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development manifests in the mature brain is, however, 
not well understood.

The core components of PRC2 include Enhancer of 
Zeste Homolog 1/2 (EZH1/2), Suppressor of Zeste 12 
(SUZ12), Retinoblastoma binding protein 4/7 (RBBP4/7) 
and Embryonic ectoderm development (EED). Loss-of-
function in any of these core components results in a loss 
of PRC2 function and loss of H3K27 methylation. Here, 
we used a mouse model in which the key PRC2 gene Eed 
was conditionally knocked out (cKO) from the dorsal 
telencephalon at embryonic day (E) 9.5, resulting in loss 
of PRC2 activity [6]. This model was created by crossing 
Eedfl/fl mice [6, 7] with Emx1-iCre mice [8, 9]. We per-
formed snRNA-seq on the whole cortical plate of adult 
control (CTRL), heterozygous Eed knockout (Eed-cHet) 
and homozygous knockout (Eed-cKO) mice, allowing for 
the effects of PRC2 loss-of-function in the cerebral cortex 
to be investigated. This work was done a part of a larger 

Objective
Epigenetic modifiers play a crucial role in the develop-
ment of the brain by regulating neural progenitor iden-
tity, differentiation and cell identity post-differentiation. 
One such epigenetic modifier is the Polycomb Repressive 
Complex 2 (PRC2). PRC2 functions by methylating lysine 
27 on histone H3 (H3K27), which is a repressive epi-
genetic mark [1]. Studies have demonstrated that PRC2 
regulates neural progenitor cell proliferation and dif-
ferentiation [2–5]. How the absence of this mark during 
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Abstract
Objective  The Polycomb Repressive Complex 2 (PRC2) regulates neural stem cell behaviour during development of 
the cerebral cortex, yet how the loss of PRC2 developmentally influences cell identity in the mature brain is poorly 
defined. Using a mouse model in which the PRC2 gene Embryonic ectoderm development (Eed) was conditionally 
deleted from the developing mouse dorsal telencephalon, we performed single nuclei RNA sequencing (snRNA-seq) 
on the cortical plate of an adult heterozygote Eed knockout mouse and an adult homozygote Eed knockout mouse 
compared to a littermate control. This work was part of a larger effort to understand consequences of mutations to 
PRC2 within the mature brain.

Results  Here we provide snRNA-seq data from the cortical plate of an adult heterozygous conditional Eed knockout, 
an adult homozygous conditional Eed knockout and an adult control mouse. This data provides insight on how loss of 
PRC2 function during development affects cell identity in the mature cortex.
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project investigating the role of PRC2 in the mature cere-
bral cortex [10].

Data description
This data set is snRNA-seq of the whole cortical plate of 
a CTRL, Eed-cHet, and Eed-cKO mouse. This technique 
provides high detail on gene expression in nuclei isolated 
from individual cells, allowing the role of EED, and con-
sequently PRC2, to be investigated in specific cell types.

A Eed/Emx1-iCre mouse model was in this study [10], 
which was created by crossing Eedfl/fl mice with Emx1-
iCre mice. The Eedfl/fl mice were originally obtained 
from the Jackson Laboratory Stock Center (stock num-
ber 022727) [7]. The Emx1-iCre mice were obtained 
from the Queensland Brain Institute [8] and were origi-
nally sourced from Kessaris et al. [11]. These mice have 
been validated previously [6, 7, 9]. This cross produced 
Eedwt/fl; Emx1-iCre+ mice. These mice were then crossed 
to Eedfl/fl mice to generate experimental animals, com-
prising control (CTRL, i.e. Eedfl/fl; Emx1-iCre−), hetero-
zygous Eed knockout (Eed-cHet, i.e. Eedwt/fl; Emx1-iCre+) 
and homozygous knockout (Eed-cKO, i.e. Eedfl/fl; Emx1-
iCre+) mice. One animal was sequenced per genotype; 
each were 15-week-old females from the same litter. 
Single nuclei RNA-seq was chosen rather than the more 
common single cell RNA-seq because it provides a better 
representation of cells with long processes such as pro-
jection neurons, which often get damaged during sample 
processing.

Mice were euthanised by cervical dislocation as this 
is a rapid method of euthanasia that minimises distress 
for the animal. Tissue dissection and single nuclei extrac-
tion was performed immediately afterwards (details on 
extraction method provided on GEO [GSE276683]). The 
cell suspensions underwent fluorescence activated cell 
sorting (FACS), using DAPI to filter nuclei from debris 
and to avoid collection of doublet nuclei. The cDNA 
library was prepared with the 10x Genomics Chromium 
platform using a 3’ v3.1 kit. Approximately 7000 nuclei 
per sample were loaded to achieve a target barcoded 
library of approximately 3500 nuclei per sample. The 
libraries were then sequenced on a NovaSeq 6000 with 

a sequencing depth of approximately 78,000-100,000 
reads/nuclei.

Remapping to a pre-mRNA genome, barcode process-
ing, gene counting and aggregation was performed using 
the Cell Ranger 7.0.1 (Table  1, data set 1–3). Follow-
ing this, the datasets of the three samples were merged 
and cells with > 2% mitochondrial RNA were removed 
as these are likely to be low-quality cells such as dead or 
dying cells. Using the Seurat toolkit for single cell genom-
ics (version 4.1.0) [12], the data were normalised with 
both SCTransform [13] (for cluster calculations) and 
NormaliseData (for data visualisation). Cells were then 
clustered with the standard Seurat workflow (RunPCA, 
RunUMAP, FindNeighbors, FindClusters) (dims = 1:30, 
resolution = 0.2). Clusters were identified and labelled 
based on canonical gene expression. Three small clusters 
were identified to be cells from subcortical regions - the 
subiculum and the striatum. These were likely present 
due to minor errors during dissection and were removed 
as the aim of dataset is to focus on the cortical plate. 
Additionally, one small cluster (containing only 55 cells) 
could not be identified based on gene expression and had 
low nFeature and nCount values compared to the other 
clusters. As such, it was determined that these cells were 
likely unhealthy and they were removed from further 
analyses. Following quality control, the number of nuclei 
was 2645 CTRL, 4544 Eed-cHet, and 3652 Eed-cKO 
nuclei. This processed data is provided (Table 1, data set 
4).

Limitations
One limitation of this work is that only one biological 
replicate was used per genotype, although this is miti-
gated by the fact that we sequenced over 2500 individual 
nuclei per sample. A second limitation related to the 
conditional approach we employed. By driving Eed abla-
tion specifically from neural progenitor cells within the 
embryonic dorsal telencephalon (using a conditional Eed 
allele crossed to an Emx1-iCre driver), other cell types 
within the mature dorsal telencephalon that are not 
derived from these progenitor cells would retain PRC2 
function. Examples of this includes cortical interneurons, 

Table 1  Overview of data files/data sets
Label Name of data 

file/data set
File types
(file extension)

Data repository and 
identifier (DOI or 
accession number)

Data set 1 - ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​n​c​b​​i​.​n​l​​m​.​n​​i​h​​.​g​o​v​/​g​e​o​/​q​u​e​r​y​/​a​c​c​.​c​g​i​?​a​c​c​=​G​S​M​8​5​0​4​0​9​0​​​​​​ CTRL raw data .tsv.gz
.mtx.gz

Gene Expression Om-
nibus [GSE276683]

Data set 2 - ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​n​c​b​​i​.​n​l​​m​.​n​​i​h​​.​g​o​v​/​g​e​o​/​q​u​e​r​y​/​a​c​c​.​c​g​i​?​a​c​c​=​G​S​M​8​5​0​4​0​9​1​​​​​​ cHet raw data .tsv.gz
.mtx.gz

Gene Expression Om-
nibus [GSE276683]

Data set 3 - ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​n​c​b​​i​.​n​l​​m​.​n​​i​h​​.​g​o​v​/​g​e​o​/​q​u​e​r​y​/​a​c​c​.​c​g​i​?​a​c​c​=​G​S​M​8​5​0​4​0​9​2​​​​​​ cKO raw data . .tsv.gz
.mtx.gz

Gene Expression Om-
nibus [GSE276683]

Data set 4 - ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​n​c​b​​i​.​n​l​​m​.​n​​i​h​​.​g​o​v​/​g​e​o​/​q​u​e​r​y​/​a​c​c​.​c​g​i​?​a​c​c​=​G​S​E​2​7​6​6​8​3​​​​​​ Processed data .rds Gene Expression Om-
nibus [GSE276683]

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM8504090
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM8504091
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM8504092
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE276683
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which are derived from the ventral telencephalon, as 
well as vascular cells. As such, the population of nuclei 
we sequenced comprised a mosaic of cells both with, and 
without, PRC2 function.
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