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Abstract 

Background Drug response prediction can infer the relationship between an individual’s genetic profile and a drug, 
which can be used to determine the choice of treatment for an individual patient. Prediction of drug response 
is recently being performed using machine learning technology. However, high-throughput sequencing data pro-
duces thousands of features per patient. In addition, it is difficult for researchers to know which algorithm is appropri-
ate for prediction as various regression and feature selection algorithms exist.

Methods We compared and evaluated the performance of 13 representative regression algorithms using Genomics 
of Drug Sensitivity in Cancer (GDSC) dataset. Three analyses was conducted to show the effect of feature selection 
methods, multiomics information, and drug categories on drug response prediction.

Results In the experiments, Support Vector Regression algorithm and gene features selected with LINC L1000 
dataset showed the best performance in terms of accuracy and execution time. However, integration of mutation 
and copy number variation information did not contribute to the prediction. Among the drug groups, responses 
of drugs related with hormone-related pathway were predicted with relatively high accuracy.

Conclusion This study can help bioinformatics researchers design data processing steps and select algorithms 
for drug response prediction, and develop a new drug response prediction model based on the GDSC or other high-
throughput sequencing datasets.

Keywords Drug response, Regression, Gene expression, Multiomics, GDSC dataset

Introduction
As the era of precision medicine commences, a number 
of studies are seeking to utilise the genomic profiles of 
cancer patients in order to design personalised treat-
ments [1]. Notwithstanding the advent of an array of 
cancer therapies, drug treatments remain susceptible to 
influence from genetic and environmental conditions. 
In other words, the effects of a given drug can vary 
depending on the interaction between the drug and 
the molecules present in the body [2]. It is therefore 
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imperative to predict the effectiveness of drugs using 
genomic information and to enhance therapeutic 
responses.

One of the research topics in pharmacogenomics is 
drug response prediction. This aims to predict the sen-
sitivity of each genome to drugs using diverse genomic 
information, including single nucleotide variations, 
copy number variations, RNA expression, methylation, 
and proteomics [3]. In order to achieve accurate predic-
tions of drug response, it is essential to generate and 
utilise large-scale datasets in predictive models. The 
Genomics of Drug Sensitivity in Cancer (GDSC) repre-
sents one of the most comprehensive pharmacogenetic 
datasets, initially released in 2012. It encompasses assay 
data for drug sensitivity across 969 human cancer cell 
lines and 297 compounds, including 243,466 IC50 val-
ues [4].

The prediction of drug responses can be modelled as 
a regression problem, and a variety of regression algo-
rithms can be applied to drug sensitivity data. However, 
many of these techniques rely on sophisticated algo-
rithms that may not be readily accessible to research-
ers lacking a strong computational background. In 
contrast, the basic regression models currently imple-
mented in Python libraries such as Scikit-Learn 
[5] are readily accessible for researchers in the biologi-
cal and bioinformatics fields. This study deliberately 
focuses on these accessible tools with the objective 
of providing a practical framework that can be read-
ily implemented by researchers from a range of fields, 
including those who may lack advanced computational 
expertise. While a number of regression algorithms are 
available, researchers may find it challenging to identify 
the most appropriate algorithm for drug response pre-
diction and to preprocess the data, given the extensive 
number of input features typically present in genomics 
data.

In this study, 13 representative regression algorithms 
were employed for the purpose of predicting drug sen-
sitivity using the GDSC dataset. The objective of this 
research is to provide clear and accessible guidelines for 
bioinformatics researchers in the design of data pro-
cessing steps and the selection of algorithms for drug 
response predictions, while also considering predictive 
accuracy.To this end, three analyses were devised. Firstly, 
a comparison was conducted between four feature selec-
tion methods, comprising three existing algorithms 
and one based on biological experiments. Secondly, 
the impact of integrating multi-omics data, including 
somatic mutation and copy number variation, into gene 
expression datasets was demonstrated. Thirdly, the accu-
racy of the predictions was compared across different 
drug groups.

Methods
Data sets
In order to train machine learning models, genomic pro-
files and IC50 values for drug response markers were 
retrieved from [6]. The dataset comprises 8,046 genes 
from a total of 734 cancer cell lines. The genomic pro-
files employed in this study comprise gene expression, 
copy number variation (CNV), and mutation datasets 
derived from the GDSC dataset. The aforementioned 
datasets were directly obtained from the study by Chen 
and Zhang, where the preprocessing of the genomic pro-
file data was described in Section 4.1 of [6].

The gene expression data are arranged in a matrix 
comprising 734 rows and 8046 columns, representing 
734 cancer cell lines and 8046 genes, respectively. The 
gene expression data for each cell line is meticulously 
catalogued and identified using the COSMIC ID. In addi-
tion to gene expression data, other omics data, includ-
ing mutation and copy number variation (CNV) profiles, 
were also incorporated as input features to investigate the 
impact of integrating multi-omics features. The mutation 
data are structured in a matrix of 734 x 636, in which the 
rows represent the 734 cell lines (identified by COSMIC 
ID) and the columns represent the genes. The presence 
or absence of a mutation is indicated by a binary value, 
with 0 denoting the absence of a mutation and 1 indicat-
ing its presence. Similarly, the CNV data are organised 
in a matrix of 734 x 694, encompassing the CNV status 
for genes in 734 cell lines (identified by COSMIC ID). 
The CNV status is represented by binary values, with a 
value of 0 indicating a normal copy number and a value 
of 1 indicating a variation. A total of 636 and 694 features 
were derived from mutation and copy number variation 
profiles, respectively, as in [6].

Furthermore, information on drug groups was incorpo-
rated into this study. As described in [6], the 201 drugs 
were classified into 23 groups based on their targeted 
pathways.

Regression algorithms used
The following Python-based 13 regression algorithms, 
included in the scikit-learn library, were tested in 
an experimental setting. Each algorithm is classified into 
one of six categories, as outlined in Table 1. The regres-
sion algorithms employed in this study align with the 
fundamental regression algorithms utilized in machine 
learning. The objective is to provide training guidelines 
for basic machine learning regression models to biolo-
gists and bioinformatics researchers who wish to use the 
GDSC dataset. The intention is to implement regression 
models that are relatively accessible.

The Elastic Net, LASSO, Ridge, and SVR algorithms 
are based on the principles of linear regression. These 
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algorithms employ linear relationships between input 
features and weights to predict continuous outputs. With 
the exception of SVR, the remaining three algorithms 
utilise L1 and L2 rules to reduce model complexity. Sup-
port vector regression (SVR) employs support vectors to 
establish a linear relationship between input features and 
outputs.

The algorithms designated ADA, DTR, GBR, RFR, 
XGBR and LGBM are decision tree-based and utilise 
input features for the purpose of data segmentation and 
predictive modelling. In this process, a series of decision 
trees are constructed, and weights are assigned to each 
tree. Alternatively, the trees are learned in a sequential 
manner to create a predictive model. One advantage of 
this approach is that it allows the selection of an appro-
priate model, according to the structure or complexity of 
the data.

MLP is an artificial neural network based on a multi-
layer perceptron. The network is composed of three lay-
ers: an input layer, a hidden layer, and an output layer. 
The neurons in each layer receive input through an acti-
vation function. The capacity to model intricate, non-lin-
ear relationships using multilayer structures represents a 
significant advantage of this approach, and it is therefore 
employed in a range of deep learning applications.

The K-nearest neighbour (KNN) algorithm is a type of 
machine learning that relies on the concept of nearest 
neighbours. The prediction is performed by tracking the 
K nearest neighbours of the given data, that is to say, the 

K data points that are most similar or closest to the given 
data. The value of K can be selected at the discretion of 
the user, and the neighbouring data are selected through 
the application of calculations such as the Euclidean dis-
tance and the Manhattan distance. The KNN algorithm 
can be used for both classification and regression, and 
offers an intuitive interface.

GPR offers forecasts for forthcoming data based on a 
Gaussian distribution. The method is effective for small 
datasets, but the accuracy of calculations is compromised 
for large datasets.

The parameters of all models employed in this study 
have been collated and are presented in a supplementary 
file (Additionl file 1 Table S1).

Feature selection methods
The algorithms of mutual information (MI), variance 
threshold (VAR), and select K best features (SKB) from 
the Python scikit-learn library were selected as rep-
resentative feature selection algorithms for gene expres-
sion data. As an additional feature selection method, the 
Library of Integrated Network-Based Cellular Signatures 
(LINCS) L1000 dataset was employed [7]. The L1000 
library offers insight into the biological, genetic, chemi-
cal and medical reactivity of cells associated with various 
diseases, as well as a list of approximately 1,000 major 
genes that demonstrated a significant response during 
drug screening. The L1000 dataset indicates the use of 

Table 1 Summary of regression algorithms used in this study

Library/Algorithm Abbreviation Description Category

sklearn/KNeighborsRegressor KNN Get an output which is the average property values of
k nearest neighbors [8]

Miscellaneous

sklearn/RandomForestRegressor RFR Concept of regression trees by exploiting the power of
computers to simultaneously generate hundreds of regression trees[9]

Ensemble

sklearn/SupportVectorRegressor SVR Characterized by the use of kernels, sparse solution,
and VC control of the margin and the number of support vectors[10]

Kernel-based

sklearn/DecisionTreeRegressor DTR Generates a decision tree from given instances [11] Tree- or rule-base

sklearn/AdaBoostRegressor ADA Consists of several decision tree regressors as a weak learner[12] Ensemble

sklearn/GradientBoostingRegressor GBR Integrated model with higher performance and better stability [13] Ensemble

lightgbm/LGBMRegressor LGBM Framework for implementing Gradient Boosting Decision Tree [14] Ensemble

xgboost/XGBRegressor XGBR Scalable machine learning system for tree boosting [15] Ensemble

sklearn/MLPRegressor MLP Feed-forward neural networks to deal with non-linear regression 
models [16]

Artificail neural network

sklearn/GaussianProcessRegressor GPR Nonparametric method that belongs to the Bayesian statistics family 
[17]

Miscellaneous

sklearn/Ridge RGE Designed to find the linear hyperplane that approximates the data 
labels well [18]

Regularized

sklearn/Lasso LAS Based on the concept of minimizing the standard mean squared error
penalized by the sum of absolute values of the regression coeffi-
cients[19]

Regularized

sklearn/ElasticNet EN Form of regularized optimization for linear regression [20] Regularized
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627 genes that are commonly present in both the GDSC 
and L1000 datasets as features of gene expression data.

Evaluation metrics
The evaluation of regression model performance is typi-
cally conducted using a range of metrics, including Mean 
Squared Error (MSE), Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), Coefficient of Determina-
tion ( R2 ) and Correlation Coefficient.

In this study, MAE scores were employed. While MSE 
and RMSE are widely used evaluation metrics, they 
have inherent limitations in expressing the magnitude 
of changes, particularly in cases where the variation in 
magnitude is of major importance. We found MAE to be 
particularly well-suited to our objective of identifying an 
evaluation metric that provides a comprehensive repre-
sentation of the distinctions between algorithms. MAE 
is a simple and straightforward expression of the aver-
age absolute deviation between the expected and actual 
values. MAE is an effective method for identifying the 
extent of divergence between algorithmic outcomes, irre-
spective of any scaling or square-root transformations 
that may be applied.

In order to guarantee the robustness of the evaluation, 
a three-fold cross-validation approach was employed. 
This method permits the evaluation of the models on 
disparate subsets of the data, thereby facilitating a more 
reliable estimation of their predictive performance. The 
dataset was divided into three equal portions, with two 
allocated for training and the remaining portion desig-
nated for validation. This process was repeated on three 
occasions, and the mean performance metrics were cal-
culated in order to assess the models.

To facilitate a comparative analysis of feature selec-
tion algorithms, an analysis of variance (ANOVA) is con-
ducted, with the R-squared value of each dataset serving 
as the primary metric. The objective of this study was to 
ascertain whether there were significant differences in the 
prediction results obtained from different feature selec-
tion algorithms using the ANOVA technique. This spe-
cific statistical method is particularly well-suited to the 
task at hand for a number of reasons. Firstly, this study 
involves comparing various feature selection methods 
and regression models. Evaluating the performance of 
each feature selection method applied to different regres-
sion models necessitates multiple group comparisons. 
ANOVA is specifically designed to handle such compari-
sons by analyzing the variance among group means and 
determining whether statistically significant differences 
exist between them. Secondly, the performance metrics 
used in this study, such as R-squared values, are likely 
to follow a normal distribution and exhibit homogene-
ous variances across groups. ANOVA is an appropriate 

statistical tool under these assumptions, as it relies on 
the normality of the data and the homogeneity of vari-
ances to produce valid results. Moreover, ANOVA results 
provide F-statistics and p-values, which clearly indicate 
whether the differences between group means are statis-
tically significant. This clarity helps researchers quickly 
understand and interpret the results. Additionally, if 
ANOVA indicates significant differences, researchers 
can perform post-hoc tests to identify specifically which 
groups differ from each other.

Experimental design

The three analyses are presented in detail in Table  2. 
Firstly, the gene expression data from the GDSC dataset, 
which represents fundamental cellular state information 
for drug response, was employed to assess the precision 
of drug response prediction through the utilisation of 
various regression algorithms. In this analysis, the per-
formance improvement of the regression model was eval-
uated by comparing the raw input features (RAW), which 
were used without preprocessing or feature selection, 
with data selected through feature selection methods 
(L1000, MI, SKB, VAR). The gene expression data from 
the GDSC dataset is organized in a matrix comprising 
734 cancer cell lines and 8,046 genes (734 x 8046), which 
was used as the raw input.

The second analysis examined the influence of incor-
porating supplementary omics data, including muta-
tion profiles and copy number variation (CNV) profiles, 
as input features alongside gene expression data on the 
regression model’s performance. This analysis compared 
the performance of using gene expression data alone 
(L1000), gene expression data with mutation profiles 
(L1000+MUT), gene expression data with CNV profiles 
(L1000+CNV), and gene expression data combined with 
both mutation and CNV profiles (L1000+MUT+CNV).

In the third analysis, the optimal input features identi-
fied in the first analysis (L1000) were employed to evalu-
ate the prediction accuracy according to drug categories. 
The input data employed in each analysis was meticu-
lously selected to align with the research objectives, 

Table 2 Overview of analysis (MUT: mutation, CNV: Copy 
number variation)

Analysis

1 2 3

Gene expression ∨ ∨ ∨

Feature selection ∨ ∨ ∨

Other omics(MUT, CNV) ∨

Drug group ∨
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thereby facilitating an assessment of the regression mod-
el’s performance and prediction accuracy.

Results and discussion
Effects of feature selection
The selection of features is of paramount importance in 
enhancing the performance and efficiency of machine 
learning algorithms. The objective is to identify the opti-
mal feature selection strategy through a comprehen-
sive examination of a multitude of algorithms based on 
R-squared values. A one-way ANOVA test was employed 
to assess the outcomes of various algorithms, as illus-
trated in Table 3. Subsequently, the ranks were compared 
to ascertain the most effective feature selection technique 
(Fig. 1), namely RAW (no feature selection), L1000, MI, 
SKB, and VAR, as delineated in Sect. "Data sets".

As demonstrated in Table  3, feature selection algo-
rithms exhibited markedly disparate prediction accuracy 
across 8 out of 13 regression algorithms. In particular, the 
use of raw input features yielded the most favourable out-
comes for the CNN, Elastic Net, GPR, and Ridge Regres-
sion methods. In contrast, the L1000 features yielded 
the most optimal outcomes for the KNN, LASSO, MLP, 
and SVR regression algorithms (Fig. 1). However, it was 
found that the use of raw input features resulted in a rela-
tively lengthy execution time (Fig.  2). Therefore, L1000 
was selected as the final feature selection strategy for the 
subsequent experiments, given its superior performance 
and reduced time consumption. The selected technique 
not only ensures the effective utilisation of computa-
tional resources but also maintains the accuracy of the 

predicted outcomes, thereby representing the optimal 
option for the algorithms under consideration.

Effects of multiomics information
The objective was to ascertain whether integrating muta-
tion (MUT) and copy number variation (CNV) data 
with the L1000 dataset yields discernible differences 
in predictive modelling performance. To investigate 
this, the results from each combination (L1000+MUT, 
L1000+CNV, and L1000+MUT+CNV) were visual-
ised and independent t-tests were used to determine 
the statistical significance of any detected changes. The 
objective of this experiment was to identify potential per-
formance gaps before and after the integration of other 
omics data, and to determine whether these differences 
were statistically significant (Fig. 3).

Our findings revealed an intriguing result: there were 
no statistically significant differences between the L1000 
(only gene expression data) and the L1000+MUT, 
L1000+CNV, and L1000+MUT+CNV datasets. In light 
of the aforementioned findings, it can be concluded that 
the incorporation of additional features derived from 
mutation or copy number variation did not result in a 
notable enhancement in prediction accuracy. Neverthe-
less, a subsequent study could be conducted to ascertain 
whether the incorporation of additional feature selection 
or extraction for multi-omics data could enhance the 
performance further.

The performance variances among the 13 algorithms 
used to process the L1000 dataset were examined using 
scatter plots and boxplots. The horizontal axis of the 

Table 3 One-way ANOVA statistical analysis results (FS: Feature 
selection)

Algorithm Best FS ANOVA
(F_statistic)

ANOVA
(P-value)

CNN RAW 13.38421269 1.25E-10

ADA _ 0.726724149 0.575

DTR _ 0.701805603 0.591

Elastic Net RAW 35.58685083 7.99E-28

GBR _ 0.993721905 0.41

XGBR _ 0.932523202 0.444

GPR RAW 68.72096921 2.00E-51

KNN L1000 3.052226854 0.016

LASSO L1000 5.377362062 0.00028

LGBM _ 0.764109533 0.549

MLP L1000 101.6711437 1.16E-72

RFR _ 1.738450171 0.139

RIDGE RAW 66.57878169 5.69E-50

SVR L1000 6.049124373 8.24E-05

Fig. 1 Ranking of feature selection algorithms using different 
regression methods

Fig. 2 Execution time for feature selection algorithms with different 
regression methods
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scatter plot represents the mean absolute error (MAE) 
score, while the vertical axis depicts the corresponding 
calculation time (Fig. 4). An evaluation of the calculation 
time was conducted using a time scale of 1 s, which has 
been widely accepted as a benchmark in various interac-
tive and real-time applications. This provided a practi-
cal threshold for classifying the speed of the algorithms 

as either ‘fast’ or ‘slow’. The algorithms were thus classi-
fied into five distinct regions: (fast, high predictive skills), 
(quick, low predictive abilities), (slow, high predictive 
abilities), (slow, low predictive abilities), and (bad pre-
dictive abilities). The combination of these two measures 
indicates that the SVR, KNN, and LGBM algorithms 
demonstrate superior performance in the (L1000+MUT) 
dataset.

As illustrated in Fig.  5, ensemble algorithms demon-
strate superior performance compared to other groups. 
The boxplots effectively illustrate the distribution of per-
formance measurements while emphasising the remark-
able predictive accuracy and robustness of ensemble 

Fig. 3 Relative predictive performance when training with gene 
expression features alone (L1000) vs. using additional mutation (MUT) 
and copy number variation (CNV) features

Fig. 4 Execution time and predictive performance for regression 
algorithms in L1000+MUT dataset

Fig. 5 A boxplot that simultaneously expresses the performance 
of each algorithm in L1000+MUT dataset
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algorithms. The results presented herein demonstrate the 
effectiveness of ensemble approaches in combining the 
strengths of various algorithms to provide more accurate 
predictions. The visual proof provided by the boxplots 
demonstrates that ensemble algorithms are capable of 
consistently outperforming their competitors in a range 
of predictive tasks.

Furthermore, our findings indicate that the Support 
Vector Regression (SVR) algorithm exhibited superior 
predictive performance compared to the other algo-
rithms. It is noteworthy that SVR exhibited exemplary 
predictive performance while necessitating a markedly 
reduced training period. This combination of high per-
formance and efficiency establishes SVR as the leading 
algorithm among those under consideration.

Furthermore, to gain additional insight into the indi-
vidual impact of MUT and CNV data on drug response 
prediction, an additional experiment was conducted 
using only MUT and CNV data as input features. The 
results of this experiment are presented in supplemen-
tary file (Additional file  1 Figure S1), and this analy-
sis serves to isolate the specific contributions of these 
omics data to predictive modelling. However, it was 

observed that the performance was not satisfactory 
when using only MUT and CNV data.

Performance comparison between drug groups
The objective of this study was to investigate the per-
formance differences of the SVR algorithm when 
applied to the L1000 dataset, with a particular focus on 
different drug groups. The mean absolute error (MAE) 
scores were evaluated, and the findings were displayed 
through a series of boxplots after the dataset was seg-
mented according to the drug’s functional categories.

As illustrated in Fig. 6, the notable performance dis-
parity observed among the drug group associated with 
the HORMONE-RELATED PATHWAY  is particularly 
noteworthy. Conversely, our analysis indicates that 
SVR-based forecasts within this particular drug group 
exhibited elevated MAE scores, suggesting diminished 
predictive precision. The discrepancy in performance 
across drug groups underscores the intricate relation-
ship between biological pathways and predictive mod-
elling outcomes.

Fig. 6 Predictive performance of SVR with L1000 features for each drug group
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Conclusion
In this study, drug response prediction was conducted 
using 13 representative regression algorithms and the 
large-scale GDSC dataset. Three analyses were designed 
to demonstrate the impact of feature selection methods, 
multiomics information, and drug categories on drug 
response prediction. In the initial experiment, a compari-
son was made between four feature selection algorithms. 
The 627 gene features selected with the L1000 dataset 
were found to demonstrate the optimal performance in 
terms of accuracy and execution time. The incorporation 
of mutation and copy number variation data did not yield 
enhanced prediction accuracy relative to the utilisation of 
gene expression data alone. Among the drug groups, the 
responses of drugs associated with the hormone path-
way were predicted with a relatively high degree of accu-
racy. The Support Vector Regression algorithm exhibited 
superior performance in the majority of experiments, as 
evaluated by two criteria: accuracy and time.

These findings not only demonstrate the efficacy 
of specific regression algorithms but also underscore 
the potential for further refinement and enhancement 
through the integration of additional data sources and 
methodologies. The utilisation of the GDSC dataset with 
readily accessible regression models enables the formu-
lation of guidelines pertaining to data preprocessing, 
integration, and algorithm selection, thereby providing 
valuable insights for researchers engaged in the fields of 
biology and bioinformatics. The experimental results sug-
gest that the accuracy of drug response prediction may 
be enhanced by the utilisation of additional information 
sources beyond gene expression data. This may entail the 
incorporation of high-throughput screening data from 
the LINCS L1000 dataset to identify salient features. 
Notwithstanding the limited impact of integrating other 
omics data on drug response prediction, we propose the 
proposition that a more sophisticated integration of mul-
tiomics data with feature extraction and hyperparameter 
tuning may serve to enhance the accuracy of the predic-
tions, as demonstrated in the subsequent study.

Building on these insights, future research can further 
extend the scope of this study by incorporating additional 
datasets and advanced methodologies. While the present 
study offers substantial insights into drug response pre-
diction using the GDSC dataset, there are several prom-
ising avenues for further investigation and refinement, 
such as the Cancer Cell Line Encyclopedia (CCLE). The 
integration of CCLE data with GDSC has the potential 
to yield several important advantages. Firstly, the com-
bination of both datasets would allow for the valida-
tion of findings across disparate data sources, thereby 
enhancing the reliability and reproducibility of the 

predictive models. Secondly, the incorporation of CCLE 
data would enhance the diversity of cell lines and drugs 
analysed, thereby facilitating the development of more 
generalised and robust models. Thirdly, a comparative 
analysis of the CCLE and GDSC datasets could reveal 
consistent patterns and complementary insights, thereby 
facilitating more accurate predictions. Lastly, the discrep-
ancies observed between the datasets could provide new 
insights into biological processes, thereby deepening our 
understanding of cancer treatment and contributing to 
the development of more effective therapeutic strategies.
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