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Basic Idea

⚫ Games use differential equations for 

physics.

⚫ These equations are hard to solve 

exactly.

⚫ We can use numerical integration to 

solve them approximately.



Overview

⚫ Differential Equations

⚫ Numerical Integrators

⚫ Demos



Typical Game Loop

Start t = 0

Player Input

Simulate Dt

Render

t = t + Dt

Choose Dt



Simulation

⚫ Animation

⚫ AI

⚫ Physics

⚫ Differential Equations



What is a differential 

equation?

⚫ An equation involving derivatives.

rate of change of a variable = a function



Anatomy of Differential 

Equations

⚫ State

⚫ Dependent variables

⚫ Independent variables

⚫ Initial Conditions

⚫ Model

⚫ The differential equation itself



Projectile Motion

⚫ State

⚫ Independent variable: time (t)

⚫ Dependent variables: position (y) and velocity (v)

⚫ Initial Conditions

⚫ t0, y0, v0



Projectile Motion
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First Order Form

⚫ Numerical integrators need differential 

equations to be put into a special format.
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First Order Form

⚫ Arrays of equations work too.
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Projectile Motion

First Order Form
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Projectile Motion

First Order Form
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Mass-Spring Motion

⚫ Consider the vertical motion of a character.



Mass-Spring Motion

⚫ State

⚫ time: t

⚫ position: x

⚫ velocity: v

⚫ Initial Conditions

⚫ t0, x0, v0

x



Mass-Spring Motion

⚫ Idealized model
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Mass-Spring Motion

⚫ First Order Form
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Solving Differential Equations

⚫ Sometimes we can solve our DE exactly.

⚫ Many times our DE is too complicated to be 

solved exactly.



Hard Problems

⚫ Nonlinear equations

⚫ Multiple variables



Hard Problems

⚫ Projectile with air resistance
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Hard Problems

⚫ Mass-spring in 3D
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Hard Problems

⚫ Numerical integration can help!

⚫ Handles nonlinearities

⚫ Handles multiple variables



Numerical Integration

⚫ Start with our first order form
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A Simple Idea

⚫ Approximate the slope.
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A Simple Idea
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⚫ Forward difference:



A Simple Idea
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⚫ Shuffle terms:

( ) ( ) ( )( ),x t h x t h f t x t+ = +



A Simple Idea

⚫ Using this formula, we can make a time step 

h to find the new state.

⚫ We can continue making time steps as long 

as we want.

⚫ The time step is usually small

( ) ( ) ( )( ),x t h x t h f t x t+ = +



Explicit Euler

⚫ This is called the Explicit Euler method.

⚫ All terms on the right-hand side are known.

⚫ Substitute in the known values and compute 

the new state.

( ) ( ) ( )( ),x t h x t h f t x t+ = +



What If …

⚫ This is called the Implicit Euler method.

⚫ The function depends on the new state.

⚫ But we don’t know the new state!

( ) ( ) ( )( ),x t h x t h f t h x t h+ = + + +



Implicit Euler

⚫ We have to solve for the new state.

⚫ We may have to solve a nonlinear equation.

⚫ Can be solved using Newton-Raphson.

⚫ Usually impractical for games.

( ) ( ) ( )( ),x t h x t h f t h x t h+ = + + +



Implicit vs Explicit

⚫ Explicit is fast.

⚫ Implicit is slow.

⚫ Implicit is more stable than explicit.

⚫ More on this later.



Opening the Black Box

⚫ Explicit and Implicit Euler don’t know about 

position or velocity.

⚫ Some numerical integrators work with 

position and velocity to gain some 

advantages.



The Position ODE

⚫ This equation is trivially linear in velocity.

⚫ We can exploit this to our advantage.
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Symplectic Euler

⚫ First compute the new velocity.

⚫ Then compute the new position using the 

new velocity.
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Symplectic Euler

⚫ We get improved stability over Explicit Euler, 

without added cost.

⚫ But not as stable as Implicit Euler



Verlet

⚫ Assume forces only depend on position.

⚫ We can eliminate velocity from Symplectic 

Euler.
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Verlet
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⚫ Write two position formulas and one velocity 

formula.



Verlet
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⚫ Eliminate velocity to get:



Newton

⚫ Assume constant force:

( ) ( ) ( ) 21

2
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⚫ Exact for projectiles (parabolic motion).



Demos

⚫ Projectile Motion

⚫ Mass-Spring Motion



Integrator Quality

1. Stability

2. Performance

3. Accuracy



Stability

⚫ Extrapolation

⚫ Interpolation

⚫ Mixed

⚫ Energy



Performance

⚫ Derivative evaluations

⚫ Matrix Inversion

⚫ Nonlinear equations

⚫ Step-size limitation



Accuracy

⚫ Accuracy is measured using the Taylor 

Series.
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Accuracy

⚫ First-order accuracy is usually sufficient for 

games.

⚫ You can safely ignore RK4, BDF, Midpoint, 

Predictor-Corrector, etc.

⚫ Accuracy != Stability



Further Reading &

Sample Code

⚫ http://www.gphysics.com/downloads/

⚫ Hairer, Geometric Numerical Integration

http://www.gphysics.com/downloads/

