Numerical Integration

Erin Catto Blizzard Entertainment

Basic Idea

- Games use differential equations for physics.
- These equations are *hard* to solve exactly.
- We can use numerical integration to solve them approximately.

Overview

- Differential Equations
- Numerical Integrators
- Demos

Typical Game Loop

Simulation

- Animation
- Al
- Physics
 - Differential Equations

What is a differential equation?

• An equation involving derivatives.

rate of change of a variable = a function

Anatomy of Differential Equations

State

- Dependent variables
- Independent variables
- Initial Conditions
- Model
 - The differential equation itself

Projectile Motion

- State
 - Independent variable: time (t)
 - Dependent variables: position (y) and velocity (v)
- Initial Conditions
 - t0, y0, v0

Projectile Motion

• Model: vertical motion

$$ma = F$$
$$m\frac{d^2 y}{dt^2} = -mg$$

-

$$\frac{d^2 y}{dt^2} = -g$$

First Order Form

• Numerical integrators need differential equations to be put into a special format.

$$\frac{dx}{dt} = f(t, x)$$
$$x(0) = x_0$$

First Order Form

• Arrays of equations work too.

$$\frac{dx_1}{dt} = f_1(t, x_1, \cdots, x_n)$$
$$\vdots$$
$$\frac{dx_n}{dt} = f_n(t, x_1, \cdots, x_n)$$

Projectile Motion First Order Form

 $\frac{d^2 y}{dt^2} = -g$

$$\frac{dy}{dt} = v$$
$$\frac{dv}{dt} = -g$$

Projectile Motion First Order Form

• Consider the vertical motion of a character.

- State
 - time: t
 - position: x
 - velocity: v
- Initial Conditions
 - t0, x0, v0

Idealized model

ma = F

$$m\frac{d^2x}{dt^2} = -kx$$

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

• First Order Form

 $x(0) = x_0$ $v(0) = v_0$

Solving Differential Equations

- Sometimes we can solve our DE exactly.
- Many times our DE is too complicated to be solved exactly.

- Nonlinear equations
- Multiple variables

• Projectile with air resistance

$$m\frac{d\mathbf{v}}{dt} = -c\left(\mathbf{v}\Box\mathbf{v}\right)\frac{\mathbf{v}}{\|\mathbf{v}\|} - m\mathbf{g}$$

• Mass-spring in 3D

$$m\frac{d\mathbf{v}}{dt} = -k\left(\|\mathbf{x}\| - L_0\right)\frac{\mathbf{x}}{\|\mathbf{x}\|}$$

- Numerical integration can help!
 - Handles nonlinearities
 - Handles multiple variables

Numerical Integration

• Start with our first order form

$$\frac{dx}{dt} = f(t, x)$$
$$x(0) = x_0$$

• Approximate the slope.

• Forward difference:

$$\frac{dx}{dt} \approx \frac{x(t+h) - x(t)}{h}$$

• Shuffle terms:

$$\frac{x(t+h) - x(t)}{h} = f(t, x(t))$$

$$x(t+h) = x(t) + h f(t, x(t))$$

- Using this formula, we can make a time step h to find the new state.
- We can continue making time steps as long as we want.
- The time step is usually small

$$x(t+h) = x(t) + h f(t, x(t))$$

Explicit Euler

$$x(t+h) = x(t) + h f(t, x(t))$$

- This is called the *Explicit Euler* method.
- All terms on the right-hand side are known.
- Substitute in the known values and compute the new state.

What If ...

$$x(t+h) = x(t) + h f(t+h, x(t+h))$$

- This is called the *Implicit Euler* method.
- The function depends on the new state.
- But we don't know the new state!

Implicit Euler

$$x(t+h) = x(t) + h f(t+h, x(t+h))$$

- We have to solve for the new state.
- We may have to solve a nonlinear equation.
- Can be solved using Newton-Raphson.
- Usually impractical for games.

Implicit vs Explicit

- Explicit is fast.
- Implicit is slow.
- Implicit is more stable than explicit.
- More on this later.

Opening the Black Box

- Explicit and Implicit Euler don't know about position or velocity.
- Some numerical integrators work with position and velocity to gain some advantages.

The Position ODE

$$\frac{dx}{dt} = v$$

- This equation is trivially linear in velocity.
- We can exploit this to our advantage.

Symplectic Euler

$$\frac{v(t+h)-v(t)}{h} = f(t,x(t),v(t))$$
$$\frac{x(t+h)-x(t)}{h} = v(t+h)$$

- First compute the new velocity.
- Then compute the new position using the new velocity.

Symplectic Euler

- We get improved stability over Explicit Euler, without added cost.
- But not as stable as Implicit Euler

Verlet

- Assume forces only depend on position.
- We can eliminate velocity from Symplectic Euler.

$$\frac{v(t+h) - v(t)}{h} = f(t, x(t))$$
$$\frac{x(t+h) - x(t)}{h} = v(t+h)$$

Verlet

• Write two position formulas and one velocity formula.

$$x_{1} = x_{0} + h v_{1}$$
$$x_{2} = x_{1} + h v_{2}$$
$$v_{2} = v_{1} + h f_{1}$$

Verlet

• Eliminate velocity to get:

$$x_2 = 2x_1 - x_0 + h^2 f_1$$

Newton

• Assume constant force:

$$x(t+h) = x(t) + v(t)h + \frac{1}{2}ah^2$$

• Exact for projectiles (parabolic motion).

Demos

- Projectile Motion
- Mass-Spring Motion

Integrator Quality

- 1. Stability
- 2. Performance
- 3. Accuracy

Stability

- Extrapolation
- Interpolation
- Mixed
- Energy

Performance

- Derivative evaluations
- Matrix Inversion
- Nonlinear equations
- Step-size limitation

Accuracy

Accuracy is measured using the Taylor Series.

$$x(t+h) = x(t) + x'(t)h + \frac{1}{2}x''(t)h^{2} + \cdots$$

Accuracy

- First-order accuracy is usually sufficient for games.
- You can safely ignore RK4, BDF, Midpoint, Predictor-Corrector, etc.
- Accuracy != Stability

Further Reading & Sample Code

- http://www.gphysics.com/downloads/
- Hairer, Geometric Numerical Integration