
Erin Catto

Blizzard Entertainment

Numerical Integration

Basic Idea

⚫ Games use differential equations for

physics.

⚫ These equations are hard to solve

exactly.

⚫ We can use numerical integration to

solve them approximately.

Overview

⚫ Differential Equations

⚫ Numerical Integrators

⚫ Demos

Typical Game Loop

Start t = 0

Player Input

Simulate Dt

Render

t = t + Dt

Choose Dt

Simulation

⚫ Animation

⚫ AI

⚫ Physics

⚫ Differential Equations

What is a differential

equation?

⚫ An equation involving derivatives.

rate of change of a variable = a function

Anatomy of Differential

Equations

⚫ State

⚫ Dependent variables

⚫ Independent variables

⚫ Initial Conditions

⚫ Model

⚫ The differential equation itself

Projectile Motion

⚫ State

⚫ Independent variable: time (t)

⚫ Dependent variables: position (y) and velocity (v)

⚫ Initial Conditions

⚫ t0, y0, v0

Projectile Motion

2

2

ma F

d y
m mg

dt

=

= −

⚫ Model: vertical motion

x

y

2

2

d y
g

dt
= −

First Order Form

⚫ Numerical integrators need differential

equations to be put into a special format.

()

() 0

,

0

dx
f t x

dt

x x

=

=

First Order Form

⚫ Arrays of equations work too.

()

()

1
1 1

1

, , ,

, , ,

n

n
n n

dx
f t x x

dt

dx
f t x x

dt

=

=

(),
d

t
dt

=
x

f x

Projectile Motion

First Order Form

dy
v

dt

dv
g

dt

=

= −

x

y
2

2

d y
g

dt
= −

Projectile Motion

First Order Form

()

()

0

0

0

0

y y

v v

=

=

x

y

Mass-Spring Motion

⚫ Consider the vertical motion of a character.

Mass-Spring Motion

⚫ State

⚫ time: t

⚫ position: x

⚫ velocity: v

⚫ Initial Conditions

⚫ t0, x0, v0

x

Mass-Spring Motion

⚫ Idealized model

m

ground

k

2

2

ma F

d x
m kx

dt

=

= −

x

2

2

d x k
x

dt m
= −

Mass-Spring Motion

⚫ First Order Form

dx
v

dt

dv k
x

dt m

=

= −

()

()

0

0

0

0

x x

v v

=

=

Solving Differential Equations

⚫ Sometimes we can solve our DE exactly.

⚫ Many times our DE is too complicated to be

solved exactly.

Hard Problems

⚫ Nonlinear equations

⚫ Multiple variables

Hard Problems

⚫ Projectile with air resistance

()
d

m c m
dt

= − −
v v

v v g
v

Hard Problems

⚫ Mass-spring in 3D

()0

d
m k L

dt
= − −

v x
x

x

Hard Problems

⚫ Numerical integration can help!

⚫ Handles nonlinearities

⚫ Handles multiple variables

Numerical Integration

⚫ Start with our first order form

()

() 0

,

0

dx
f t x

dt

x x

=

=

A Simple Idea

⚫ Approximate the slope.

t

x

() ()x t h x t
slope

h

+ −


t t+h

A Simple Idea

() ()x t h x tdx

dt h

+ −


⚫ Forward difference:

A Simple Idea

() ()
()(),

x t h x t
f t x t

h

+ −
=

⚫ Shuffle terms:

() () ()(),x t h x t h f t x t+ = +

A Simple Idea

⚫ Using this formula, we can make a time step

h to find the new state.

⚫ We can continue making time steps as long

as we want.

⚫ The time step is usually small

() () ()(),x t h x t h f t x t+ = +

Explicit Euler

⚫ This is called the Explicit Euler method.

⚫ All terms on the right-hand side are known.

⚫ Substitute in the known values and compute

the new state.

() () ()(),x t h x t h f t x t+ = +

What If …

⚫ This is called the Implicit Euler method.

⚫ The function depends on the new state.

⚫ But we don’t know the new state!

() () ()(),x t h x t h f t h x t h+ = + + +

Implicit Euler

⚫ We have to solve for the new state.

⚫ We may have to solve a nonlinear equation.

⚫ Can be solved using Newton-Raphson.

⚫ Usually impractical for games.

() () ()(),x t h x t h f t h x t h+ = + + +

Implicit vs Explicit

⚫ Explicit is fast.

⚫ Implicit is slow.

⚫ Implicit is more stable than explicit.

⚫ More on this later.

Opening the Black Box

⚫ Explicit and Implicit Euler don’t know about

position or velocity.

⚫ Some numerical integrators work with

position and velocity to gain some

advantages.

The Position ODE

⚫ This equation is trivially linear in velocity.

⚫ We can exploit this to our advantage.

dx
v

dt
=

Symplectic Euler

⚫ First compute the new velocity.

⚫ Then compute the new position using the

new velocity.

() ()
() ()()

() ()
()

, ,
v t h v t

f t x t v t
h

x t h x t
v t h

h

+ −
=

+ −
= +

Symplectic Euler

⚫ We get improved stability over Explicit Euler,

without added cost.

⚫ But not as stable as Implicit Euler

Verlet

⚫ Assume forces only depend on position.

⚫ We can eliminate velocity from Symplectic

Euler.

() ()
()()

() ()
()

,
v t h v t

f t x t
h

x t h x t
v t h

h

+ −
=

+ −
= +

Verlet

1 0 1

2 1 2

2 1 1

x x hv

x x hv

v v h f

= +

= +

= +

⚫ Write two position formulas and one velocity

formula.

Verlet

2

2 1 0 12x x x h f= − +

⚫ Eliminate velocity to get:

Newton

⚫ Assume constant force:

() () () 21

2
x t h x t v t h ah+ = + +

⚫ Exact for projectiles (parabolic motion).

Demos

⚫ Projectile Motion

⚫ Mass-Spring Motion

Integrator Quality

1. Stability

2. Performance

3. Accuracy

Stability

⚫ Extrapolation

⚫ Interpolation

⚫ Mixed

⚫ Energy

Performance

⚫ Derivative evaluations

⚫ Matrix Inversion

⚫ Nonlinear equations

⚫ Step-size limitation

Accuracy

⚫ Accuracy is measured using the Taylor

Series.

() () () () 21

2
x t h x t x t h x t h + = + + +

Accuracy

⚫ First-order accuracy is usually sufficient for

games.

⚫ You can safely ignore RK4, BDF, Midpoint,

Predictor-Corrector, etc.

⚫ Accuracy != Stability

Further Reading &

Sample Code

⚫ http://www.gphysics.com/downloads/

⚫ Hairer, Geometric Numerical Integration

http://www.gphysics.com/downloads/

