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Abstract
Objective Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise 
high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor 
p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors. The available treatment 
options for GBMs and LGGs include surgical resection, radiation and chemotherapy. The chemotherapeutic drug 
available in the clinic is temozolomide (TMZ). However, TMZ can cause damage to DNA if taken for prolonged period. 
This warrants the discovery of drugs that would potentially elicit less adverse side effects while maintaining anticancer 
activity. To this end, we evaluated the impact of cinnamaldehyde (CA), a single, purified component of the natural 
product cinnamon.

Results The elucidation of the mechanism of action revealed the impact of CA on reactive oxygen species (ROS) 
levels. Moreover, its effect on the extrinsic programmed cell death pathway resulted in the increase of apoptotic 
cell populations, invoking multicaspase. Notably, the cell survival/death pivotal molecule Bcl-2 was impacted. These 
effects were observed in both the types of brain tumor cells studied: GBMs, represented by U251 cells (p53 mutated 
cell line) and LGGs represented by H4 cells. Results from the current study suggest potential for CA as a therapeutic 
option as it is expected to have fewer adverse side effects due to it being a component of a natural product and 
possibly deter the progression of LGGs to GBMs.
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Introduction
Glioblastoma is the most frequently diagnosed brain can-
cer accounting for 47.7% of all cases with an incidence 
rate of 3.21 per 100,000 population [1]. An estimated 
more than 10,000 people in the US will be diagnosed 
every year with glioblastoma with a five-year survival 
rate of 6.9% [2]. Transformation of the progenitors of glial 
cells or stem cells of the central neural system may lead to 
the formation of brain tumors [3]. Further, contribution 
by common and various progenitors of glial cells dur-
ing brain tumor formation is characterized [4]. Among 
the brain tumors, a large percent of primary malignant 
brain tumors are characterized as gliomas [5]. Clinically, 
gliomas are divided into different grades (I to IV) rang-
ing from low-grade to high-grade [6], and glioblastoma 
multiforme (GBM) is a grade IV tumor; this is the most 
aggressive form of tumor with various risk factors, diffi-
cult to track and treat with a median survival of about 15 
months and with poor prognosis [7–9]. With respect to 
gliomas, studies have been carried out in understanding 
the signaling pathways and molecules which could lead 
to non-responsiveness to current therapeutic treatments 
[10]. Also, alterations in the tumor suppressor p53 is 
often observed in brain tumors. Primary GBMs as well as 
secondary GBMs exhibit changes in the tumor suppres-
sor p53 and is considered as one among the molecular 
markers [11, 12].

Currently available treatment options for GBMs 
include surgery, radiation and chemotherapy. Often, the 
chemotherapeutic drug used in the clinic is temozolo-
mide (TMZ). Also, combination of TMZ and radiation 
is reported [13]. In older patients, treatment with TMZ 
did not improve the prognosis [14]. Moreover, it has been 
reported that tumors which recurred on TMZ treatment 
had hypermutations [15]. To achieve improved treatment 
options, efforts have also been directed towards bioengi-
neering strategies in animal model systems [16]. To miti-
gate potential side effects associated with TMZ and for 
efficacious treatment of tumors of the brain, there is an 
urgent need for the development of more safe drugs.

With respect to LGGs, there are various tumor types 
and variations in histologic characteristics. Further, 
recently, molecular subtypes that can be identified in 
diffuse gliomas including immune evasion mechanisms 
that could operate in these cells are reported [17]. Nota-
bly, gliomas have been characterized and grouped based 
on the presence of certain markers reflecting on the 
pathogenesis of these tumors [18]. Current treatment 
employed for LGGs is safe resection, MRI monitoring 
in low-risk individuals; radiation and chemotherapy for 
high-risk patients [19, 20].

The U87 cell line with wild type p53, U251 with 
mutated p53 for high grade gliomas and H4 cell line for 
LGG are frequently utilized in the study and discovery of 

drugs against gliomas. Recently, molecular studies have 
been carried out with the GBM cell line U87MG (grade 
IV glioblastoma) and the nontumorigenic LGG cell line, 
H4 related to mTORC2 and the entities it interacts with 
to understand aggressiveness of high-grade gliomas [21]. 
Furthermore, detailed study comparing less aggressive 
glioma-like H4 cells and high-grade, highly aggressive gli-
oma has been reported affecting cell signaling pathways 
controlling migration as well [22]. Although patients with 
LGG survive for a longer time than patients with GBM, 
the tumor can result in secondary GBM over time and 
targeted therapy for these tumors is being investigated 
[23]. Also, various factors leading to malignant transfor-
mation of low-grade gliomas is reported [24]. Moreover, 
by differential gene expression analysis, potential thera-
peutic target has been identified in LGG which could 
lead to malignant tumors [25]. Recently, the involvement 
of cancer-associated fibroblasts, epigenetics and its con-
nection to the tumor stroma has been reported to pos-
sibly lead to targeted therapy along with immune therapy 
for LGG [26]. Improvement and novel treatment for 
patients with LGG considering tumor and constitutive 
genetics has also been suggested to be addressed [27]. 
Importantly, there is no curative option for low-grade 
gliomas as well, although the patients with LGG live for a 
long time. Recently, we have reported in detail the poten-
tial impact of CA, a highly purified ingredient of the 
natural product cinnamon, on U87 (wild-type p53) glio-
blastoma cells. Also, we have reported dose-dependent 
effect of CA on cell viability in GBM cells with p53 muta-
tion (U251 cell line) and in H4 cells which are low-grade 
glioma cells [28]. In the present study, we report the elu-
cidation of the molecular mechanism of action of CA on 
both the brain tumors, GBM with p53 mutation which 
is observed in majority of GBMs and LGGs, as there is a 
need to evaluate the cell entities affected to consider CA 
as a potential option for future treatment with the antici-
pation of less side effects.

Materials and methods
Cell lines, materials and cell toxicity assay
Commercially available U251  cell line (Sigma-Aldrich, 
MO, USA) and H4 Cell line (American Type Culture 
Collection, Manassas, VA, USA)  were purchased and 
cultured as per the instructions of the supplier. Labora-
tory use of the cell lines were approved by the Biologi-
cal Material Safeguards Committee of Georgia Institute 
of Technology. Cinnamaldehyde was purchased from 
Sigma-Aldrich (Rockville, MD, USA). Luminex Muse 
Cell analyzer and Muse assay kits were bought from 
EMD Millipore (Burlington, MA, USA). Stock solution of 
CA was prepared in DMSO. Dose-dependent inhibition 
of U251 and H4 cell lines was assessed by treating the 
cells with varying concentrations of CA and determining 
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the cell viability using the Cell Counting Kit- 8 (Bimake, 
Houston, TX, USA) as described earlier [28].

Flow cytometry assays
U251 cells at 62,000 cells per well were plated in 12-well 
plates. After 24  h, cells were either left untreated (con-
trol group) or treated in triplicate with CA and incu-
bated for 72 h. After 72 h, media was collected, adhered 
cells were trypsinized and pooled together from trip-
licate treatments. The samples were then subjected to 
Luminex Muse assays as per manufacturer’s instructions. 
Flow cytometry assay kits used to assess key cell enti-
ties were: Oxidative Stress kit (MCH100111), Annexin 
V and Dead Cell Kit (MCH100105), MultiCaspase kit 
(MCH100109), and Bcl-2 kit (Bcl-2 Dual detection acti-
vation assay (MCH200105) and Mitopotential Assay kit 
(MCH100110). Molecular assays with the H4 cell line uti-
lized similar number of cells and flow cytometry proto-
cols as those employed for the U251 cell line.

Statistical analysis
Unpaired two-tailed t test with Welch’s correction, for 
ROS, statistical significance at P < 0.05 and Sidak’s one-
way ANOVA with Dunnett’s multiple comparison test 
was calculated and mentioned in the legend section to 
figures.

Results
Reactive oxygen species levels were elevated in U251 and 
H4 cells treated with CA
Elucidation of the mechanism of action of CA in the 
GBM cell line, U251 and LGG cell line, H4 was per-
formed by first analyzing the production of ROS using 
the Oxidative Stress kit (as in ‘Materials and Methods’). 
For this analysis, the cells were treated with the IC50 con-
centration (80µM) of CA observed for H4 (as reported 
previously [28]) and the same concentration was used 
for U251 cells and incubated for 72  h. Increase in ROS 
levels were observed in each of the cell lines. The assay 
was repeated three independent times and representative 
profile obtained for the treated samples in comparison to 
the profile obtained for the control samples for H4 cells is 
shown (Fig. 1A). The values obtained for the treated sam-
ples on normalizing to the control samples are shown, 
(Fig. 1B). For U251 cells, a similar increase in ROS levels 
was observed. Three independent assays were performed 
and representative profile obtained for the treated group 
in comparison with the profile obtained for the control 
group is shown, (Fig. 1C). The values obtained for U251 
cells treated with CA normalized to the control group 
are shown, (Fig.  1D). As seen in (Fig.  1B) and (Fig.  1D) 
total increase in ROS + cells generated on CA treatment 

Fig. 1 Profile of reactive oxygen levels on treatment with CA in H4 and U251 cells as well as impact on Bcl-2. (A) Representative ROS profile obtained 
for H4 cells untreated or treated with CA. (B) On normalizing to the control group there was a significant increase in the ROS + cell population. (C) Rep-
resentative ROS profile obtained for U251 cells untreated or treated with CA. (D) On normalizing to the control group there was a significant increase 
in the ROS + cell population. For both H4 and U251, unpaired two-tailed t test with Welch’s correction was conducted and p value of 0.0115 for H4 and 
0.0106 for U251. (E) Representative scatter plots depicting the Bcl-2 cell populations with inactivated, activated and non-expressing cells in H4 cells on 
treatment with CA. (F) A statistically significant increase in the inactivated Bcl-2 molecules as well as statistically significant increase in the non-expressing 
cell population was observed by two-way ANOVA with Sidak’s multiple comparisons test with a p value of 0.0007 for the inactivated population and 
p value of 0.0010 for non-expressing population. (G) Representative scatter plots of Bcl-2 levels in the U251 cells treated with CA and in the untreated 
control group. (H) Bar diagram depicting a statistically significant increase in the inactivated Bcl-2 molecules as well as statistically significant increase in 
the non-expressing cell population in U251 cells as determined by two-way ANOVA with Sidak’s multiple comparisons test with a p value of < 0.0001 for 
inactivated population and p value of 0.0265 for non-expressing population
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were statistically significant in each of the cell systems 
analyzed.

CA treatment affects Bcl-2 levels in H4 and U251 cells
Bcl-2 is a pivotal molecule involved in the control of cell 
survival and cell death of various types of cancers. To 
investigate the effect of CA on Bcl-2 levels in the LGG 
cell line H4 and GBM cell line U251, a Bcl-2 flow cyto-
metric assay was performed. Three independent experi-
ments were performed for each cell line. Representative 
scatter plots of Bcl-2 levels in the H4 cells treated with 
CA and in the untreated control group are shown 
(Fig.  1E). As seen from the plots, the percentage of cell 
population with the inactivated Bcl-2 has increased in 
the CA treated group with concomitant decrease in the 
activated Bcl-2, also increase in the Bcl-2 non-expressing 
cells was observed, (Fig.  1F). A statistically significant 
increase in the inactivated Bcl-2 molecules as well as in 
the non-expressing cell population was observed as per 
ANOVA. Similarly, the levels of the key molecule Bcl-2 
was monitored in the U251 cell line. Representative scat-
ter plots of Bcl-2 level in the U251 cells treated with CA 

and in the untreated control group are shown (Fig. 1G). 
In the CA treated group, the percentage of cell popula-
tion with the inactivated Bcl-2 has increased and a con-
comitant decrease in the activated Bcl-2 molecules and 
increase in the Bcl-2 non-expressing cells was observed. 
In the U251 cells as well, a statistically significant increase 
in the inactivated Bcl-2 molecules as well as statistically 
significant increase in the non-expressing cell population 
was observed (Fig. 1H).

Impact on the programmed cell death pathway by CA in 
the LGG (H4) and GBM (U251) cells
On observing significant increase in ROS levels in both 
the types of brain tumor cells by CA, we proceeded to 
analyze its effect on the extrinsic programmed cell death 
pathway by performing flow cytometric assay using the 
Luminex Muse Annexin V and Dead Cell assay. H4 and 
U251 cells were treated with 80 µM of CA and were 
incubated for 72  h. The experiment was repeated three 
independent times and representative scatter plots of the 
control group and treated group of H4 cells are shown in 
(Fig. 2A) and the percent gated profile of each of the cell 

Fig. 2 Analysis of apoptotic cell populations in H4 and U251 cells treated with CA. To generate the data, three independent experiments were performed. 
(A) Representative scatter plot of apoptotic cell populations detected using Annexin V and Dead Cell Kit in H4 cells treated with 80 µM of CA for 72 h. (B) 
Percent gated profile showing the different cell populations from untreated and treated cells. A significant change was observed in all the different cell 
populations of the treated groups as per two-way ANOVA with Sidak’s multiple comparisons test. Significant decrease in live cells (p value = 0.0025) and 
significant increase in late apoptosis (p value = 0.0041) was observed. (C) On normalizing to the control group, both early and late apoptotic cell popula-
tions are represented. One-way ANOVA with Dunnett’s multiple comparisons test showed significant increase in late apoptosis (p value = 0.0086). (D) 
Representative scatter plots of apoptotic cell populations detected using Annexin V and Dead Cell Kit in U251 cells treated with 80 µM of CA for 72 h. (E) 
The percent gated profile of the cell populations from untreated and treated U251 cells is shown. All the different cell populations showed a significant 
change in the treated samples by two-way ANOVA with Sidak’s multiple comparisons test. A significant decrease in live population (p value = 0.0005) and 
a significant increase in late apoptosis (p value = 0.0119) was observed. (F) The early and late apoptotic cell populations in the treated U251 cells are rep-
resented on normalizing to the control group. One-way ANOVA with Dunnett’s multiple comparisons test shows a significant increase in late apoptosis 
(p value = 0.0230)
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population in the untreated and treated group is shown 
(Fig.  2B). Total number of apoptotic cells increased sig-
nificantly in treated samples. The percent of early and 
late apoptotic cell population normalized to the control 
population from three independent experiments is rep-
resented, (Fig. 2C). Also, for U251 cells, the experiments 
were repeated three independent times and the repre-
sentative scatter plots of the control sample and treated 
sample are shown, (Fig. 2D). The percent gated profile of 
each of the cell population in the untreated and treated 
sample is shown, (Fig. 2E). In U251 cells as well, the total 
number of apoptotic cells increased significantly in the 
treated samples. With respect to the apoptotic cells in the 
U251 sample, the percent of early and late apoptotic cell 
population normalized to the control population from 
three independent experiments is represented, (Fig. 2F).

Multicaspase are invoked by CA in H4 and U251 cells
As we observed an increase in apoptotic cells in both the 
GBM and LGG cell lines, we proceeded further to investi-
gate whether Multicaspase are elicited by CA in these cell 
lines. Activation of Multicaspase was monitored by flow 
cytometry using the Luminex MultiCaspase assay. Three 
independent experiments were performed for each of the 
cell lines used in the study. Representative scatter plots 

obtained on MultiCaspase flow cytometry analysis of H4 
cells, untreated (control) and treated with 80 µM are rep-
resented, (Fig. 3A). The percent gated profile of untreated 
(control group) and treated cells from three independent 
experiments are shown by histogram, (Fig.  3B). A sta-
tistically significant decrease in live cell population and 
significant increase of Caspase+/Dead population in CA 
treated H4 cells was observed. On normalizing to the 
control group there was a statistically significant increase 
in the Caspase+/Dead population (Fig. 3C). Similar anal-
ysis was conducted for U251 cells. Representative scatter 
plots obtained on MultiCaspase flow cytometry analysis 
of untreated (control) and treated with 80 µM are repre-
sented (Fig. 3D). In the U251 cells as well, a statistically 
significant decrease in live cell population and significant 
increase of Caspase+/Dead population was observed on 
treatment with CA. (Fig. 3E). On normalizing to the con-
trol group, there was a statistically significant increase in 
the Caspase+/Dead population (Fig. 3F).

CA does not induce mitopotential change in H4 as well as 
in U251 cells
Since the data from the Annexin assay as well as the mul-
ticaspase experiments suggested that the extrinsic pro-
grammed cell death pathway may be operational in H4 

Fig. 3 MultiCaspase were invoked in CA treated H4 and U251 cells. (A) Representative MultiCaspase scatter plots of H4 cells untreated and treated with 
80 µM of CA. (B) Percent gated profile of cell population of H4 cells with Multicaspase. A statistically significant decrease in live cell population and sig-
nificant increase of Caspase+/Dead population in CA treated H4 cells was observed as per two-way ANOVA with Sidak’s multiple comparisons test for 
both live and Caspase+/Dead population (p value < 0.0001). (C) On normalizing to the control group there was a statistically significant increase in the 
Caspase+/Dead population as per one-way ANOVA with Dunnett’s multiple comparisons test for Caspase + Dead cells (p value = 0.0204). (D) Represen-
tative scatter plots obtained on MultiCaspase flow cytometry analysis of U251 cells, untreated (control) and treated with 80 µM are represented. (E) In 
the U251 cells as well, a statistically significant decrease in live cell population and significant increase of Caspase+/Dead population was observed on 
treatment with CA as per two-way ANOVA with Sidak’s multiple comparisons test for live population (p value = 0.0002) and Caspase+/Dead population 
(p value = 0.0007). (F) On normalizing to the control group, there was a statistically significant increase in the Caspase+/Dead population as per one-way 
ANOVA with Dunnett’s multiple comparisons test (p value = 0.0479)
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and U251 cells treated with CA, we wanted to explore 
whether intrinsic programmed cell death pathway also 
contributed towards the inhibition of cell viability. To 
this end, we performed flow cytometric analysis to detect 
the changes in mitochondrial membrane potential. Rep-
resentative scatter plots depicting populations with 
mitopotential change for both H4 and U251are shown 
(Additional file 1: Fig, S1A and S1C). When data from 
three independent experiments were analyzed, no signifi-
cant differences were noted between control and treat-
ment groups (Additional file 1: Fig, S1B and S1D).

Discussion
Treatment strategies for GBMs and LGGs with minimal 
side effects are essential as there is lack of such options 
for these malignancies of the brain. The investigation 
of the impact of natural products on different types of 
brain tumors need to be pursued as fewer side effects 
are expected. Recently, we have reported the potential 
impact of CA, an ingredient of the natural product cinna-
mon, on U87 (wild-type p53) glioblastoma cells. Also, we 
showed that CA can impact the cell viability of the GBM 
cells with p53 mutation (U251 cell line) as well as H4 cell 
line which are LGG cells [28]; but the elucidation of the 
molecular mechanism of action of CA on both the brain 
tumors GBM and LGG is essential to evaluate the cell 
entities and cell pathways affected. Majority of the GBMs 
have changes in p53; furthermore, LGGs could progress 
to secondary GBMs over time [23, 24]. Therefore, molec-
ular studies with compounds that impact these brain 
tumors is warranted.

In the present study, we observed the impact of CA on 
one of the key cellular molecules, ROS; levels of which 
increased in both the types of gliomas. CA treatment has 
been shown to induce ROS in cancer cells of varied tissue 
origin including hepatoma [29], breast [30, 31]and renal 
[32]. In U251 cells, resveratrol is reported to increase 
ROS levels and cause cellular effects [33]. Also, curcumin 
is reported to target glioblastoma stem cells through 
induction of ROS [34]. Furthermore, molecules like Gefi-
tinib is reported to induce apoptosis in human glioma 
by affecting the BAD/BAX signaling pathway including 
activating caspase 9/3 [35]. In fact, in the present study 
we observed an increase in apoptotic cells, and multi-
caspase were invoked in both the GBM and LGG brain 
tumor cell types on treatment with CA. Importantly, the 
pivotal Bcl-2 molecule involved in cell death/survival 
pathway was impacted. Notably, recently the assessment 
of BH3 mimetic Bcl-2 inhibitor has shown inhibition of 
tumor growth of glioblastoma in the in vivo studies [36]. 
Importantly, inhibitors of Bcl-2/Bcl-xl along with Mcl-1 
inhibitors in a nanoparticle format has shown efficacy in 
animal model system in crossing the blood-brain barrier 
and suppressing the growth of glioblastoma [37]. Of note, 

we observed a significant impact on the levels of Bcl-2 
in both the types of brain tumor cells (GBM and LGG) 
undertaken in the present study.

Conclusions
Results from the current study show that CA has the abil-
ity to interfere with the glioma cell survival by induction 
of programmed cell death through caspases and ROS 
production. Additionally, the impact of CA on Bcl-2, a 
pivotal molecule controlling various cell pathways, sug-
gests that CA could be a potent anticancer entity against 
GBM and LGG. In contrast to the clinically used chemo-
therapeutics like TMZ, it is anticipated that CA will have 
minimal adverse effects. If the current findings can be 
translated in vivo, CA could also impede the progression 
of LGG to aggressive GBM.

Limitations and future research
One of the limitations of the current study is that CA 
was tested alone. Combinatorial studies with CA and the 
currently clinically used chemotherapeutic TMZ, should 
be investigated to assess potential synergy which would 
minimize adverse side effects of TMZ. As stem-like cells 
are the contributors for cancer recurrence, future investi-
gations should be directed towards analyzing the effects 
of CA on stem-like cells from gliomas. Additionally, in 
vivo studies with CA in appropriate glioblastoma xeno-
graft models are needed to determine its translational 
potential.
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