
Fast and Simple Physics using
Sequential Impulses

Erin Catto
Crystal Dynamics

Physics Engine Checklist

 Collision and contact

 Friction: static and dynamic

 Stacking

 Joints

 Fast, simple, and robust

Box2D Demo

 It’s got collision

 It’s got friction

 It’s got stacking

 It’s got joints

 Check the code, it’s simple!

Fast and Simple Physics

 Penalty method?
 Nope

 Linear complementarity (LCP)?
 Nope

 Joint coordinates (Featherstone)?
 Nope

 Particles (Jakobsen)?
 Nope

 Impulses?
 Bingo!

Why Impulses?

 Most people don’t hate impulses

 The math is almost understandable

 Intuition often works

 Impulses can be robust

m
 =

P
v

m

P

Making Impulses not Suck

 Impulses are good at making things bounce.

 Many attempts to use impulses leads to
bouncy simulations (aka jitter).

 Forget static friction.

 Forget stacking.

Impulses without the Bounce

 Forget bounces for a moment.

 Let’s concentrate on keeping things still.

 It’s always easy to add back in the bounce.

The 5 Step Program

 Accept penetration

 Remember the past

 Apply impulses early and often

 Pursue the true impulse

 Update position last

(for taking the jitter out of impulses)

Penetration

 Performance

 Simplicity

 Coherence

 Game logic

 Fewer cracks

Algorithm Overview

 Compute contact points

 Apply forces (gravity)

 Apply impulses

 Update position

 Loop

Contact Points

 Position, normal, and penetration

 Box-box using the SAT

 Find the axis of minimum penetration

 Find the incident face on the other box

 Clip

Box-Box SAT

 First find the separating
axis with the minimum
penetration.

 In 2D the separating axis is
a face normal.

n

Box-Box Clipping Setup

 Identify reference face

 Identify incident face n

incident

reference

Box-Box Clipping

 Clip incident face
against reference face
side planes (but not
the reference face).

 Consider clip points
with positive
penetration.

n

clipping planes

Feature Flip-Flop

 Which normal is the
separating axis?

 Apply weightings to
prefer one axis over
another.

 Improved coherence.

1n

2n

Apply Forces

m

I I

=

+ =

v F

ω ω ω T

1

2 1

1

2 1

t m

t I

−

−

= +

= +

v v F

ω ω T

Newton’s Law

Ignore gyroscopic term for
improved stability

Use Euler’s rule

Impulses

 Impulses are applied at each contact point.

 Normal impulses to prevent penetration.

 Tangent impulses to impose friction.

0n

t n

P

P P

nP n

tPt

Computing the Impulse

1

2

n
P

−P

1r

2r

Linear Momentum

1 1 1

1

1 1 1 1

2 2 2

1

2 2 2 2

/

/

m

I

m

I

−

−

= −

= −

= +

= +

v v P

ω ω r P

v v P

ω ω r P

nP=P n

We know the direction of
the normal impulse. We
only need it’s magnitude.

The normal impulse
causes an instant
change in velocity.

Relative Velocity

2 2 2 1 1 1 = + − − v v ω r v ω r

n

1

2

1r

2r

nv = v n

Along Normal:

The Normal Impulse

Want: 0nv =

max ,0n

n

P
k

 −
=

v n
Get:

() ()1 1

1 1 1 2 2 2

1 2

1 1
nk I I

m m

− − = + + + r n r r n r n

2 2 2 1 1 1 = + − − v v ω r v ω r

Fine Print:

0nP

Bias Impulse

 Give the normal impulse some extra oomph.

 Proportional to the penetration.

 Allow some slop.

 Be gentle.

Bias Velocity

n

Slop: slop

Bias Factor: 0.1,0.3

Bias velocity:

()max 0,bias slopv
t

 = −

slop

Bias Impulse

max ,0bias
n

n

v
P

k

 − +
=

v n

max ,0n

n

P
k

 −
=

v n

Becomes:

With bias velocity, this:

Friction Impulse

Want: 0tv =

clamp(, ,)t n n

t

P P P
k

−

= −
v t

Get:

() ()1 1

1 1 1 2 2 2

1 2

1 1
tk I I

m m

− − = + + + r t r r t r t

Fine Print:

n t nP P P −

Tangent Velocity: tv = v t

Sequential Impulses

 Apply an impulse at each contact point.

 Continue applying impulses for several
iterations.

 Terminate after:

 - fixed number of iterations

 - impulses become small

Naïve Impulses

velocity

1P
2P

Each impulse is computed
independently, leading to
jitter.

velocity

Where Did We Go Wrong?

 Each contact point forgets its impulse history.

 Each contact point requires that every
impulse be positive.

 There is no way to recover from a bad
impulse.

Accumulated Impulses

velocity

1P 2P 1P

Each impulse adds to
the total. Increments
can be negative.

2P

The True Impulse

 Each impulse adds to an accumulated
impulse for each contact point.

 The accumulated impulse approaches the
true impulse (hopefully).

 True impulse: an exact global solution.

Accumulated Impulse

 Clamp the accumulated impulse, not the
incremental impulses.

nP

Accumulated impulses:

tP

Correct Clamping

()max ,0

n

n n n

n n

temp P

P P P

P P temp

=

= +

= −

Normal Clamping:

()clamp , ,

t

t t t n n

t t

temp P

P P P P P

P P temp

=

= + −

= −

Friction Clamping:

Position Update

 Use the new velocities to integrate the
positions.

 The time step is complete.

Extras

 Coherence

 Feature-based contact points

 Joints

 Engine layout

 Loose ends

 3D Issues

Coherence

 Apply old accumulated impulses at the
beginning of the step.

 Less iterations and greater stability.

 We need a way to match old and new
contacts.

Feature-Based Contact Points

 Each contact point is the result of clipping.

 It is the junction of two different edges.

 An edge may come from either box.

 Store the two edge numbers with each
contact point – this is the Contact ID.

Contact Point IDs

1c

box 1 edge 2

box 2 edge 3

2c

box 2 edge 3

box 2 edge 4

1e

4e

3e

2e

n

1

2

1c
2c

Joints

 Specify (constrain) part of the motion.

 Compute the impulse necessary to achieve
the constraint.

 Use an accumulator to pursue the true
impulse.

 Bias impulse to prevent separation.

Revolute Joint

 Two bodies share a
common point.

 They rotate freely
about the point.

Revolute Joint

 The joint knows the
local anchor point for
both bodies.

1r

2r

11

2

Relative Velocity

 The relative velocity of the anchor points is
zero.

2 2 2 1 1 1 0 = + − − =v v ω r v ω r

 An impulse is applied to the two bodies.

P

Linear Momentum

 Apply linear momentum to the relative
velocity to get:

K = −P v

 Fine Print:

1 1

1 1 1 2 2 2

1 2

1 1
K I I

m m

− −
= + − −

1 r r r r

 Tilde (~) for the cross-product matrix.

K Matrix

 2-by-2 matrix in 2D, 3-by-3 in 3D.

 Symmetric positive definite.

 Think of K as the inverse mass matrix of the
constraint.

1

cM K −=

Bias Impulse

 The error is the separation between the
anchor points

2 2 1 1 = + − −p x r x r

 Center of mass: x

 Bias velocity and impulse:

bias

bias

t

K

= −

= − +

v p

P v v

Engine Layout

 The World class contains all bodies, contacts,
and joints.

 Contacts are maintained by the Arbiter class.

Arbiter

 An arbiter exists for every touching pair of
boxes.

 Provides coherence.

 Matches new and old contact points using
the Contact ID.

 Persistence of accumulated impulses.

Arbiters

n

1

2

1c
2c

Arbiter

Collision Coherence

 Use the arbiter to store the separating axis.

 Improve performance at the cost of memory.

 Use with broad-phase.

More on Arbiters

 Arbiters are stored in a set according to the
ordered body pointers.

 Use time-stamping to remove stale arbiters.

 Joints are permanent arbiters.

 Arbiters can be used for game logic.

Loose Ends

 Ground is represented with bodies whose
inverse mass is zero.

 Contact mass can be computed as a pre-step.

 Bias impulses shouldn’t affect the velocity
state (TODO).

3D Issues

 Friction requires two axes.

 Align the axes with velocity if it is non-zero.

 Identify a contact patch (manifold) and apply
friction at the center.

 This requires a twist friction.

 Big CPU savings.

Questions?

 http://www.gphysics.com

 erincatto at that domain

 Download the code there.

 Buy Tomb Raider Legend!

http://www.gphysics.com/

References

 Physics-Based Animation by Kenny Erleben et al.

 Real-Time Collision Detection by Christer Ericson.

 Collision Detection in Interactive 3D Environments by Gino van
den Bergen.

 Fast Contact Reduction for Dynamics Simulation by Adam
Moravanszky and Pierre Terdiman in Game Programming Gems
4.

