

Fast and Simple Physics using Sequential Impulses

Erin Catto Crystal Dynamics

Physics Engine Checklist

- Collision and contact
- **& Friction: static and dynamic**
- **A** Stacking
- Joints
- Fast, simple, and robust

Box2D Demo

- ³ It's got collision
- ³ It's got friction
- ³ It's got stacking
- **B** It's got joints
- Check the code, it's simple!

Fast and Simple Physics

- Penalty method? Nope
- **E** Linear complementarity (LCP)? Nope
- Joint coordinates (Featherstone)? Nope
- Particles (Jakobsen)? Nope
- ³ Impulses? Bingo!

Why Impulses?

- Most people don't hate impulses
- **A** The math is almost understandable
- Intuition often works
- **B** Impulses can be robust

Making Impulses not Suck

- **B** Impulses are good at making things bounce.
- Many attempts to use impulses leads to bouncy simulations (aka jitter).
- **& Forget static friction.**
- **& Forget stacking.**

Impulses without the Bounce

- Forget bounces for a moment.
- Let's concentrate on keeping things still.
- \odot It's always easy to add back in the bounce.

The 5 Step Program

(for taking the jitter out of impulses)

- Accept penetration
- **A** Remember the past
- Apply impulses early and often
- **A** Pursue the true impulse
- Update position last

Penetration

- [®] Performance
- Simplicity
- [®] Coherence
- **Game logic**
- **& Fewer cracks**

Algorithm Overview

& Compute contact points

GameDevelopers

Conference

- Apply forces (gravity)
- Apply impulses
- Update position
- **A** Loop

Contact Points

- Position, normal, and penetration
- **A** Box-box using the SAT
- **Example 2 Find the axis of minimum penetration**
- \odot Find the incident face on the other box ⊕ Clip

Box-Box SAT

- **& First find the separating** axis with the minimum penetration.
- ³ In 2D the separating axis is a face normal.

Box-Box Clipping Setup

³ Identify reference face ³ Identify incident face

Box-Box Clipping

- ³ Clip incident face against reference face side planes (but not the reference face).
- Consider clip points with positive penetration.

Feature Flip-Flop

- Which normal is the separating axis?
- **Apply weightings to** prefer one axis over another.
- ³ Improved coherence.

Apply Forces

Newton's Law

Ignore gyroscopic term for improved stability

Use Euler's rule

$$
\mathbf{v}_2 = \mathbf{v}_1 + \Delta t \, m^{-1} \mathbf{F}
$$

$$
\mathbf{\omega}_2 = \mathbf{\omega}_1 + \Delta t \, I^{-1} \mathbf{T}
$$

Impulses

- **B** Impulses are applied at each contact point.
- **B** Normal impulses to prevent penetration.
- **B** Tangent impulses to impose friction.

Computing the Impulse

Linear Momentum

The normal impulse causes an instant change in velocity.

$$
\mathbf{v}_1 = \overline{\mathbf{v}}_1 - \mathbf{P} / m_1
$$

\n
$$
\mathbf{\omega}_1 = \overline{\mathbf{\omega}}_1 - I_1^{-1} \mathbf{r}_1 \times \mathbf{P}
$$

\n
$$
\mathbf{v}_2 = \overline{\mathbf{v}}_2 + \mathbf{P} / m_2
$$

\n
$$
\mathbf{\omega}_2 = \overline{\mathbf{\omega}}_2 + I_2^{-1} \mathbf{r}_2 \times \mathbf{P}
$$

We know the direction of the normal impulse. We only need it's magnitude.

 $P = P_n$ n

Relative Velocity

$$
\Delta \mathbf{v} = \mathbf{v}_2 + \mathbf{\omega}_2 \times \mathbf{r}_2 - \mathbf{v}_1 - \mathbf{\omega}_1 \times \mathbf{r}_1
$$

Along Normal:

$$
v_n = \Delta \mathbf{v} \cdot \mathbf{n}
$$

The Normal Impulse

Want: $v_n^{}=0$ $P_n \geq 0$

Get:
$$
P_n = \max\left(\frac{-\Delta \overline{\mathbf{v}} \cdot \mathbf{n}}{k_n}, 0\right)
$$

Fine Print:

$$
\Delta \overline{\mathbf{v}} = \overline{\mathbf{v}}_2 + \overline{\mathbf{w}}_2 \times \mathbf{r}_2 - \overline{\mathbf{v}}_1 - \overline{\mathbf{w}}_1 \times \mathbf{r}_1
$$

$$
k_n = \frac{1}{m_1} + \frac{1}{m_2} + \left[I_1^{-1} (\mathbf{r}_1 \times \mathbf{n}) \times \mathbf{r}_1 + I_2^{-1} (\mathbf{r}_2 \times \mathbf{n}) \times \mathbf{r}_2 \right] \cdot \mathbf{n}
$$

Bias Impulse

- Give the normal impulse some extra oomph.
- **A** Proportional to the penetration.
- **Allow some slop.**
- **Be gentle.**

Bias Velocity

Slop:

 δ_{slop}

Bias Factor: $\beta \approx [0.1, 0.3]$

Bias velocity:

$$
v_{bias} = \frac{\beta}{\Delta t} \max (0, \delta - \delta_{\text{slop}})
$$

Bias Impulse

With bias velocity, this:

$$
P_n = \max\left(\frac{-\Delta \overline{\mathbf{v}} \cdot \mathbf{n}}{k_n}, 0\right)
$$

$$
(-\Delta \overline{\mathbf{v}} \cdot \mathbf{n} + \mathbf{v}.
$$

Becomes:

$$
P_n = \max\left(\frac{-\Delta \overline{\mathbf{v}} \cdot \mathbf{n} + \nu_{bias}}{k_n}, 0\right)
$$

GameDevelopers

Friction Impulse

Tangent Velocity: $v_t = \Delta \mathbf{v} \cdot \mathbf{t}$

Want: $v_t = 0$ $-\mu P_n \le P_t \le \mu P_n$

Get:
$$
P_t = \text{clamp}(\frac{-\Delta \overline{\mathbf{v}} \cdot \mathbf{t}}{k_t}, -\mu P_n, \mu P_n)
$$

Fine Print:

$$
k_{t} = \frac{1}{m_{1}} + \frac{1}{m_{2}} + \left[I_{1}^{-1}(\mathbf{r}_{1} \times \mathbf{t}) \times \mathbf{r}_{1} + I_{2}^{-1}(\mathbf{r}_{2} \times \mathbf{t}) \times \mathbf{r}_{2}\right] \cdot \mathbf{t}
$$

Sequential Impulses

- Apply an impulse at each contact point.
- Continue applying impulses for several iterations.
- \odot Terminate after:
	- fixed number of iterations
	- impulses become small

Naïve Impulses

Where Did We Go Wrong?

- **Each contact point forgets its impulse history.**
- \odot Each contact point requires that every impulse be positive.
- **Example 13 There is no way to recover from a bad** impulse.

Accumulated Impulses

Each impulse adds to the total. Increments can be negative.

The True Impulse

- **Each impulse adds to an accumulated** impulse for each contact point.
- **Example 13 The accumulated impulse approaches the** true impulse (hopefully).
- **& True impulse: an exact global solution.**

Accumulated Impulse

■ Clamp the accumulated impulse, not the incremental impulses.

Accumulated impulses:

$$
P_{\Sigma n} \hspace{1cm} P_{\Sigma t}
$$

Correct Clamping

 $P_{\Sigma n} = \max (P_{\Sigma n} + P_n, 0)$ $temp = P_{\Sigma n}$ $P_n = P_{\Sigma n} - temp$ Normal Clamping:

Friction Clamping:

$$
temp = P_{\Sigma t}
$$

\n
$$
P_{\Sigma t} = \text{clamp}\left(P_{\Sigma t} + P_t, -\mu P_{\Sigma n}, \mu P_{\Sigma n}\right)
$$

\n
$$
P_t = P_{\Sigma t} - temp
$$

Position Update

- Use the new velocities to integrate the positions.
- **& The time step is complete.**

Extras

- **⊕** Coherence
- Feature-based contact points
- Joints
- Engine layout
- **B** Loose ends
- **3D Issues**

Coherence

- Apply old accumulated impulses at the beginning of the step.
- \odot Less iterations and greater stability.
- We need a way to match old and new contacts.

Feature-Based Contact Points

- **Each contact point is the result of clipping.**
- \odot It is the junction of two different edges.
- An edge may come from either box.
- **Store the two edge numbers with each** contact point – this is the Contact ID.

Contact Point IDs

Joints

- **③** Specify (constrain) part of the motion.
- Compute the impulse necessary to achieve the constraint.

GameDevelopers

Conference

- Use an accumulator to pursue the true impulse.
- \odot Bias impulse to prevent separation.

Revolute Joint

- Two bodies share a common point.
- **B** They rotate freely about the point.

Revolute Joint

A The joint knows the local anchor point for both bodies.

Relative Velocity

A The relative velocity of the anchor points is zero.

$$
\Delta \mathbf{v} = \mathbf{v}_2 + \mathbf{\omega}_2 \times \mathbf{r}_2 - \mathbf{v}_1 - \mathbf{\omega}_1 \times \mathbf{r}_1 = 0
$$

An impulse is applied to the two bodies.

P

Linear Momentum

 Apply linear momentum to the relative velocity to get:

$$
K\mathbf{P}=-\Delta\overline{\mathbf{v}}
$$

[⊕] Fine Print:

$$
K = \left(\frac{1}{m_1} + \frac{1}{m_2}\right) \mathbf{1} - \tilde{\mathbf{r}}_1 I_1^{-1} \tilde{\mathbf{r}}_1 - \tilde{\mathbf{r}}_2 I_2^{-1} \tilde{\mathbf{r}}_2
$$

 \odot Tilde (\sim) for the cross-product matrix.

K Matrix

- 2-by-2 matrix in 2D, 3-by-3 in 3D.
- 8 Symmetric positive definite.
- **Example 7 Think of K as the inverse mass matrix of the** constraint.

$$
\boldsymbol{M}_{c} = \boldsymbol{K}^{-1}
$$

Bias Impulse

Example 2 The error is the separation between the anchor points

 $\Delta p = \mathbf{x}_2 + \mathbf{r}_2 - \mathbf{x}_1 - \mathbf{r}_1$

- © Center of mass: x
- **A** Bias velocity and impulse:

$$
\mathbf{v}_{bias} = -\frac{\beta}{\Delta t} \Delta \mathbf{p}
$$

$$
K\mathbf{P} = -\Delta \overline{\mathbf{v}} + \mathbf{v}_{bias}
$$

Engine Layout

- **B** The *World* class contains all bodies, contacts, and joints.
- Contacts are maintained by the *Arbiter* class.

Arbiter

- An arbiter exists for every touching pair of boxes.
- ⁴ Provides coherence.
- Matches new and old contact points using the Contact ID.
- [®] Persistence of accumulated impulses.

Arbiters

Collision Coherence

- **A** Use the arbiter to store the separating axis.
- ³ Improve performance at the cost of memory.
- Use with broad-phase.

More on Arbiters

- Arbiters are stored in a set according to the ordered body pointers.
- Use time-stamping to remove stale arbiters.
- Joints are permanent arbiters.
- Arbiters can be used for game logic.

Loose Ends

- Ground is represented with bodies whose inverse mass is zero.
- Contact mass can be computed as a pre-step.
- **A** Bias impulses shouldn't affect the velocity state (TODO).

3D Issues

- **& Friction requires two axes.**
- Align the axes with velocity if it is non-zero.
- Identify a *contact patch* (manifold) and apply friction at the center.
- This requires a *twist friction*.
- **Big CPU savings.**

Questions?

- http://www.gphysics.com
- \odot erincatto at that domain
- **B** Download the code there.
- **Buy Tomb Raider Legend!**

References

- **B** Physics-Based Animation by Kenny Erleben et al.
- **B** Real-Time Collision Detection by Christer Ericson.
- **& Collision Detection in Interactive 3D Environments by Gino van** den Bergen.
- **B** Fast Contact Reduction for Dynamics Simulation by Adam Moravanszky and Pierre Terdiman in Game Programming Gems 4.

