of complexity (extensive message
passing among the participants and exponential computation
complexity at each site) [8], [9].

We develop a privacy preserving linear regression using a semi-
trusted third party (the Evaluator). We show that our approach has
several desirable properties. The complexity at each site is
independent of the number of involved sites, and the complexity
for the Evaluator is linear in the number of sites. Private health
information is preserved and the statistical outcome retains the
same precision as that of raw data. Moreover, contrary to previous
approaches, ours is complete. It not only calculates the linear
regression parameters of a fixed model, but also includes model
diagnostics and selection, which are the more important and
challenging steps [5].

2. LINEAR REGRESSION
Linear regression consists of modeling the relationship between a
set of variables referred to as attributes (or independent variables)
and a response variable (or output variable). Fitting a linear
regression model consists of a sequence of steps including
estimation, diagnostics and model selection [10]. In what follows
we give an overview of the steps involved, for more information
the reader is referred to [10], [11]:

Assume that a dataset is composed of input variables

 (is the set of real numbers and is the set of

attributes), and output variables . We denote by

the input matrix , and by the output vector.

Linear regression is the problem of finding the subset of

the attributes that affect and shape the response variable , and

then learning the function that describe this
dependency (of the ouput variables on the independent variables).
Linear regression is based on the assumption that is

approximated by a linear map, i.e.

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,
2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

7th International Workshop on Privacy and Anonymity in the
Information Society (PAIS’14) March 28, 2014, Athens, Greece

406

 for some , where is the

vector restricted to the set of attributes in question. In

linear regression literature, it is common to set , and

to augment every row with (so is set to
), with that the formulae above can be restated as:

. In what follows, we abuse the notation

and use the superscript instead of .

Given a subset of attributes , to learn the regression

model (i.e. to learn the function) we need to find such that

 best fit the dataset. The difference between the

actual value and the estimated is referred to as

the residuals: . The goal in linear regression is to

find that minimizes the square sum of the residuals (

). The method used is referred to as the “least squares method”
and it is equivalent to solving the following equation:

 (1)

The process of determining the best subset is referred to
as model selection. Model diagnostics are used to assess whether
a fixed model (i.e. a regression model for a fixed) is proper.
One statistics that reflects the goodness of fit for a fixed model is

the adjusted measure:

 (2)

Where is the output variable mean.

For a fixed model, once is available, can be

calculated followed by ..

3. SETTING
In this paper, we consider the case of a dataset that is horizontally
distributed among data warehouses (or data owners). The

different owners are interested in cooperatively studying the
relationship between the independent and response variables,
however they are not willing to share their data. This is known as
privacy-preserving regression protocol [5]:

Let be the matrix augmented with column , i.e.
. We consider the setting of data holders,

… , each holding part of the matrix . The
division is assumed to be horizontal, i.e. each party holds a subset
of the records of . Denote by the subset of matrix held

by party , then . In what follows,

we assume that ,…, , and

.

Before proceeding with an overview of the algorithm, we present
two important properties for the horizontally distributed data:

1. For any , can be extracted from

 by removing all entries from matrix

 where either or do not represent a

variable in . The same applies for .

2. Given that , for any we have that:

 and that

.

 Hence Equation (1) is equivalent to:

 (3)

In what follows, we present a privacy-preserving linear regression
protocol that uses a third party. The third party is referred to as the
Evaluator. The Evaluator is assumed to follow the protocol
correctly however if some data holders are corrupt, then the
Evaluator will collaborate with them to obtain sensitive
information about the data. Similarly, it is assumed that a corrupt
data holder will correctly follow the protocol. We assume that up

407

to data holders can be corrupt for some , thus,
if then all data holders are honest. The protocol is
composed of 3 functions:

(a) Pre-computations, (b) a core regression protocol (referred to as
), and (c) an iterative protocol referred to as . The pre-

computations are done once at the beginning of the protocol, then
the protocol runs. It’s role is to iterate over different values
of , calling for each such value of . The

protocol is performed by the evaluator with the collaboration of
out of the data warehouses. takes as input a subset

 and computes and for that given .There are

known iterative protocols for choosing the best subset of
independent variables [10], [11]. A common technique is to start
with some basic set of attributes and find its

corresponding and . Additional attributes can then enter
the analysis one by one and the effect of each can be studied

separately through . An outline of the algorithm is presented

in Figure 1, where the function and the algorithm flow are
presented in details. The remaining functions will be presented in
details in Section 6. For more information on regression the reader
is referred to [5], [11].

4. RELATED WORK
A number of protocols have been proposed for the collaborative
computation of linear regression when data is horizontally
distributed among the different parties. These protocols do not
iterate over the attributes, they only offer fixed model solution
(i.e. a solution for Equation (3)) and thus do not deal with model
diagnostics.

The protocol in [7] suggests that the sites could share their local
aggregate information. In other words site would share with the

other sites the aggregate values: and . This
way, each site can add the aggregate information to obtain

 and , find the inverse of , then use
Equation (1) to estimate the parameters of the regression. This
method, although efficient, was criticized for being non-private as
it shares local aggregate statistics [5], [8].

Another protocol due to Karr et al [6] suggests using secure
multiparty computation in order to securely sum the local

statistics: and , the final sum and

 is then shared among the different sites. This protocol,
although efficient, was also deemed to be non-private [8].

Three more protocols have been suggested to solve this problem,
two of these protocols [8], [9] use secret sharing and

homomorphic encryption to privately calculate ,

and , and then to multiply and

. Both solutions make heavy usage of secure multiparty
computation. As such, all data holders must remain online
throughout the entire procedure. In both of these protocols, the

main computational component is the secure inversion of

 and their extensive use of the secure multiparty matrix

multiplication protocol [12] extended to parties. Each use of
this -party multiplication requires each pair of participants to

Fig 1. Algorithm flowchart

execute a 2-party secure matrix multiplication protocol. This

amounts to a total of multiparty matrix

multiplications. Such a -party multiplication has each party
executing a combination of homomorphic matrix

Function PreComputation()
{
 Phase 0
}

Function

{

 Phase 1 # Calculates for the model

 with attributes .

 Phase 2 # Calculates for the model

 with attributes .

}

Function

{

 # Calculates and for

 the model with attributes .

 # and represent the

 final model outcomes

For every do

 {

 If is significant then

 {

 }
 }
}

408

multiplications and encryptions-decryptions under Paillier
cryptosystem, as well as sending matrices.

In [9], the inversion is done using an iterative method requiring
two secure multiparty matrix multiplications for up to 128
iterations when using their settings for Paillier. This makes their
protocol quite demanding on the data owners.

In [8], the authors present a generalization to parties of the
secure matrix sum inverse protocol of [12]. This allows them to
compute the inverse in one step, which is an improvement on the
inversion of [9], but their matrix inversion still requires around

 secure 2-party matrix multiplications.

The third protocol was presented in [13], it uses additive
encryption and Yao Garbled circuits. The protocol uses two non-
communicating semi-trusted third parties. One party executes the
algorithm, while the other holds encryption keys and generates
garbled inputs. The additive encryption is used to privately

compute and , and Yao Garbled circuits to

privately find the inverse of . While this solution does not
require the involvement of all data holders, it requires two non-
colluding semi-trusted parties each sharing part of the output.
Moreover, the protocol requires the construction of garbled
circuits. The construction of such circuits as well as its theoretical
complexity were not tackled in the paper.

5. PRELIMINARY
In what follows we propose a privacy preserving regression
protocol. We first introduce the properties of the public key
cryptosystems that are used in our protocol.

Given a message , we denote the ciphertext by

 where is the public key used in the

encryption. We will simply use when is clear
from the context. In our protocol, we use Paillier cryptosystem
[14] for the case where and threshold Paillier cryptosystem
[15] when for their homomorphic properties.

Paillier cryptosystem is additively homomorphic, as such the sum
of two messages can be obtained from their respective
cyphertexts. For Paillier, this translates to

 [14].

Moreover, Paillier allows a limited form of homomorphic
multiplication, in that we can multiply an encrypted message by a

plaintext. It is done as follow: .

To simplify notation, given a matrix , we let

denote the entry-wise encryption of . Thus, given two
matrices and , the two properties of the Paillier encryption
allows us to calculate the encrypted product from

 and as follows:

, where represents the

 entry in Matrix . Similarly, can be

calculated from and .

In a -threshold cryptosystem, the secret decryption key is
distributed among different entities such that a subset of at
least of them are needed to perform the decryption [15], [16].
I.e. in order for the decryption to occur, at least parties have to
correctly perform their share of the decryption. The decryption
shares are then combined to obtain the final decryption.

Note that our protocol will be using the threshold Paillier [15]
cryptosystem when . This can be set up through a trusted
party that will generate and distribute the public and secret keys.
The trusted party can then erase all information pertaining to the
key generation. If no such trusted party is available, the keys can
be generated using secure multiparty computations [17]. Although
this requires more computation overhead from each data owner, it
only has to be done once. As such, it is an acceptable tradeoff.

In an -threshold Paillier cryptosystem, the encryption is
identical to the regular scheme. For the decryption, each party
involved is required to compute the exponentiation of the
cyphertext by their secret key. The product of these shares is then
computed individually to proceed with the decryption. Since the
validity of the decryption depends on the validity of the shares,
threshold decryption protocols involve proofs of knowledge
between each participant to prevent attacks by malicious parties.
The complexity of the decryption is thus dominated by these
proofs of knowledge [15].

We note that in our setting, each data owner will correctly execute
the protocol even if they are corrupt, since they genuinely want
the correct result. As such, we do not require the proofs of
knowledge. This makes the threshold decryption only slightly
more complex than the decryption in the setting .

6. PROTOCOL
In what follows, we present the Pre-computation function (also
referred to as Phase 0), as well as the function which is
composed of two phases, Phase 1, and Phase 2:

In Phase 0 some pre-computations are done. These computations
are done once at the beginning of the Protocol.

The protocol is executed several times for different subsets

, it computes and for the given with the

collaboration of out of data warehouses, say

. Phase 1 of is dedicated to the calculation

of the regression coefficients and Phase 2 is dedicated for the

calculation of .

We assume that all the inputs are integer valued, due to the use of
Paillier’s cryptosystem. This is not a problem, as the data owners
can multiply their data by a large non-private number. The effects
of this multiplication can then be removed in intermediate/final
results [12], [17].

Before presenting the protocol, we first start with some basic
functions used throughout the protocol. The protocol will be
presented for the general case where . When , some

409

steps can be optimized to slightly reduce the number of messages
sent. These steps are presented after the protocol in a separate
section. We assume that the total number of records is public
knowledge.

6.1 Basic Functions
The protocol uses several basic functions:

1. Creating Random Matrices, or CRM():

 and the Evaluator each generate a

secret random matrix

respectively. We denote by the product
.

2. Creating Random Integers, or CRI:

each generate a secret random integer
respectively, while the Evaluator generates two
random secret integers and . We denote by

the product .

3. Encryption and Decryption Functions for matrices, or
and , respectively encrypts and

decrypts the entries of a matrix . This is an
extension of the regular encryption and decryption
functions on integers. Note that data warehouses will
be involved in the decryption.

4. Right Matrix Multiplication Sequence Function, or
RMMS(), computes . It is

done as follow. The Evaluator sends to

, who uses it to homomorphically compute

 using it secret matrix . The result is

then sent to , who in turn computes

. The process repeats with ,…,

, and the result is sent back to the
evaluator.

5. Left Matrix Multiplication Sequence Function, or
LMMS(), computes It is

similar to RMMS(), but the order on the
data warehouse is reversed.

6. Integer Multiplication Sequence Function, or IMS(
), The Evaluator sends an Encrypted value

 to , who uses it to calculate the

encrypted product , using

it secret integer . The result is then sent to ,

who in turn computes . The process

repeats with ,…, , and the result

 is sent back to the evaluator.

6.2 Phase 0: Precomputations
At the beginning of this Phase, the Evaluator initiates , thus
the data warehouses as well as the Evaluator generate a secret
random integer each. This phase is composed of two main
computations:

1. Computations of and :

Each data holder locally computes her full local

matrices , and . She encrypts the
matrices and sends them to the Evaluator. The Evaluator
performs homomorphic additions and obtains

, and

.

2. Computation of :

1. Each data warehouse sends their

encrypted local aggregate

to the Evaluator. The Evaluator
homomorphically adds these values to get

, and then

calculates .

2. The Evaluator initiates IMS()

and receives . He then initiates

 to get .

3. The Evaluator computes

and initiates

which results in . The

Evaluator then computes .

4. The Evaluator propagates to all
data warehouses

410

5. Each data warehouse computes

and . Both

are sent back to the Evaluator.

6. The Evaluator computes

 and recovers

. The Evaluator then proceeds to
compute

6.3 Protocol:
First, given , the evaluator extracts the encryptions of

 and from and

 respectively. Then the Evaluator initiates CRM(
) and CRI.

6.4 Phase 1: Computing
In this phase of the protocol, the Evaluator needs to compute

. The steps are the following:

1. The Evaluator computes , initiates

RMMS() and receives

.

2. The evaluator initiates

and receives .

3. The evaluator computes

 and calculates

 using and

.

4. The Evaluator obtains by

initiating LMMS() and

computes homomorphically.

5. The Evaluator initiates ,

recovers and sends it to all data warehouses.

6.5 Phase 2: Computing Ra2
This is dedicated for the calculation of adjusted measure
given by equation (3):

1. As each data warehouse knows , they

calculate their local residuals: ,

encrypt it and send it to the Evaluator. The Evaluator
then adds the local residuals homomorphically to obtain

.

2. The Evaluator computes and .

He then initiates IMS() and IMS(

) and receives and

 respectively.

3. The Evaluator then initiates a decryption round for
 to obtain , and uses it to compute

.

4. The Evaluator now calculates
homomorphically as follows:

5. The Evaluator initiates and propagates the
result to the different warehouses.

6.6 Special Considerations for the case l=1
For the case , all the data owners are assumed to be
incorruptible and all the decryption and obfuscation is delegated
to one data warehouse, say . As such, the steps that initiate
a multiplication sequence (RMMS, LMMS or IMS) followed by a
decryption can be reversed and merged. In other words,
can do the decryption first followed by the multiplication by its
random number.

For example, in Phase 0, step 2.2 can be replaced by “The

Evaluator sends to , who decrypts to obtain

. then compute and send back to the
evaluator.” This will considerably reduce the complexity of

’s computations when working with matrices.

Note that the role of can be assumed by another semi-
trusted third party (STTP) if available. In such case, the Evaluator
and the STTP will together compute the protocol. Both third

411

parties should follow the protocol correctly and should not
communicate secretly outside the protocol.

6.7 Protocol Modification
In order to perform linear regression, the participating data
warehouses have to be online throughout the whole process. It
would be ideal if the remaining data warehouses could
send their data at Phase 0, then stay offline throughout the
remaining protocol. However this is not that case, these data

warehouses have to participate in the calculation of at each

iteration of the protocol (refer to Step 2.1). With some
changes to the protocol, it is possible for the data warehouses to
send their full encrypted matrices and to
the Evaluator at the start of the protocol (i.e. in Phase 0) then stay
offline for the whole process afterwards. The Evaluator can use
these encrypted matrices to perform Step 1 of Phase 2 without the
involvement of the data warehouses. In other words, the

Evaluator can calculate using and

 as follows:

and

The problem with this modification is that the data warehouses
would give out their local number of records, . If this is
considered private information, then the original protocol has to
be followed. Note that this modification requires considerably
more space and complexity at the Evaluator side as the encrypted

 records have to be stored and then used to calculate

.

7. PRIVACY DISCUSSION
In this section we study the privacy of our protocol and show that
no party can learn any information other than the final results of
the regression. We assume that parties are corruptible and
that the total number of records, , is known.

Since Paillier is semantically secure [14] and since we need
parties to complete decryption, no information can be gained from
the ciphertexts exchanged throughout the protocol. We note that
when , all but one of the ciphertexts sent to for

obfuscation will be decrypted at the next step, so can only
gain additional knowledge from a cyphertext if he decrypts

 in Phase 2.2. As such, we will look at the decrypted
values each party obtains.

In Phase 0, all the values are encrypted except for , that the

 active data owners and the evaluator receive. If the corrupted
data owners and the evaluator collaborate, they can remove

and at most ’s. They can obtain , but since is a

random unknown integer, no information about can be

recovered. In the case where , the active data owner obtains

 from the decryption, but since is random, no information
is gained. The same reasoning is true for Phase 2, where all the
information is encrypted except for , which is always
obfuscated by at least one random integer. In the case where

, can also obtain by performing an extra

decryption, but no information about or can be gathered
since both are obfuscated by different random integers.

In Phase 1, all the matrices are encrypted except for that
all active party and the evaluator obtain in step 1.2. The evaluator
and the corrupted party can obtain , where

 and is an incorruptible party. Since

is random, the evaluator cannot recover or , even while

knowing .

We thus have that all the values in the protocol are either
encrypted, obfuscated by some random element or sent to all the
parties. As such, our scheme is secure and private, since no party
can learn additional information from the protocol other than the
final result of the computations.

8. COMPLEXITY
In this section, we evaluate the computational complexity and the
amount of messages sent during one iteration of our protocol. We
will evaluate the individual burden of each participating party as
well as the total complexity. Let be the number of attributes
used for a given iteration and let be the total number of
attributes considered.

Our result will be given using some basic functions as the units.
More specifically, we will give how many encryptions,
decryptions, homomorphic multiplications (HM) and
homomorphic additions (HA).

If we are using an instance of Paillier with modulus , we have

that HA is equivalent to multiplying two integers modulo ,
while HM is equivalent to computing an exponentiation modulo

. It follows that an encryption is equivalent to 2HM and 1HA,
while a standard decryption is essentially 1HM [14].

Finally, in our setting, a -threshold decryption is equivalent

to having each of the involved party compute one HM and
HA as well as send messages. It follows that, since

, HM dominates the decryption and the HA have a
negligible impact on the complexity [18]. As such, we can
reasonably assume that -threshold decryption is bounded

412

above by a constant computational complexity of 2HM, making it
only slightly more expensive than standard decryption.

We will start by evaluating the complexity of the basic functions

used throughout the protocol.
1. and : These functions involve

 encryption and decryptions, respectively. If the

result is sent, it also requires a total of and

 messages, respectively.

2. RMMS() and LMMS():

In these functions, each party sends messages to

exactly one other party, for a total of

messages. The data owner has to

homomorphically compute , with each

entry of this matrix requires at most d HM and

HA. Thus, the whole matrix requires at most HM

and HA for each .

3. IMS(): Each party sends one message to

exactly one other party, for a total of messages.

Each data owner has to homomorphically

compute , which requires one HM.

We now evaluate the complexity of each phase, starting with
Phase 0. Recall that this phase is all about pre-computations. As
such, it will not affect the complexity of an iteration of Phase 1
and 2.

1. Each data owner first computes and . They are

then required to send encryptions (steps
0.1, 0.2.1 and 0.2.5) and compute 1 HM in phase 0.2.5.
Each of the active data owners also participate in
2IMS and 1 decryption.

2. The evaluator has to perform a total of

HA, 3HM and 1

encryption. He sends a total of messages.

We now evaluate the complexity of the main protocol, starting
with Phase 1. We will not take the generation of the random
integers and random matrices into account, since they can be
generated and stored ahead of time. In Phase 1, the passive data
owners do not participate. Each of the active data owners

participate in 2MMS and decryptions.

The evaluator performs encryptions, inverts one plaintext

matrix, and sends messages in 2MMS and decryptions. He

also computes a total of HM and

 HA in steps 1, 3 and 4.

Phase 1 involves a total of decryptions,

HM, HA and one matrix inversion. A

total of messages are sent
among all the parties.

In Phase 2, all data owners compute and , and perform

one encryption. Each of the active data owners also participate
in 2IMS and 2 decryptions. The Evaluator computes a total of
HA and 3HM. The Evaluator also performs a plaintext

multiplication in step 2.3. A total of
messages are sent among all the parties.

As such, assuming a decryption is at most 2HM, the final
complexity of for each participating party is bounded
above by the following.

1. All data owners: 2 matrix multiplications, 1 encryption.
Sends 1 message.

2. Active data owners additionally have:

HM,

HA. Sends messages.

3. The Evaluator: 1 matrix inverse, 1 plaintext

multiplication, HM,

HA. Sends

messages.

As can be seen from this evaluation, if we fix the dimension ,
the total complexity of the scheme is linear in , while the total

number of messages is . The Evaluator absorbs most
of the computational complexity, leaving the data warehouses
with a complexity depending only on the size of the matrices,
if we assume . This shows that our protocol allows the
data owners to greatly reduce the computational power needed for
a multiparty regression by making use of a STTP (the Evaluator).

Finally, we will compare the complexity of our scheme to that of
the schemes of [9] and [8] for each individual participants. For
this we shall look mostly at the secure multiparty matrix
multiplication protocol of [12]. In the 2-party case, one party has

to compute about HM and HA for encryption and

decryption while the second party has to execute about HM

413

and HA for the homomorphic matrix multiplication and share
splitting. As such, in the -party protocol we can expect an

average of HM, HA and

messages for each participating member.

This multiparty secure matrix protocol is executed at least 2 times
in [8] and up to 248 times in [9] when computing the inverse of

. We note that, for any , our complete protocol
involves less computational burden and messages for each party
than a single matrix inversion in [8] or [9]. This is due to the fact
that the individual complexity in our protocol is independent of

for all but the Evaluator.

9. CONCLUSIONS AND FUTURE WORK
We presented a practical system that performs linear regression
for a large number of data warehouses without learning anything
about the data apart from the regression parameters and
diagnostics.

Different from existing approaches, our approach is complete. It
not only calculates the parameters of a fixed model, but also
includes model diagnostics and selection, which are more
important and more challenging steps[5].

Our model is superior in terms of complexity on the data holders
end as the Evaluator absorbs most of the regression complexity.

We are currently in the process of applying the protocol on the
union of three datasets from the state of Pennsylvania (over 1.5
million records). The study aims to find the attributes that affect
surgery completion times and come up with recommendations.
The trusted third party we will be using is the IBM Cloud at
Western University.

10. REFERENCES
[1] E. M. Stahl, Emergency Department Overcrowding: Its

Evolution and Effect on Patient Populations in
Massachusetts. ProQuest, 2008.

[2] D. S. Kc and C. Terwiesch, “Impact of workload on service
time and patient safety: An econometric analysis of hospital
operations,” Manag. Sci., vol. 55, no. 9, pp. 1486–1498,
2009.

[3] G. P. Pisano, R. M. Bohmer, and A. C. Edmondson,
“Organizational differences in rates of learning: Evidence
from the adoption of minimally invasive cardiac surgery,”
Manag. Sci., vol. 47, no. 6, pp. 752–768, 2001.

[4] R. Reagans, L. Argote, and D. Brooks, “Individual
experience and experience working together: Predicting
learning rates from knowing who knows what and knowing
how to work together,” Manag. Sci., vol. 51, no. 6, pp. 869–
881, 2005.

[5] J. Vaidya, C. W. Clifton, and Y. M. Zhu, Privacy Preserving
Data Mining. Springer, 2005.

[6] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter, “Secure
regression on distributed databases,” J. Comput. Graph.
Stat., vol. 14, no. 2, 2005.

[7] W. Du, Y. S. Han, and S. Chen, “Privacy-preserving
multivariate statistical analysis: Linear regression and
classification,” in Proceedings of the 4th SIAM International
Conference on Data Mining, 2004, vol. 233.

[8] K. El Emam, S. Samet, L. Arbuckle, R. Tamblyn, C. Earle,
and M. Kantarcioglu, “A secure distributed logistic
regression protocol for the detection of rare adverse drug
events,” J. Am. Med. Informatics Assoc. JAMIA, vol. 20,
no. 3, pp. 453–461, May 2013.

[9] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure multiple
linear regression based on homomorphic encryption,” J. Off.
Stat., vol. 27, no. 4, p. 669, 2011.

[10] D. C. Montgomery, E. A. Peck, and G. G. Vining,
Introduction to linear regression analysis, vol. 821. Wiley,
2012.

[11] G. A. Seber and A. J. Lee, Linear regression analysis, vol.
936. John Wiley & Sons, 2012.

[12] S. Han and W. K. Ng, “Privacy-preserving linear fisher
discriminant analysis,” in Advances in Knowledge
Discovery and Data Mining, Springer, 2008, pp. 136–147.

[13] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D.
Boneh, and N. Taft, “Privacy-Preserving Ridge Regression
on Hundreds of Millions of Records,” 2012.

[14] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Advances in cryptology—
EUROCRYPT’99, 1999, pp. 223–238.

[15] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft, “Efficient
rsa key generation and threshold paillier in the two-party
setting,” in Topics in Cryptology–CT-RSA 2012, Springer,
2012, pp. 313–331.

[16] Y. Desmedt, “Threshold cryptosystems,” in Advances in
Cryptology—AUSCRYPT’92, 1993, pp. 1–14.

[17] T. Nishide and K. Sakurai, “Distributed paillier
cryptosystem without trusted dealer,” in Information
Security Applications, Springer, 2011, pp. 44–60.

[18] H. Cohen, A Course in Computational Algebraic Number
Theory. Springer-Verlag, 1993.

414

Data Anonymization: The Challenge from Theory to
Practice

Ting Yu
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

yu@csc.ncsu.edu

BIO
Ting Yu is an associate professor in the Department of Computer
Science of North Carolina State University, and a senior scientist
in the cyber security group of Qatar Computing Research Institute
(QCRI). His main research areas are in data privacy and
anonymization, trustworthy information in open systems and trust
management. He obtained his Ph.D. in computer science from the
University of Illinois at Urbana Champaign in 2003. Ting Yu is a
recipient of the NSF CAREER Award in 2007 for trust and
privacy management in social networks, and a recipient of the
scholarship of K.C. Wong Education Foundation, Hong Kong in
2010.

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,
2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

7th International Workshop on Privacy and Anonymity in the
Information Society (PAIS’14) March 28, 2014, Athens, Greece

415

A Privacy Preserving Model for Ownership Indexing in
Distributed Storage Systems∗

Tiejian Luo
University of Chinese
Academy of Sciences
tjluo@ucas.ac.cn

Zhu Wang
University of Chinese
Academy of Sciences

wangzhubj@gmail.com

Xiang Wang
University of Chinese
Academy of Sciences

wangxiang11@mails.ucas.ac.cn

ABSTRACT
The indexing technique in distributed object storage system
is the crucial part of a large scale application, where the
index data structure may be published in many nodes. Here
arises a problem on preserving the privacy of the ownership
information while supporting queries on item locations with
limited index space. Probabilistic data structure, such as
the bloom filter which records the location of each item in
distributed nodes, is one of the promising solutions. The
data structure uses a hashed vector to index items on the
nodes. In this paper we propose a Lightweight Bloom filter
Array (LBA) indexing model which is compact in size and
preserves ownership privacy. To tackle with the problem
of examining wrong nodes in the lookup process, we find an
optimal storage ratio of the bloom filters and reduce its false
positive rate based on the observation of the user’s access
behavior in Internet applications. We use experiments to
verify our proposed solution. In our experiment, the dataset
consists of one billion items distributed in one hundred data
nodes. The experiments show that our model can reduce the
false checking times and save the index space significantly.

1. INTRODUCTION
With the rapid growth of the Internet, many online applica-
tions have been based on distributed storage systems which
are composed of many single storage nodes. When a request
for a certain item arrives at the system, the first step is to
find which node contains the item. The indexing service,
which is capable of recording ownership relation between n-
odes and items, is a key component in distributed systems.
The node that holds the service is called the index node. It
can be either a storage node that have the index function
the same time as the storage role or an exclusive node that

∗(c) 2014, Copyright is with the authors. Published in the
Workshop Proceedings of the EDBT/ICDT 2014 Joint Con-
ference (March 28, 2014, Athens, Greece) on CEUR-WS.org
(ISSN 1613-0073). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-
nc-nd 4.0.

is only responsible for the indexing service. Because of the
large total number of items, each storage node in the sys-
tem is usually in charge of many items. However, in many
distributed systems, the indexing data structure has to be
deployed in many (even all) nodes in order to support fast
lookup and high scalability. Therefore the index has to be
very compact in size in order to be stored in the index nodes’
memory. Moreover, in many distributed systems, an item
can be a video slice, file fragment or even a piece of record.
It needs several times of item lookup in the table to finish a
meaningful service. Therefore, we need a high performance
indexing technique with limited space consumption in dis-
tributed systems.

Private information grows with the increase of data volume
and service type. Index data structure has to support the
queries for resident nodes of an item while keeping the entire
ownership information away from unknown requests. Since
distributed systems may have more than one index nodes, it
is sometimes unavoidable for the information transportation
and indexing publishing, and hence unpredicted intercep-
tion. In those cases, the security of the information stored
in the index may be threatened. Compact, fast and secure
index will become a key component in distributed applica-
tions.

Bloom filter[2] is a space-efficient probabilistic data struc-
ture for item representation and lookup in a set. When in-
dexing space is limited, i.e. in the memory, the data struc-
ture offers fast item lookup with a low false positive rate.
Many distributed systems that emphasize time efficiency are
using bloom filters as their indexing technique when a small
false positive rate is tolerable[8]. The data structure uses
hash functions to map items onto several positions on a bit
vector. It only stores the hashed bits and allows for hash col-
lisions. The actual data is not stored on the vector. Without
the knowledge of hash functions, the ownership information
cannot be obtained from the vector. In this way, the priva-
cy is preserved. Actually, many online systems[1, 4, 3] are
using bloom filters for secure index. In our paper we try to
optimize their usage with reference to user behavior.

The observation of user behavior indicates that in many ap-
plications, a small number of items attract a major part
of user access. The phenomenon inspires us to be selective
in index construction when space is limited. In this paper
we provide a lightweight mechanism for bloom filter usage.
The lookup procedures are given to guarantee effective item

416

locating.

The rest of the paper is organized as follows. Section 2
describes the related work of our research. In Section 3,
we give the lightweight bloom filter construction and item
lookup procedures. Experimental results are shown in Sec-
tion 4. Finally, we present the conclusion and future work
in Section 5.

2. BLOOM FILTER AND PURE BLOOM FIL-
TER ARRAY (PBA) INDEX

2.1 Bloom Filter
Bloom filter[2] works as an index which records all elements
of a set. We may assume that the set S = {x1, x2, ..., xn},
which consists of n elements. A Bloom Filter vector (BFV),
which consists of m bits, is used to represent elements of set
S. All bits of the vector are set to zero initially. For each
element, the algorithm uses k hash functions {hi}i=1...k to
map the element onto k positions of the vector and sets the
bit on the position to 1. The k functions, ranging from 1 to
m, are independent from each other and can map elements
of the set S to a random place on the vector. During the
insertion period, the algorithm maps all elements of the set
to load the BFV with all the information of the elements.

In lookup procedure which we want to check whether an
element y belongs to the set S, the algorithm uses the same
hash functions to map y onto k locations and check whether
all hi(y) equal to 1. If the answer is no, we conclude that y
doesn’t belong to S, otherwise, we say y belongs to S. The
time complexity of bloom filter lookup is constant.

It needs to be mentioned that there is a probability that
elements don’t belong to S be judged as inside S by BF. That
is to say, BF has a false positive rate. Research[6] shows that
the false positive rate can be represented as follows:

fFP = (1 − e− kn
m)k (1)

Study[6] also shows that fFP reaches minimal value when

k =
m

n
ln2 (2)

Then the false positive is minimized

fFP = 0.6185
m
n (3)

Since the bloom filter does not store the actual data, owner-
ship information cannot be revealed without the knowledge
of hash functions. The algorithm can be used as secure index
in online applications[1, 4, 3]. Due to its simple structure
and smooth integration characteristic, the mathematical for-
mat allows considerable potential improvement for system
designers to develop new variations for their identical appli-
cation requirements. In this paper, we focus on fast object
lookup in distributed systems.

2.2 Pure Bloom Filter Array for Distributed
Data Storage Index

Many distributed systems use Pure Bloom filter Array (P-
BA)[10] to support item index and lookup. The approach
consists of a two-stage process: indexing building and item
locating.

Index Building. For each node of the system, the index
node builds a bloom filter for representing all of its items.
These Bloom filters are loaded with all the items in the entire
system and can act as an indexing system.

Item Locating. The object locating process is described be-
low: when a query for a certain item arrives on the index
node, the node first uses the bloom filters to find the approx-
imate membership relations: it calculates with the bloom
filter of each node and collects the results. The negative
result of a certain bloom filter means that the queried item
doesn’t exist on the related node. The positive result means
that the queried item exists on the node with a probabil-
ity of 1 − fFP . Then the system queries the actual node
whose bloom filter check result is positive to check whether
the queried item exists in the node. In that way, the false
positive occurrence is finally eliminated. Since the bloom fil-
ters have a constant time complexity, the method can reduce
lookup time remarkably.

3. LIGHTWEIGHT BLOOM FILTER ARRAY
FOR DISTRIBUTED STORAGE INDEX

3.1 Lightweight Bloom Filter Design
User behavior observation indicates that access for items
varies between different objects. In many applications, the
access frequency can be observed accurately. If ordered by
access frequency, the top ranked items attract a large por-
tion of user visits while the low ranked items absorb a very
little part. That phenomenon shows us a way to increase
bloom filter space use efficiency. Each node in the system
builds a bloom filter for indexing the items of the node. It
selects the highly ranked items and inserts them into the
bloom filter. The bloom filters on the nodes forms an array,
which is capable of recording item ownership information on
nodes and plays the role of a distributed index. Though the
total index space is limited, the data structure has a lower
load and therefore a lower false positive rate. Queries for
highly ranked (popular) items will have a more accurate re-
sponse. Queries for low-ranked items will not receive a posi-
tive response from the bloom filter index. In those cases the
system uses traditional lookup method to find the queried
item directly in the storage nodes. Since most queries are for
popular items, the overall false positive rate of the index can
be reduced. The detailed bloom filter improvement method
is described below. In that way, the index can perform with
lower space consumption and preserve ownership privacy.

Index Building. The system sets a load factor β, which is the
ratio of the loaded item to the total item number. Each node
in the system orders the items by their access time. Then it
inserts the items one by one from rank 1 until it reaches the
load threshold. The bloom filters are gathered to form an
array, which represents the ownership relation between items
and nodes, and stored on the index nodes. For a system of
totally N items, the bloom filter arrays index βN items.

417

Item Locating. When a query for a certain item arrives,
the index node first calculates with the bloom filter of each
node and collects the results. One possible situation after
the calculation is that there is at least one positive result,
it means that the queried item exists on the node with a
probability of 1−fFP . Then the system first queries the ac-
tual node whose bloom filter check result is positive to verify
whether the queried item exists in the node. If it does exist
on one of the positive nodes, the lookup procedure stops;
otherwise it continues to check on the remaining negative
nodes until it finds the queried item. The other possible
situation after bloom filter calculation is that there is no
positive match. Under that circumstance, the system looks
up the item in each unsearched node directly. The lookup
procedure is shown in Fig.1.

In the two steps of the lookup procedure, the bloom filter
calculation takes place in index nodes’ memory. The time
consumption is rather low considering the O(C) time com-
plexity of bloom filters. The vast majority of time cost comes
from the node lookup process, in which the index node com-
municates with the storage node and the storage node check
in its disk for queried items. So the time consumption is ap-
proximately linear to the average checking times of a query.
In the many check in nodes, only one of the checking pro-
cedure can find the needed item. The rest nodes checking
end without a match and waste a lot of time and system re-
source. Those redundant (false) checking times are the key
factor that lowers system performance. The occurrence that
the system looks up a query in a wrong node and finds no
result is called the false checking in nodes.

3.2 Selection of Popular Items
In the design of LBA, the algorithm stores the top β ×100%
popular items in the bloom filter index. In actual processing,
each node keeps a list of all its popular items and builds the
lightweight bloom filter of its own. Then it transmits the
index to the index nodes, where all bloom filters are stored
in.

The selection of the popular items follows the same proce-
dure of that with cache. The goal is to find the top β×100%
items in each node efficiently with high accuracy. The cache
selection and update algorithms are adequate for that task.
Actually in [10], the authors use LRU cache scheme for se-
lecting popular items.

It needs to mention that the item selection process takes
place in each storage node, just like the cache does. It does
not occupy the resource of the index node, which is respon-
sible of storing the bloom filters already built on the storage
nodes. Also, the index node does not have the entire knowl-
edge of the ranking of items on the storage nodes.

3.3 Dynamic Items and Renewal Process
In online systems, the access pattern of items and visit fre-
quency varies over time. A “hot” item may become unpop-
ular after a certain period of time. The updating of popular
list on each storage node follows the same way as caches
do. After reaching a certain threshold, the node rebuilds
the bloom filter index in the same way as [10] does. Then
it transmits the new filter to the indexing node. In update

mechanism, we use the mechanisms given in [10] and [9].
The effect of that method is given in [9].

4. EXPERIMENTAL EVALUATIONS
In this section we use experiments to show the index per-
formance. The items and nodes are synthetic data. In all
experiments we set node number s=100, the total number of
items N = 109. The items are scattered randomly among s
nodes, so each node has approximately n = 107 items. The
probability that an object be allocated in one node is iden-
tical among all servers. The total query number Q = 105.

4.1 Queries
Observations show that several “hot” items attract a major-
ity of user access, as stated in Zipf’s law[7, 5]. In the ex-
periment we assume that access for the entire corpus follows
Zipf’s distribution with total number N = 109. The queries
reflect the real popularity of the corpus, so the queries follow
the same distribution as the corpus. Actually, queries are
generated automatically as a sampling set of Zipf’s law with
parameter N = 109.

The real query count of top 10000 hot items are plotted in
Fig.2.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Query Rank

Q
ue

ry
 C

ou
nt

Figure 2: Query count for top 10000.

The figure is in a log-log scale. We can see that the first
half part of the figure is a nearly straight line with slope=-
1. That indicates the queries follow the Zipf’s law. The
second half consists of some irregular points because of the
low value of the actual count.

4.2 Node Construction
In actually processing of bloom filter construction in storage
node, we first order all items in the node by its popularity
rank and pick the first βn items. Then we insert those items
into its bloom filter. For easy deployment in the memory of
the node, the bloom filter needs to be compact in size. In
the experiment we set the length of the bloom filter vector

418

Figure 1: Item lookup procedure.

m=33554432 (use 3.36 bits for one item). The hash number
of the bloom filters reaches the nearest integer of its optimal
value in (2).

4.3 Experiments with Different β
In the experiment we want to analyze the impact of β. First,
we want to know whether our proposal can actually improve
the bloom filter index performance. Second, we are going to
find out what the optimal load factor is in the lightweight
bloom filter.

The range of β is {0.1, 0.2, ..., 1}. Here β=1 means that the
bloom filters are fully loaded, which is equivalent to pure
bloom filter array. For each β, we build the bloom filter
index in each node and lookup all Q queries until we find a
match. In the experiment, we count the total false checking
times when we finish serving all the queries.

In order to find if our proposed method have a positive effec-
t, we use the PBA approach and the direct lookup approach
(in which nodes are checked one by one to find a queried
item without using index) for a comparison. In the follow-
ing experiment we repeat the indexing and querying proce-
dure separately with the same system environment: index
objects, queries, nodes, etc. Then we count the false check-
ing times of each method. The false checking times in each
experiment is plotted in Fig.3.

In the figure we can see that both LBA and PBA have an im-
pressive improvement over direct lookup method (DL) con-
sidering false checking rate. That will reduce the overall
system workload. Comparing PBA and LBA, we find that
the LBA performs better than the PBA and reaches its op-
timization when β=0.4. The two methods come near when
β approaches 1. When β=1, the LBA is fully loaded and is
equivalent to PBA. The false checking rate of LBA reach-
es only 30 percent of that in PBA at optimal β. That will
have a direct impact on system performance. Under that
system parameter, when top forty percent popular objects
are loaded, the false checking rate is 5.87, which means that
on average the system will check 5.87% of all nodes before
finding a query.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

β

F
/Q

F

DL
/Q

F
PBA

/Q

F
LBA

/Q

Figure 3: Overall false checking in node.

4.4 Space Consumption
Compared with the PBA, LBA can be more accurate when
the index memory cost is very low. Equivalently, when
reaching the same accuracy, the LBA can use less space
than PBA. Take the example in the experiment, with one
billion items distributed in one hundred nodes, a query will
be checked on 5.87% of all nodes before finding its right lo-
cation. The space needed for the indexing structure is only
about 400MB using LBA (3.35 bits for one item), which
is affordable in many distributed nodes. If we use PBA
method instead, in order to achieve the same accuracy, we
need about 700MB memory space. The space needed has
reduced by 43%.

4.5 Distribution of False Checking Times
In the experiment, we record the false checking times of each
query. Fig.4 shows the experimental false checking distribu-
tion when β=0.4. We see that most queries will find their
match after ten false checking times. Some queries will have
to go through all nodes to find a match.

419

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

False Checking Times

P
ro

ba
bi

lit
y

Experimental Result

Figure 4: False checking (β=0.4).

Fig.5 shows the experimental false checking times distribu-
tion with different β. We can see that for every β, the false
positive rate concentrates on two areas: the low false check-
ing area (Bernoulli distribution) and s-1. When β increases,
the mean of Bernoulli distribution increases while the false
checking times s-1 decreases (when β=1 the false checking
on s-1 is 0).

0.2
0.4

0.6
0.8

1

0
20

40
60

80

0

0.2

0.4

0.6

0.8

1

βFalse Checking Times

P
ro

ba
bi

lit
y

Figure 5: False checking distribution.

5. CONCLUSION
In the paper we have presented a privacy preserving mod-
el for ownership indexing in distributed storage systems -
the lightweight bloom filter array based on the observation
that user access for items varies from case to case in many
Internet applications. We have pointed out a problem in the

secure index - support fast ownership query with limited
index space. We have changed the traditional bloom filter
construction method by ranking the items and putting on-
ly a part of top visited items into the bloom filter array.
Then the experimental evaluation has been conducted to
show that the mechanism can reduce false checking times
by 70 percent. We have demonstrated that our algorithm
can improve the system performance while preserving the
privacy of ownership relation in distributed systems when
the index nodes’ memory is limited.

The future work includes adopting the new algorithm to
more complex indexing systems and adding new functions
to the algorithm, i.e. item deletion. The improvement of
lookup procedure will also continue in the development of
the algorithm.

6. REFERENCES
[1] M. Bawa, R. J. Bayardo Jr, R. Agrawal, and

J. Vaidya. Privacy-preserving indexing of documents
on the network. The International Journal on Very
Large Data Bases, 18(4):837–856, 2009.

[2] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13:422–426, 1970.

[3] E.-J. Goh. Secure indexes. IACR Cryptology ePrint
Archive, 2003:216, 2003.

[4] F. Jian-ming, X. Ying, X. Hui-jun, and W. Wei.
Strategy optimization for p2p security using
bloomfilter. In International Conference on
Multimedia Information Networking and Security
(MINES’09), pages 403–406. IEEE, 2009.

[5] I. Kotera, R. Egawa, H. Takizawa, and H. Kobayashi.
Modeling of cache access behavior based on zipf’s law.
In Proceedings of the 9th workshop on MEmory
performance: DEaling with Applications, systems and
architecture (MEDEA ’08), pages 9–15. ACM, 2008.

[6] J. K. Mullin. A second look at bloom filters. Commun.
ACM, 26(8):570–571, 1983.

[7] P. Rodriguez, C. Spanner, and E. W. Biersack.
Analysis of web caching architectures: hierarchical
and distributed caching. IEEE/ACM Trans. Netw.,
9(4):404–418, 2001.

[8] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz.
Theory and practice of bloom filters for distributed
systems. IEEE Communications Surveys & Tutorials,
14(1):131–155, 2012.

[9] Y. Zhu and H. Jiang. False rate analysis of bloom
filter replicas in distributed systems. In Proceedings of
the 2006 International Conference on Parallel
Processing (ICPP ’06), pages 255–262. IEEE
Computer Society, 2006.

[10] Y. Zhu, H. Jiang, J. Wang, and F. Xian. Hba:
Distributed metadata management for large
cluster-based storage systems. IEEE Transactions on
Parallel and Distributed Systems, 19(6):750–763, 2008.

420

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

