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Abstract

We introduce novel methods that speed up the pose-graph generation for global
Structure-from-Motion algorithms. We replace the widely used “accept-or-reject” strat-
egy for image pairs, where often thousands of RANSAC iterations are wasted on pairs
with low inlier ratio or on non-matchable ones. The new algorithm exploits the fact that
every unsuccessful RANSAC iteration reduces the probability of an image pair being
matchable, i.e., it reduces its inlier ratio expectation. The method always selects the
most promising pair for matching. While running RANSAC on the pair, it updates the
distribution of its inlier ratio probability in a principled way via a Bayesian approach.
Once the expected inlier ratio drops below an adaptive threshold, the method puts back
the pair in the processing queue ordered by the updated inlier ratio expectations. The
algorithms are tested on more than 600k real image pairs. They accelerate the pose-
graph generation by an order-of-magnitude on average. The source code is available at
https://github.com/danini/pose-graph-creation

1 Introduction
Structure-from-Motion (SfM) has been intensively researched in computer vision for decades.
Most of the early methods adopt an incremental strategy, where the reconstruction is built
progressively and the images are carefully added one-by-one in the procedure [1, 37, 38,
43, 44, 53]. Recent studies [4, 10, 13, 15, 19, 21, 22, 23, 31, 35, 54] show that global ap-
proaches that consider all images simultaneously when reconstructing the scene geometry,
lead to comparable or better accuracy than incremental ones while being significantly more
efficient. Moreover, global methods are less dependent on local decisions or image ordering.

Typically, global Structure-from-Motion pipelines consist of the following main steps.
First, feature points are extracted in all n ∈ N images. Such step is easily parallelizable
and has O(n) time complexity. These features are then used to order the image pairs from
the most probable to match to the most difficult ones, e.g., via bag-of-visual-words [46].
Next, tentative correspondences are generated between all image pairs by matching the high-
dimensional (e.g., 128 for SIFT [30]) descriptors of the detected features. Then, the detected
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correspondences are filtered and relative poses are estimated by applying RANSAC [20] or
one of its state-of-the-art variants, e.g., [8, 25, 41]. The feature matching and geometric
estimation steps are by far the slowest parts, both having quadratic complexity in the number
of images. Finally, a global pose graph is obtained from the pair-wise poses via rotation and
translation averaging, optimized by additional bundle adjustment. Interestingly, this step
takes almost negligible time, i.e., a few minutes in our experiments, compared to the initial
pose-graph generation that often runs for hours.

Accelerating the pose graph generation is a long-standing problem in SfM. One of the
most studied approaches is the efficient selection of potentially overlapping image pairs.
Traditionally, this problem is solved by generating compact image descriptors constructed
by an aggregation of local features, like Fisher vectors [36], VLAD [26] and other alterna-
tives [3, 39, 45, 50]. To recent works, learning-based alternatives, like GeM descriptors [40]
or [11, 42], dominate the image search task by significantly outperforming state-of-the-art
traditional methods. All these works focus on finding potential image matches prior to run-
ning an SfM reconstruction which then processes the selected pairs one by one.

Another group of algorithms focuses on speeding up independent RANSAC runs by ad-
vanced sampling strategies, pre-emptive model verification, or early rejection. In order to
find an all-inlier sample early, NAPSAC [51], GroupSAC [33] and Progressive NAPSAC [6]
assume that the inliers of a model have “similar” properties and, therefore, can be separated
into groups prior to the estimation. The points are sampled from randomly selected groups.
The PROSAC [17] algorithm exploits a predicted inlier probability rank of each point. Pre-
emptive model verification strategies [12, 16, 18, 32] have been proposed to recognize in-
correct models early during the model quality calculation. Recently, papers also focus on
rejecting likely ill-conditioned or degenerate minimal samples early [9, 14] to avoid estimat-
ing the model parameter unnecessarily. All of these algorithms focus on accelerating a single
RANSAC run and do not exploit the fact that, in many cases, we run robust estimation on a
large number of image pairs sequentially.

Recently, Barath et al. [7] studied the problem that RANSAC-like robust estimation is
often time-consuming, especially, when the images do not match or the inlier ratio is low.
In these cases, the iteration number of the applied randomized robust estimator inevitably
reaches the maximum iteration number set by the user. This means doing thousands of
unnecessary iterations. They introduce an approach running the A∗ algorithm to find walks
in a partially built pose-graph when estimating the relative pose of two images. The pose
is then recovered by chaining the transformations along the found walk and improved by an
iteratively re-weighted least-squares approach re-selecting the inliers in every iteration. This
strategy helps to avoid running RANSAC if a found walk leads to a non-random number of
inliers. Due to the skipped RANSAC runs, the pose estimation is significantly accelerated.

In this paper, we propose to revisit the traditional “accept-or-reject” strategy used in
state-of-the-art large-scale pose estimation algorithms [44]. In brief, the “accept-or-reject”
approach is an iteration of two steps. First, an image pair with the highest probability of
being matchable is selected by, e.g., bag-of-visual-words. Second, RANSAC is applied with
its maximum iteration number parameter set to a reasonably large value, e.g. 5000 or 10000.
This maximum iteration number is a hard-constraint on the number of iterations that is con-
trolled by the manually set confidence parameter (typically, set to 0.99). If RANSAC fails to
find a pose with a large number of inliers, the image pair is rejected and is never used again.
In this case, the iteration number always reaches its maximum. In terms of run-time, this
approach is sub-optimal since the steps are applied consecutively. In the first step, the image
pair with the highest probability of being matchable is selected. Theoretically, this probabil-

Citation
Citation
{Fischler and Bolles} 1981

Citation
Citation
{Barath, Noskova, and Matas} 2021{}

Citation
Citation
{Ivashechkin, Barath, and Matas} 2021

Citation
Citation
{Raguram, Chum, Pollefeys, Matas, and Frahm} 2012

Citation
Citation
{Perronnin, Liu, S{á}nchez, and Poirier} 2010

Citation
Citation
{J{é}gou, Perronnin, Douze, S{á}nchez, P{é}rez, and Schmid} 2011

Citation
Citation
{Arandjelovic and Zisserman} 2013

Citation
Citation
{Radenovi{¢}, J{é}gou, and Chum} 2015

Citation
Citation
{Schonberger, Berg, and Frahm} 2015

Citation
Citation
{Tolias, Furon, and J{é}gou} 2014

Citation
Citation
{Radenovi{¢}, Tolias, and Chum} 2018

Citation
Citation
{Cao and Snavely} 2012

Citation
Citation
{Rau, Garcia-Hernando, Stoyanov, Brostow, and Turmukhambetov} 2020

Citation
Citation
{Torr, Nasuto, and Bishop} 2002

Citation
Citation
{Ni, Jin, and Dellaert} 2009

Citation
Citation
{Barath, Noskova, Ivashechkin, and Matas} 2020{}

Citation
Citation
{Chum and Matas} 2005

Citation
Citation
{Capel} 2005

Citation
Citation
{Chum and Matas} 2002

Citation
Citation
{Chum and Matas} 2008

Citation
Citation
{Matas and Chum} 2005

Citation
Citation
{Barath, Cavalli, and Pollefeys} 2022

Citation
Citation
{Cavalli, Pollefeys, and Barath} 2022

Citation
Citation
{Barath, Mishkin, Eichhardt, Shipachev, and Matas} 2021{}

Citation
Citation
{Schonberger and Frahm} 2016



BARATH ET AL.: POSE-GRAPH VIA ADAPTIVE IMAGE RE-ORDERING 3

Figure 1. The proposed pipeline creating an initial pose-graph to be then improved, e.g., by bundle
adjustment of global Structure-from-Motion algorithms. The new steps compared to [7] are the ones
with red outline, i.e., the inlier ratio prediction (Section 2), the path scale estimation for the A∗-based
path finding (Section 4), and the adaptive image pair re-ordering (Section 3).

ity decreases monotonically during the robust estimation in the next step. Eventually, it falls
below the probability of the second best image pair. From that point, the RANSAC iterations
are done on a pair which does not have the highest probability of being matchable anymore.

We propose, instead, to alternate between the two steps by always running only a “few”
RANSAC iterations on each image pair, possibly, multiple times. This “few” is controlled
in a principled way via a Bayesian approach which updates the inlier ratio expectations
after every unsuccessful RANSAC iteration. If the expectation falls below an adaptively set
threshold, the image pair is put back in the processing queue with an updated probability of
being matchable. Again, the next most likely pair is selected and robust estimation is applied
to recover the pose of the pair with the highest probability of being matchable. Note that this
approach is analogous to playing puzzle, where, first, the most promising piece is selected
and the player attempts to locate its place. In the case of failure, the piece is put to the side
and the next most promising one comes. This approach can be straightforwardly combined
with any image retrieval technique, e.g., GeM descriptors [40].

In order to provide a prior for the inlier ratio expectations, we train a fully connected
network on GeM [40] descriptors in a self-supervised manner. Even though GeM descriptors
can be used directly to estimate an image similarity score, e.g. by the inner product as in [7],
we found that it can be further improved by the proposed algorithm. The proposed network
predicts the inlier ratio of an image pair expected after running the robust estimation. These
predicted inlier ratios are used in the Bayesian approach as prior knowledge.

Moreover, we found that the pose chaining proposed for the A∗ algorithm in [7] implicitly
assumes that the translations are unit-length. Thus, it yields only approximations of the
poses. As a technical contribution to the A∗-based pipeline, we recover the translation scales
along the path found by A∗, improving the accuracy of the estimated relative poses and, also,
the success rate of the A∗ algorithm. The proposed pipeline is summarized in Fig. 1.

2 Inlier Ratio Learning

Deciding a priori about which image pairs are matchable (i.e., have a common field-of-
view) and, thus, should be processed is an extremely important task for SfM algorithms.
The geometric verification procedure, including feature detection, matching and robust pose
estimation, is expensive. Applying them to all the

(n
2

)
combinatorically possible image pairs

is unnecessary and impossible in practice. The objective, in this section, is to predict an
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Algorithm 1 Pose-Graph by Adaptive Re-ordering.
Input: p1, . . . , pr – image pairs
Output: G – pose graph (initialization: G← EmptyGraph())
1: µ1, . . . ,µr← fγ(p1, . . . , pr) ▷ Inlier ratio prediction
2: Q← Sort((p1,µ1), . . . ,(pr,µr)) ▷ Processing queue sorted by predicted inlier ratio
3: for (p,µ)← NextPair(Q) do ▷ Selecting the next most likely image pair
4: (R, t)← RANSAC(p, k(µ)) ▷ Run k(µ) iterations
5: if (R, t) ̸= 0 then ▷ Pose (R, t) ∈ SE(3) found
6: G← AddEdge(G, p,R, t) ▷ Pose is accepted, image pair is considered done
7: else
8: µ ′← Update(p,k(µ)) ▷ Bayesian inlier ratio expectation update
9: Q← Sort(Q∪{(p,µ ′)}) ▷ Putting the pair back in the queue

inlier ratio for each image pair that can be later used for filtering and ordering image pairs.
We use the following approach to generate a fully connected graph as a preliminary

step, where the vertices are the images and the edges represent the inlier ratios. We extract
GeM [40] descriptors with ResNet-50 [24] CNN, pre-trained on GLD-v1 dataset [34]. In
[7], the inner product of the GeM descriptors is used to predict the similarity score. We,
instead, propose a self-supervised learning approach, where the input of the network is a pair
(di,d j) of GeM descriptors of an image pair (Ii, I j), where i, j ∈ {1, . . . ,n}, and the output is
the expected inlier ratio µi j(1) ∈ [0,1].
Data Generation. In order to generate training and validation data, we first calculate the
GeM descriptors of all images from the current scene. For each of them, we detect RootSIFT
keypoints in the way as proposed in [27]. We then iterate through all image pairs.

Since the objective is to predict the inlier ratio, we apply MAGSAC++ [8] to each image
pair with its inlier threshold set to 0.75 px (as recommended in [5]), confidence to 0.99
and max. iteration number to 10000. As shown in [5], more iterations do not improve the
accuracy noticeably. The inlier ratio of the found model is used as target for learning.
Network Training. We can consider the problem as binary classification, where 0 is a
not and 1 is a matchable image pair. For the probability conditioned on (di,d j) of being
matchable p(di,d j), logistic regression is used as follows:

ln
p(di,d j)

1− p(di,d j)
= fγ(di,d j), with p(di,d j) =

1
1+ exp{− fγ(di,d j)}

,

where fγ(di,d j) is a point estimate, γ are the trained network parameters, (di,d j) is the input
image descriptor pair, and we are given a setD= {((di,d j),µi j)}M

i, j=1 of training data where
M is the number of training images and µi j are inlier ratios of the image pairs (Ii, I j).

We train network fγ to µi j = 1/(1+exp{− fγ(di,d j)}) return p(di,di) = 1 if the descrip-
tors are the same, and be permutation invariant, fγ(di,d j) = fγ(d j,di). It is not important to
have an accurate ranking of the non-matching images with≈0 inlier ratio, as long as they are
all recognized, contrary to the matching ones, among which we want to discriminate accu-
rately. However, it is crucial to cover the wide distribution of possible negative examples to
prevent out-of-distribution negatives from ending up among the image pairs with high inlier
ratio predictions. Our solution is a highly unbalanced dataset covering the full distribution
of negatives, but with a focal loss [28] that promotes accuracy on positive samples.

We use a small network that allows the proposed scoring technique to be fast. To do so,
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k1(p1) k2(p2) ... kr(pr)k3(p3)

(a) Traditional “accept-or-reject” strategy.

k1(p1) k2(p2) ...... kj(p3)k3(p3)

(b) Proposed strategy.

Figure 2. Typical RANSAC iteration numbers kt(pi) when processing the tth image pair pi, i ∈
{1, . . . ,r}. In (a), t equals to i and, usually, kt(pi) ≤ kt+1(pi+1) since the image pairs are ordered,
prior to the estimation, by their probability of being matchable. In (b), only a few iterations are done on
the tth processed image pair controlled by the expected inlier ratio. A pair may be processed multiple
times with an updated expected inlier ratio.

we use nl ∈ N linear layers of size sl , each followed by a 1D batch normalization, a leaky
ReLU and a dropout layer. To our experiments, the proposed network works the best with
nl = 5 layers of linear, batch normalization and drop-out layers.

3 Adaptive Image Pair Re-ordering
We propose a principled method to adaptively re-order image pairs when processing large-
scale datasets to speed up the pose-graph generation by always running on the most likely
to match image pairs. In the traditional approach, the pairs are ordered prior to the esti-
mation. A relative pose is estimated from each image pair by running RANSAC. However,
such randomized robust estimators tend to be extremely time-consuming on non-matching
image pairs or on ones with low inlier ratio. This is caused by the adaptive termination
criterion where the implied iteration number depends exponentially on the inlier ratio. In
the non-matching or low inlier ratio cases, only a manually set maximum iteration number
kmax prevents RANSAC from doing millions of iterations unnecessarily. In such cases the
iteration number is always kmax which is still slow in practice.

The termination criterion requiring the confidence in the solution to exceed a manu-
ally set threshold works well when estimating the pose of a single view pair. However, its
“accept-or-reject” strategy makes large-scale estimation more time-consuming than neces-
sary. Each image pair is processed until we are sure if it is matchable or not, without con-
sidering that the probability of being matchable drops monotonically during the estimation
and, thus, several other image pairs might become more likely to match. In case of success,
the pair is added to the pose-graph. Otherwise, it is rejected and never processed again.

In this paper, we propose a new approach, replacing the “accept-or-reject” strategy. This
is done by alternating between the selection of the most likely to be matchable image pair
and the robust estimation with keeping the estimation light-weight. Under light-weight, we
mean that the estimation runs only for a reasonably short time that is enough to solve the
easy cases without wasting time on the hard or impossible ones (see Alg. 1).

To do so, we start by predicting the expected inlier ratio µi j(1)= p(di,d j)∈ [0,1] for each
image pair (Ii, I j) as described in Section 2. Note that this prediction is done once and, in
our tests, takes only a few seconds. Using this a priori predicted inlier ratio, we calculate the
implied number of RANSAC iterations via formula k(η ,µ,m) = log(1−η)/ log(1−µm),
where η ∈ [0,1] is a manually set confidence (typically, set to 0.99), µ is the inlier ratio, and
m ∈N>0 is the sample size required for the model estimation, e.g., m = 5 in case of estimat-
ing essential matrices. For the sake of simplicity, we will write k(µ) instead of k(η ,µ,m).

After calculating iteration number k(µ) from the predicted inlier ratios, we sort the image
pairs in an increasing order as k(µit1, j

t
1
(t))≤ k(µit2, j

t
2
(t))≤ ·· · ≤ k(µitp, jtp(t)), where p =

(n
2

)
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is the total number of image pairs, pair (itk, jtk) (k ∈ {1, . . . , p}; itk, jtk ∈ {1, . . . ,n}; itk ̸= jtk) are
the indices of the images in an image pair in the t-th iteration (denoted by the upper index;
t ∈N>0), and n is the number of images. Note that we use p′≪ p, as done in [7], by a priori
rejecting all image pairs with µ < µmin inlier ratio, where µmin is a manually set lower bound
for the acceptable inlier ratios.

The robust estimation starts with the image pair with indices (it1, jt1) and its maximum
iteration number set to k(µit1, j

t
1
(t)). This maximum iteration number is an upper bound. Thus,

the estimation finishes if its termination criterion is triggered by finding a model with a non-
random number of inliers [25], or if the iteration number exceeds k(µit1, j

t
1
(t)). In case the

estimation is successful, i.e. the found model has enough inliers, the image pair is removed
from the queue and added to the pose-graph. Otherwise, inlier ratio µit1, j

t
1
(t) is updated (as

explained in the next section), image pair with indices (it1, jt1) is put back to the queue and
the pairs are re-ordered according to the updated inlier ratio. Parameter t becomes (t + 1).
In practice, this insertion of single value k(µit1, j

t
1
(t +1)) takes log p time when using a heap.

Since the algorithm selects the most probable pair in every iteration, where the iteration
number k is likely low, RANSAC always runs only for a short time. Then, the next best pair
is selected after updating the expected inlier ratio.
Expected Inlier Ratio Update. We describe an algorithm to update the expected inlier
ratio µit1, j

t
1
(t) of an image pair with indices (it1, jt1) after running the robust estimation for

k(µit1, j
t
1
(t)) iterations without finding an accurate model. For simplification, let us use nota-

tion µ(t) = µit1, j
t
1
(t). Since we did not gather additional information about other image pairs,

their estimated inlier ratio in the (t +1)-th iteration remains unchanged.
To estimate the expected inlier ratio of the processed pair, we use the Bayesian approach.

This procedure is applied if the robust estimation, after k(µ(t)) iterations, has not found
a model with a reasonable number of inliers and, thus, the pair should be processed again
later. Adopting the RANSAC assumption, we consider that this case happens only if there
was no all-inlier sample among all the k(µ(t)) tested ones. The random number of all-inlier
samples Nall in k(µ(t)) samples follows the binomial distribution with parameters µm(t) and
k(µ(t)). The usual conjugate prior for a binomial distribution is a beta distribution with prior
hyper-parameters a(t) and b(t), having the expectation and variance, respectively, as

a(t)
a(t)+b(t)

, v =
a(t)b(t)

(a(t)+b(t))2(a(t)+b(t)+1)
,

and posterior hyper-parameters (a(t)+Nall) and (b(t)+ k(µ(t))−Nall). When RANSAC
is unsuccessful, i.e. Nall = 0, the posterior distribution parameters are a(t + 1) = a(t) and
b(t +1) = b(t)+k(µ(t)). The best estimator for µm(t +1) using a quadratic loss function is
an expectation of the posterior distribution. Consequently, we set

µ
m(t +1) =

a(t +1)
a(t +1)+b(t +1)

and the next maximum iteration number to k(µ(t +1)).
For each image pair (Ii, I j), the initial parameters of the beta distribution a(1) and b(1) are

set using the predicted inlier ratio µ(1) = µi j(1) = p(di,d j). We assume that the procedure
described in Section 2 provides the expectation of the prior beta distribution and with the
same mean precision for all image pairs. Therefore, the v variances of all these initial beta
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distributions are equal and can be learned in advance. Given the learned variance, equations

µ
m(1) =

a(1)
a(1)+b(1)

, v =
a(1)b(1)

(a(1)+b(1))2(a(1)+b(1)+1)

lead to

a(1) =
(µm(1))2(1−µm(1))

v
−µ

m(1), b(1) = a(1)
1−µm(1)

µm(1)
.

We compute v from the predicted and GT inlier ratios on the validation set (Section 2).
We add a safe-guard to the iteration number as requiring ∑

t
i=1 k(µ(i))≤ kmax to hold for

all image pairs. This means that the total iteration number spent on a particular image pair
should be lower or equal than a maximum iteration number parameter set by the user. This
acts exactly in the same way as in RANSAC to prevent it from running millions of iterations
on non-matching pairs. The typical iteration numbers using the traditional and proposed
approaches are visualized in Fig. 2.

4 Path Scale Recovery
The algorithm φ proposed by Barath et al. [7] for recovering the relative pose between views
vs and vd (s – source; d – destination) from a walk in the pose-graph, i.e. a chain of relative
poses, provides only an approximation of the translation.

φ(W) = φ( fw1 , fw2 , . . . , fwn−1) = · · ·= φ( fw1)φ( fw2) . . .φ( fwn−1), (1)

whereW = ( fw1 , fw2 , . . . , fwn−1) is a finite walk in the graph.
The approximative nature of (1) comes from the fact that we are given unit-length trans-

lations that renders the final pose from (1) an approximation. In case the absolute scales of
the edges are similar, the implied error is marginal. Otherwise, it leads to inaccurate solu-
tions with a low number of inliers. In [7], this approximative nature is not crucial. It can
only make A∗ fail more often and, thus, RANSAC-based robust estimation applied at the
cost of only a few milliseconds. However, A∗ can be made successful more often than in [7]
when the path scales are recovered along the found walks. Using these recovered scales, (1)
is not an approximation anymore. To find the scales, we apply a similar strategy as proposed
in [19]. We select consecutive image triplets and estimate the relative scales along the path.
The procedure is shown in depth in the supplementary material.

5 Experiments
We tested the proposed algorithms on the 1DSfM dataset [52]. It consists of 13 scenes
of landmarks with photos of varying sizes collected from the internet. 1DSfM provides 2-
view matches with epipolar geometries and a reference reconstruction from incremental SfM
(computed with Bundler [47, 48]) for measuring error. Since Bundler was published more
than ten years ago, we reconstructed the scenes with COLMAP [44] to get a more accurate
reconstruction that can be considered ground truth. We use scenes Piccadilly and Madrid
Metropolis for training, thus, we do not show results on them.

To get point correspondences in each image pair, we used the RootSIFT [2] algorithm
with mutual nearest neighbor check and SNN ratio test [29], as recommended in [27]. We
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Figure 3. The absolute inliers ratio errors, of the
predicted and actual ones, plotted as a function of
the image pair rank. The pairs are ranked by their
actual inlier ratio. Thus, the left side of the plot
shows the error on image pairs with high inlier
ratio. The hidden layer size is in brackets.

Mean error Median error
Inner product 0.418 0.419

Proposed (128) 0.235 0.250
Proposed (256) 0.234 0.228
Proposed (512) 0.209 0.220

Proposed (1024) 0.205 0.230

Figure 4. The mean and median absolute er-
ror of the predicted and ground truth (found by
MAGSAC++ after 10000 iterations) inlier ratios.
The numbers in the brackets are the sizes of the
used hidden layers. The layer size used in the
other experiments is highlighted in gray.

matched all image pairs with global similarity higher than 0.4 with which we got accurate
reconstructions in reasonable time. This leads to using only 0.33% (614366 in total) of all
pairs that ∑s∈scenes

(ns
2

)
would imply, where ns is the number of images in a particular scene.

All algorithms are run on the same image pairs.
All methods are implemented in C++. For the A∗-based graph traversal algorithm [7],

we used the implementation provided by the authors. For robust estimation, we used the
state-of-the-art MAGSAC++ algorithm [7] implemented in OpenCV.
Inlier Ratio Prediction. To train the inlier ratio prediction network, we used a total of
80715465 image pairs from scenes Piccadilly and Madrid Metropolis. We used the 10% of
the image pairs as validation set. For testing the inlier ratio prediction techniques, we used
scene Alamo on which no training was performed. Note that we did not filter with the global
similarity when training the network, thus, providing a wide range of negative samples.

For Fig. 3, we ranked the image pairs according to their actual inlier ratios (horizontal
axis) found by MAGSAC++. The absolute inlier ratio error is shown on the vertical axis.
Thus, the left side of the plot shows the errors on pairs with high inlier ratio. On the right side,
the error on pairs with low inlier ratio is plotted. The predicted inlier ratios are significantly
more accurate than by using the inner product of GeM descriptors, especially, for image
pairs with high overlap, i.e., high inlier ratio cases. Moreover, as expected due to using the
focal loss, the errors in the predicted inlier ratios are the lowest for the image pairs with the
highest overlap (i.e., left part of the figure).

Figure 4 reports the average and median absolute errors of the predicted and actual in-
lier ratios. We compared the proposed method to using the inner product of the GeM [40]
descriptors as similarity score as it was proposed in [7]. Also, we compare the results using
different hidden layer sizes shown in brackets. The proposed technique leads to significantly
lower errors than using the inner products. The improvement from the layer size stops over
512, where the averages of the mean and median values are the minimal. Therefore, we use
512 as layer size in the other experiments in the rest of the paper.
Image Pair Re-ordering. In order to test the proposed adaptive image pair re-ordering and
path scale recovery, we ran the following algorithms on each scene of the 1DSfM dataset:

1. (Baseline) Matching the image pairs, which survived the filtering by the inlier ratio
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total time MAGSAC++ A∗ pose estimation overhead
# edges # inliers (hours) ttotal tavg # runs ttotal tavg # runs (hours)

Baseline 417572 56148287 55.11 50.93 4.63 614366 – 4.18
A∗ w/o scale [7] 524221 65176541 16.69 13.99 1.27 217109 0.042 0.004 525831 2.66

A∗ + scale + re-ord. 554 182 68442654 2.06 1.06 0.10 301105 0.306 0.028 593712 0.69
Ablation study

A∗ + no scale + re-ord. 532947 61900737 5.94 1.23 0.11 348344 0.057 0.005 634217 4.65
A∗ + scale + no re-ord. 538119 70 991 857 10.96 10.12 0.92 183904 0.281 0.026 529280 0.56

Baseline + re-ord. 392779 48070653 6.82 2.14 0.19 1174609 – 4.68

Table 1. The results of pose-graph creation by the baseline algorithm, A∗ w/o scale [7] and the proposed
A∗ plus scale recovery and adaptive image re-ordering techniques on the scenes from the 1DSfM
dataset with a total of 614366 image pairs. The bottom part of the table contains results with different
algorithm combinations. The reported properties are the total number of edges in the pose-graph (#
edges); the number of inlier correspondences (# inliers); the total run-time (in hours); the total, average
(over the scenes) run-time of the MAGSAC-based pose estimation and the A∗ algorithm (all in hours);
the number of MAGSAC and A∗ runs; and the overhead time coming from other parts of the pipeline.
The total time is the sum of the MAGSAC++, A∗ and overhead times. The reported times are projected
to a single CPU core, while all of the method can be straightforwardly parallelised.

predicted from GeM descriptors, by MAGSAC++.
2. (A∗ w/o scale) The A∗-based technique proposed in [7] combined with MAGSAC++.
3. (A∗ + scale + re-ord.) A∗ with all the proposed algorithms and MAGSAC++.

We used the proposed inlier ratio prediction for all methods as a preliminary step. Thus,
the image pairs are processed in a descending order according to the predicted inlier ratios.
While this does not change the results of the baseline, it is beneficial both for [7] and for the
proposed method. As ablation study, we also tested combinations A∗ + no scale + re-ord.,
A∗ + scale + no re-ord., and Baseline + re-ord. In all combinations, the maximum iteration
number and the confidence of MAGSAC++ are set, respectively, to 5000 and 0.99.

Table 1 reports the total number of pose-graph edges and inlier correspondences found in
the 11 scenes; the total run-time in hours; the total and average time spent on pose estimation
with MAGSAC++ in hours and the number of MAGSAC++ runs; the total and average time
spent on A∗-based pose estimation in hours and the number of A∗ runs. It can be seen that
the proposed technique combining A∗, path scale estimation and adaptive image pair re-
ordering is the fastest method. It is an order-of-magnitude faster than the baseline algorithm
while returning more pose graph edges. Moreover, it is 8–9 times faster than the original
A∗-based method. Additional results are shown in the supplementary material.

Besides the time spent on MAGSAC++ and the A∗-based pose estimation, the overhead
is also visible in Table 1. This overhead stems from, e.g., reading correspondences multiple
times from the disk or from visibility checks in the pose graph. This additional time is cal-
culated by subtracting the run-times of MAGSAC and A∗ from the total time. For example,
the time overhead of the Baseline method is 4.18 hours (= total time - MAGSAC - A∗). The
overhead of Baseline + re-ordering is 4.68 hours. Even though the overhead is slightly higher
when using the proposed re-ordering, the caused speed-up is more significant, i.e., the total
time is reduced by 48.29 hours.
Global Structure-from-Motion. Once relative poses are estimated they are fed to the Theia
library [49] that performs global SfM [15, 52]. That is, image matching and relative pose
estimation were performed by our code. The key steps of global SfM are robust orientation
estimation, proposed by Chatterjee et al. [15], followed by robust nonlinear position opti-
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# views # points AVG εR (°) MED εR (°) AVG εp (m) MED εp (m)
Baseline 820 108161 9.83 7.41 3.14 2.19

A∗ w/o scale [7] 815 106336 9.80 7.41 3.18 2.25
A∗ + scale + re-ordering 821 106810 9.61 7.27 3.05 2.04

A∗ + no scale + re-ordering 816 106408 9.45 7.02 3.17 2.28
A∗ + scale + no re-ordering 821 107827 9.95 7.62 3.20 2.27

Baseline + re-ordering 819 107750 9.53 7.11 3.13 2.14

Table 2. The results of a global SfM [49] averaged over the scenes from the 1DSfM dataset [52]. The
SfM is initialized with pose-graphs generated by the methods shown in the first column. The reported
properties are: number of views (# views) and 3D points (# points) reconstructed by the SfM given an
initial pose-graph; the average and median rotation (εR; degrees) and position errors (εp; meters).

mization by [52]. The estimation of global rotations and positions enables triangulating 3D
points, and the reconstruction is finalized by the bundle adjustment of camera parameters
and point coordinates. Since the reconstruction always failed on scene Gendarmenmarkt, we
did not consider that scene when calculating the errors.

Table 2 reports the results of Theia initialized by pose-graphs generated by the tested
algorithms. All methods lead to similar number of views and 3D points reconstructed and
similar accuracy compared to the COLMAP reconstruction considered as ground truth. The
proposed technique with path scale recovery and image pair re-ordering leads to the most
reconstructed views and the best position accuracy by a small margin. Consequently, while
the pose-graph estimation is sped up by an order-of-magnitude, there is no deterioration in
the accuracy of the applied structure-from-motion algorithm when using the proposed algo-
rithms. The average run-time of the global SfM bundle adjustment by [49] is 1-5 minutes.
Note that the proposed algorithms can also be applied as a prior step for incremental SfMs.
However, incremental SfMs often runs for hours or days. Thus, the speed-up from the pro-
posed pipeline is not as big as for global SfMs.

6 Conclusion

The new strategy of estimating relative poses from a large-scale dataset allows for building
a pose-graph an 20 times faster than by the traditional approach. The method is 8-9 times
faster than the recently proposed [7]. The proposed image pair re-ordering, on its own, has
a large impact on the run-time (A∗ time drops to its 12%; baseline time drops to its 11%).
The proposed network predicts the inlier ratio of image pairs significantly more accurately
than the method used in [27] with an average error reduced to its half from 0.418 to 0.209.
Moreover, we improved the A∗-based pose estimation of [7] by estimating the scale of the
found paths.
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