Iterative Dynamics with Temporal Coherence

Erin Catto ecatto@crystald.com

Crystal Dynamics Menlo Park, California

Game Developers Conference, 2005

Erin Catto (Crystal Dynamics) **[Iterative Dynamics](#page-14-0)** GDC 2005 1/15

4 0 8

Introduction

The Problem

Many rigid body physics algorithms are slow, use too much memory, are difficult to implement, or have other nasty limitations.

The Idea

- Use an approximate contact model that is easy to solve.
- Use a sloppy but fast constraint solver.
- Clean up the solution over several frames.

The Toolkit

- Contact point calculator.
- Rigid bodies, constraints, and Jacobians.
- **Gauss-Seidel constraint solver and simple integrator.**
- Contact cache.

High Level Algorithm

Time Stepping

- **1** Generate contact points.
- 2 Initialize contact forces λ using a contact cache (generated in the previous step).
- **3** Compute the Jacobian J for non-penetration and friction constraints.
- 4 Form an equation for λ .
- **5** Use a Gauss-Seidel solver to refine λ .
- **6** Compute new velocities v and ω using λ .
- **2** Compute new positions x and q from v and ω .
- 8 Store λ in the contact cache.
- **9** Go to step 1.

∢ □ ▶ ィ [□] ▶

 \rightarrow \rightarrow \rightarrow

Pairwise position constraint

$$
C(x_i,q_i,x_j,q_j)=0
$$

Velocity constraint and Jacobian

$$
\frac{dC}{dt}=JV
$$

The Recipe

- **1** Determine each constraint equation as a function of body positions and rotations.
- 2 Differentiate the constraint equation with respect to time.
- Identify the coefficient matrix of V. This matrix is J.

Contact Constraint

Normal constraint

$$
C_n = (x_2 + r_2 - x_1 - r_1) \cdot n_1
$$

$$
\frac{dC_n}{dt} = (v_2 + \omega_2 \times r_2 - v_1 - \omega_1 \times r_1) \cdot n_1
$$

Friction constraint

$$
\frac{dC_{u1}}{dt} = (v_2 + \omega_2 \times r_2 - v_1 - \omega_1 \times r_1) \cdot u_1
$$

$$
\frac{dC_{u2}}{dt}=(v_2+\omega_2\times r_2-v_1-\omega_1\times r_1)\cdot u_2
$$

Kロト K 伊 ト

 299

(米唐米米唐)

Equations of Motion

Kinematics

$$
\frac{dx}{dt} = v
$$

$$
\frac{dq}{dt} = \frac{1}{2}q*\omega
$$

Newton's Law for a system of constrained rigid bodies

$$
M\frac{dV}{dt} = J^T \lambda + F_{ext}
$$

$$
JV = \zeta
$$

Erin Catto (Crystal Dynamics) **[Iterative Dynamics](#page-0-0)** GDC 2005 6/15

 299

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Time Stepping

Approximate acceleration

$$
\frac{dV}{dt} \approx \frac{V^2 - V^1}{\Delta t}
$$

Eliminate V²

$$
\mathsf{J}\mathsf{B}\lambda = \eta
$$

where $B = M^{-1}J^T$ and

$$
\eta = \frac{1}{\Delta t} \zeta - J(\frac{1}{\Delta t}V^1 + M^{-1}F_{ext})
$$

 \rightarrow

 299

メロトメ 御 トメ ミトメ 毛

Contact and friction are simulated by bounding λ .

Normal force:

$$
0\leq \lambda_n<\infty
$$

Approximate friction model:

 $-\mu m_c g \leq \lambda_{\mu 1} \leq \mu m_c g$ $-\mu m_c g \leq \lambda_{\mu} g \leq \mu m_c g$

In general:

$$
\lambda_i^-\leq\lambda_i\leq\lambda_i^+
$$

Erin Catto (Crystal Dynamics) **[Iterative Dynamics](#page-0-0)** GDC 2005 8/15

4 0 8

.

- An iterative method for solving linear equations.
- The basic algorithm: approximately solve $Ax=b$ given $x^0.$
- Iterate for a fixed number of steps.

$$
x = x^{0}
$$

for *iter* = 1 to iteration limit do
for *i* = 1 to *n* do

$$
\Delta x_{i} = \left[b_{i} - \sum_{j=1}^{n} A_{ij}x_{j} \right] / A_{ii}
$$

$$
x_{i} = x_{i} + \Delta x_{i}
$$

end for
end for

Projected Gauss-Seidel

- Solve $JB\lambda = \eta$ given λ^0 .
- Clamp λ_i to its bounds.
- Use sparsity to avoid forming the s-by-s matrix JB.
- See the paper for details.

The Jacobian J is sparse because constraints are pairwise.

$$
J_{sp} = \begin{pmatrix} J_{11} & J_{12} \\ \vdots & \vdots \\ J_{s1} & J_{s2} \end{pmatrix}
$$

$$
J_{map} = \begin{pmatrix} b_{11} & b_{12} \\ \vdots & \vdots \\ b_{s1} & b_{s2} \end{pmatrix}
$$

Why?

- When things move fast, sloppiness is okay.
- When things settle down, jiggle looks bad.
- Gauss-Seidel is iterative. It needs a good starting guess to be accurate.

Issues

- Contact points appear and disappear.
- How can contact points persist?
- There is too much stuff to keep track of $(n^2 \text{ pairs})$.

Contact Caching

The Idea

- Build a contact cache at the end of each time step.
- Rediscover all the contact points at the beginning of the next time step.
- Try to match the the new points to the cached points.
- **If there is a cache hit then** $\lambda = \lambda_{cache}$, else $\lambda = 0$.

Matching Points

- **1** Compare global coordinates of the points
- 2 Compare local coordinates of the points.
- ³ Compare contact identifiers.

Contact Identifiers

Typical contact configuration:

Erin Catto (Crystal Dynamics) **[Iterative Dynamics](#page-0-0)** GDC 2005 13/15

4 0 8

 \mathcal{A}

画

Edge Labels

Clipping leads to contact identifiers.

4日下 \leftarrow 299

化重压 不重

 \sim

Box Stacking

Without Caching With Caching

4日下 \leftarrow \leftarrow \leftarrow → 君下

Erin Catto (Crystal Dynamics) [Iterative Dynamics](#page-0-0) GDC 2005 15 / 15

唾

 299

活