
Dynamic Bounding Volume
Hierarchies

Erin Catto, Blizzard Entertainment

Hello everyone! Welcome to my talk on dynamic bounding volume hierarchies.

1

This is one of my favorite Overwatch maps: BlizzardWorld. This is the spawn area
inside the Hearthstone Tavern.

2

All the objects in the map, the floors, the walls, the chairs are objects that are
enclosed in axis aligned bounding boxes. This is done to accelerate collision
detection.

3

Even the balloons and their strings have separating bounding boxes.

4

There are almost 9000 separate collision objects in the editor. Green boxes are static
objects, blue kinematic, and red dynamic.

5

Here is a zoomed out view of all the bounding boxes in the map.

6

Axis Aligned Bounding Box (AABB)

struct AABB
{

Vec3 lowerBound;
Vec3 upperBound;

};

lower bound

upper bound

x

y

Here is the definition of an a bounding box that I will use.

7

AABB Union(AABB A, AABB B)
{

AABB C;
C.lowerBound = Min(A.lowerBound, B.lowerBound);
C.upperBound = Max(A.upperBound, B.upperBound);
return C;

}

Union of two AABBs

𝐶 = 𝐴 ∪ 𝐵

A

B

C

Given two bounding boxes we can compute the union with min and max operations.
These can be made efficient using SIMD.

Notice the cup notation. You will see it again.

8

Surface area of an AABB

float Area(AABB A)
{

Vec3 d = A.upperBound – A.lowerBound;
return 2.0f * (d.x * d.y + d.y * d.z + d.z * d.x);

}

𝑆𝐴(𝐴)

I will also need to compute the surface area. Notice the SA notation. I will use that as
well.

9

A game world with several
geometric objects

Game worlds often have many objects. Players, rigid bodies, wall, floors, etc.

This is an abstract example of a game world with several geometric objects.

10

A ray-cast against the
game world

Often in games we need to ray cast against the scene. To shoot a weapon, check
visibility, find the ground, etc.

11

hit point

normal vector

Typically we want the hit point, normal vector, and some way of identifying the object
that was hit. Detailed ray cast results are not in the scope of this presentation.

However, I am going to discuss ways to make ray casting faster.

12

p1

p2
bool BruteForceRayCast(Vec3 p1, Vec3 p2)
{

for (Object object : objects)
{

bool hit = RayCast(object, p1, p2);
if (hit)
{

return true;
}

}
return false;

}

The simplest way to perform the ray cast is to check each object. Brute force can be
slow if there are many objects. Sometimes cache friendly is not enough.

13

Enclose each object with an
AABB

Suppose the shapes are complex. Then it might be worth checking whether the ray
intersects the AABB before testing the more complex object. Also the AABB test can
be faster because we don’t need the hit point or normal. We just a need to know if
the ray overlaps the AABB.

14

bool RayCastTestAABB(Vec3 p1, Vec3 p2)
{

for (Object object : objects)
{

if (TestOverlap(object.aabb, p1, p2) == false)
{

continue;
}

bool hit = RayCast(object, p1, p2);
if (hit)
{

return true;
}

}
return false;

}

Here is the algorithm for going over every object, but first testing if the ray overlaps
the bounding box. Again, I don’t have time to get into the details of the detailed ray
cast or the bounding box overlap test.

15

Two Level AABB Hierarchy

group 3

group 2

group 1

Can quickly rule out groups 1 and 3

We can try grouping some objects together inside larger bounding boxes. Then we
can skip whole groups in many cases.

16

Bounding Volume Hierarchy
(BVH)

The bounding volumes are AABBs

Other shapes are possible

Once you use more than one level of bounding boxes, you might as well make a
whole tree. This is a bounding volume hierarchy. Here the bounding volumes are
AABBs. Other shapes are possible, such as bounding spheres.

17

binary tree representation

: internal node

: leaf node

32

1

A B

H

G

54 76

98C D E F

I

J K10

𝑁𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑁𝑙𝑒𝑎𝑣𝑒𝑠 − 1

I’m using a binary tree for the BVH. This is efficient and easy to implement.

The tree consists of internal nodes and leaf nodes. The leaf nodes are the collision
objects and the internal nodes only exist to accelerate collision queries.

Recall that the number of internal nodes can be computed from the number of leaf
nodes, regardless of the tree structure.

18

struct Node
{

AABB box;
int objectIndex;
int parentIndex;
int child1;
int child2;
bool isLeaf;

};

struct Tree
{

Node* nodes;
int nodeCount;
int rootIndex;

};

The code for the binary tree consists of a node structure and a tree structure. The
node has an object index that relates it to the game object it contains.

19

bool TreeRayCast(Tree tree, Vec3 p1, Vec3 p2)
{

Stack<int> stack;
Push(stack, tree.rootIndex);
while (IsEmpty(stack) == false)
{

int index = Pop(stack);
if (TestOverlap(tree.nodes[index].box, p1, p2) == false)
{

continue;
}

if (nodes[index].isLeaf)
{

int objectIndex = tree.nodes[index].objectIndex;
if (RayCast(objects[objectIndex], p1, p2))
{

return true;
}

}
else
{

Push(stack, tree.nodes[index].child1);
Push(stack, tree.nodes[index].child2);

}
}
return false;

}

Here’s an example of ray casting against a binary tree BVH. This code uses a local
stack instead of using functional recursion. Children get pushed onto the stack until
no more candidates are left.

This is just an example. It leaves out several important optimizations.

20

Equivalent Trees

Order of children doesn’t matter

23

1

AB

H

G

5 476

98 C DE F

I

J K10

32

1

A B

H

G

54 76

98C D E F

I

J K10

The binary tree can take a number of forms, depending on the how the BVH is built.
For a BVH the ordering of nodes is not relevant. We can swap left and right children
at any level and still have the same BVH.

For example, these two trees are equivalent. This is different than other binary trees,
such as Red Black trees, where the order matters.

21

Building a BVH

• Bottom Up

• Top Down

• Incremental

Bounding volume hierarchies can be built automatically using many different
algorithms. These can be broadly classified as bottom up, top down, or incremental.
Each approach can be useful, depending on the situation.

22

Bottom Up
(amalgamation)

23

Bottom Up

B

K

A

D

G

H

F

E

C

J

I

Start with many loose leaf nodes.

24

Bottom Up

A B

D

C

E

F

G

H I

J
K

Hide the shapes, just consider the AABBs

Let’s hide the underlying shapes for clarity.

25

1

A B

Bottom Up

A B

D

C

E

F

G

H I

J
K

Merge two AABBs that are close

𝑛𝑜𝑑𝑒1 = 𝐴 ∪ 𝐵

Combine two of the nodes under a single internal node.

26

1

A B

Bottom Up

D

C

E

F

G

H I

J
K

1

Remove A and B from the working set

Now drop A and B from the working set and replace them with box 1.

27

2

H I

Bottom Up

D

C

E

F

G

H I

J
K

1

1

A B

Combine two more.

28

1

A B

2

H I

Bottom Up

2

D

C

E

F

G
J

K

1

Drop H and I from the working set and introduce box 2.

29

1

A B

3

C D

4

E F 5

J K

2

H I

Bottom Up

2

D

C

E

F

G
J

K

1

And so on.

30

Bottom Up

3

4

5

2

G

1

1

A B

3

C D

4

E F 5

J K

2

H I

And so on.

31

1

A B

3

C D

4

E F

7

G 5

J K

2

H I

6

Bottom Up

3

4

5

2

G

1

Keep combining top level nodes.

32

Bottom Up

6

7

4

2

1

A B

3

C D

4

E F

7

G 5

J K

2

H I

6

Keep combining top level nodes.

33

1

A B

3

C D

4

E F

7

G 5

J K

2

H I

9

6

8

Bottom Up

6

7

4

2

Each time nodes are combined, there are less top level nodes.

34

9

8

Bottom Up

1

A B

3

C D

4

E F

7

G 5

J K

2

H I

9

6

8

Bottom up gets very fast at the upper levels of the tree.

35

1

A B

3

C D

4

E F

7

G 5

J K

2

H I

9

6

8

Bottom Up

10

9

8

Until there is only a single top level node. Then the tree is complete.

36

Done!

1

A

10

B

3

C D

4

E F

7

G 5

J K

2

H I

9

6

8

Bottom Up

10

Now the tree is built.

37

Top Down
(divide and conquer)

38

Top Down

B

K

A

D

G

H

F

E

C

I

J

Start with many loose leaf nodes.

39

Top Down

A B

D

C

E

F

G

H I

J
K

Start with many loose leaf nodes.

40

A,B,C,D,E,F,G,H,I,J,K

1

Top Down

A B

D

C

E

F

G

H I

J
K

Wrap all boxes under a single root box. There are too many children, so we need to
split them up.

41

A,B,C,D,E F,G,H,I,J,K

32

1

Top Down

A B

D

C

E

F

G

H I

J
K

Divide the children to two groups. There are still too many children. We want one
object per leaf.

42

4

A B

7

C,D,E F,J,K

6

G,H,I

3

5

2

1

Top Down

A B

D

C

E

F

G

H I

J
K

And divide their children into two groups.

43

10

4

A B 8

C D

7

E F

6

G9

J K H I

3

5

2

1

Done!

Top Down

A B

D

C

E

F

G

H I

J
K

And keep dividing until every child has a single object.

44

Incremental
(dynamic)

45

J

J

Incremental

An incremental build adds one AABB to the tree at a time.

46

C

J

C J

1

As objects are added, they are inserted into the tree.

47

F

C

J

C 2

F J

1

Visually you can start to guess what choices the insertion algorithm should make.

48

F

E

C

J

C E

2

F J

3

1

When a leaf is inserted, the code needs to find a sibling for it. The sibling can be a leaf
node or an internal node.

49

A

F

E

C

J

4

A C

E

2

F J

3

1

50

A

H

F

E

C

J

4

A C

E H

2

5

F J

3

1

And so on …

51

Dynamic AABB Tree

• Moving objects

• Object creation and destruction

• Streaming

52

Insertion Algorithm
Key algorithm for dynamic bounding volume hierarchies

The key algorithm for dynamic bounding volume hierarchies is the algorithm for
inserting leaves. So I’m going to spend a lot of time on this. Leaf removal is straight
forward and is not covered.

53

void InsertLeaf(Tree tree, int objectIndex, AABB box)
{

int leafIndex = AllocateLeafNode(tree, objectIndex, box);
if (tree.nodeCount == 1)
{

tree.rootIndex = leafIndex;
return;

}

// Stage 1: find the best sibling for the new leaf

// Stage 2: create a new parent

// Stage 3: walk back up the tree refitting AABBs
}

Here is the structure of the insertion algorithm.

54

// Stage 1: find the best sibling for the new leaf

int bestSibling = 0;
for (int i = 0; i < m_nodeCount; ++i)
{

bestSibling = PickBest(bestSibling, i);
}

TBD

Stage 1 descends the tree, looking for the best option for a sibling. I’ll be talking a lot
about how to find the best sibling.

55

// Stage 2: create a new parent
int oldParent = tree.nodes[sibling].parentIndex;
int newParent = AllocateInternalNode(tree);
tree.nodes[newParent].parentIndex = oldParent;
tree.nodes[newParent].box = Union(box, tree.nodes[sibling].box);

if (oldParent != nullIndex)
{

// The sibling was not the root
if (tree.nodes[oldParent].child1 == sibling)
{

tree.nodes[oldParent].child1 = newParent;
}
else
{

tree.nodes[oldParent].child2 = newParent;
}

tree.nodes[newParent].child1 = sibling;
tree.nodes[newParent].child2 = leafIndex;
tree.nodes[sibling].parentIndex = newParent;
tree.nodes[leafIndex].parentIndex = newParent;

}
else
{

// The sibling was the root
tree.nodes[newParent].child1 = sibling;
tree.nodes[newParent].child2 = leafIndex;
tree.nodes[sibling].parentIndex = newParent;
tree.nodes[leafIndex].parentIndex = newParent;
tree.rootIndex = newParent;

}

Stage 2 deals with all the details of modify the tree after a sibling has been chosen.
Edge cases must be handled.

56

// Stage 3: walk back up the tree refitting AABBs
int index = tree.nodes[leafIndex].parentIndex;
while (index != nullIndex)
{

int child1 = tree.nodes[index].child1;
int child2 = tree.nodes[index].child2;

tree.nodes[index].box = Union(tree.nodes[child1].box, tree.nodes[child2].box);
index = tree.nodes[index].parentIndex;

}

Stage 3 adjusts the AABBs of the new leaf’s ancestors. This is called refitting.

57

Stage 1: Look for best sibling

H found to be the best
sibling for new leaf L

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

Here is what a sibling search might look like in Stage 1.

58

Stage 2: Create new internal node

Create internal node 11,
parent for H and L

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

11

Stage 2 handles the creation of a new node and hooking the nodes together.

59

Stage 3: Refit ancestor AABBs

Ensure all nodes
enclose their children

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

11

Stage 3 walks back up the tree and refits the parent bounding boxes.

60

Building a better tree

• Bottom Up
• merge AABBs with closest centers

• new node with minimum surface area/volume

• Top Down
• spatial median split

• minimize volume/area of children

• Incremental
• choose sibling with closest center

• new node with minimum surface area/volume

Up until now the trees in my examples have been build somewhat arbitrarily. An BVH
builder should have rules to yield an efficient tree.

Here are some rules that can be found in practice.

61

Top Down Example
median split versus surface area

Some choices are better than others. Here is an example of a top down build. I’m
going to compare two splitting choices. The median split and a split that tries to
minimize surface area.

62

spatial median split minimize node surface area

Top Down

Here are two possible rules for a top down split.

Which do you think is better?

63

spatial median split minimize node surface area

Top Down

64

spatial median split minimize node surface area

Top Down

Wrap AABBs around the objects on both sides of the split.

65

spatial median split minimize node surface area

Top Down

more empty space

Minimizing surface area creates more empty space. This leads to more early outs for
ray casts.

66

The Surface Area Heuristic

67

The probability of a ray
hitting a convex object is
proportional to the surface
area

Surface Area Heuristic

The surface area heuristic is a powerful metric that can be used to drive the
construction of a BVH. The idea is that the probability of a ray hitting an object is
proportional to the surface are of the object.

68

The probability of a ray
hitting a convex object is
proportional to the surface
area

Surface Area Heuristic

We can use this to build
good BVHs

69

Cost function of a tree

𝐶 𝑇 =

𝑖∈𝑁𝑜𝑑𝑒𝑠

𝑆𝐴(𝑖)

float ComputeCost(Tree tree)
{

float cost = 0.0f;
for (int i = 0; i < tree.nodeCount; ++i)
{

cost += Area(tree.nodes[i].box);
}
return cost;

}

Using the surface area function we can compute a cost metric for any tree.

70

How shall we compare trees?

versusCB

A

C

B

A

leaves have the same area

D E F G

D E

F

G

We want to a way to compare trees using the surface area heuristic. That way we can
see which one is better.

71

How shall we compare trees?

leaves have the same area

roots have the same area
versusCB

A

C

B

A

D E F G

D E

F

G

Many trees can be built from the same set of leaves. The surface area of the leaves is
the same and the surface area of the root node is the same. Only the surface area of
the internal nodes varies.

72

How shall we compare trees?

leaves have the same area

𝑆𝐴 𝐶 = 𝑆𝐴(𝐹 ∪ 𝐺) 𝑆𝐴 𝐶 = 𝑆𝐴(𝐵 ∪ 𝐺)

roots have the same area

C has a different area!

versusCB

A

C

B

A

D E F G

D E

F

G

Many trees can be built from the same set of leaves. The surface area of the leaves is
the same and the surface area of the root node is the same. Only the surface area of
the internal nodes varies.

73

Revised cost function

𝐶 𝑇 =

𝑖∈𝐼𝑛𝑛𝑒𝑟 𝑁𝑜𝑑𝑒𝑠

𝑆𝐴(𝑖)

Leaf area doesn’t matter

float ComputeCost(Tree tree)
{

float cost = 0.0f;
for (int i = 0; i < tree.nodeCount; ++i)
{

if (tree.nodes[i].isLeaf == false)
{

cost += Area(tree.nodes[i].box);
}

}
return cost;

}

The cost of a tree is the total surface area of the internal nodes. This gives us an
objective way to compare the quality of two trees.

74

Is the SAH good?

1. Can be applied to top down, bottom up, and incremental

2. Correlates well with ray cast performance

3. Long ray cast performance is crucial

4. Objective metric for comparing trees

75

Is the SAH good?

So yeah, pretty good!

1. Can be applied to top down, bottom up, and incremental

2. Correlates well with ray cast performance

3. Long ray cast performance is crucial

4. Objective metric for comparing trees

76

SAH insertion cost

𝐶𝐻 = 𝑆𝐴 11 + ∆𝑆𝐴 10 + ∆𝑆𝐴 8
+ ∆𝑆𝐴 7 + ∆𝑆𝐴 3 + ∆𝑆𝐴 1

The cost of choosing H as the sibling for L

∆𝑆𝐴 𝑛𝑜𝑑𝑒 = 𝑆𝐴 𝑛𝑜𝑑𝑒 ∪ 𝐿 − 𝑆𝐴(𝑛𝑜𝑑𝑒)
new node

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

11

Going back to the earlier example where I inserted L into the tree and created node
11.
SAH gives us a way to compute the cost of inserting L. The cost is the area of the new
parent node 11 plus the increased surface area of all the ancestors.
This is the surface area added to the tree.

77

Global search for optimum

Sibling choices:
• internal nodes 1-10
• leaf nodes A-K

2N-1 choices

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

Every node in the tree is a potential sibling for leaf node L. Each choice adds a
different surface area to the tree.

I would like to find the sibling that adds the least surface area to tree.

78

Global search for optimum

Sibling choices:
• internal nodes 1-10
• leaf nodes A-K

Expensive!

2N-1 choices

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

Unfortunately it is expensive to evaluate the cost of every potential sibling.

79

Branch and Bound Algorithm
Optimize the global search

Branch and bound is a powerful algorithm that makes the global search faster.

80

Main idea of branch and bound

• Search through tree recursively

• Skip sub-trees that cannot possibly be better

81

Branch and Bound

Recurse through tree, looking for
lowest cost sibling S for L

Use a priority queue Q to
explore best candidates first

Initialize:

𝐶𝑏𝑒𝑠𝑡 = 𝑆𝐴(1 ∪ 𝐿)

𝑆𝑏𝑒𝑠𝑡 = 1

𝑄 = {1}

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

Here is a example of how branch and bound works.

82

Branch and Bound

Suppose the search reaches node 7

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

Suppose we are exploring this tree, looking for the best sibling. We find our way to
node 7 and want to determine if node 7 has the best cost. We also want to determine
if it is worthwhile to explore the children of node 7.

83

Branch and Bound

𝐶7 = 𝑆𝐴 𝐿 ∪ 7 + ∆𝑆𝐴 3 + ∆𝑆𝐴(1)

direct cost inherited cost

Cost for choosing node 7

𝐿 ∪ 7

tentative new parent node for L and 7

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

The cost of node 7 is the sum of the direct cost and the inherited cost.

The direct cost is the surface area of the new internal node that will be created for
the siblings.
The inherited cost is the increased surface area caused by refitting the ancestor’s
boxes.

84

Branch and Bound

𝑖𝑓 𝐶7 < 𝐶𝑏𝑒𝑠𝑡 𝑡ℎ𝑒𝑛 𝐶𝑏𝑒𝑠𝑡 = 𝐶7

𝐶7 = 𝑆𝐴 𝐿 ∪ 7 + ∆𝑆𝐴 3 + ∆𝑆𝐴(1)

Cost for choosing node 7

𝐿 ∪ 7

tentative new parent node for L and 7

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

If the cost of node 7 is better than the best cost then update the best cost.

85

Branch and Bound

𝐶𝑙𝑜𝑤 = 𝑆𝐴 𝐿 + ∆𝑆𝐴 7 + ∆𝑆𝐴 3 + ∆𝑆𝐴(1)

lower bound cost for nodes 8 and 9

Consider pushing 8 and 9 onto the queue
𝐿

smallest possible parent
node for L and any node

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

Is it worthwhile to explore the sub-tree of node 7?

A lower bound for children of node 7 is the surface area of Q plus the inherited cost
(including 7).

86

Branch and Bound

𝑖𝑓 𝐶𝑙𝑜𝑤 < 𝐶𝑏𝑒𝑠𝑡 𝑡ℎ𝑒𝑛 𝑝𝑢𝑠ℎ 8 𝑎𝑛𝑑 𝑝𝑢𝑠ℎ(9)

𝐶𝑙𝑜𝑤 = 𝑆𝐴 𝐿 + ∆𝑆𝐴 7 + ∆𝑆𝐴 3 + ∆𝑆𝐴(1)

𝐿

smallest possible parent
node for L and any node

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

If the lower bound cost for the children is lower than the best cost, then it is worth
exploring those sub-trees and they are pushed onto the priority queue.

87

Branch and Bound

Otherwise we can prune
the sub-tree at node 7
from the search

𝑖𝑓 𝐶𝑙𝑜𝑤 < 𝐶𝑏𝑒𝑠𝑡 𝑡ℎ𝑒𝑛 𝑝𝑢𝑠ℎ 8 𝑎𝑛𝑑 𝑝𝑢𝑠ℎ(9)

𝐶𝑙𝑜𝑤 = 𝑆𝐴 𝐿 + ∆𝑆𝐴 7 + ∆𝑆𝐴 3 + ∆𝑆𝐴(1)

𝐿

smallest possible parent
node for L and any node

32

1

A B

H

G

54 76

98C D E F

I

J K10

L

Otherwise can prune the whole sub-tree rooted at node 7 from the search. This
drastically improves performance.

88

Object Movement

89

Object movement strategies

• Refit ancestors

90

Object movement strategies

• Refit ancestors
• leads to low quality trees

91

Object movement strategies

• Refit ancestors
• leads to low quality trees

• Rebuild subtrees

92

Object movement strategies

• Refit ancestors
• leads to low quality trees

• Rebuild subtrees
• expensive (similar to garbage collection)

93

Object movement strategies

• Refit ancestors
• leads to low quality trees

• Rebuild subtrees
• expensive (similar to garbage collection)

• Remove/re-insert

94

Object movement strategies

• Refit ancestors
• leads to low quality trees

• Rebuild subtrees
• expensive (similar to garbage collection)

• Remove/re-insert
• also expensive, but spread out

95

Object movement strategies

• Refit ancestors
• leads to low quality trees

• Rebuild subtrees
• expensive (similar to garbage collection)

• Remove/re-insert
• also expensive, but spread out

choose remove/re-insert

96

Enlarged AABBs

• At 60Hz objects often don’t move far per frame

• So use an enlarged AABB in the BVH

• Only update a leaf if the tight fitting AABB moves outside of the
enlarged AABB

A enlarged AABB
tight AABB

There are many schemes for enlarging the AABB. Choose one that works well for your
game.

97

Problem: sorted input

A problem remains. Sorted input can wreck the dynamic tree.

98

Sorted input

A B C D E F

Imagine we have several game objects in a row. They are inserted into the tree in
sorted order. We cannot disallow this because this is what the game may need to do.

99

Sorted input

A B C D E F

A

Here’s how that process looks.

100

Sorted input

A B C D E F

A B

101

Sorted input

A B C D E F

A

B C

102

Sorted input

A B C D E F

A

B

C D

103

Sorted input

A B C D E F

A

B

C

D E

104

Sorted input

A B C D E F

A

B

C

D

E F

105

Sorted input

A B C D E F

A

B

C

D

E F

This is a linked-list!

In this case the incremental SAH fails to provide a good tree. This is nothing new, this
was known by the guys who invented the SAH back in 1987 (Goldsmith and Salmon).

To be honest, it is hard to imagine a reasonable cost metric that wouldn’t fail.

106

Is sorted input an edge case?

107

108

109

110

Tree rotations
Re-arranging a tree to reduce the SAH cost

Tree rotations are used for AVL trees to keep them balanced. They can also be used
for bounding volume hierarchies to reduce the surface area and to mitigate the
problems introduced by sorted input.

111

Rotate B and F

In the tree on the left, A has four grand children. We can swap B and F to reconfigure
the tree.

This is a local operation. Node A may be the child of some other node. Also, D, E, F,
and G may have children.
This tree rotation does not affect the ancestors of A or the descendants of D, E, F, and
G.

112

Only the surface areas of C differ

Rotate B and F

113

Which is better?

Rotate B and F

114

𝑆𝐴(𝐶1) = 𝑆𝐴(𝐹 ∪ 𝐺) 𝑆𝐴 𝐶2 = 𝑆𝐴 𝐷 ∪ 𝐸 ∪ 𝐺

Rotate B and F

115

D
G

F

E

C1

C2

Rotate B and F

𝑆𝐴(𝐶2) < 𝑆𝐴(𝐶1)

D
G

F

E

116

𝐵 ⇔ 𝐹 𝐶 ⇔ 𝐸

𝐵 ⇔ 𝐺 𝐶 ⇔ 𝐷

Four possible rotations

117

Local optimization

Choose rotation that has the lowest surface area

118

Local optimization

Choose rotation that has the lowest surface area

All surface area changes are local

119

Sorted input

A B C D E F

Now I will show how to use the tree rotation to resolve the sorted input problem.

120

Sorted input

A B C D E F

A

121

Sorted input

A B C D E F

1

A B

122

Sorted input

A B C D E F

2A

B C

1

Can rotate A and C or A and B
Does not reduce the area of node 2

123

Sorted input

A B C D E F

2A

B

1

3

C D

124

Sorted input

A B C D E F

2A

B

1

3

C D

Rotate 3 and A

𝑆𝐴 2 = 𝑆𝐴(𝐵 ∪ 𝐶 ∪ 𝐷)

125

Sorted input

A B C D E F

2

AB

1

3

C D

Rotate 3 and A

𝑆𝐴 2 = 𝑆𝐴(𝐵 ∪ 𝐴)

126

// Stage 3a: walk back up the tree refitting AABBs and applying rotations
int index = tree.nodes[leafIndex].parentIndex;
while (index != nullIndex)
{

int child1 = tree.nodes[index].child1;
int child2 = tree.nodes[index].child2;

tree.nodes[index].box = Union(tree.nodes[child1].box, tree.nodes[child2].box);

Rotate(index);

index = tree.nodes[index].parentIndex;
}

127

References

• J. Goldsmith (1987) - Automatic Creation of Object Hierarchies

• S. Omohundro (1989) - Five Balltree Construction Algorithms

• A. Kensler (2008) - Tree Rotations for Improving Bounding Volume
Hierarchies

• J. Bittner (2015) - Incremental BVH Construction for Ray Tracing

• N. Presson, btDbvt, Bullet Physics Engine, 2008

128

Thanks!

• box2d.org

• github.com/erincatto

• @erin_catto

129

