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Introduction
Breast cancer (BC) is the most prevalent type of cancer 
among women; however, African American (AA) BC 
patients experience higher mortality rates compared to 
their European American (EA) counterparts. Despite 
advancements in therapeutic options and improved sur-
vival rates for both races, this survival disparity persists 
[1, 2]. In addition to socioeconomic factors, the higher 
incidence of the most lethal BC subtype—triple-nega-
tive breast cancer (TNBC)—among premenopausal AA 
patients significantly contributes to these varied survival 
outcomes [3, 4]. Tumors of this subtype are characterized 

BMC Research Notes

This work was prepared while Jodie Fleming was employed at North 
Carolina Central University. The opinions expressed in this article 
are the author’s own and do not reflect the view of the National 
Institutes of Health, the Department of Health and Human Services, 
or the United States government.

*Correspondence:
Lindsey M. Costantini
lmcostantini@nccu.edu
1Biological and Biomedical Sciences Department, University of North 
Carolina Central University, Durham, NC 27707, USA
2Present address: National Institutes of Health, Bethesda, MD 20892, USA

Abstract
Objective  African American women with breast cancer experience disproportionately poor survival outcomes, 
primarily due to the high prevalence of the deadliest subtype; triple-negative breast cancer (TNBC). The CRYβB2 gene 
is upregulated in tumors from African American patients across all breast cancer subtypes, including TNBC, and is 
associated with worse survival rates. This study investigated the effect of CRYβB2 on the invasion of TNBC cells and 
the underlying mechanisms contributing to this phenotype.

Results  We utilized the SUM159 cells with stable CRYβB2 overexpression in a 3D-culture tumor spheroids model in 
our investigation. A quantitative 3D invasion assay demonstrated that CRYβB2 overexpression significantly enhanced 
invasion (median invasion %; SUM159 = 0.14 and SUM159 + CRYβB2 = 0.33). RNA sequencing analysis indicated that 
CRYβB2 overexpression modulated cell-cell adhesion and extracellular matrix organization pathways, which are 
critical to invasion of cancer cells. Specifically, CRYβB2 suppressed the expression of key cell-cell adhesion genes 
known as clustered protocadherins and promoted the expression of PCDH7, a nonclustered protocadherin with 
known oncogenic roles in various cancers. Notably, the knockout of PCDH7 diminished the invasive capacity induced 
by CRYβB2 (median invasion %; SUM159 = 0.093, SUM159 + CRYβB2 = 0.184 and SUM159 + CRYβB2/PCDH7−/−=0.082). 
These findings provide a novel link between a previously identified differentially expressed gene, CRYβB2, in driving 
breast cancer phenotypes by modulating a class of adhesion proteins.
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by the highest rates of growth and metastasis, and 
patients diagnosed with TNBC face a limited set of effec-
tive targeted therapeutic options [5, 6].

In this context, β-crystallin B2 (CRYβB2) is a gene 
that has garnered particular interest due to its elevated 
expression levels in tumors from AA patients and its 
association with poor overall survival, not only in BC 
but also in other malignancies including colorectal, renal 
cell carcinoma, glioblastoma, and prostate cancer [7–12]. 
Consequently, CRYβB2 has been linked to disparate 
survival outcomes among AA individuals with cancer; 
however, its cellular and molecular mechanisms driving 
tumor progression remained poorly understood. In our 
previous study, we utilized TNBC cell models with sta-
ble CRYβB2 overexpression and discovered, for the first 
time, that CRYβB2 significantly promoted proliferation, 
invasion, and metastasis [13]. In the present study, we 
employed 3D cultured spheroids as a model that mim-
ics in vivo characteristics of tumor microenvironments 
[14] to further investigate CRYβB2 and its role in altering 
gene expression to drive invasion in TNBC.

Methods
Cell lines and generation of expression models
TNBC SUM159 cell line was obtained from Asterand. 
Cells were authenticated using short tandem repeat 
(STR) profiling and tested for mycoplasma and culture 
medium for this cell line was prepared according to sup-
plier’s instructions. Procedures to generate knock-in 
models were previously described [13]. More informa-
tion on culturing conditions and PCDH7 knockout gen-
eration are detailed in the ‘supplemental methods’.

Tumor spheroids 3D cultures
Tumor spheroids were grown on Matrigel® (Corning) 
according to manufacturer’s instructions. To retrieve 
spheroids from Matrigel® for subsequent analyses, Cell 
Recovery Solution (Corning) was used according to 
manufacturer’s instructions. For spheroid invasion assay, 
grown spheres were imaged at day 9 at 10x magnification 
using Nikon Eclipse Ti2 Inverted Microscope, sCMOS 
pco.edge camera and Nikon NIS Elements software 
(Nikon). The invasive properties of single spheroids were 
quantified using ImageJ software [15]. More details on 
spheroid culture, image analysis, extraction and down-
stream processing are detailed in the ‘supplemental 
methods’.

Transcriptome RNA sequencing and pathway analyses
Total RNA from tumor spheroids was then extracted 
using the RNeasy Plus kit (Qiagen) according to manu-
facturer’s instructions. RNA concentrations were mea-
sured using nanodrop and RNA quality (RNA integrity 
Number ≥ 7) was validated using the Bioanalyzer 2100 

system (Agilent). Libraries were made using the Illu-
mina Truseq Ribo-Zero Gold protocol and sequenced at 
40  million reads per sample on an Illumina HiSeq4000 
with paired end 100 bp reads. Identification of differen-
tially expressed genes (DEGs) and pathway analyses were 
done using Dr. Tom software (BGI Genomics).

RNA extraction and quantitative real-time PCR (RT-qPCR)
For mRNA quantification, High-Capacity cDNA Reverse 
Transcription Kit (Thermofisher) was used to pre-
pare cDNA from RNA samples according to manufac-
turer’s instructions. The SsoAdvanced Universal SYBR 
Green Supermix (Bio-Rad) was used to prepare qPCR 
assays which were loaded to the QuantStudio™ 3 sys-
tem (Applied Biosystems) for thermal cycling and signal 
detection. Primer sequences are listed in Supplementary 
Table S1.

Western blotting
MPER buffer (Thermofisher) supplemented with Halt™ 
Protease and Phosphatase Inhibitor Cocktail (Thermo-
fisher) was used to prepare lysates. Protein concentration 
of whole cell lysates was determined by BSA assay using 
the Coomassie Plus Protein Assay Reagent (Thermo-
fisher). Equal amounts of protein samples were run using 
SDS polyacrylamide gel electrophoresis (SDS-PAGE) and 
blotted on nitrocellulose membranes using Trans-Blot 
Turbo Transfer System (Bio-Rad). Total protein signals 
were detected using the Revert700 Total Protein stain 
(Licor) following manufacturer’s instructions. Informa-
tion about antibodies, dilutions, incubation conditions 
and imaging are detailed in the ‘supplemental methods’.

Cell-flipping assay
The schematic in Fig.  2D summarizes the broad steps 
for the cell-flipping assay [16]. More information on cell 
counts, fixation, staining, imaging and data analysis are 
detailed in the ‘supplemental methods’.

Results
CRYβB2 overexpression induced invasion of 3D cultured 
TNBC spheroids
In our previous study, we reported that CRYβB2 induced 
a notable invasive phenotype in 3D cultured SUM159 
spheroids on Matrigel [13]. This study aims to confirm 
and quantitatively advance our earlier findings. Initially, 
3D spheroids were collected and the overexpression of 
the CRYβB2 protein in SUM159 spheroids (SUM159 + C) 
was confirmed using western blot analysis (Fig.  1A). 
Prior to collection, spheroids were imaged (Fig.  1B) for 
subsequent invasion analysis. The detection of core 
and invaded areas, viewed as spindle-like protrusions 
away from the spheroid’s core, allowed for the calcula-
tion of invasion for each spheroid. The overall results 
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demonstrated that CRYβB2 overexpression significantly 
increased invasion in spheroids derived from SUM159 
cells (Fig. 1C and Fig. S1).

CRYβB2 suppressed the expression of protocadherins 
(PCDHs)
To investigate the impact of CRYβB2 overexpression on 
gene expression, RNA extracted from SUM159 spher-
oids was subjected to RNA-seq transcriptome analysis. 
The findings indicated that CRYβB2 overexpression led 
to differential expression of 1,973 genes (Table S2). Fur-
ther examination of these differentially expressed genes 
(DEGs) through pathway enrichment analysis revealed 
that ‘cell adhesion’ was the most significantly affected 
process by CRYβB2 (Fig. 2A and Table S3), with PCDHs 
constituting a major group of adhesion-related genes 
influenced by CRYβB2 (Table S4). Specifically, CRYβB2 
overexpression resulted in a general downregulation of 
clustered PCDH (cPCDH) genes, alongside an upregula-
tion of the nonclustered PCDH (ncPCDH) gene PCDH7 
(Fig.  2B). RT-qPCR analysis validated the downregula-
tion of alpha and gamma PCDH (αPCDHs and γPCDHs) 
gene clusters by CRYβB2 in 3D spheroids and 2D mono-
layers (Fig.  2C and Fig. S2A). A cell-flipping assay con-
firmed that CRYβB2 overexpression significantly reduced 
cell-cell adhesion in SUM159 cells (Fig. 2D). Analysis of 

The Cancer Genome Atlas (TCGA_BRCA) patient data 
demonstrated an overall downregulation of cPCDHs 
in TNBC and highlighted the impact of several PCDH 
genes on overall survival in these patients (Fig. S2B and 
Table S5).

Knockout of PCDH7 attenuated CRYβB2-iduced invasion
PCDH7 is a ncPCDH gene that has been previously dem-
onstrated to enhance migration, invasion, and metastasis 
in TNBC cell lines [17, 18]. RT-qPCR analysis indicated 
that CRYβB2 overexpression led to a significant upregu-
lation of PCDH7 mRNA in SUM159 + C 3D spheroids 
(Fig.  3A), and to a lesser extent in 2D monolayers (Fig. 
S3A). Western blot analysis confirmed the upregulation 
of PCDH7 protein levels in SUM159 + C 3D spheroids 
(Fig. 3B). To investigate the role of PCDH7 in CRYβB2-
mediated invasion, we performed a knockout (KO) of 
PCDH7 in SUM159 + C cells and confirmed the absence 
of PCDH7 protein in both SUM159 + C 2D cells and 
3D spheroids (Fig.  3C). Altogether, the KO of PCDH7 
resulted in a reduction in the CRYβB2 protein (Fig. 3C), 
suggesting a potential regulation and/or interaction 
between both proteins. Of note, in the SUM159 + C 3D 
spheroids, PCDH7 protein showed a light band at the 
expected size (116 KDa) and a more prominent band 
at ~ 140 KDa suggesting possible post-translational 

Fig. 1  CRYβB2 overexpression induced invasion in SUM159 spheroids. (A) Western blot analysis confirming the overexpression of CRYβB2 in SUM159 3D 
cultured spheroids (SUM159 + C). Each representative blot is cropped to show an n = 1 for each cell line from their respective full-length blots. Full length 
unmodified blots can be found in the ‘Supplementary Information’ file. (B) Representative images of tumor spheroids grown on Matrigel from SUM159 
and SUM159 + C cells. (C) Quantification of invasion induced by CRYβB2 in SUM159 (n = 94, median = 0.14) and SUM159 + C (n = 156, median = 0.33) 
spheroids. Each dot on the graph indicates quantification of one spheroid. Scale bar = 100 microns. Statistical significance was determined using the 
Mann-Whitney U test. For all panels, +C refers to cells with CRYβB2 overexpression. ****p < 0.0001
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modifications (PTMs), degradation or variant expres-
sion of PCDH7 protein. Subsequently, 3D invasion assay 
showed that the KO of PCDH7 diminished the invasive 
capabilities of SUM159 + C 3D spheroids to levels compa-
rable to wild-type spheroids (Fig. 3D and Fig. S3B).

Discussion
In this study, we used the physiologically relevant 3D cul-
ture system to further validate and quantitate the effect of 
CRYβB2 on invasion and investigate how overexpression 

of CRYβB2 reprograms gene expression to increase the 
invasive capacity of TNBC cells.

The CRYβB2 protein is predominantly associated with 
the structural integrity and functionality of the ocular 
lens. Within the lens, CRYβB2 is instrumental in pre-
serving lens transparency and refractive characteristics 
[19]. Similar to the ethnic disparities observed in BC, 
polymorphisms impacting CRYβB2’s protein structure 
induces ocular disease (e.g., cataracts) disparities in 
certain ethnicities [20, 21]. Nevertheless, CRYβB2 has 
functional relevance beyond the eye lens by aiding in 

Fig. 2  CRYβB2 suppressed the expression of protocadherins (PCDHs). (A) Enrichment analysis plot of the most significantly impacted pathways by 
CRYβB2 in SUM159 spheroids. Stratification of genes was done according to the Gene Ontology pathways (GO_P) where dot size indicated the number 
of genes in each pathway, and dot color indicates significance of Q-value. Pathways are ranked based on both number of regulated genes (indicated by 
sphere size) and Q-value (indicated by sphere color). (B) Volcano plot of adhesion genes regulated by CRYβB2 as shown by RNA-seq analysis (black = non-
DEGs, red = DEGs, and green = PCDH genes and green stars = labelled PCDH genes). (C) RT-qPCR using pan-α-PCDH and pan-γ-PCDH primers to quan-
titate the effect of CRYβB2 on α-PCDH and γ-PCDH genes in SUM159 3D spheroids. (D) Left: a schematic showing the stepwise procedures for the cell 
flipping assay used to measure the effect of CRYβB2 on cell-cell adhesion; Right: a quantification of the area occupied by nonadherent cells which is 
indicative of lower cell-cell adhesion. Statistical significance was determined using Student T test. For all panels, +C refers to cells with CRYβB2 overexpres-
sion, ns = nonsignificant, *p < 0.05, **p < 0.01
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Fig. 3  Knockout of PCDH7 attenuated CRYβB2-iduced invasion. A. RT-qPCR analysis of the effect of CRYβB2 on the expression of PCDH7 in the SUM159 
3D spheroids. Statistical significance was determined using Student T test. B. Western blot analysis of the effect of CRYβB2 on the expression of PCDH7 in 
the SUM159 spheroids. Each representative blot is cropped to show an n = 1 for each cell line from their respective full-length blots. Full length unmodi-
fied blots can be found in the ‘Supplementary Information’ file. C. Western blot analysis to confirm the successful knockout of PCDH7 in SUM159 + C 
spheroids, in addition to the status of CRYβB2 protein expression in each of the conditions both in 2D and 3D culture conditions. D. Quantification of inva-
sion induced by CRYβB2 in SUM159 (n = 150, median = 0.093), SUM159 + C (n = 259, median = 0.184) and SUM159 + C/PCDH7 KO (n = 214, median = 0.082) 
spheroids. Below the graph are representative images for each condition. Scale bar = 100 microns. Each dot on the graph indicates quantification of one 
spheroid. Statistical significance was determined using the Kruskal–Wallis test. For all panels, +C refers to cells with CRYβB2 overexpression. ns = nonsig-
nificant , *p < 0.05 and **** p < 0.0001
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regenerating the optic nerve, inducing optimal neuronal 
signaling and branching and maintaining cellular homeo-
stasis in male and female reproductive organs [22–28]. 
CRYβB2 emerged as a potential culprit for BC racial dis-
parities due to its upregulation in AA patients across all 
BC subtypes [29, 30], and multiple other cancers [8, 10, 
11] and its association with survival outcomes [31]. Until 
recently, the role of CRYβB2 in cancer development and 
its mechanism(s) of action were obscure. We and oth-
ers studied CRYβB2 in TNBC cells and showed that it 
promoted tumor progression by increasing proliferation 
of cells in vitro as well as increasing tumor volume and 
metastasis in vivo [13, 32]. Additionally, we previously 
reported the novel observation that CRYβB2 induced a 
distinctive invasive phenotype when cells were cultured 
in 3D [13].

TNBC has the highest metastatic rate and, thus, high-
est mortality compared to all other BC subtypes [33]. 
Notably, premenopausal AA women have a significantly 
higher incidence of TNBC compared to other races, 
which may contribute to their disparate survival out-
comes [34]. But even among TNBC patients, incidence 
rate of distant metastasis among AAs is higher than in 
EA counterparts [35]. AAs have worse survival compared 
to EA patients after controlling for socioeconomic fac-
tors and delay of treatment, suggesting that biological 
factors play a role in this survival disparity [3, 36]. In this 
context, we show that CRYβB2 significantly increased 
invasion in the 3D spheroids derived from SUM159 cells 
(Fig. 1B-C). Invasion represents a critical early step in the 
process of metastasis involving changes in gene expres-
sion, signaling and tumor microenvironment. Further-
more, CRYβB2 drives TNBC proliferation [13, 32], which 
likely leads to higher growth capacity at metastatic sites 
to form secondary tumors. These finding along with pre-
vious reports showing higher CRYβB2 in AA tumors and 
linking it to enhanced metastasis [7, 32] could, therefore, 
explain a role of CRYβB2 in TNBC disparities.

Our next aim was to understand the changes in gene 
expression that are induced by CRYβB2 to drive inva-
sion. It is well-established that the processes of inva-
sion and metastasis are orchestrated by a complex 
network of genes [37], therefore, it was anticipated that 
CRYβB2 modulated the expression of a wide array of 
genes, including growth factors, adhesion genes and 
inflammatory markers among others, as our transcrip-
tome analysis confirmed (Table S2). Pathway analysis 
revealed ‘cell adhesion’ as the most significantly altered 
process by CRYβB2 in addition to others such as ‘extra-
cellular matrix (ECM) organization’ (Fig.  2A and Table 
S3). These pathways are crucial for tumor progression 
and provide a mechanistic explanation to the observed 
effect of CRYβB2 on invasion. The invasive behav-
ior of cancer cells is driven by changes in cell adhesion, 

increased motility, and the production of enzymes like 
matrix metalloproteinases (MMPs), which degrade the 
ECM to provide open channels for the invading cells 
[37]. Of note, our RNA-seq analysis shows several MMPs 
to be upregulated in response to CRYβB2 overexpres-
sion (Table S6), including MMP1, a well-studied colla-
genase whose upregulation is observed in multiple solid 
tumors to induce metastasis and tumor progression [38]. 
Of note, our data showed that CRYβB2 regulated genes 
involved in ‘nervous system development’ (Fig. 2A). The 
CRYβB2 transcript is detectable during postnatal devel-
opment and throughout adolescence in the olfactory 
bulb, hippocampus, cerebral cortex, and cerebellum [39]. 
Functional studies on mouse models demonstrated that 
the release of CRYβB2 via exosomes facilitated neuronal 
repair, axonal elongation and dendritic growth through 
autocrine and paracrine pathways by inducing proteins 
such as CNTF and TMSB4X [22, 26, 40]. These neuronal 
processes are driven by invasion and proliferation which 
are likely to be conserved functions of CRYβB2 between 
neurons and cancer cells. Furthermore, the neurotrophic 
functions of CRYβB2 may partially explain its oncogenic 
roles, as high intratumoral nerve density correlates with 
increased metastatic rates and poor prognosis across 
various solid tumors [41]. Whether CRYβB2 can work in 
a similar fashion to induce invasion of neighboring cells, 
modulate immune cells or condition distant organs for 
metastatic spread is to be addressed in future studies.

One of the key hallmarks of cancer is the activa-
tion of invasion and metastasis, which heavily relies on 
altered cell-cell adhesion enabling cancer cells to detach 
from the primary tumor, invade surrounding tissues, 
and metastasize to distant sites [37]. One mode of cell-
cell interaction is through adhesive contact mediated by 
cadherin proteins [42]. The ~ 70 PCDH genes constitute 
the largest group within the broader cadherin super-
family of cell adhesion molecules, which also includes 
the canonical classical cadherins (such as N-cadherin 
and E-cadherin). cPCDHs are organized in gene clus-
ters (alpha, beta, and gamma) on a single chromosome, 
allowing for complex combinatorial expression [43–46]. 
The unique genomic organization of cPCDHs and the 
strong involvement of epigenetic mechanisms in their 
regulation make them particularly subject to hypermeth-
ylation which has been shown to cause collective sup-
pression of cPCDHs expression in breast, colorectal and 
Wilm’s tumors [47–49]. Similarly, our RNA-seq analysis 
revealed a broad suppression of cPCDHs expression in 
the CRYβB2-overexpressing 3D spheroids (Fig.  2B-C). 
Notable examples of the suppressed cPCDHs include 
PCDHA3, PCDHGA5, PCDHGB4, PCDHGB5 and 
PCDHGB6 whose downregulation is shown to be asso-
ciated with lower overall survival in TNBC patients in 
the TCGA cohort (Table S5). Our findings align with 
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previous studies that had shown PCDHA3 to inhibit 
proliferation, invasion and migration in lung cancer by 
suppressing several EMT markers such as N-cadherin, 
fibronectin and vimentin [50]. Furthermore, the overall 
downregulation of the γPCDHs in lung cancer has been 
linked to EMT, migration and invasion [51]. The link 
between cPCDHs and EMT complements previous find-
ings by us and others showing the stimulatory effect of 
CRYβB2 on EMT. For example, we previously showed 
that CRYβB2 overexpression suppressed the EMT key 
marker E-cadherin leading to higher metastasis to the 
liver [13]. Likewise, another study using premalignant 
TNBC cells showed that CRYβB2 activated the PI3K/
AKT signaling to induce the expression of the EMT tran-
scription factors ZEB1 and Snail, resulting in increased 
lung and bone metastases [32]. Whether the downregula-
tion of cPCDHs in the CRYβB2-overexpressing spheroids 
is part of a broader EMT mechanism in TNBC needs fur-
ther investigation.

Our results also show that CRYβB2 induced the 
expression of the PCDH7 protein (Fig.  3A-B). PCDH7 
belongs to the ncPCDHs which, unlike cPCDHs, are 
scattered throughout the genome and are more structur-
ally diverse, often functioning in broader contexts of cell 
adhesion and signaling outside of neurons [52]. PCDH7 
is frequently overexpressed in breast, lung and prostate 
cancers [17, 53, 54]. In TNBC, PCDH7 was reported 
to promote brain and bone metastases [17, 18]. While 
the mechanism of action of PCDH7 in BC is unknown, 
PCDH7 is known to synergize with KRAS mutations to 
activate MAPK signaling in lung cancer [53, 55]. In colon 
cancer, PCDH7 has been found to activate ERK/cFOS 
signaling to induce tumor proliferation and metastasis 
to the liver [56]. Our results indicated that the PCDH7 
protein may be subject to PTMs given our observation 
of a prominent larger band in the cells overexpressing 
CRYβB2. According to GeneCards, PCDH7 has seven 
glycosylation sites. Cadherin family proteins are known 
to undergo glycosylation which affects their stability, 
activity and cell adhesion properties. For example, gly-
cosylation of E-cadherin was found to inhibit its cell-cell 
adhesion function and alter cytoskeletal organization 
[57]. Whether the glycosylation of PCDH7 has func-
tional consequences on invasion and metastasis is yet to 
be studied. Alternatively, the two bands of PCDH7 pro-
tein may be the result of different isoforms, as PCDH7, 
according to the ensemble database, has multiple protein 
variants ranging in size from 13 to 138 KDa. Our find-
ing that the KO of PCDH7 diminished the invasion of the 
SUM159 + C spheroids (Fig. 3D and Fig. S3B) confirmed 
its functional impact on invasion and metastatic spread. 
However, future work is warranted to delineate the pre-
cise mechanism(s) of action of PCDH7 in our CRYβB2-
overexpressing model and in TNBC overall.

Conclusion
We used a biologically relevant 3D culture system to 
quantitatively confirm that CRYβB2 promoted invasion 
in a TNBC cell line. Our data provides a novel mecha-
nistic understanding in which CRYβB2 reprograms gene 
expression to suppress key adhesion genes (cPCDHs) to 
facilitate the loss of cell-cell adhesion which is crucial 
for initiation of invasion and metastasis. We further pro-
vided a direct link between PCDH7, a known oncogene, 
and the invasive capacity caused by CRYβB2. CRYβB2 
may facilitate the identification of individuals at elevated 
risk for more aggressive forms of the disease and, there-
fore, contribute to mitigating the survival disparities 
observed between AA and EA TNBC patients.

Limitations
Despite the advantages of 3D cultures, disadvantages 
include high complexity and, in some cases, weak repro-
ducibility [14]. Accordingly, we sought to confirm some 
of our gene expression data in 2D monolayers that are 
known for their higher reproducibility [14]. While the 
α and γPCDHs did not show a significant difference in 
their pattern of expression between 2D and 3D systems 
(Fig.  2C and S2A), the expression of PCDH7 showed a 
significantly higher magnitude of increase in SUM159 3D 
spheroids compared to 2D cells. Accordingly, future stud-
ies to investigate the cellular signaling and mechanisms 
that control the expression of PCDH7 are warranted.

The quantification of cPCDH genes on the protein level 
proved to be challenging due to the scarcity of commer-
cially available antibodies that work efficiently for west-
ern blot or immunofluorescence assays. We observed 
that KO of PCDH7 resulted in downregulation of the 
CRYβB2 protein (Fig.  3C) which was unexpected. We 
were unable, due to lack of resources, to follow up on this 
observation and investigate the potential for a feedback 
loop between CRYβB2 and PCDH7.
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