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Basic Idea

⚫ Constraints are used to simulate joints, contact, 

and collision.

⚫ We need to solve the constraints to stack boxes 

and to keep ragdoll limbs attached.

⚫ Constraint solvers do this by calculating impulse 

or forces, and applying them to the constrained 

bodies.



Overview

⚫ Constraint Formulas

⚫ Jacobians, Lagrange Multipliers

⚫ Modeling Constraints

⚫ Joints, Motors, Contact

⚫ Building a Constraint Solver

⚫ Sequential Impulses



Constraint Types

Contact and Friction



Constraint Types

Ragdolls



Constraint Types

Particles and Cloth



Show Me the Demo!



Bead on a 2D Rigid Wire

( , ) 0C x y =Implicit Curve Equation:

This is the position constraint.



How does it move?

v

The normal vector is perpendicular to the velocity.

n

dot( , ) 0=n v



Enter The Calculus

( ) 0C =x

Position Constraint:

0C =Velocity Constraint:

If C is zero, then its time derivative is zero.

x

y

 
=  
 

x



Velocity Constraint

⚫ Velocity constraints define the allowed motion.

⚫ Next we’ll show that velocity constraints depend 

linearly on velocity.

0C =



The Jacobian

Due to the chain rule the velocity constraint has 

a special structure:

C = Jv

J is a row vector called the Jacobian.

J depends on position.

x

y

 
=  
 

v

The velocity constraint is linear.



The Jacobian

v

T
J

The Jacobian is perpendicular to the velocity.

0C = =Jv



Constraint Force

v

Assume the wire is frictionless.

What is the force between the wire and the bead?



Lagrange Multiplier

v

cF

Intuitively the constraint force Fc is parallel to 

the normal vector.

T

c =F J
Direction known.

Magnitude unknown.
implies



Lagrange Multiplier

⚫ The Lagrange Multiplier (lambda) is the constraint force 

signed magnitude.

⚫ We use a constraint solver to compute lambda.

⚫ More on this later.



Jacobian as a 

CoordinateTransform

⚫ Similar to a rotation matrix.

⚫ Except it is missing a couple rows.

⚫ So it projects some dimensions to zero.

⚫ The transpose is missing some columns, so some 

dimensions get added.



Velocity Transform

v J C

Cartesian

Space

Velocity

Constraint

Space

Velocity

C = Jv



Force Transform

cF

Constraint

Space

Force

Cartesian

Space

Force

 T
J

T

c =F J



Refresher: Work and Power

Work = Force times Distance

Work has units of Energy (Joules)

Power = Force times Velocity (Watts)

( )dot ,P = F V



Principle of Virtual Work

T

c =F J

Principle: constraint forces do no work.

( ) 0
T

T T

c cP  = = = =F v J v Jv

Proof (compute the power):

The power is zero, so the constraint does no work.

We can ensure this by using:



Constraint Quantities

C

C

J



Position Constraint

Velocity Constraint

Jacobian

Lagrange Multiplier



Why all the Painful 

Abstraction?

⚫ We want to put all constraints into a common form for the 

solver.

⚫ This allows us to efficiently try different solution 

techniques.



Addendum:

Modeling Time Dependence

⚫ Some constraints, like motors, have prescribed motion.

⚫ This is represented by time dependence.

( ), 0C t =x

( ) 0C b t= + =Jv

Position:

Velocity:

velocity bias



Example: Distance Constraint

T

C =
x

v
x

T

=
x

J
x

y

x

L

C L= −x

0b =

Position:

Velocity:

Jacobian:

Velocity Bias: is the tension

particle

x

y

 
=  
 

x



Gory Details

( )

( )

( )

2 2

2 2

2 2

2 2

2 2
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Computing the Jacobian

⚫ At first, it is not easy to compute the Jacobian.

⚫ It gets easier with practice.

⚫ If you can define a position constraint, you can find its 

Jacobian.

⚫ Here’s how …



A Recipe for J

⚫ Use geometry to write C.

⚫ Differentiate C with respect to time.

⚫ Isolate v.

⚫ Identify J and b by inspection.

C b= +Jv



Constraint Potpourri

⚫ Joints

⚫ Motors

⚫ Contact

⚫ Restitution

⚫ Friction



Joint: Distance Constraint

T

c =F Jy

x

v

a m=F g

T

=
x

J
x



Motors

A motor is a constraint with limited force (torque).



sinC t= −

Example

10 10−  

A Wheel

Note: this constraint does work.



Velocity Only Motors



2C = −

Example

Usage: A wheel that spins at a constant rate.

We don’t care about the angle.

5 5−  



Inequality Constraints

⚫ So far we’ve looked at equality constraints (because 
they are simpler).

⚫ Inequality constraints are needed for contact and joint 
limits.

⚫ We put all inequality position constraints into this form:

( , ) 0C t x



Inequality Constraints

0C 

The corresponding velocity constraint:

If

0C 
Else

skip constraint

enforce:



Inequality Constraints

Force Limits:

Inequality constraints don’t suck.

0   



Contact Constraint

⚫ Non-penetration.

⚫ Restitution: bounce

⚫ Friction: sliding, sticking, and rolling



Non-Penetration Constraint



n

C =

p

body 2

body 1

(separation)



Non-Penetration Constraint

( ) ( )

( )

( )

2 1

2 2 2 1 1 1

1

1 1

2

2 2

( )p p

T

C = − 

 = +  − − −  −  

−   
   − − 
   =
   
   

−    

v v n

v ω p x v ω p x n

n v

p x n ω

n v

p x n ω

J

( )

( )

( )

  =

  =

 

A B C

C A B

B C A

Handy Identities



Restitution

2 1( )n p pv − v v n

Relative normal velocity

Adding bounce as a velocity bias

nb ev−=0n nC v ev+ −= + 

n nv ev+ − −

Velocity Reflection



Friction Constraint

Friction is like a velocity-only motor.

The target velocity is zero.

p

( )

( )

p

T

C = 

 = +  −  

   
=    −    

v t

v ω p x t

t v

p x t ω

J

t



Friction Constraint

The friction force is limited by the normal force.

Coulomb’s Law: t n 

In 2D:
n t n  −  

3D is a bit more complicated. See the references.



Constraints Solvers

⚫ We have a bunch of constraints.

⚫ We have unknown constraint forces.

⚫ We need to solve for these constraint forces.

⚫ There are many ways different ways to compute 

constraint forces.



Constraint Solver Types

⚫ Global Solvers (slow)

⚫ Iterative Solvers (fast)



Solving a Chain

1

2

3

Global:

solve for 1, 2, and 3 

simultaneously.

Iterative:

while !done

solve for 1

solve for 2

solve for 3

1m

2m

3m



Sequential Impulses (SI)

⚫ An iterative solver.

⚫ SI applies impulses at each constraint to correct the 

velocity error.

⚫ SI is fast and stable.

⚫ Converges to a global solution.



Why Impulses?

⚫ Easier to deal with friction and collision.

⚫ Lets us work with velocity rather than acceleration.

⚫ Given the time step, impulse and force are 

interchangeable.

h=P F



Sequential Impulses

Step1:

Integrate applied forces, yielding tentative 

velocities.

Step2:

Apply impulses sequentially for all constraints, 

to correct the velocity errors.

Step3:

Use the new velocities to update the positions.



Step 1: Newton’s Law

a c= +Mv F F

We separate applied forces and

constraint forces.

mass matrix



Step 1: Mass Matrix

0 0

0 0

0 0

m

m

m

 
 

=
 
  

M

Particle

Rigid Body m 
=  
 

E 0
M

0 I

May involve multiple particles/bodies.



Step 1: Applied Forces

⚫ Applied forces are computed according to some law.

⚫ Gravity: F = mg

⚫ Spring: F = -kx

⚫ Air resistance: F = -cv2



Step 1 :

Integrate Applied Forces

1

2 1 ah −= +v v M F

Euler’s Method for all bodies.

This new velocity tends to violate the velocity 

constraints.



Step 2:

Constraint Impulse

The constraint impulse is just the time step 

times the constraint force.

c ch=P F



Step 2:

Impulse-Momentum

Newton’s Law for impulses:

c =M v P

In other words:

1

2 2 c

−= +v v M P



Step 2:

Computing Lambda

For each constraint, solve these for :

1

2 2

2 0

c

T

c

b



−= +

=

+ =

v v M P

P J

Jv

Newton’s Law:

Virtual Work:

Velocity Constraint:

Note: this usually involves one or two bodies.



Step 2: Impulse Solution

( )2

1

1

C

C T

m b

m



−

= − +

=

Jv

JM J

The scalar mC is the effective mass seen by

the constraint impulse:

Cm C  =



Step 2: Velocity Update

1

2 2

T

c

c



−

=

= +

P J

v v M P

Now that we solved for lambda, we can use it

to update the velocity.

Remember: this usually involves one or two bodies.



Step 2: Iteration

⚫ Loop over all constraints until you are done:

⚫ - Fixed number of iterations.

⚫ - Corrective impulses become small.

⚫ - Velocity errors become small.



Step 3: Integrate Positions

2 1 2h= +x x v

Use the new velocity to integrate all 

body positions (and orientations):

This is the symplectic Euler integrator.



Extensions to Step 2

⚫ Handle position drift.

⚫ Handle force limits.

⚫ Handle inequality constraints.

⚫ Warm starting.



Handling Position Drift

Velocity constraints are not obeyed precisely.

Joints will fall apart.



Baumgarte Stabilization

Feed the position error back into the velocity constraint.

0BC C
h


= + =JvNew velocity constraint:

Bias factor: 0 1 



Baumgarte Stabilization

What is the solution to this?

0C C
h


+ =

First-order differential equation …



Answer

0 exp
t

C C
h

 
= − 

 

( )exp t−



Tuning the Bias Factor

⚫ If your simulation has instabilities, set the bias factor to 

zero and check the stability.

⚫ Increase the bias factor slowly until the simulation 

becomes unstable.

⚫ Use half of that value.



Handling Force Limits

First, convert force limits to impulse limits.

impulse forceh =



Handling Impulse Limits

Clamping corrective impulses:

( )min maxclamp , ,   =

Is it really that simple?

Hint: no.



How to Clamp

⚫ Each iteration computes corrective impulses.

⚫ Clamping corrective impulses is wrong!

⚫ You should clamp the total impulse applied over the 

time step.

⚫ The following example shows why.



Example: 2D Inelastic Collision

v

P

A Falling Box

P

Global Solution 1

2
m=P v



Iterative Solution

1P 2P

iteration 1

constraint 1 constraint 2

Suppose the corrective impulses are too strong.

What should the second iteration look like?



Iterative Solution

1P 2P

iteration 2

To keep the box from bouncing, we need

downward corrective impulses.

In other words, the corrective impulses are

negative!



Iterative Solution

But clamping the negative corrective impulses

wipes them out:

clamp( , 0, )

0

 = 

=

This is one way to introduce jitter into

your simulation. ☺



Accumulated Impulses

⚫ For each constraint, keep track of the total impulse 

applied.

⚫ This is the accumulated impulse.

⚫ Clamp the accumulated impulse.

⚫ This allows the corrective impulse to be negative yet the 

accumulated impulse is still positive.



New Clamping Procedure

1. Compute the corrective impulse, but don’t 

apply it.

2. Make a copy of the old accumulated impulse.

3. Add the corrective impulse to the accumulated 

impulse.

4. Clamp the accumulated impulse.

5. Compute the change in the accumulated 

impulse using the copy from step 2.

6. Apply the impulse delta found in Step 5.



Handling Inequality 

Constraints

⚫ Before iterations, determine if the inequality constraint is 

active.

⚫ If it is inactive, then ignore it.

⚫ Clamp accumulated impulses:

0 acc  



Inequality Constraints

A problem:

overshoot

active inactive active

gravity

Aiming for zero overlap leads to JITTER!



Preventing Overshoot

( )slopC
h


 = + −Jv

Allow a little bit of penetration (slop).

If separation < slop

C = Jv

Else

Note: the slop will be negative (separation).



Warm Starting

⚫ Iterative solvers use an initial guess for the lambdas.

⚫ So save the lambdas from the previous time step.

⚫ Use the stored lambdas as the initial guess for the new 

step.

⚫ Benefit: improved stacking.



Step 1.5

⚫ Apply the stored impulses.

⚫ Use the stored impulses to initialize the accumulated 

impulses.



Step 2.5

⚫ Store the accumulated impulses.



Further Reading &

Sample Code

⚫ http://www.gphysics.com/downloads/

http://www.gphysics.com/downloads/


Box2D

⚫ An open source 2D physics engine.

⚫ http://www.box2d.org

⚫ Written in C++.

http://www.box2d.org/

