
Iterative Dynamics with Temporal Coherence

Erin Catto
Crystal Dynamics

Menlo Park, California
ecatto@crystald.com

June 5, 2005

Abstract

This article introduces an iterative constraint solver for rigid body dy-
namics with contact. Our algorithm requires linear time and space and is
easily expressed in vector form for fast execution on vector processors. The
use of an iterative algorithm opens up the possibility for exploiting temporal
coherence. A method for caching contact forces is presented that allows con-
tact points to move from step to step and to appear and disappear. Examples
are provided to illustrate the effectiveness of the algorithm.

1 Introduction

Recently, there has been much interest in using rigid body physics to enhance
video games. Examples of rigid bodies in games are vehicles, rag dolls, cranes,
barrels, crates, and even whole buildings. As more objects in the game world
become physically based, realism and immersion are increased and the consumer
has a more satisfying experience. Rigid body physics has moved from being a
novelty to become a checklist feature in video game development.

Developing a physics engine for games is a tremendous challenge. Many develop-
ers do not have the know-how and/or resources to develop general purpose physics
engines, as witnessed by the recent growth in the physics middle-ware industry.
A physics engine must have exceptional performance, far exceeding the levels

1

needed for off-line animation and research. The stability of physics simulation
is vital because without stability the game play may become frustrating, ruining
the player’s experience. Finally, the memory specifications of the current gener-
ation of consoles demands serious consideration of the physics engine memory
footprint and cache usage.

Fortunately, the performance and space requirements can be balanced by low ac-
curacy requirements. As long as the motion is visually plausible, the physics pro-
grammer is free to modify the equations of motion and to approximate the contact
geometry. Furthermore, the chosen model does not need to be solved to high
precision. As long as stability is maintained, numerical accuracy has secondary
importance.

Designing a physics engine for games is an exercise in cost-benefit analysis when
considering collision detection methods, the form of the equations of motion, and
the solution techniques. In a high performance engine, these design aspects are
usually interdependent. For example, it may advantageous to form the equations
of motion such that their solution may be obtained rapidly. Thus, standard models
of inertia and friction can be placed on the workbench to be retooled for perfor-
mance and stability.

Stability can also be enhanced by using authoring practices that recognize the lim-
itations of the physics engine. For example, a high performance engine typically
has trouble dealing with interacting bodies that have a large discrepancy in mass.
Typically, mass ratios must be less than an order of magnitude. This limitation can
often be incorporated into design practices without sacrificing game play quality.

In this article we describe algorithms to implement rigid body physics with contact
and friction using only linear time and space. Compared to previous approaches,
these algorithms are relatively simple to understand and implement.

2 Previous Work

Modeling choices have a profound effect on the ability to solve the contact prob-
lem efficiently and robustly. We wish to avoid the NP-hard problems faced by
Baraff [2]. Our model has more in common with Anitescu [1] because it is a time-
stepping scheme. The formulation follows Smith [13]; it is velocity based and
uses an approximate friction model.

2

Other simulation systems in recent years have approached the contact and con-
straint problem from a different angle. Guendelman [7] uses impulses to prevent
penetration. First a tentative integration step is taken and then overlap is mea-
sured. Impulses are then applied sequentially at the original configuration until
the contacts are separating. Jakobsen [9] uses a particle model with distance con-
straints. At each time step the particles are allowed to fall under the influence of
gravity. After the time step, the algorithm loops over all the constraints. For each
distance constraint, the positions of the two particles are adjusted to satisfy the
constraint. Since this breaks other constraints, several iterations are used.

In contrast, the system we present in this paper is based on constraint forces and
rigid bodies. Some advantages of this approach are:

• Penetration is handled, improving robustness.

• Various joints types, such as revolute and prismatic joints, are straight for-
ward to model and incorporate.

• Joint reactions are available for game logic, such as breakable joints and
triggers.

• Authoring is relatively easy due to the use of rigid bodies.

• Joints and contacts are handled in the same way, simplifying the code.

3 Constrained Dynamics Model

3.1 Kinematics

Consider a three-dimensional rigid body with position x and quaternion q. We
assume the center of mass is located at x. We often use the rotation matrix R
which can be computed from q as needed [5]. The linear velocity is v and the
angular velocity is ω . The position terms are related to the velocity terms by
kinematic differential equations [5].

ẋ = v (1)

q̇ =
1
2

ω ∗q (2)

3

The overhead dot denotes differentiation with respect to time and ∗ denotes quater-
nion multiplication (ω is treated as a quaternion with a zero scalar part).

For a system of n bodies, the linear and angular velocities are stacked in a 6n-by-1
column vector V .

V =

v1
ω1
...

vn
ωn

 (3)

3.2 Constraints

Our system allows for pairwise constraints between rigid bodies. There are cases
where constraints involve more than two bodies, such as gears on moving bodies,
but these situations are uncommon. Furthermore, some important performance
and memory optimizations become possible by restricting constraints to be pair-
wise.

A single position constraint Ck is represented abstractly as a scalar function of x
and q for two bodies i and j.

Ck(xi,qi,x j,q j) = 0 (4)

The constraints for a system of rigid bodies are collected in an s-by-1 column
vector C, where s is the number of constraints.

The time derivative of C yields the velocity constraint vector. By the chain rule
of differentiation, the velocity constraint is guaranteed to be linear in velocity.1

Therefore,
Ċ = JV = 0 (5)

where J is the s-by-6n Jacobian.

1This is true because q̇ is a linear function of ω , as seen in equation (2).

4

x2

x1
r1 r2

p1 p2

Figure 1: Distance constraint between points p1 and p2, which are fixed bodies 1
and 2, respectively.

3.3 Constraint Forces

Each constraint has an internal reaction force fc and reaction torque τc. For a
system of n bodies these are collected in the 6n-by-1 column vector Fc:

Fc =

fc1

τc1
...

fcn

τcn

 (6)

Notice that the velocity constraint (5) states that the admissible velocity V is or-
thogonal to the rows of J. Constraint forces do no work, so they must also be
orthogonal to V . Therefore,

Fc = JT
λ (7)

where λ is a vector of s undetermined multipliers. These multipliers represent the
signed magnitudes of the constraint forces.

3.4 Computing the Jacobian

The constraint vector C is an unordered column array of all the position constraints
in the model, including contacts, joints, etc. Each element Ck is a single constraint
equation governing some aspect of the motion. Usually Ck can be determined by
an analysis of the constraint geometry.

5

For example, the distance constraint shown in Figure 1 acts between two rigid
bodies. The constraint equation Cdist measures the difference between the actual
distance and the desired distance L.

Cdist =
1
2

[
(p2− p1)2−L2] (8)

When Cdist = 0, the distance between p1 and p2 is equal to L. To determine the
Jacobian, we differentiate Cdist with respect to time.

Ċdist = d · (v2 +ω2× r2− v1−ω1× r1) (9)

where d = p2− p1. Through algebraic manipulation and use of the vector identity
A ·B×C = B ·C×A, the velocities can be isolated.

Ċdist =
(
−dT −(r1×d)T dT (r2×d)T)

v1
ω1
v2
ω2

 (10)

Now we can simply write the Jacobian by inspection.

J =
(
−dT −(r1×d)T dT (r2×d)T)

(11)

The preceding example gives a recipe for computing the Jacobian.

1. Determine each constraint equation as a function of body positions and ro-
tations.

2. Differentiate the constraint equation with respect to time.

3. Identify the coefficient matrix of V . This matrix is J.

This process is performed off-line for each type of constraint. The resulting sys-
tem of constraint equations can be assembled in an object-oriented fashion. See
Smith [12] and Shabana [11] for more details.

Often steps 1 and 2 can be skipped by considering the constraint directly at the
velocity level. It is still useful to form constraints at the position level and dif-
ferentiate them to ensure the velocity constraints are correct. Furthermore, it is
useful to use the position constraint for dealing with constraint drift (discussed
below).

6

Algorithm 1 Compute Ċ = JV
for i = 1 to s do

b1 = Jmap(i,1)
b2 = Jmap(i,2)
sum = 0
if b1 > 0 then

sum = sum+ Jsp(i,1)V (b1)
end if
sum = sum+ Jsp(i,2)V (b2)
Ċ(i) = sum

end for

In general, the Jacobian is s-by-6n for s constraints and n bodies. Since we are
considering only pairwise constraints, each row of J has at most, two nonzero
blocks of length six (three scalars for position and three scalars for rotation). Thus,
for s constraints, we can store J as an s-by-12 array Jsp.

Jsp =

 J11 J12
...

...
Js1 Js2

 (12)

Each block Ji j is a row vector of length 6. The row index i denotes the constraint
number and column index j is either 1 or 2, denoting the first and second body
involved in the constraint.

The sparse representation Jsp is combined with the s-by-2 body map Jmap.

Jmap =

 b11 b12
...

...
bs1 bs2

 (13)

Each bi j is the index of a rigid body. By convention, if a constraint is between
a single rigid body and ground, then bi1 = 0 and the corresponding Ji1 is zero.
Using Jsp and Jmap, the original Jacobian J can be assembled.

Using Jsp and Jmap, we can compute the products JV and JT λ in O(s + n) time.
Algorithms 1 and 2 show how this is done. In the pseudo-code some indexing
refers to blocks. For example, V (b1) refers to the block 6-vector (vT

b1,ω
T
b1)

T . Note
that these algorithms involve simple dot products and sums of 6-vectors. These
operations can easily be decomposed to take advantage of SIMD hardware.

7

Algorithm 2 Compute Fc = JT λ

for i = 1 to n do
Fc(i) = 0

end for
for i = 1 to s do

b1 = Jmap(i,1)
b2 = Jmap(i,2)
if b1 > 0 then

Fc(b1) = Fc(b1)+ Jsp(i,1)λ (i)
end if
Fc(b2) = Fc(b2)+ Jsp(i,2)λ (i)

end for

3.5 Handling Inequality Constraints

Usually constraint equations are partitioned into equality and inequality constraints.
Examples of equality constraints are distance constraints, revolute joints, pris-
matic joints, and many other joint types. Examples of inequality constraints are
contact constraints and joint angle limits.

For our purposes, all constraint equations are treated in a similar manner. For
each constraint, a lower and upper bound on λ is specified as part of the constraint
model.

λ
−
i ≤ λi ≤ λ

+
i , ∀i ∈ [1,s] (14)

An equality constraint would specify that (λ−,λ+) = (−∞,∞), while an inequal-
ity constraint might specify that (λ−,λ+) = (0,∞). This approach eliminates a lot
of bookkeeping and allows for interesting effects, such as motors with bounded
torques.

3.6 Constraint Bias

Constraint forces can be made to do work by adding a bias vector ζ to equation (5).

JV = ζ (15)

Usually ζ is specified as a function of position and time. This allows us to support
active constraints like motors and provides a simple method for position stabiliza-

8

tion, as discussed below.

4 Contact Model

We use a discrete model of contact that identifies a point of overlap and a normal
vector. The model allows for penetration and uses a simple scheme to resolve any
residual penetration. The friction model makes some fairly radical changes to the
Coulomb model, as we will see.

4.1 Normal Constraint

The normal constraint is formed using the vectors shown in Figure 2. The position
constraint Cn measures the object separation, so it is negative when the bodies
overlap.

Cn = (x2 + r2− x1− r1) ·n1 (16)

Differentiating Cn with respect to time leads to the velocity constraint.

Ċn = (v2 +ω2× r2− v1−ω1× r1) ·n1 +(x2 + r2− x1− r1) ·ω1×n1 (17)

We make the usual approximation that the penetration is small, so the second term
may be ignored. In this case, it is unimportant which body is associated with the
normal vector, so we drop the subscript from n1. However, our convention is that
the normal vector always points from body 1 to body 2.

The Jacobian is determined by separating the velocities from the other terms.

JnV =
(
−nT −(r1×n)T nT (r2×n)T)

v1
ω1
v2
ω2

 (18)

Note that the Jacobian is a row vector of length 12.

The multiplier for the normal constraint is bounded so that the normal force can
push the bodies apart, but not pull them together.

0 ≤ λn < ∞ (19)

9

n1

x1

x2

r2

r1

Figure 2: Normal constraint definition. The object origins are x1 and x2. The
vectors r1 and r2 locate the contact points on bodies 1 and 2.

4.2 Handling Penetration

Overlap can occur for a couple reasons. First, using discrete collision detection
means that contact is not recognized until the bodies suddenly overlap. Second,
numerical integration of the equations of motion is usually not accurate enough to
prevent the bodies from drifting into each other.

A Baumgarte [3] scheme is used to push the bodies apart when they overlap.
The velocity constraint is augmented with a feedback term proportional to the
penetration depth.

JnV =−βCn (20)

The scalar β is tunable and governs the speed of penetration resolution. The
constraint error Cn is computed using equation (16).

The intuition for equation (20) can be established by rearranging terms. Recalling
that Ċn = JnV , we have

Ċn +βCn = 0

This is a first order differential equation in Cn. The solution is Cn(t) = Cn(0)e−β t ,
a decaying exponential if β > 0. Therefore the position error Cn decays more
rapidly as β is increased. Alas, we are confined to approximate integration tech-
niques and so β cannot be made too large.

We now present a simplified analysis to determine the stable range of β . Consider

10

a rigid body which has its center of mass constrained to the point p, but the body
may initially violate the constraint. The constraint equation is C = x− p. The
Jacobian is the 3-by-3 identity matrix, i.e. J = E3×3. Since the center of mass
is fully constrained, we may ignore inertia and external forces. Therefore, the
body’s velocity is precisely v = −β (x− p). Now consider integration of x over
the time step ∆t using the Euler rule:

x(t +∆t) = x(t)+∆tv(t +∆t)
= x(t)−∆tβ (x(t)− p)

Rearranging terms leads to:

x(t +∆t)− p = (1−∆tβ)(x(t)− p)

This is a recurrence relation on the position error and the solution after k time
steps is:

C(k∆t) = (1−∆tβ)kC(0)

Clearly x will converge to p if and only if 0 < β < 2/∆t. If 0 < β ≤ 1/∆t then the
position error will decay smoothly to zero. If 1/∆t < β < 2/∆t then the position
error will decay with an oscillation.

The stability analysis provides an upper bound of β ≤ 1/∆t for smooth decay.
In practice, smaller values may be necessary for stability. Therefore β should be
tuned experimentally, starting with a small value and increasing it until overlap is
resolved at a sufficient speed.

4.3 Friction Constraint

Static and dynamic friction are modeled together with two constraints. Given the
contact normal vector, two tangent unit vectors are computed, u1 and u2, such that
u1×u2 = n. The friction force tries to prevent motion in the two tangent directions
independently. We write the velocity form of the constraint directly.

Ċu1 = (v2 +ω2× r2− v1−ω1× r1) ·u1 (21)
Ċu2 = (v2 +ω2× r2− v1−ω1× r1) ·u2 (22)

11

The Jacobian is found by inspection.

JuV =
(
−uT

1 −(r1×u1)T uT
1 (r2×u1)T

−uT
2 −(r1×u2)T uT

2 (r2×u2)T

)
v1
ω1
v2
ω2

 (23)

Our experience is that no position stabilization is necessary for friction constraints,
even when an object is at rest on an incline.

In Coulomb’s friction law, the static and dynamic friction forces have a magnitude
that is bounded by the normal force magnitude. This creates an awkward coupling
between the constraint multipliers. Using this relationship would complicate our
solver and decrease robustness. Therefore, we use a simpler friction model where
the friction force is bounded by a constant value.

−µmcg≤ λu1 ≤ µmcg (24)
−µmcg≤ λu2 ≤ µmcg (25)

The usual friction coefficient is represented by µ (static and dynamic coefficients
are equal). Each contact point is assigned a certain amount of mass mc. Typi-
cally a body’s mass is divided uniformly between the current contact points. The
acceleration of gravity is g.

Our experience is that this friction model is sufficient for video games. Static
friction works well. Boxes rest on slopes. Dynamic friction is also realistic. How-
ever, box stacking friction is unrealistic because lower boxes slide just as easily as
upper boxes. The normal force does not affect the strength of the friction.

5 Equations of Motion

Consider a rigid body with a scalar mass m and a 3-by-3 rotational inertia I. The
rotational inertia is in world coordinates and is computed from the body version
using I = RIbRT . Similarly, the inverse inertia is computed from the body version
using I−1 = RI−1

b RT .

An external force fext and torque τext act on the body and are functions of time,
position, and velocity. The constraint force fc and torque τc represent the internal

12

reaction forces of joints and contacts. The Newton-Euler equations of motion are:

mv̇ = fc + fext (26)
Iω̇ = τc + τext (27)

Notice that we are neglecting the inertial torque ω× Iω . This term is often small,
and when it is not small, it can lead to numerical instabilities. The absence of
the inertial torque causes angular velocity—instead of angular momentum—to be
conserved in bodies that are free from external and constraint torques.

For a system of n rigid bodies, we collect the masses and rotational inertias along
the diagonal of the mass matrix M.

M =

m1E3×3 0 . . . 0 0

0 I1 . . . 0 0
...

...
...

0 0 . . . mnE3×3 0
0 0 . . . 0 In

 (28)

Here E3×3 is the 3-by-3 identity matrix. Similarly, the external forces and torques
are also collected into the vector Fext .

Fext =

fext1
τext1

...
fextn
τextn

 (29)

As discussed above, the constraint forces for the system can be expressed as JT λ .
This leads to the constrained equations of motion for n bodies.

MV̇ = JT
λ +Fext (30)

JV = ζ (31)

Notice that there are 6n+ s equations and 12n+ s unknowns: V̇ , V , and λ .

13

6 Time Stepping

Our time stepping method supports variable time steps within the region of stabil-
ity. However, precise repeatability requires a fixed time step. Repeatability may
or may not be important, depending on the application.

Consider a time step ∆t where the system velocity evolves from V 1 to V 2 (the
superscript denotes the time step). The acceleration is approximated to first order.

V̇ ≈ V 2−V 1

∆t
(32)

This expression is substituted into equation (30).

M(V 2−V 1) = ∆t(JT
λ +Fext) (33)

We solve for V 2 in terms of λ , then the constraint equation JV 2 = ζ is used to
eliminate V 2, reducing the problem to a linear equation in λ .

JBλ = η (34)

where B = M−1JT and

η =
1
∆t

ζ − J(
1
∆t

V 1 +M−1Fext) (35)

The reason for the curious factorization of the coefficient matrix into JB will be-
come apparent in the next section. It is easy to show that B has the same sparsity
pattern as JT , therefore we store B as Bsp and use Jmap for indexing.

We must also consider the bound conditions on λ from equation (14). Obviously,
the bounds on λ prevent strict equality from being achieved in equation (34).
When a contact constraint does not achieve equality, it means that the objects are
separating. When a friction constraint does not achieve equality, it means that
it is sliding. Thus, each λ does as much as it can to satisfy its constraint while
satisfying its bound conditions.

The matrix JB is positive semi-definite. The reason for any rank deficiency is
due to redundant constraints. If the constraints are consistent then there is a non-
unique solution for λ . For example, a table with six legs has redundant but con-
sistent support forces. Therefore, an infinite number of force combinations is
possible.

14

Once λ is computed, equation (33) is used to compute V 2. Then the position
variables for all bodies are updated independently using first order approximations
of the kinematic equations (1) and (2).

x2 = x1 +∆tv2 (36)

q2 = q1 +
∆t
2

q1 ∗ω
2 (37)

Here the superscripts represent the time step.

Since the new velocities are used to compute the position update, our integrator
is semi-implicit Euler. This is also known as symplectic Euler and is known to
have stability and energy conservation properties that rival the Verlet integration
scheme [8].

7 Iterative Solution

We obtain the solution of equation (34) using the Projected Gauss-Seidel (PGS)
algorithm. This is an iterative algorithm based on matrix splitting [6]. The cost of
each iteration is O(s), where s is the number of constraints. An iteration involves
simple vector operations on O(s + n) data. The performance of the algorithm is
dominated by the number of constraints and the number of iterations used.

7.1 Gauss-Seidel

Algorithm 3 shows the basic Gauss-Seidel method applied to an n-dimensional
generic linear equation Ax = b. The algorithm requires an initial guess x0 for
the unknowns. The algorithm proceeds for a number of iterations. During an
iteration, each row of A is solved by adjusting the element of x corresponding to
the diagonal element of A on the current row.

Iterations can be terminated using several different criteria, such as:

• Terminate after a fixed number of iterations.

• Terminate when ||Ax−b|| falls below a tolerance.

• Terminate when the maximum |∆xi| falls below a tolerance.

15

Algorithm 3 Approximately solve Ax = b given x0

x = x0

for iter = 1 to iteration limit do
for i = 1 to n do

∆xi =
[
bi−∑

n
j=1 Ai jx j

]
/Aii

xi = xi +∆xi
end for

end for

• Terminate when each |∆xi| is less than some fraction of its value in the
previous iteration.

For simplicity, we use a fixed number of iterations.

7.2 Projected Gauss-Seidel

The PGS algorithm extends the basic Gauss-Seidel algorithm to handle bounds on
the unknowns. In our case, these are the bounds on λ from equation (14). Bounds
are handled by simple clamping, which is surprisingly effective.

We also modify the linear algebra of Algorithm 3 to exploit the sparsity of J and
B. Thus, we avoid forming the s-by-s matrix JB. This is crucial for improving
performance and reducing memory requirements.

Algorithm 4 shows the Projected Gauss-Seidel method. For simplicity, we have
ignored the case where b1 = 0 (indicating ground). First the algorithm creates the
temporary vectors a and d. The vector a is initialized with the product Bλ , which
can be computed in a fashion similar to Algorithm 2. The vector d is initialized
with the diagonal elements of JB. Note that the elements of J, B, η , and a are
stored as 6-vectors. Each time an increment to λi is computed, λi is clamped to its
bounds and the actual increment is determined. With the actual increment of λi,
the vector a is updated so that it remains equal to Bλ .

The PGS algorithm has O(s) running time and O(s + n) storage requirements.
According to Cottle [4], convergence is guaranteed if JB is positive definite. In
many typical simulations JB is only positive semi-definite. Nevertheless, we have
seen good visual and numerical results in practice.

16

Algorithm 4 Approximately solve JBλ = η given λ 0

Work variables: a (6n-by-1), d (s-by-1)
λ = λ 0

a = Bλ

for i = 1 to s do
di = Jsp(i,1) ·Bsp(1, i)+ Jsp(i,2) ·Bsp(2, i)

end for
for iter = 1 to iteration limit do

for i = 1 to s do
b1 = Jmap(i,1)
b2 = Jmap(i,2)
∆λi = [ηi− Jsp(i,1) ·a(b1)− Jsp(i,2) ·a(b2)]/di
λ 0

i = λi
λi = max(λ−

i ,min(λ 0
i +∆λi,λ

+
i))

∆λi = λi−λ 0
i

a(b1) = a(b1)+∆λiBsp(1, i)
a(b2) = a(b2)+∆λiBsp(2, i)

end for
end for

7.3 Complementarity

Technically speaking, we are solving a Mixed Linear Complementarity Problem
(MLCP). Our constrained dynamics problem may be written as the MLCP:

w = JBλ −η

λ− ≤ λ ≤ λ+

wi = 0 ↔ λ
−
i ≤ λi ≤ λ

+
i , ∀i

λi = λ− ↔ wi ≥ 0, ∀i
λi = λ+ ↔ wi ≤ 0, ∀i

where w is the constraint velocity. The first two lines are a restating of equa-
tions (34) and (14). The last three lines are the complementarity conditions. The
first condition states that the constraint can be satisfied as long as λ is within its
bounds. The last two conditions state that λ will only reach its bound if the con-
straint is violated (the constraint velocity is nonzero). There are many ways of
analyzing and solving MLCPs. See Cottle [4] for details.

17

8 Contact Caching

The PGS algorithm is iterative by design. The convergence rate can be slow,
depending on the eigenvalues of JB. However, by caching the constraint force
multiplier λ , we can improve the solution over several time steps, especially if
there is temporal coherence in our simulation. Contact caching is discussed in the
larger context of contact reduction in Moravanszky [10].

8.1 Caching Scheme

In a typical simulation, contact points come and go. We use a discrete approach
to collision detection, i.e., contact points are generated without using the previous
position or velocity. Only the current position data is used to determine overlaps
and generate contact points. Thus we need an efficient method for storing all
contact points and their λ values in a contact cache after each time step. And we
need an efficient method to query the cache as new contact points are generated
in the next time step.

We now describe our caching scheme as shown in Algorithm 5. After each time
step a new contact cache is created from scratch. Each collision primitive—
sphere, box, convex polyhedron—has cache space reserved to keep track of in-
teractions with other primitives. These interaction pairs are symmetric: primitive
A knows that it is interacting with primitive B and primitive B knows it is inter-
acting with primitive A. For each primitive pair, we keep a list of contact point
entries. Each contact point entry stores λ and an identifier.

Cache queries are performed as contact points are generated, before the points are
passed to the PGS solver. First, the cache is queried for the interaction pair. If the
pair is found, then each contact point entry corresponding to the pair is scanned
and its identifier is matched to the query identifier. If a match is found, then the
λ values are retrieved from the cache and passed to the solver. If there is a cache
miss, then the λ values are initialized to zero.

8.2 Contact Point Identifiers

The contact point identifier can take several forms. Some possibilities are:

18

Algorithm 5 Contact caching and queries.
while simulate = true do

generate contact points
for all contact points do

query the cache for point i
if cache hit then

λ 0
i = λcache

else
λ 0

i = 0
end if
initialize contact constraint using λ 0

i
end for
solve for V 2 and λ using Algorithm 4
destroy old contact cache
create new contact cache
for all contact constraints do

store λi and the contact identifier in the cache
end for

end while

1. position in global coordinates

2. position in local coordinates

3. incident edge labels

Position identifiers are easy to implement, but they require a tolerance and may
lead to aliasing. In other words, a contact point may borrow λ from a neighboring
contact point.

Incident edge labels may be preferred over position identifiers because they pre-
vent aliasing. Consider the case of box-box collision as shown in Figure 3. Each
box has its edges numbered. If the collision is edge-edge then the contact identi-
fier is combination of the two edge numbers. If the collision is face versus vertex,
edge, or face, then the polygon for the reference face is identified. Then an inci-
dent face on the other box is chosen to be the face that is most anti-parallel to the
reference face. The incident face is clipped against the reference face to generate
a set of potential contact points, see Figure 4. The separation distance is measured
for each clipping point. Any clipping point with a non-positive separation be-

19

n1

Box 2

Box 1

Figure 3: Two boxes in contact. The incident face of box 2 is clipped against the
reference face of box 1.

comes a contact point. During the clipping process, we keep track of which edges
created the point. The combination of the indices of these two edges becomes the
contact identifier.

9 Results

9.1 Box Stacking

Box stacking is one of the most common tests performed on physics engines. The
stacking problem requires the physics engine to have several capabilities that all
perform well.

• The collision system needs the ability to compute a contact manifold be-
tween two boxes. The manifold can be computed from scratch each frame,
but it should not change much if the relative position of the boxes does not
change significantly.

• The engine must accurately solve a large coupled system of constraints. If
the constraint force solution is not accurate enough, the stack will fall.

• The constraint solver needs to handle redundant constraints. For example,
in our engine, each box is often supported by four points.

20

e1,1

e1,2

e1,3

e1,4

e2,1

p(1,4)(2,1)

p(1,3)(1,4) p(2,2)(1,3)

p(2,1)(2,2)

e2,2

e2,3

e2,4

Figure 4: Polygon clipping. Each resulting vertex is identified by the labels of the
two edges that created it, using counter-clockwise order.

Figure 5: Without contact caching, a stack of three boxes is unstable.

• The engine needs to compute friction forces, especially static friction. This
is needed to prevent the boxes from sliding off of one another.

• If the stack does fall, due to an unstable configuration or external forces, the
boxes should come apart and slide naturally without sticking together.

We performed a comparison of box stacking with and without contact caching.
Otherwise, all simulation parameters were identical. Table 1 gives some details.
Note that these parameters correspond to our internal game units, but roughly
speaking, the box is about 70cm×70cm×30cm and has a mass of about 110kg,
gravity is 9.8m/s2, and the time step corresponds to 60 frames per second. All col-
lisions were treated as inelastic and no separate algorithms were used for collision
impulses.

Figure 5 shows a stack of three boxes simulated without contact caching. The
boxes were initially separated vertically by 10 units. As the simulation progressed,

21

Parameter Value
density 0.0000275
dimensions 200×200×100
gravity 3
β 0.1
µ 0.2
time step 0.5
PGS iterations 10
initial separation 10

Table 1: Box stacking test parameters.

Figure 6: With contact caching, a stack of ten boxes is stable.

the boxes slid and fell. Figure 6 shows a stack of ten boxes simulated with contact
caching. The stack teetered a bit when first formed, but stabilizes and becomes
motionless within a few seconds. No body sleeping (deactivation) or damping
was used.

9.2 Extreme Mass Ratios

The PGS algorithm does have some limitations, particularly when dealing with
extreme mass ratios. In box stacking this leads to stability problems when a heavy
box is placed on top of a light box. We tested a stack of two boxes using the same
parameters as before and with contact caching enabled. We steadily decreased the

22

Figure 7: Without contact caching and a mass ratio of 1%, the top box sinks into
the lighter bottom box.

density of the bottom box until the top box would fall. The stack was stable until
the density ratio was lowered to 3%. With lower mass ratios the top box would
bounce and slide off the bottom box.

We tried the test with a 1% mass ratio. With contact caching, the top box slides off
the bottom box. Without contact caching, the top box sinks into the bottom box!
See Figure 7. On the other hand, the stack is completely stable when the light box
is on top, with or without contact caching. This leads the the design principle:
heavy objects can support light objects, but not vice-versa.

10 Conclusion

We have presented a system for modeling and solving rigid body dynamics for
games, including contact and friction. The system requires linear time and space.
Using contact caching, we are able to amortize the cost of computing accurate
contact forces over several frames. The result is a system that performs well
enough to be used on the current generation of console hardware.

11 Acknowledgments

The author wishes to thank Gary Snethen for his helpful feedback and stimulating
conversations. The author would also like to thank the wonderful team at Crystal
Dynamics for their support.

23

References

[1] Mihai Anitescu and Florian A. Potra. Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity problems.
Nonlinear Dynamics, 14:231–247, 1997.

[2] David Baraff. Fast contact force computation for nonpenetrating rigid bod-
ies. In Proceedings of SIGGRAPH 1994, pages 23–34, 1994.

[3] J. Baumgarte. Stabilization of constraints and integrals of motion in dynam-
ical systems. Computer Methods in Applied Mechanics and Engineering,
1:1–16, 1972.

[4] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear Com-
plementarity Problem. Academic Press, 1992.

[5] David H. Eberly. Game Physics. Morgan Kaufmann, 2003.

[6] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, 3rd edition, 1996.

[7] Eran Guendelman, Robert Bridson, and Ronald Fedkiw. Nonconvex rigid
bodies with stacking. In Proceedings of SIGGRAPH 2003, pages 871–878,
2003.

[8] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical
Integration. Springer-Verlag, 2002.

[9] Thomas Jakobsen. Advanced character physics. In Proceedings of Game
Developers Conference 2001, 2001.

[10] Adam Moravanszky and Pierre Terdiman. Fast contact reduction for dy-
namics simulation. In Game Programming Gems 4, pages 253–263. Charles
River Media, 2004.

[11] Ahmed A. Shabana. Computational Dynamics. John Wiley and Sons, 2nd
edition, 2001.

[12] Russell Smith. Constraints in rigid body dynamics. In Game Programming
Gems 4, pages 241–251. Charles River Media, 2004.

[13] Russell Smith. Open dynamics engine. http://www.ode.org, 2004.

24

