
Onditi et al. BMC Ecology and Evolution          (2024) 24:139  
https://doi.org/10.1186/s12862-024-02328-w

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMC Ecology and Evolution

Unravelling spatial scale effects 
on elevational diversity gradients: insights 
from montane small mammals in Kenya
Kenneth Otieno Onditi1,2,3, Noé U. de la Sancha4,5   , Simon Musila2, Esther Kioko2 and Xuelong Jiang1,3* 

Abstract 

Background  Montane ecosystems play crucial roles as global biodiversity hotspots. However, climatic changes 
and anthropogenic pressure increasingly threaten the stability of montane community dynamics, such as diversity-
elevation interactions, creating a challenge in understanding species biogeography and community ecology dynam-
ics in these crucial conservation areas. We examined how varying sampling spatial grains influence small mammal 
diversity patterns within Kenya’s tallest montane ecosystems.

Methods  Employing a combination of multidimensional alpha diversity metrics and multisite beta diversity charac-
teristics (species richness, phylogenetic and functional diversity and divergence, and multisite beta diversity) along-
side spatial generalized additive multivariate regression analyses, we tested how spatial scaling influences elevational 
diversity gradient patterns and their associations with environmental and human activity variables.

Results  The diversity-elevation associations were generally homogeneous across spatial grains; however, idi-
osyncratic patterns emerged across mountains. The total (taxonomic, phylogenetic, and functional) beta diversity, 
nestedness, and turnover resultant components monotonically increased or decreased with varying spatial grains. 
The associations between the diversity patterns and the environmental and human footprint variables increased 
with spatial grain size but also presented variations across mountains and indices. Species richness and phylogenetic 
and functional richness indices were more strongly influenced by spatial scale variations than were the divergence 
and community structure indices in both the diversity distribution patterns and their associations with the environ-
mental and human variables.

Conclusions  The diversity-elevation and diversity-environment (including human activity pressure) relationships 
across spatial grains suggest that montane small mammal diversity patterns portray subtle but systematic sensitiv-
ity to sampling spatial grain variation and underscore the importance of geographical context in shaping these 
elevational diversity gradients. For improved effectiveness, conservation efforts should consider these spatial effects 
and the unique geographical background of individual montane ecosystems.
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Introduction
Achieving sustainable ecosystem management and con-
servation strategies that better preserve terrestrial bio-
diversity and promote sustainable land use [1] requires 
a refined understanding of the mechanisms maintaining 
the geographically uneven distribution of species [2–7]. 
Montane ecosystems are of particular interest in this 
regard because they are global hotspots for species rich-
ness and endemism but face more intense pressure from 
human activities and are more vulnerable to the accel-
erating impacts of climate change [8–10]. Mountains 
are thus pivotal to understanding the interplay between 
biodiversity distribution trends, ecological-evolutionary 
processes, and anthropogenic correlates. Notably, while 
most observations of montane species diversity are gov-
erned by robust species-area relationship hypotheses 
[11–13], focused studies spanning local scales, multiple 
diversity dimensions, poorly studied areas such as Afro-
tropical regions, and the relative influence of environ-
mental constraints remain sparse. Such studies could 
bolster the robustness of ecological theories governing 
elevational diversity gradient patterns [14] and enhance 
ecosystem management and conservation strategies [9].

Understanding the spatial scale dependency of spe-
cies’ ecological and evolutionary patterns and processes 
is crucial for interpreting observed biodiversity patterns, 
but it remains challenging to resolve between geogra-
phies and species groups [15–17]. Levin [18] demon-
strated some of these challenges, noting that different 
spatial levels reveal different processes, all pivotal for 
accurate ecological modeling and effective conservation 
planning. The current broad consensus in species-area 
relationships [19–21] is the confluence of several guiding 
hypotheses, including beta diversity and spatial scale [22, 
23], scale-dependence of diversity [18, 24], environmen-
tal heterogeneity [25, 26], and energy-availability [13, 27]. 
A common observation across these hypotheses is that 
ecological patterns and processes and conservation man-
agement strategies that are generalizable when sampling 
at a larger grain size may not apply at smaller scales [28], 
where species interactions and more local environmental 
conditions can have stronger influences on community 
structuring [15–17, 29–31].

Studying mountains’ high biodiversity value, evolu-
tionary significance, and ecological uniqueness [32, 33] 
across a broader spatial continuum could help to better 
scale responses to changing climatic regimes and anthro-
pogenic influences. Recent studies have highlighted the 
importance of spatial scaling in sampling montane bio-
diversity observations, emphasizing its role in interpret-
ing elevational diversity gradients and the mechanisms 
driving these patterns [34–38]. To illustrate the com-
plexities of scaling elevational diversity patterns, Rahbek 

[16] found that the well-documented mid-elevation peak 
in species richness—a pattern often observed in tropi-
cal mountains—considerably varies and can even reverse 
when analyzed at different spatial scales. Similarly, 
McCain and Grytnes [39] showed that the hump-shaped 
pattern in species richness along elevational gradients 
is common only at broader spatial scales, whereas finer, 
localized scales yield more variable patterns where such 
a peak shifts or even disappears. Others like Tello et  al. 
[38] reported scale-dependent variation in community 
assembly mechanisms that determined beta diversity pat-
terns across elevations, Graham et al. [36] demonstrated 
how spatial variation in species richness along elevational 
gradients is influenced by ecological factors and evolu-
tionary mechanisms, and Montes et  al. [37] discussed 
optimization options for scale-aware biodiversity sam-
pling by accounting for changes in biodiversity across dif-
ferent spatial extents.

Despite a general understanding of montane eco-
evolutionary dynamics in mammal communities [39, 
40], increasingly unpredictable climatic conditions and 
human encroachment into previously pristine elevation 
bands suggest that existing theories may no longer reli-
ably explain species diversity and distribution dynamics 
across some montane landscapes. For example, upward 
shifts in species habitats due to changing climatic 
regimes and human pressures [41–44] fundamentally 
alter classical diversity-elevation patterns and may estab-
lish new, unknown trends [45]. Moreover, most research 
on elevational diversity gradients has focused on species 
richness as a measure of biodiversity; however, decoupled 
distribution patterns between species richness and vari-
ous indices of phylogenetic and functional diversity [46–
54] underscore the importance of preserving not only the 
number of species but also their evolutionary history and 
functional roles [53, 54]. Phylogenetic diversity indices 
quantify species evolutionary history represented within 
a community, emphasizing regions characterized by 
unique speciation trajectories, which helps prioritize the 
conservation of evolutionarily distinct species [46], while 
functional diversity assesses species ecological roles, 
essential for maintaining ecosystem processes and over-
all biodiversity health [53, 54]. For instance, while the 
turnover component of beta diversity is often linked to 
environmental filtering or species replacement, the nest-
edness component highlights species loss due to habitat 
degradation [55–57]. Furthermore, distinct responses of 
different diversity dimensions to environmental filters, 
especially in unique ecological contexts, such as at the 
extreme ends of suitability for most species [58], chal-
lenge the standard practice of using species richness as 
an umbrella biodiversity index [59]. Applying multifac-
eted biodiversity indices is a more holistic approach to 
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identifying areas critical for conservation, ensuring that 
both trait and evolutionary history are preserved across 
landscapes [55, 60–62]. More research incorporating 
a multidimensional perspective on montane biodiver-
sity—considering phylogenetic and functional diversity 
dimensions alongside species richness—would provide a 
comprehensive framework for conservation by identify-
ing functionally and phylogenetically distinct species that 
may otherwise be overlooked when considering taxo-
nomic diversity alone.

As typical tropical montane ecosystems [33, 63], moun-
tains in Kenya are characterized by rich mammalian 
diversity driven by sharp climatic and vegetational shifts 
along the elevation gradients [52, 64, 65]. In these ecosys-
tems, altitude range, geographic location, and aspect are 
primary drivers of the faunal diversity and community 
structure through intricate abiotic and biotic feedback 
[39, 52, 66–68]. For example, Mount Kenya experiences 
more precipitation on its southeastern slopes, fostering 
lush montane forests that support diverse mammal spe-
cies, in contrast to the leeward side, which receives less 
rainfall but similarly supports rich and diverse assem-
blages. The distinct regional and, in many cases, local 
variations in temperature and precipitation between and 
within mountains result in differentiated habitats, shap-
ing the composition and diversity of montane mammal 
communities [52, 69, 70]. In many Afrotropical regions, 
such as Kenya, the extent and variability of elevational 
diversity gradient patterns across diverse geographic 
areas and species groups remain largely unexplored 
empirically, often relying on inferential assumptions for 
interpretation.

Here, we investigated how spatial grain variations in 
sampling influence observed diversity–elevation asso-
ciation patterns in small mammal communities across 
Kenya’s montane ecosystems, using an ecologically sensi-
tive species group—small mammals [71], a comprehen-
sive spatially structured community dataset, and multiple 
biodiversity indices. We defined and adopted ten spatially 
varied sampling grains, ranging from microhabitats to 
landscape scales, across Kenya’s major montane ecosys-
tems. The main objectives were (i) to examine how the 
spatial grain of field sampling affects diversity-elevation 
patterns and (ii) to determine whether variations in sam-
pling grain influence the relationships between diver-
sity patterns and environmental variables and human 
ecological footprint. We predicted that species, phylo-
genetic, and functional richness would increase with 
sampling spatial scale following the species-area rela-
tionship theory, which suggests that because larger areas 
encompass more habitats, environmental heterogeneity, 
and resources, they offer more opportunities for species 
coexistence and reduce extinction risk through stochastic 

processes, thereby preserving more species [19–21]. Sim-
ilarly, we expected beta diversity to increase with spatial 
scale, because  at smaller scales, low abiotic variability 
and limited habitats result in similar species assemblages, 
which leads to low beta diversity between communities. 
However, as the spatial scale increases, greater environ-
mental heterogeneity fosters more differentiation among 
communities, thereby increasing beta diversity [22, 23]. 
We also predicted that as sampling grain size increased, 
stronger relationships between diversity patterns and 
environmental variables would emerge, in line with the 
environmental heterogeneity and energy-availability 
hypotheses, which propose that more diverse conditions 
in larger areas support more species due to the availabil-
ity of varied habitats and resources, fostering coexistence 
and enhancing biodiversity [25, 26]. Finally, we antici-
pated a stronger correlation between diversity patterns 
and human ecological footprint at intermediate sampling 
grains, consistent with the intermediate disturbance 
hypothesis. The hypothesis posits that species diversity is 
maximized at moderate disturbance levels, where neither 
too rare nor too frequent disturbances allow both early 
and late successional species to coexist, preventing com-
petitive exclusion. In contrast, rare disturbances can lead 
to dominance by competitive species, while frequent dis-
turbances may eliminate many species—both scenarios 
reducing the overall diversity [72].

Material and methods
Study area and sampling design
We focused on small mammals in the orders Roden-
tia, Eulipotyphla, and Macroscelidea across the highest 
peaks in Kenya—Mount Kenya, Mount Elgon, the Aberd-
are Range, the Cherangani Hills, the Mathews Range, 
Mount Kulal, and the Chyulu Hills (Fig.  1, Additional 
file  2). These mountains feature unique topographies 
associated with Miocene and Pleistocene tectonic and 
volcanic activities that also created unique geomorpho-
logical features [73–82]. Mount Kenya, Mount Elgon, the 
Aberdare Range, Mount Kulal, and the Chyulu Hills were 
formed through volcanic activity, with their structures 
dominated by volcanic cones and craters, whereas the 
Cherangani Hills and the Mathews Range were formed 
through tectonic processes. The diverse landscapes and 
microclimates resulting from their formation have led 
to rich biodiversity and high levels of endemism, as the 
fertile volcanic soils and varied altitudes support diverse 
ecosystems, providing habitats for diverse flora and fauna 
[32]. These mountains also act as ecological refuges, 
enabling species to diverge, adapt, and persist during 
climatic changes [43, 83]. Collectively, they are critical 
biodiversity hotspots, serving essential roles in water 
catchment, ensuring ecological balance, and supporting 
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Fig. 1  Topographical maps of the study sites and illustrations of the sampling scheme. The main figure shows the locations and names 
of the studied mountains, with the color representing the elevation variations (natural breaks classification [Jenks]). The inset figures show (a) 
the geographical locality of the study area within Kenya and (b) an illustration of the geographic and spatial layout of the sampling scheme 
implemented in the study—strictly nested quadrat design
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wildlife conservation and the livelihoods of local commu-
nities [65]. However, they are all characterized by a lack 
of dedicated formal accounts of their biodiversity and the 
processes driving them, especially for small mammals, 
for which data are nonexistent for most taxa.

For each mountain, we designed spatially varied sam-
pling windows/grain sizes [57] using the strictly nested 
quadrat method [12, 84]. Thus, we maintained the spatial 
extent and shape of the sampling window while varying 
the sampling grain/unit, guided by spatial scale concept’s 
two key aspects: the spatial extent (overall size of the area 
considered in a specific study) and spatial grain or resolu-
tion (the dimensions of the individual spatial units within 
that area, for which observations or predictions are 
made). This approach ensures more accurate estimates 
of expected species richness for a randomly located plot 
within a given area [12, 57]. We overlaid sampling grids 
spanning the extents of mountains for each spatial grain 
size—0.0001, 0.001, 0.01, 0.1, 1, 2, 4, 6, 8, and 10 km2—
resulting in ten community datasets for each mountain. 
The spatial grain sizes were defined based on leveraging 
our data resolution, previous studies, and the field sam-
pling scale at which small mammal communities demon-
strate unique biogeographic diversity [52, 85]. The largest 
grain size was used as the sampling baseline grain size for 
the smaller units. Each subsequent smaller-grain grid was 
created by first determining the centroid of the baseline 
grid and then creating a buffer of varied radii around it. 
The radii lengths were back-calculated to match the pre-
determined grid sizes using the formula Pi multiplied by 
the squared radius (A = πr2). Due to the different geo-
morphological characteristics of each mountain (lateral 
extents and peak-base heights), we ultimately sampled 
variable numbers of grids and elevation limits across 
mountains based on the transition in environmental con-
ditions (histograms of the climate and elevation data), 
vegetation, and species turnover from the surrounding 
lowlands (Additional file 2).

Species checklist and occurrence records
Across the seven mountains, we retrieved 124 small 
mammal species in the orders Eulipotyphla (30 spe-
cies), Macroscelidea (4 species), and Rodentia (90 spe-
cies) from local inventories and global checklists [86–90], 
ranging in body mass from 2.9 to 3,327.5 g (see Addi-
tional file 1 Table S1). Species distribution records were 
also determined from these inventories and checklists, 
in addition to the IUCN Red List [91] spatial extent esti-
mations and species occurrence records from the Global 
Biodiversity Information Facility (GBIF) [92]. For species 
whose ranges could not be obtained from these sources, 
we created new polygon layers based on the literature 

distribution accounts. All distribution layers were merged 
into a single species dataset in QGIS 3.34.2 [93].

Community composition matrix
The community composition matrix (site × species matrix 
describing interactions between species and the studied 
community) was obtained by superimposing the spe-
cies distribution layer with the spatially-structured grid 
datasets using the ‘Join Attributes by Location’ tool in 
QGIS. The extracted dataset listing all the species whose 
ranges overlapped each grid was transformed to a cor-
responding incidence-based site × species dataset using 
the ‘pivot_wider’ function from the ‘tidyr’ R package ver-
sion 1.3.1 [94], resulting in a matrix-like structure, with 
each row a unique site (grid) and each column a unique 
species.

Phylogenetic reconstruction
The molecular phylogeny for estimating phylogenetic 
diversity indices was constructed using Cytochrome b 
gene sequences downloaded from GenBank [95]. Sin-
gle sequences retrieved for each species in the com-
munity dataset were aligned using MAFFT v7.511 [96]. 
Phylogenetic analyses were performed using maxi-
mum likelihood (ML) to explore the topology of species 
associations and Bayesian inference (BI) to construct a 
time-calibrated tree as input for estimating the phyloge-
netic diversity indices. Both analyses were implemented 
with the GTR+I+G substitution model selected as the 
best fit under a Bayesian inference criterion in ModelF-
inder [97]. The ML analysis was performed in IQ-TREE 
v 2.3.2 [98], where branch support was estimated from 
100,000 ultrafast bootstrap replicates [99]. The BI anal-
ysis was run in BEAST v2.7.6 [100] using 100 million 
Markov chain Monte Carlo (MCMC) rounds sampled 
every 10,000 intervals. For time calibration, we used log-
normal priors based on the most recent common ances-
tors of the three orders represented in the species list, 
with dates derived from TimeTree [101], which included 
Rodentia (μ = 4.231, σ = 0.0354), Eulipotyphla (μ = 4.193, 
σ = 0.0345), and Macroscelidea (μ = 3.754, σ = 0.1694). 
The BI results were visualized in Tracer [102] to assess 
sampling adequacy, with sample size values greater than 
200 considered acceptable. The final tree was annotated 
using the maximum clade credibility method in TreeAn-
notator [103] with a 10% burn-in. For species that were 
present in the community matrix but missing sequence 
data in GenBank, we used the ‘add.species.to. genus’ 
function in ‘phytools’ version 2.1–1 [104] to assign them 
to the corresponding genera subclades [105]. For robust-
ness, we compared the final phylogeny with correspond-
ing tree subsets from the Kumar et al. [101] and Upham 
et al. [106] phylogenies.
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Species trait assembly
To ensure that the traits used for estimating functional 
diversity indices were well-defined and measurable 
properties [107], we selected traits representing external 
morphology (in grams) and diet and activity patterns (as 
integer percentages of ten diet categories) and three lev-
els of activity patterns (binary counts) from Jones et  al. 
[108], Wilman et  al. [109], and Faurby et  al. [110]—see 
Additional file 1 Table S1. These traits are related to the 
species’ ecological strategies through anatomy, life his-
tory, diet, and activity adaptiveness [108, 109]. Body mass 
generally surrogates external morphological characteri-
zation, whereas diet and activity traits surrogate ecologi-
cal strategies; all are rooted in ecosystem functioning, 
and are widely used to derive functional diversity indices 
[85, 111, 112].

Inferring diversity indices
We characterized communities using species richness 
and several phylogenetic and functional diversity indi-
ces to better understand how they varied across spatial 
grains. The selection of diversity indices was guided by 
the study’s aim to capture both the breadth of evolu-
tionary history and the range of functional traits within 
montane small mammal communities in addition to tax-
onomic diversity, thus providing a comprehensive view of 
elevational diversity gradient patterns across the range of 
spatial grain sizes. For each mountain, across the ten spa-
tial grains, we estimated five alpha diversity indices [spe-
cies richness (SR), phylogenetic diversity (PD), functional 
diversity (FD), phylogenetic divergence/community 
structure—phylogenetic mean nearest taxon distance 
(PDMNTD), functional divergence/community structure—
functional mean nearest taxon distance (FDMNTD)] and 
three multisite beta diversity indices [taxonomic, phylo-
genetic, and functional]. The datasets were first curated 
to ensure that the species represented across mountains 
(i.e., in the species composition matrix) matched those 
in the phylogenetic and trait dataset using the ‘match.
phylo.comm’ and ‘match.phylo.data’ functions in ‘picante’ 
version 1.8.2 [113]. The SR was estimated as the pres-
ence-absence sum of unique species at a grid using the 
‘specnumber’ function from ‘vegan’ version 2.6–4 [114]. 
The PD index was estimated as the sum of the total 
length of the branches of the phylogenetic tree connect-
ing all species represented within a grid, which reflects 
the species aggregate evolutionary history [115], imple-
mented with the ‘pd’ function in ‘picante.’ The FD index 
was estimated as the amount of functional space filled by 
species present within a grid, reflecting the range of traits 
present, with higher values indicating a greater diversity 
of functional traits, i.e., the ecosystem supports a wider 
variety of ecological roles or functions, implemented 

using the functional richness index of Villeger et al. [62]. 
The FD was estimated using the ‘dbFD’ function in ‘FD’ 
version 1.0–12 [116]. The PDMNTD was estimated from 
the average distance between each species and its near-
est relative in the community, i.e., the mean phylogenetic 
distance between each species in a grid and its nearest 
phylogenetic neighbor within the same grid, thus quanti-
fying the average closeness or dispersion of species in the 
phylogenetic tree with a focus on the smallest distances 
among species [117, 118]. Low values suggest that species 
are more closely related to each other on average, indicat-
ing a more clustered community in terms of phylogenetic 
relationships, and higher values indicate that species are 
more distantly related on average, suggesting a more dis-
persed community. The PDMNTD was estimated using the 
‘ses.mntd’ function in ‘picante’ version 1.8.2 [113]. We 
estimated FDMNTD in a similar manner to the PDMNTD 
approach by replacing the input phylogeny with a den-
drogram derived from the functional trait matrix. In this 
sense, the dendrogram represented the (dis)similarity of 
species based on the functional traits (hierarchical clus-
tering of species based on their functional traits rather 
than their evolutionary relationships) [117, 119]. The 
FDMNTD, thus, reflected the average similarity in func-
tional traits among the nearest neighbors within a grid: a 
low FDMNTD suggests that species in the studied commu-
nity are more closely related in terms of functional traits, 
indicating greater clustering in terms of ecological func-
tions, while higher values indicate that species are more 
distantly related on average, suggesting a more dispersed 
community [117]. We estimated beta diversity indices 
(taxonomic, phylogenetic, and functional) based on mul-
tiple-site dissimilarity to provide insights into how spe-
cies composition varied among grids, which integrates 
both turnover—changes in species identities—and nest-
edness—the degree of subset relationships among com-
munities [120, 121]. The analysis was implemented in R 
package ‘betapart’ version 1.6—taxonomic beta diversity 
was implemented using the ‘beta.multi’ function, phylo-
genetic beta diversity using the ‘phylo.beta.multi’ func-
tion, and functional beta diversity using the ‘phylo.beta.
multi’ function [56].

Estimating diversity‑environment associations
We selected seven environmental variables as environ-
mental and human-activity determinants of diversity 
patterns, following an extensive literature review on 
the theories underpinning diversity-environment asso-
ciations with a focus on mammalian diversity in tropical 
regions, coupled with initial data explorations (Figs. S2 & 
S8). The variables—annual temperature average (TAM), 
annual temperature seasonality (TAS), annual average 
precipitation (PAM), seasonality in annual precipitation 
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(PAS), terrain ruggedness index (TRI), annual actual 
evapotranspiration (AET), normalized difference vegeta-
tion index (NDVI), and human ecological footprint vari-
able (HFP)—reflect the key climate, topography, primary 
productivity, and human activity determinants of animal 
distribution and diversity patterns, especially in tropi-
cal ecosystems [10, 33, 122–124]. The PAM, PAS, TAM, 
and TAS were obtained from CHELSA [125], AET was 
extracted from Running et al. [126], NDVI was extracted 
from Didan [127], and TRI was derived from the eleva-
tion layer from NASA’s SRTMGL1 v003 1-arc second 
resolution [128] using the ‘Terrain Ruggedness Index’ 
tool in QGIS [93]. We represented the human footprint 
in wildlife areas (i.e., HFP) using the average of the global 
human modification/footprint values from Venter et  al. 
[129] and Kennedy et al. [130], representing human activ-
ity impacts on wildlife biogeography patterns across 
global to local scales. The variables were transformed 
using the natural logarithm to normalize the data distri-
bution and standardized by rescaling to a 0–1 range to 
enhance comparability and improve results’ interpret-
ability. We also quantified the effects of the mid-domain 
effect (MDE) [131, 132], bounded by geographic coor-
dinates and elevation limits of the studied mountains, 
and based on observed species richness, and computed 
the magnitude of deviation between the observed spe-
cies richness and the richness predicted under MDE null 
expectations using paired t test or a Wilcoxon signed-rank 
test.

We estimated association dynamics between diver-
sity indices and the predictor variables using generalized 
mixed additive regression models (GAMM) with con-
trols for spatial autocorrelation [133, 134]. We preferred 
GAMM because of its robustness in handling the non-
linear relationships that are typical of species diversity 
and distribution patterns [135], especially considering 
the range of spatial scales spanned in our study. Spatial 
autocorrelation in models was first assessed using the 
‘moran.test’ function from the ‘spdep’ package to calcu-
late Moran’s I [136] and then addressed based on geo-
graphic coordinates (longitude and latitude) [137][133, 
134]. To handle spatial dependency in model residuals, 
incorporating spatial coordinates into a Gaussian spa-
tial covariance function (i.e., as implemented in the syn-
tax "corSpatial (form = ~ Longitude + Latitude,  type = 
’gaussian’)" using the gamm function of the mgcv pack-
age)  simulates the correlation between observations 
using their spatial distances, ensuring that the residuals 
appropriately account for systematic effects of obser-
vations’ spatial proximity. We also introduced random 
effects based on geographically structured grid clus-
ters to allow the model to further accommodate any 
unmeasured heterogeneity between grid clusters that 

might otherwise confound the fixed effects. For this, we 
first used Euclidean distances between the environmen-
tal data and Haversine geographic distances to identify 
grid clusters using the ‘partitioning around medoids’ 
algorithm implemented in the ‘pam’ function of R pack-
age ‘cluster’ [138, 139]. By integrating these spatial com-
ponents, we adapted the inherent spatial structure of the 
data [133, 134, 137] to enhance the reliability of param-
eter estimates [140–148]. Models were fitted with the 
Gaussian distribution and identity link function due to 
the distribution fit to our data and the restricted maxi-
mum likelihood for its unbiased estimates of the covari-
ance and variance parameters in mixed models [149]. The 
performance was appraised using the adjusted coefficient 
of determination, R2

a, and Akaike’s information criterion 
(AIC). The R2

a estimates the proportion of variation in 
diversity indices explained by environmental variables—
the correlation between the observed and predicted 
outcome values—while the AIC evaluates the model fit 
(based on prediction errors in a regression analysis) in 
predicting associations between the diversity indices and 
environmental variables. Higher R2

a values and lower 
AIC values indicate that the models better predict associ-
ations. These metrics comprehensively evaluate how well 
the models captured the diversity patterns in response to 
environmental gradients. The regression analyses were 
implemented in the ‘mgcv’ package version 1.9–1 [150].

Results
The 124 species represented across the studied moun-
tains spanned three orders, 14 families, and 50 genera 
(see Additional file  1 Table  S1). Most of these species 
are of low conservation concern according to the IUCN 
Red List, with 112 listed as least concern, eight as data 
deficient, three as endangered—golden-rumped sengi 
Rhynchocyon chrysopygus, Mount Kenya thicket rat 
Grammomys gigas, and Barbour’s vlei rat Otomys bar-
bouri, and one as vulnerable—the East African highland 
shrew Crocidura allex. We also identified evolution-
arily distinct and globally endangered ‘EDGE’ species 
[151] on the list: three ‘borderline’ EDGE species—the 
endangered species (golden-rumped sengi, Mount Kenya 
thicket rat, and Barbour’s vlei rat) and three EDGE watch 
list species—the maned/crested rat Lophiomys imhausi, 
Rudd’s bristle-furred rat Uranomys ruddi, and the naked 
mole-rat Heterocephalus glaber. Sampling at larger grains 
always captured more species than at smaller grains, 
although there were only 1–2 species differences between 
the 10 km2 and 0.0001 km2 grain size variations. At the 
baseline size, 10 km2, Mt. Kenya had the highest species 
representation (72), followed by Aberdare Ranges (71), 
Cherangani Hills (63), Mt. Elgon (62), Chyulu Hills (58), 
Matthews Range (53), and Mt. Kulal (27) (see Additional 
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file  1 Table  S2). As such, species composition (dis)simi-
larity between mountains remained constant across spa-
tial scales and was only geographically patterned; Chyulu, 
Elgon, and Cherangani were the most distinct, Elgon was 
more related to Cherangani, Mt. Kenya to Aberdares, and 
Mathews to Mt. Kulal (see Additional file 3 Fig. S1).

Spatial scale inherence in diversity‑elevation associations
Correlations between diversity indices generally retained 
a similar topology between spatial grains, albeit variably 
between mountains and indices (see Additional file 3 Fig. 
S2). Compared with larger grains, smaller grains yielded 
fewer species per grid within the same mountain; how-
ever, the diversity-elevation topologies were always simi-
lar between spatial grains (Fig.  2). Notably, a unimodal 
peak in species richness at intermediate elevations, align-
ing with the mid-domain effect (MDE) null model pre-
dictions was not observed in most mountains (Fig. 2, see 
Additional file Figs. S3 & S4). For example, Mt. Kenya 
showed a sharp increase in SR at low elevations followed 
by a plateau, nearly similar to the Aberdare Range, which 
also demonstrated a steady increase in species richness 
with elevation, consistently across scales; Mount Elgon 
and the Cherangani Hills exhibited significant variation 

in SR across scales; Chyulu Hills and Mt. Kulal presented 
more uniform trends across spatial scales; and Matthews 
Range displayed distinct divergences in richness across 
spatial scales, particularly at middle and high elevations; 
with an intermediate peak in species richness emerging 
more observedly when all the mountains were combined 
(Fig. 2, see Additional file 3 Fig. S3 & S4). Deviations from 
the MDE expectations were most pronounced at smaller 
spatial scales (see Additional file 3 Fig. S3).

The phylogenetic diversity (PD) patterns were mirrored 
in those of SR, while the functional diversity (FD) indices’ 
patterns were unique, being the only index with notably 
unsystematic distributions across spatial grains despite 
smaller grains always yielding lower FD than the larger 
grains (Fig.  2, see Additional file  3 Fig. S4). The distri-
bution of the divergence indices (PDMNTD and FDMNTD) 
were generally comparable across different spatial grains 
and were only uneven between mountains: both indices 
decreased as elevation increased, except in the Chyulu 
Hills and Mathews Range. In the combined mountains’ 
dataset, PD and SR portrayed hump-shaped curves, 
PDMNTD inverted hump-shaped curves, and FD and 
PDMNTD linearly decreased, all peaking and transitioning 
ca. 2,500–3,000 m elevations, but with similar patterns 

Fig. 2  The influence of spatial grain on diversity‒elevation relationships in Kenya’s montane ecosystems. The figure displays the variation 
in diversity‒elevation patterns across different spatial grains within montane ecosystems. The curves derived from local polynomial regression 
models illustrate the association between diversity and elevation without confidence intervals to facilitate easier visualization. The color gradient 
from yellow (0.0001 km2) to dark blue (10 km.2) represents the range of spatial grains used for sampling, following a strictly nested quadrat design. 
For the corresponding linear associations, see Additional file 3 Fig. S4
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across spatial grains (Fig. 2). Linearly, the smaller grains 
yielded lower values than the larger grains, and diver-
sity-elevation patterns were homogenous across spatial 
grains, except for PDMNTD and FDMNTD in the Cheran-
gani Hills where they increased with elevation at the 
larger grains, transitioning at km2 to a decreasing trend 
(see Additional file 3 Fig. S4). The SR and PD increased 
with increasing elevation, except at Mt. Kulal, where 
they declined, and the PD decreased at Mt. Elgon; the 
FD increased at Mt. Kenya, Aberdares, and Mathews but 
decreased at other sites; and the PDMNTD and FDMNTD 
decreased at Mt. Kenya and Aberdares, increased at Chy-
ulu, and slightly decreased or remained unchanged in the 
rest of the mountains (see Additional file  3 Fig. S4). In 
the combined dataset, SR and PD increased as elevation 

increased, while FD, PDMNTD, and FDMNTD decreased 
uniformly across spatial grains (see Additional file 3 Fig. 
S4).

For beta diversity, communities were more heterogene-
ous (high turnover and low nestedness) at smaller spatial 
grains, with decreasing trends from small to larger grains 
for turnover and total beta diversity but increasing nest-
edness (Fig.  3). However, the diversity patterns across 
spatial grains were not resolved across mountains, i.e., in 
a combined dataset, the turnover, nestedness, and total 
beta diversity trends were distinct between individual 
mountains, with no unifying trend between mountains 
(Fig. 3).

Fig. 3  Influence of spatial scale on multisite beta diversity in Kenyan montane ecosystems. The figure illustrates how variations in spatial grain 
affect beta diversity patterns, with beta diversity decomposed into nestedness and turnover components contributing to overall beta diversity. The 
lines and shaded areas (95% confidence interval) represent the generalized linear regression model relationship between spatial grain size (x-axis) 
and changes in beta diversity (y-axis), with the size of each point indicating the corresponding spatial grain
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Effects of spatial scale on diversity‑environment 
relationships
The diversity-environment models’ adjusted coefficient 
of determination (R2

a) increased while the Akaike’s 
information criterion (AIC) decreased as spatial grain 
increased across mountains and diversity indices (Fig. 4, 
see Additional file 1 Table S3). The proportion of diver-
sity variances explained (R2

a) was consistently higher at 
the larger grains; the strength of the diversity‒environ-
ment associations generally increased with increasing 
spatial grain size (Fig.  4). Similarly, individual predictor 
variables portrayed stronger correlations with diversity 

indices at larger spatial grains and weaker correlations 
at smaller grains (see Additional file  1 Table  S3). When 
grids were portioned into elevational bands (three bands 
in each mountain (lower, middle, and top) except on Mt. 
Kulal, where only two bands were feasible) there was no 
discernible variation in the strength of the associations 
between diversity patterns and environmental variables 
across spatial grains. However, these associations were 
generally stronger (lower AIC and higher R2

a) at the top 
elevation bands, followed by the middle and lower bands 
across mountains and diversity indices (see Additional 
file 3 Fig. S5).

Fig. 4  Influence of spatial grain on diversity-environment associations in Kenya’s montane small mammal communities. The figure illustrates 
how the strength of diversity‒environment relationships, as quantified by Akaike’s information criterion (a) and adjusted R2 (b), varies with changes 
in spatial grain. Each point’s size represents the spatial grain size (x-axis), with the diversity indices displayed on the y-axis. The smoother lines were 
derived from generalized linear regression models and are used to highlight trends across spatial grains
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Effect of spatial scale on human footprint correlation 
with diversity patterns
The strength of associations between diversity patterns 
and the human ecological footprint (HFP) increased 
as spatial grain size increased, with some deviations 
between mountains and indices (see Additional file Figs. 
S6 & S7). For example, on Mt. Elgon, the AIC increased 
with spatial grain size, except for the FDMNTD dataset and 
the combined dataset, where the AIC increased for SR, 
PD, and PDMNTD and decreased for FD and FDMNTD. The 
R2

a increased with spatial grain across indices and data-
sets except when trends were blurred (see Additional 
file 3 Fig. S6). Individually, SR, PD, and FD decreased as 
HFP increased, except at Mt. Kulal and Mathews, and 
were consistently higher at larger grain sizes. Overall, 
the topology of indices’ associations with HFP was simi-
lar across spatial grains, except when these associations 
transitioned from positive to negative, or there was no 
association. For instance, in Mt. Kenya and Aberdares, 
SR, PD, and FD were negatively associated with HFP, and 
PDMNTD and FDMNTD were positively associated, while in 
Elgon and Chyulu, the diversity patterns were negatively 
associated with HFP, except for SR (see Additional file 3 
Fig. S7).

Discussion
The elevational diversity gradient patterns across sam-
pling spatial grains observed here extend previous stud-
ies’ findings to more local geographical contexts based on 
a more holistic sampling of mountain systems, a broader 
continuum of sampling spatial variations, and insights 
from multidimensional diversity indices.

The range of diversity-elevation patterns (Fig.  2), for 
instance, concurs with studies such as Rahbek [16] and 
Kohli et al. [40], who reported that the well-documented 
mid-elevation peak in richness in most studies of moun-
tains of tropical regions may vary considerably or even 
reverse when analyzed at different spatial scales or 
grain sizes, with finer spatial resolutions revealing local 
biodiversity patterns that coarse-scale analyses might 
overlook. The deviations between the observed spe-
cies richness patterns and patterns expected under a 
mid-domain effect (MDE)-null model were more pro-
nounced at smaller spatial scales, likely driven by local 
processes such as species interactions, microhabitat 
diversity, and localized environmental conditions, con-
trasting with larger spatial scales that tended to smooth 
out these variations, highlighting broader biogeographic 
trends [40]. The significant deviations from MDE pre-
dictions, such as those observed in the Cherangani Hills 
and Matthews Range, suggest that while geometric con-
straints are important determinants of diversity pat-
terns, other factors also significantly shape biodiversity 

patterns along elevation gradients [40, 152, 153]. Taken 
together, the absence of systematic mid-elevational 
peaks in species richness across mountains or consistent 
diversity‒elevation topologies fits various water‒energy 
availability hypotheses [39, 40], consistent with com-
monly reported patterns in small mammal communities 
of tropical regions [16, 34, 39, 40, 154]. The transitions 
at lower elevations across spatial scales likely stem from 
compositional transitions between lowland fauna and 
true mountain fauna since most of the studied mountains 
are surrounded by belts of relatively arid lowland savanna 
bushlands, grasslands, and shrublands and high pressure 
from human activity [51, 52, 124, 155, 156].

Although there have not been explicit studies examin-
ing spatial scale effects at local levels in the Afrotropic 
region, such as within a single mountain ecosystem, we 
can draw from other local diversity‒elevation associa-
tion studies. For example, on Mt. Kenya, Musila et al. [64] 
and Onditi et al. [52] reported that the species richness of 
rodents and shrews, in addition to their phylogenetic and 
functional diversity, peaked around middle elevations but 
only on the combined dataset from leeward and wind-
ward transects. The Onditi et al. [52] study also reported 
that species richness in the Chyulu Hills, where only one 
transect was established, unimodally increased as eleva-
tion increased. These observations contrast with those of 
Dreiss et al. [30], who reported that rodent species rich-
ness in the Manu Biosphere Reserve, southeastern Peru, 
decreased with elevation, a trend similar to that of Mt. 
Kilimanjaro’s bat and amphibian species richness [157]. 
Across the several mountains included in Kohli et al. [40], 
the hump-shaped richness‒elevation curve was only evi-
dent in the combined dataset, with individual mountains 
portraying varied patterns. The only Afrotropical moun-
tain in their study (the Rwenzori Mountains) depicted a 
declining richness‒elevation trend. While geographical 
contexts (including climate, locality, and human activ-
ity pressure) strongly underlie the differences between 
findings, we also note the different sampling strategies 
where only single mountainsides were sampled, unlike 
our approach, which spans three-dimensional mountain 
ecosystems, in addition to data resolution differences 
between empirical field investigations and expert-mod-
eled records that interpolate to fill sampling gaps. Ulti-
mately, elevation-diversity relationships are inherently 
tied to local geographically regionalized conditions, the 
lateral and vertical extents of the studied elevation gra-
dient, and contrasting patterns of different biodiversity 
dimensions. Our results also highlight the intricacies of 
interdiversity generalizations. The phylogenetic and func-
tional indices exhibited notable elevational deviations 
as the spatial grain size changed. For example, despite 
generally synchronous diversity-elevation responses for 
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taxonomic and phylogenetic richness, there were notable 
deviations, such as on Mt. Elgon, where species richness 
increased while phylogenetic richness decreased as eleva-
tion increased, while in Mt. Kulal, both indices decreased 
toward higher elevations. Compared with the phyloge-
netic and functional divergence indices, these patterns 
indicate that high elevations were dominated by closely 
related species (phylogenetically and functionally), unlike 
lower elevations, suggesting that conditions at higher 
elevations favored species with specific traits that lead 
to relatively homogenous communities in terms of evo-
lutionary diversity and ecological functions over time 
[158].

We observed stronger diversity‒predictor correlations 
at larger spatial scales, a pattern explained mainly by the 
environmental filtering hypothesis—greater environ-
mental heterogeneity (including human variables) within 
a larger area has stronger effects on species assembly 
dynamics than does a smaller area [38]. Notably, however, 
the increase in species richness with increasing elevation 
suggests that habitat suitability increases with increas-
ing elevation, with no evident deterioration at the peaks, 
meaning that extreme elevations (lowest and highest) 
may not be systematically harsher than mid-elevations, 
in contrast with expectations of geometric constraints 
and habitat productivity deterioration at these elevations 
[31, 34, 39, 159]. Similar to Kohli et al. [40], who invoked 
strong community filtering influences of water availabil-
ity constraints to explain why the lowlands of wet moun-
tains and highlands of arid mountains harbored the most 
functionally and phylogenetically diverse rodent commu-
nities, our results also suggest that the ecological condi-
tions along the elevation gradients could be increasingly 
homogenizing from the effects of climate change and 
human proliferation. These conditions gradually alter 
the community composition dynamics by favoring some 
lineages over others, thus driving high richness but not 
correspondingly increasing the evolutionary or func-
tional uniqueness [160]. Nonetheless, the precise nature 
of such configuration alterations requires more primary 
studies over more extended periods. We also found that 
human footprint (HFP) effects on diversity patterns were 
stronger at larger spatial grains, but variably between 
mountains. For example, HFP associations with various 
diversity indices in Mt. Kenya, Aberdares, Elgon, Chyulu, 
and Kulal were not uniform and even transitioned with 
changing spatial grains, indicating that the presence of 
human activity hindered or, in some cases, facilitated 
some aspects of the observed diversity patterns, reiterat-
ing the complex relationships between human activities 
and biodiversity in Afrotropical montane ecosystems 
[124].

Our study also presents some vital conservational 
insights. We cataloged 124 species across the seven 
mountains studied, representing more than 84% of the 
species in these three orders in Kenya [88, 161]. This high 
representation of the national mammal diversity in these 
mountains underscores their exceptional contribution 
to Kenya’s conservation endeavors. Among the recorded 
species, those of significant conservation concern due 
to their endangered or evolutionarily distinct and glob-
ally endangered ‘EDGE’ status, including Grammomys 
gigas, Otomys barbouri, Rhynchocyon chrysopygus, and 
Crocidura allex, exhibit localized distributions, each 
being endemic to specific mountains such as Mt. Kenya, 
Mt. Elgon, the Chyulu Hills, and Aberdare Ranges + Mt. 
Kenya, respectively. While the documentation of these 
taxa in field surveys often reflects a concerted endeavor 
to capture fauna of conservation priority, our findings 
highlight a systematic tendency for small-scale sampling 
to record less species diversity, potentially excluding vital 
species from local biodiversity assessments. Conserva-
tion strategies should incorporate the scale-dependent 
nature of interactions between human activities and bio-
diversity patterns in montane ecosystems, including the 
uncoupled nature of different metrics. More repetitive 
field surveys that are spatially wide-ranging and travers-
ing extensive transects could ensure accurate delineation 
of local species diversity. This is particularly crucial in 
montane ecosystems whose global biodiversity values are 
dynamically threatened by anthropogenic encroachment 
and climatic change impacts.

Notably, because comparing results across studies that 
apply different spatial and temporal survey scales can 
lead to inconsistencies in the interpretation of diversity 
patterns and the influence of environmental factors, any 
extrapolation of our results to other regions, species 
groups, or ecosystems should be guided by spatial and 
geographical similarities.

Conclusion
Our findings suggest that varied field sampling scales 
generally yield consistent species richness–elevation 
relationships. However, systematic variations emerge 
between mountains and diversity indices, highlighting 
the significant role of geographically regionalized envi-
ronmental conditions in shaping species diversity and 
distribution patterns in mountains. While observed 
montane small mammal diversity patterns seem more 
strongly influenced by these environmental factors 
than by spatial grain variations in sampling, evaluating 
montane biodiversity at single, arbitrary sampling grain 
sizes may misrepresent the true impact of predictor 
variables, such as human activities, on species diversity 
and distribution patterns. There is a need for a more 
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detailed evaluation of elevational diversity gradients 
and the impact of environmental and anthropogenic 
filtering across spatial scales, especially when compar-
ing mountains across different environmental contexts. 
This evaluation is crucial for enhancing sustainable 
ecosystem management and conservation strategies. 
Because the ranges of many species inhabiting moun-
tains surrounded by relatively drier lowland landscapes, 
such as Mt. Kulal, Mathews Range, and Chyulu Hills, 
are projected to retreat to the peaks where they become 
trapped and locally extinct over time because of the 
effects of pressure from human activity interacting with 
broader climate change impacts [43, 83], future stud-
ies should incorporate multiple elevationally-banded 
transects and employ denser traplines to uncover rare 
or new taxa, as well as temporal surveys to predict the 
shifting community assembly dynamics with better 
precision.

Abbreviations
AET	� Annual actual evapotranspiration
AIC	� Akaike’s Information Criterion
BI	� Bayesian Inference
FDMNTD	� Functional divergence—functional mean nearest taxon distance
HFP	� Human ecological footprint index
IUCN	� International Union for Conservation of Nature
MCMC	� Markov chain Monte Carlo
ML	� Maximum Likelihood
NDVI	� Normalized difference vegetation index
PAM	� Annual average precipitation
PAS	� Seasonality in annual precipitation
PD	� Phylogenetic diversity
PDMNTD	� Phylogenetic divergence—phylogenetic mean nearest taxon 

distance
R2	� Adjusted R2 (Pearson correlation coefficient)
SR	� Species richness
TAM	� Annual temperature average
TAS	� Annual temperature seasonality
TRI	� Terrain ruggedness index

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12862-​024-​02328-w.

Additional file 1. Table S1—List of species used in the study, detailing taxo-
nomic, trait, and diet characteristics and the presence-absence records 
across the studied mountains. Table S2—Species composition matrixand 
average diversity values among the studied mountains. Table S3—Sum-
mary statistics of the generalized additive mixed multivariate regression 
models’ performance evaluation and parameter estimates of environmen-
tal effects on diversity patterns across spatial scales.

Additional file 2. Supplemental accounts of the studied mountains, 
detailing orogenic, geographical, and climatic characterizations in their 
relevance to mammal biodiversity.

Additional file 3. Fig. S1—The geographical regionalization of the studied 
mountains based on species composition and multiple diversity indices. 
Fig. S2—The impact of spatial scale variations on bivariate correlations 
between the diversity indices used in the study. Fig. S3—Spatial grain 
influence on species richness distribution under the mid-domain effect 
hypothesis across Kenya’s montane ecosystems. Fig. S4—Impact of spatial 
grain on diversity-elevation relationships in Kenya’s montane ecosys-
tems. Fig. S5—The influence of spatial scale on diversity-environment 

associations across different elevation bands. Fig. S6—The influence of 
spatial scale on relationships between diversity patterns and human 
footprint across mountains inferred from regression tests. Fig. S7—The 
influence of spatial scale on relationships between diversity distribution 
patterns and human footprint. Fig. S8—The impacts of spatial scale on 
relationships between diversity indices and environmental predictors.

Acknowledgements
The mammal surveys and fieldwork underpinning this study were conducted 
collaboratively by research teams from the National Museums of Kenya 
(NMK) and the Kunming Institute of Zoology, Chinese Academy of Sciences 
(KIZ), Kenya Wildlife Service, and Wildlife Research and Training Institute. We 
extend our profound gratitude to the personnel at the NMK’s Mammalogy 
section and the KIZ Mammal Ecology and Evolution Research Group for 
facilitating comprehensive logistical support throughout the duration of our 
fieldwork activities.

Code availability
Not applicable.

Authors’ contributions
KOO conceived the study, developed the methods, and performed the 
formal analysis. NUdlS contributed to the conceptualization of the study and 
development of methods and participated in the investigation. SM and EK 
contributed to the conceptualization and investigation. XJ contributed to the 
conceptualization of the study and validated the research. The first draft of the 
manuscript was written by KOO and all authors contributed to subsequent 
revisions of the manuscript and approved the final version for submission.

Funding
This study was supported by funds from the Sino-Africa Joint Research 
Centre—Chinese Academy of Sciences (grant number: SAJC202103) and the 
National Natural Science Foundation of China—Research Fund for Interna-
tional Scientists (grant number: 32350410430).

Data availability
All data supporting the findings of this study are available within the 
paper and its Supplementary Information. The raw data analyzed and 
scripts used for the analyses are also provided in Figshare: https://figshare.
com/s/4fb685d0ace2415014f7.

Declarations

Ethics approval and consent to participate
The study did not involve animal handling and, therefore, did not require any 
wildlife research approval.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute 
of Zoology, Chinese Academy of Sciences, 17 Longxin Road, Kunming 650201, 
Yunnan, China. 2 Department of Zoology, National Museums of Kenya, Nairobi, 
Kenya. 3 Sino−Africa Joint Research Centre, Chinese Academy of Sciences, 
Nairobi, Kenya. 4 Department of Environmental Science and Studies, DePaul 
University, Chicago, IL, USA. 5 Negaunee Integrative Research Centre, Field 
Museum of Natural History, Chicago, IL, USA. 

Received: 30 June 2024   Accepted: 28 October 2024

https://doi.org/10.1186/s12862-024-02328-w
https://doi.org/10.1186/s12862-024-02328-w


Page 14 of 17Onditi et al. BMC Ecology and Evolution          (2024) 24:139 

References
	 1.	 Sayer J, Sheil D, Galloway G, Riggs RA, Mewett G, MacDicken KG, Arts B, 

Boedhihartono AK, Langston J, Edwards DP. SDG 15: Life on Land – The 
Central Role of Forests in Sustainable Development. In: Sustainable 
Development Goals: Their Impacts on Forests and People. Edited by 
Katila P, Pierce Colfer CJ, de Jong W, Galloway G, Pacheco P, Winkel G. 
Cambridge: Cambridge University Press; 2019. p. 482–509

	 2.	 Brooks TM, Mittermeier RA, da Fonseca GA, Gerlach J, Hoffmann M, 
Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues AS. Global biodiver-
sity conservation priorities. Science. 2006;313(5783):58–61.

	 3.	 Hughes CE. Are there many different routes to becoming a global 
biodiversity hotspot? Proc Natl Acad Sci. 2017;114(17):4275–7.

	 4.	 Dirzo R, Raven PH. Global state of biodiversity and loss. Annu Rev Envi-
ron Resour. 2003;28(1):137–67.

	 5.	 MacArthur RH. Geographical ecology: patterns in the distribution of 
species. Princeton, N.J: Princeton University Press; 1984.

	 6.	 Kreft H, Jetz W. A framework for delineating biogeographical regions 
based on species distributions. J Biogeogr. 2010;37(11):2029–53.

	 7.	 Rauch EM, Bar-Yam Y. Theory predicts the uneven distribution of 
genetic diversity within species. Nature. 2004;431(7007):449–52.

	 8.	 Knight J. Scientists’ warning of the impacts of climate change on moun-
tains. PeerJ. 2022;10:e14253.

	 9.	 Adler C, P. Wester, I. Bhatt, C. Huggel, G.E. Insarov, M.D. Morecroft, V. 
Muccione, A. Prakash: Mountains. In: Climate change 2022 – Impacts, 
adaptation and vulnerability. Edited by H.-O. Pörtner, D.C. Roberts, M. 
Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langs-
dorf, S. Löschke, V. Möller et al. Cambridge, UK and New York, NY, USA: 
Cambridge University Press; 2023:2273–2318.

	 10.	 Kappelle M. Tropical montane forests. In: Burley J, editor. Encyclopedia 
of forest sciences. Oxford: Elsevier; 2004. p. 1782–92.

	 11.	 Lomolino MV. Ecology’s most general, yet protean 1 pattern: the 
species-area relationship. J Biogeogr. 2001;27(1):17–26.

	 12.	 Scheiner SM. Six types of species-area curves. Glob Ecol Biogeogr. 
2003;12(6):441–7.

	 13.	 Wright DH. Species-energy theory - an extension of species-area 
theory. Oikos. 1983;41(3):496–506.

	 14.	 Buerki S, Callmander MW, Bachman S, Moat J, Labat JN, Forest F. Incor-
porating evolutionary history into conservation planning in biodiversity 
hotspots. Philos Trans R Soc Lond B Biol Sci. 2015;370(1662):20140014.

	 15.	 Lomolino MV. Elevation gradients of species-density: historical and 
prospective views. Glob Ecol Biogeogr. 2008;10(1):3–13.

	 16.	 Rahbek C. The role of spatial scale and the perception of large-scale 
species-richness patterns. Ecol Lett. 2005;8(2):224–39.

	 17.	 Sundqvist MK, Sanders NJ, Wardle DA. Community and ecosystem 
responses to elevational gradients: processes, mechanisms, and 
insights for global change. Ann Rev Ecol Evol Syst. 2013;44(1):261–80.

	 18.	 Levin SA. The problem of pattern and scale in ecology: the Robert H 
MacArthur award lecture. Ecology. 1992;73(6):1943–67.

	 19.	 Arrhenius O. Species and area. J Ecol. 1921;9(1):95–9.
	 20.	 Preston FW. Time and space and the variation of species. Ecology. 

1960;41(4):611–27.
	 21.	 Preston FW. The canonical distribution of commonness and rarity: part 

II. Ecology. 1962;43(3):410–32.
	 22.	 Whittaker RH. Vegetation of the Siskiyou Mountains, Oregon and Cali-

fornia. Ecol Monogr. 1960;30(3):280–338.
	 23.	 Jurasinski G, Retzer V, Beierkuhnlein C. Inventory, differentiation, and 

proportional diversity: a consistent terminology for quantifying species 
diversity. Oecologia. 2009;159(1):15–26.

	 24.	 Chase JM, Leibold MA. Spatial scale dictates the productivity-biodiver-
sity relationship. Nature. 2002;416(6879):427–30.

	 25.	 Macarthur R, Macarthur JW. On bird species-diversity. Ecology. 
1961;42(3):594.

	 26.	 Stein A, Gerstner K, Kreft H. Environmental heterogeneity as a universal 
driver of species richness across taxa, biomes and spatial scales. Ecol 
Lett. 2014;17(7):866–80.

	 27.	 Currie DJ. Energy and large-scale patterns of animal-species and plant-
species richness. Am Nat. 1991;137(1):27–49.

	 28.	 Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA. Conservation 
planning in a changing world. Trends Ecol Evol. 2007;22(11):583–92.

	 29.	 Heaney LR. Small mammal diversity along elevational gradients in 
the Philippines: an assessment of patterns and hypotheses. Glob Ecol 
Biogeogr. 2008;10(1):15–39.

	 30.	 Dreiss LM, Burgio KR, Cisneros LM, Klingbeil BT, Patterson BD, Presley 
SJ, Willig MR. Taxonomic, functional, and phylogenetic dimensions of 
rodent biodiversity along an extensive tropical elevational gradient. 
Ecography. 2015;38(9):876–88.

	 31.	 Quintero I, Jetz W. Global elevational diversity and diversification of 
birds. Nature. 2018;555(7695):246–50.

	 32.	 Korner C, Spehn EM, editors. Mountain biodiversity: a global assess-
ment. New York, NY: The Parthenon Publishing Group [Routledge]; 
2019.

	 33.	 Gradstein SR, Homeier J, Gansert D (eds.). The tropical mountain forest: 
patterns and processes in a biodiversity hotspot. Göttingen: Univer-
sitätsverlag Göttingen; 2008.

	 34.	 Guo Q, Kelt DA, Sun Z, Liu H, Hu L, Ren H, Wen J. Global variation in 
elevational diversity patterns. Sci Rep. 2013;3(1): 3007.

	 35.	 Dáttilo W, Regolin AL, Baena-Díaz F, Boscolo D. Spatial scaling involving 
the complexity of biotic interactions: integrating concepts, cur-
rent status, and future perspectives. Curr Landscape Ecol Reports. 
2023;8(4):137–48.

	 36.	 Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, 
McCain CM, Bowie RCK, Moritz C, Baines SB, et al. The origin and main-
tenance of montane diversity: integrating evolutionary and ecological 
processes. Ecography. 2014;37(8):711–9.

	 37.	 Montes E, Lefcheck JS, Guerra-Castro E, Klein E, Kavanaugh MT, Mazzuco 
ACD, Bigatti G, Cordeiro CAMM, Simoes N, Macaya EC, et al. Optimizing 
large-scale biodiversity sampling effort toward an unbalanced survey 
design. Oceanography. 2021;34(2):80–91.

	 38.	 Tello JS, Myers JA, Macia MJ, Fuentes AF, Cayola L, Arellano G, Loza MI, 
Torrez V, Cornejo M, Miranda TB, et al. Elevational gradients in beta-
diversity reflect variation in the strength of local community assembly 
mechanisms across spatial scales. PLoS ONE. 2015;10(3): e0121458.

	 39.	 McCain CM, Grytnes JA. Elevational Gradients in Species Richness. In: 
Encyclopedia of Life Sciences. Chichester: Wiley; 2010.

	 40.	 Kohli BA, Miyajima RJ, Jarzyna MA. Elevational diversity patterns of 
rodents differ between wet and arid mountains. Glob Ecol Biogeogr. 
2022;31(9):1726–40.

	 41.	 Moritz C, Agudo R. The future of species under climate change: resil-
ience or decline? Science. 2013;341(6145):504–8.

	 42.	 Freeman BG, Class Freeman AM. Rapid upslope shifts in new guinean 
birds illustrate strong distributional responses of tropical montane spe-
cies to global warming. Proc Natl Acad Sci U S A. 2014;111(12):4490–4.

	 43.	 Males J, Neate-Clegg MHC, Tingley MW. Building a mechanistic under-
standing of climate-driven elevational shifts in birds. PLOS Climate. 
2023;2(3):e0000174.

	 44.	 Guo F, Lenoir J, Bonebrake TC. Land-use change interacts with climate 
to determine elevational species redistribution. Nat Commun. 
2018;9(1):1315.

	 45.	 Lenoir J, Svenning JC. Climate-related range shifts - a global mul-
tidimensional synthesis and new research directions. Ecography. 
2015;38(1):15–28.

	 46.	 Cadotte MW, Jonathan Davies T, Regetz J, Kembel SW, Cleland E, Oakley 
TH. Phylogenetic diversity metrics for ecological communities: integrat-
ing species richness, abundance and evolutionary history. Ecol Lett. 
2010;13(1):96–105.

	 47.	 Jenkins CN, Pimm SL, Joppa LN. Global patterns of terrestrial 
vertebrate diversity and conservation. Proc Natl Acad Sci U S A. 
2013;110(28):E2602-2610.

	 48.	 Owen NR, Gumbs R, Gray CL, Faith DP. Global conservation of phy-
logenetic diversity captures more than just functional diversity. Nat 
Commun. 2019;10(1):859.

	 49.	 Winter M, Devictor V, Schweiger O. Phylogenetic diversity and nature 
conservation: where are we? Trends Ecol Evol. 2013;28(4):199–204.

	 50.	 Onditi KO, Li XY, Song WY, Li Q, Musila S, Mathenge J, Kioko E, Jiang XL. 
The management effectiveness of protected areas in Kenya. Biodivers 
Conserv. 2021;30(13):3813–36.

	 51.	 Onditi KO, Song WY, Li XY, Musila S, Chen ZZ, Li Q, Mathenge J, Kioko 
E, Jiang XL. Untangling key abiotic predictors of terrestrial mammal 
diversity patterns across ecoregions and species groups in Kenya. Ecol 
Indicators. 2023;154:110595.



Page 15 of 17Onditi et al. BMC Ecology and Evolution          (2024) 24:139 	

	 52.	 Onditi KO, Song WY, Li XY, Chen ZZ, Li Q, He SW, Musila S, Kioko E, 
Jiang XL. Patterns and predictors of small mammal phylogenetic and 
functional diversity in contrasting elevational gradients in Kenya. Front 
Ecol Evol. 2022;9(964): 742524.

	 53.	 Faith DP. Phylogenetic diversity, functional trait diversity and extinc-
tion: avoiding tipping points and worst-case losses. Philos Trans Royal 
Society B: Biological Sciences. 2015;370(1662):20140011.

	 54.	 Cadotte MW, Tucker CM. Difficult decisions: Strategies for conservation 
prioritization when taxonomic, phylogenetic and functional diversity 
are not spatially congruent. Biol Cons. 2018;225:128–33.

	 55.	 Baselga A. Partitioning the turnover and nestedness components of 
beta diversity. Glob Ecol Biogeogr. 2009;19(1):134–43.

	 56.	 Baselga A, Orme CDL. betapart: an R package for the study of beta 
diversity. Methods Ecol Evol. 2012;3(5):808–12.

	 57.	 Barton PS, Cunningham SA, Manning AD, Gibb H, Lindenmayer DB, 
Didham RK. The spatial scaling of beta diversity. Glob Ecol Biogeogr. 
2013;22(6):639–47.

	 58.	 Love AC, Wagner GP. Stress, harshness, and evolutionary history. Trends 
Ecol Evol. 2023;38(10):903–4.

	 59.	 Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S. Functional and 
phylogenetic diversity as predictors of biodiversity–ecosystem-function 
relationships. Ecology. 2011;92(8):1573–81.

	 60.	 Hill MJ, Heino J, White JC, Ryves DB, Wood PJ. Environmental factors are 
primary determinants of different facets of pond macroinvertebrate 
alpha and beta diversity in a human-modified landscape. Biol Cons. 
2019;237:348–57.

	 61.	 Fu H, Yuan G, Jeppesen E, Ge D, Li W, Zou D, Huang Z, Wu A, Liu Q. Local 
and regional drivers of turnover and nestedness components of spe-
cies and functional beta diversity in lake macrophyte communities in 
China. Sci Total Environ. 2019;687:206–17.

	 62.	 Villeger S, Mason NW, Mouillot D. New multidimensional functional 
diversity indices for a multifaceted framework in functional ecology. 
Ecology. 2008;89(8):2290–301.

	 63.	 Perrigo A, Hoorn C, Antonelli A. Why mountains matter for biodiversity. 
J Biogeogr. 2019;47(2):315–25.

	 64.	 Musila S, Chen ZZ, Li Q, Yego R, Zhang B, Onditi K, Muthoni I, He SW, 
Omondi S, Mathenge J, et al. Diversity and distribution patterns of non-
volant small mammals along different elevation gradients on Mt, vol. 
40. Kenya, Kenya: Zool Res; 2019. p. 53–60.

	 65.	 MEWNR. Kenya Biodiversity Atlas. Nairobi, Kenya: Ministry of Environ-
ment Natural Resources and Regional Development Authorities; 2015.

	 66.	 Gay JD, Currey B, Brookshire ENJ. Global distribution and climate 
sensitivity of the tropical montane forest nitrogen cycle. Nat Commun. 
2022;13(1):7364.

	 67.	 Dalling JW, Heineman K, González G, Ostertag R. Geographic, envi-
ronmental and biotic sources of variation in the nutrient relations of 
tropical montane forests. J Trop Ecol. 2016;32(5):368–83.

	 68.	 Kessler M, Kluge J. Diversity and endemism in tropical montane forests 
- from patterns to processes. In: The Tropical Mountain Forest: Patterns 
and Processes in a Biodiversity Hotspot. Edited by Gradstein SR, 
Homeier J, Gansert D. Göttingen, DE: Göttingen Centre for Biodiversity 
and Ecology, Univ. Göttingen; 2008. p. 35–50.

	 69.	 Zhou Y, Ochola AC, Njogu AW, Boru BH, Mwachala G, Hu G, Xin H, 
Wang Q. The species richness pattern of vascular plants along a tropical 
elevational gradient and the test of elevational Rapoport’s rule depend 
on different life-forms and phytogeographic affinities. Ecol Evol. 
2019;9(8):4495–503.

	 70.	 Onditi KO, Peterhans JK, Demos TC, Musila S, Chen ZZ, Jiang XL. Mor-
phological and genetic characterization of Mount Kenya brush-furred 
rats (Peters 1874); relevance to taxonomy and ecology. Mammal Res. 
2020;65(2):387–400.

	 71.	 Barrett GW, Peles JD. Small Mammal Ecology: A Landscape Perspective. 
In: Landscape Ecology of Small Mammals. Edited by Barrett GW, Peles 
JD. New York, NY: Springer New York; 1999. p. 1–8.

	 72.	 Connell JH. Diversity in tropical rain forests and coral reefs. Science. 
1978;199(4335):1302–10.

	 73.	 Küper W, Sommer JH, Lovett JC, Mutke J, Linder HP, Beentje HJ, Van 
Rompaey RSAR, Chatelain C, Sosef M, Barthlott W. Africa’s hotspots of 
biodiversity redefined. Ann Mo Bot Gard. 2004;91(4):525–35.

	 74.	 Ebinger C. Continental break-up: The East African perspective. Astron 
Geophys. 2005;46(2):16–21.

	 75.	 Chorowicz J. The East African rift system. J Afr Earth Sc. 
2005;43(1–3):379–410.

	 76.	 Wichura H, Bousquet R, Oberhänsli R, Strecker MR, Trauth MH. Evi-
dence for middle Miocene uplift of the East African Plateau. Geology. 
2010;38(6):543–6.

	 77.	 Furman T, Nelson WR, Elkins-Tanton LT. Evolution of the East African 
rift: Drip magmatism, lithospheric thinning and mafic volcanism. 
Geochim Cosmochim Acta. 2016;185:418–34.

	 78.	 Mairal M, Sanmartin I, Herrero A, Pokorny L, Vargas P, Aldasoro JJ, Alar-
con M. Geographic barriers and Pleistocene climate change shaped 
patterns of genetic variation in the Eastern Afromontane biodiversity 
hotspot. Sci Rep. 2017;7: 45749.

	 79.	 Morley CK, Ngenoh DK, Ego JK. Introduction to the East African Rift 
System. In: Geoscience of Rift Systems—Evolution of East Africa. 
Edited by Morley CK, vol. 44. Tulsa, OK: American Association of 
Petroleum Geologists; 1999. p. 1–18.

	 80.	 Veldkamp A, Schoorl JM, Wijbrans JR, Claessens L. Mount Kenya 
volcanic activity and the Late Cenozoic landscape reorganisation in 
the upper Tana fluvial system. Geomorphology. 2012;145:19–31.

	 81.	 Delvaux D, Khan MA. Tectonics, sedimentation and volcanism in the 
East African Rift System: introduction. J Afr Earth Sc. 1998;26(3):343–6.

	 82.	 Haug GH, Strecker MR. Volcano-Tectonic Evolution of the Chyulu 
Hills and Implications for the Regional Stress-Field in Kenya. Geology. 
1995;23(2):165–8.

	 83.	 Mamantov MA, Gibson-Reinemer DK, Linck EB, Sheldon KS. Climate-
driven range shifts of montane species vary with elevation. Glob Ecol 
Biogeogr. 2021;30(4):784–94.

	 84.	 Leitner WA, Rosenzweig ML. Nested species-area curves and stochas-
tic sampling: A new theory. Oikos. 1997;79(3):503–12.

	 85.	 de la Sancha NU, Maestri R, Bovendorp RS, Higgins CL. Disentangling 
drivers of small mammal diversity in a highly fragmented forest 
system. Biotropica. 2020;52(1):182–95.

	 86.	 Musser GG, Carleton MD. Superfamily Muroidea. In: Wilson DE, 
Reeder DM, editors. Mammal species of the world: a taxonomic and 
geographic reference. Baltimore, MD: John Hopkins University Press; 
2005. p. 894–1531.

	 87.	 Hutterer R: Order Soricomorpha. In: Mammal species of the world: a 
taxonomic and geographic reference. Edited by Wilson DE, Reeder 
DAM. Baltimore: John Hopkins University Press; 2005.

	 88.	 Musila S, Monadjem A, Webala PW, Patterson BD, Hutterer R, De Jong 
YA, Butynski TM, Mwangi G, Chen ZZ, Jiang XL. An annotated check-
list of mammals of Kenya. Zool Res. 2019;40(1):3–52.

	 89.	 Wilson DE, Thomas E Lacher J, Mittermeier RA, François TL. Handbook 
of the Mammals of the World, Volume 7: Rodents II. In: Handbook 
of the Mammals of the World (HMW). vol. 7. Barcelona, Spain: Lynx 
Edicions; 2019.

	 90.	  Wilson DE, Mittermeier RA, François TL (eds.): Handbook of the 
mammals of the world, volume 8: insectivores, sloths and colugos. 
Barcelona, Spain: Lynx Edicions in association with Conservation 
International and IUCN; 2019.

	 91.	 The IUCN Red List of Threatened Species. Version 2024-1. [https://​
www.​iucnr​edlist.​org]

	 92.	 GBIF.org. GBIF Occurrence Download; 2023. https://​doi.​org/​10.​15468/​
dl.​97by8b.

	 93.	 QGIS Development Team. QGIS Geographic Information System. 
Open Source Geospatial Foundation Project; 2024. [http://​qgis.​osgeo.​
org/]

	 94.	 Wickham H, Vaughan D, Girlich M: tidyr: Tidy messy data. R package 
version 1.3.1. 2024.

	 95.	 Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. 
GenBank. Nucleic Acids Res. 2020;48(D1):D84–6.

	 96.	 Katoh K, Standley DM. MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol Biol Evol. 
2013;30(4):772–80.

	 97.	 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 
ModelFinder: fast model selection for accurate phylogenetic estimates. 
Nat Methods. 2017;14(6):587–9.

	 98.	 Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and 
effective stochastic algorithm for estimating maximum-likelihood 
phylogenies. Mol Biol Evol. 2015;32(1):268–74.

https://www.iucnredlist.org
https://www.iucnredlist.org
https://doi.org/10.15468/dl.97by8b
https://doi.org/10.15468/dl.97by8b
http://qgis.osgeo.org/
http://qgis.osgeo.org/


Page 16 of 17Onditi et al. BMC Ecology and Evolution          (2024) 24:139 

	 99.	 Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for 
phylogenetic bootstrap. Mol Biol Evol. 2013;30(5):1188–95.

	100.	 Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, 
Gavryushkina A, Heled J, Jones G, Kuhnert D, De Maio N, et al. BEAST 
2.5: An advanced software platform for Bayesian evolutionary analysis. 
PLoS Comput Biol. 2019;15(4):e1006650.

	101.	 Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, 
Stecher G, Hedges SB. TimeTree 5: an expanded resource for species 
divergence times. Mol Biol Evol. 2022;39(8):msac174.

	102.	 Rambaut A, Drummond A. Tracer: MCMC trace analysis tool (version 
v1.7.2); 2007.

	103.	 Rambaut A, Drummond AJ. TreeAnnotator: MCMC output analysis 
(version v2.7.7). 2024.

	104.	 Revell LJ. phytools: an R package for phylogenetic comparative biol-
ogy (and other things). Methods Ecol Evol. 2011;3(2):217–23.

	105.	 Revell LJ. Phytools 2.0: an updated R ecosystem for phylogenetic 
comparative methods (and other things). PeerJ. 2024;12:e16505.

	106.	 Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: Species-
level sets of phylogenies for questions in ecology, evolution, and 
conservation. PLoS Biol. 2019;17(12): e3000494.

	107.	 McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community 
ecology from functional traits. Trends Ecol Evol. 2006;21(4):178–85.

	108.	 Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, 
Sechrest W, Boakes EH, Carbone C, et al. PanTHERIA: a species-level 
database of life history, ecology, and geography of extant and 
recently extinct mammals. Ecology. 2009;90(9):2648–2648.

	109.	 Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz 
W. EltonTraits 1.0: Species-level foraging attributes of the world’s 
birds and mammals. Ecology. 2014;95(7):2027–2027.

	110.	 Faurby S, Davis M, Pedersen RO, Schowanek SD, Antonelli A, Sven-
ning JC. PHYLACINE 1.2: the phylogenetic atlas of mammal macro-
ecology. Ecology. 2018;99(11):2626.

	111.	 Pianka ER. Ecological Niche. In: Evolutionary Ecology. vol. 7. New York, 
NY: HarperCollins Publishers; 2011. p. 267–289.

	112.	 de la Sancha NU, González-Maya JF, Boyle SA, Pérez-Estigarribia PE, 
Urbina-Cardona JN, McIntyre NE. Bioindicators of edge effects within 
Atlantic Forest remnants: Conservation implications in a threatened 
biodiversity hotspot. Divers Distrib. 2023;29(3):349–63.

	113.	 Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly 
DD, Blomberg SP, Webb CO. Picante: R tools for integrating phylog-
enies and ecology. Bioinformatics. 2010;26(11):1463–4.

	114.	 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, 
Minchin PR, O’Hara RB, Simpson GL, Solymos P, et al. vegan: Com-
munity Ecology Package. R package version 2.5–5; 2019.

	115.	 Faith DP. Conservation Evaluation and Phylogenetic Diversity. Biol 
Cons. 1992;61(1):1–10.

	116.	 Laliberté E, Legendre P, Shipley B. FD: measuring functional diversity 
from multiple traits, and other tools for functional ecology. R pack-
age version 1.0–12.; 2014.

	117.	 Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and 
community ecology. Annu Rev Ecol Syst. 2002;33(1):475–505.

	118.	 Webb CO, Donoghue MJ. Phylomatic: tree assembly for applied 
phylogenetics. Mol Ecol Notes. 2004;5(1):181–3.

	119.	 Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the 
analysis of phylogenetic community structure and trait evolution. 
Bioinformatics. 2008;24(18):2098–100.

	120.	 Baselga A. The relationship between species replacement, dissimilar-
ity derived from nestedness, and nestedness. Glob Ecol Biogeogr. 
2012;21(12):1223–32.

	121.	 Lozupone C, Knight R. UniFrac: a new phylogenetic method 
for comparing microbial communities. Appl Environ Microbiol. 
2005;71(12):8228–35.

	122.	 Raven PH, Gereau RE, Phillipson PB, Chatelain C, Jenkins CN, Ulloa 
Ulloa C. The distribution of biodiversity richness in the tropics. Sci 
Adv. 2020;6(37):eabc6228.

	123.	 Ray DK. Tropical montane cloud forests. In: Pielke RA, editor. Climate 
vulnerability. Oxford: Academic Press; 2013. p. 79–85.

	124.	 Burgess ND, Balmford A, Cordeiro NJ, Fjeldså J, Küper W, Rahbek C, 
Sanderson EW, Scharlemann JPW, Sommer JH, Williams PH. Cor-
relations among species distributions, human density and human 

infrastructure across the high biodiversity tropical mountains of 
Africa. Biol Cons. 2007;134(2):164–77.

	125.	 Karger DN, Conrad O, Bohner J, Kawohl T, Kreft H, Soria-Auza RW, 
Zimmermann NE, Linder HP, Kessler M. Climatologies at high resolu-
tion for the earth’s land surface areas. Sci Data. 2017;4(1):170122.

	126.	 Running S, Mu Q, Zhao M, Moreno A. MODIS/Terra Net Evapotranspira-
tion Gap-Filled Yearly L4 Global 500m SIN Grid V061. 2021. Distributed 
by: NASA EOSDIS Land Processes Distributed Active Archive Center.

	127.	 Didan K. MOD13A3 MODIS/Terra vegetation Indices Monthly L3 Global 
1km SIN Grid V006. 2015. Distributed by: NASA EOSDIS Land Processes 
Distributed Active Archive Center. https://​doi.​org/​10.​5067/​MODIS/​
MOD13​A3.​006.

	128.	 NASA JPL. NASADEM Merged DEM Global 1 arc second V001. 2020. 
Distributed by: NASA EOSDIS Land Processes Distributed Active Archive 
Center. https://​doi.​org/​10.​5067/​MEaSU​REs/​NASAD​EM/​NASAD​EM_​HGT.​
001.

	129.	 Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Pos-
singham HP, Laurance WF, Wood P, Fekete BM, et al. Global terrestrial 
Human Footprint maps for 1993 and 2009. Sci Data. 2016;3(1):160067.

	130.	 Kennedy CM, Oakleaf JR, Theobald DM, Baruch-Mordo S, Kiesecker J. 
Global Human Modification of Terrestrial Systems. 2020. Distributed by: 
NASA Socioeconomic Data and Applications Center (SEDAC).

	131.	 Colwell RK, Hurtt GC. Nonbiological Gradients in Species Richness and a 
Spurious Rapoport Effect. Am Nat. 1994;144(4):570–95.

	132.	 Colwell RK, Lees DC. The mid-domain effect: geometric constraints on 
the geography of species richness. Trends Ecol Evol. 2000;15(2):70–6.

	133.	 Legendre P. Spatial Autocorrelation - Trouble or New Paradigm. Ecology. 
1993;74(6):1659–73.

	134.	 Dormann CF. Effects of incorporating spatial autocorrelation 
into the analysis of species distribution data. Glob Ecol Biogeogr. 
2007;16(2):129–38.

	135.	 Wood SN. Generalized additive models: an introduction with R. 2nd ed. 
Boca Raton, FL: Chapman and Hall/CRC; 2006.

	136.	 Bivand R. R Packages for Analyzing Spatial Data: A Comparative Case 
Study with Areal Data. Geogr Anal. 2022;54(3):488–518.

	137.	 Wood S, Scheipl F: gamm4: Generalized additive mixed models using 
mgcv and lme4. R package version 0.2–6. 2020.

	138.	 Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K: cluster: Cluster 
analysis basics and extensions. R package version 2.1.6. 2023.

	139.	 Schubert E, Rousseeuw PJ. Fast and eager k-medoids clustering: O (k) 
runtime improvement of the PAM, CLARA, and CLARANS algorithms. Inf 
Syst. 2021;101: 101804.

	140.	 Cressie N. Statistics for Spatio-Temporal Data. Hoboken, NJ: Wiley; 2015.
	141.	 Lindgren F, Rue H, Lindström J. An explicit link between Gaussian 

fields and Gaussian Markov random fields: the stochastic partial 
differential equation approach. J Royal Stat Soc Ser B-Stat Methodol. 
2011;73(4):423–98.

	142.	 Sang HY, Huang JHZ. A full scale approximation of covariance func-
tions for large spatial data sets. J Royal Stat Soc Ser B-Stat Methodol. 
2012;74(1):111–32.

	143.	 Diggle PJ, Ribeiro PJ. An overview of model-based geostatistics. In: 
Model-based Geostatistics. Edited by Diggle PJ, Ribeiro PJ. New York, NY: 
Springer; 2007. p. 27–45.

	144.	 Banerjee S, Carlin BP, Gelfand AE. Hierarchical modeling and analysis for 
spatial data. Chapman and Hall/CRC; 2003.

	145.	 Besag J, York J, Mollié A. Bayesian image restoration, with two applica-
tions in spatial statistics. Ann Inst Stat Math. 1991;43:1–20.

	146.	 Gelfand AE, Kim HJ, Sirmans CF, Banerjee S. Spatial mod-
eling with spatially varying coefficient processes. J Am Stat Assoc. 
2003;98(462):387–96.

	147.	 Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent 
Gaussian models by using integrated nested Laplace approximations. J 
Royal Stat Soc Ser B-Stat Methodol. 2009;71(2):319–92.

	148.	 Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Mixed effects 
models and extensions in ecology with R. New York, NY: Springer; 2009.

	149.	 Meyer K. Estimating Variances and Covariances for Multivariate 
Animal-Models by Restricted Maximum-Likelihood. Genet Sel Evol. 
1991;23(1):67–83.

	150.	 Wood SN. Fast stable restricted maximum likelihood and marginal likeli-
hood estimation of semiparametric generalized linear models. J Royal 
Sta Soc Ser B-Stat Methodol. 2011;73(1):3–36.

https://doi.org/10.5067/MODIS/MOD13A3.006
https://doi.org/10.5067/MODIS/MOD13A3.006
https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001
https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001


Page 17 of 17Onditi et al. BMC Ecology and Evolution          (2024) 24:139 	

	151.	 Gumbs R, Gray CL, Bohm M, Burfield IJ, Couchman OR, Faith DP, 
Forest F, Hoffmann M, Isaac NJB, Jetz W, et al. The EDGE2 protocol: 
Advancing the prioritisation of Evolutionarily Distinct and Globally 
Endangered species for practical conservation action. PLoS Biol. 
2023;21(2):e3001991.

	152.	 Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, Detsch 
F, Ensslin A, Ferger SW, Frederiksen SB, et al. Climate-land-use interac-
tions shape tropical mountain biodiversity and ecosystem functions. 
Nature. 2019;568(7750):88–92.

	153.	 Trivedi MR, Berry PM, Morecroft MD, Dawson TP. Spatial scale affects 
bioclimate model projections of climate change impacts on mountain 
plants. Glob Change Biol. 2008;14(5):1089–103.

	154.	 Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan 
JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, et al. Spatial 
species-richness gradients across scales: a meta-analysis. J Biogeogr. 
2008;36(1):132–47.

	155.	 Ramalho Q, Vale MM, Manes S, Diniz P, Malecha A, Prevedello JA. 
Evidence of stronger range shift response to ongoing climate 
change by ectotherms and high-latitude species. Biol Conserv. 
2023;279((-)):109911.

	156.	 Yu Q, Hu Z, Huang C, Xu T, Onditi KO, Li X, Jiang X. Suitable habitats 
shifting toward human-dominated landscapes of Asian elephants in 
China. Biodivers Conserv. 2023;33(2):685–704.

	157.	 Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, Ensslin 
A, Ferger SW, Frederiksen SB, Gebert F, et al. Predictors of elevational 
biodiversity gradients change from single taxa to the multi-taxa com-
munity level. Nat Commun. 2016;7(1):13736.

	158.	 Wiens JJ, Graham CH. Niche conservatism: Integrating evolu-
tion, ecology, and conservation biology. Annu Rev Ecol Evol Syst. 
2005;36(1):519–39.

	159.	 Huston MA, Wolverton S. Regulation of animal size by eNPP, Bergmann’s 
rule, and related phenomena. Ecol Monogr. 2011;81(3):349–405.

	160.	 Albrich K, Rammer W, Seidl R. Climate change causes critical transi-
tions and irreversible alterations of mountain forests. Glob Chang Biol. 
2020;26(7):4013–27.

	161.	 Mammal Diversity Database (Version 1.13) [Data set]. Zenodo; https://​
doi.​org/​10.​5281/​zenodo.​10595​931.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.5281/zenodo.10595931
https://doi.org/10.5281/zenodo.10595931

	Unravelling spatial scale effects on elevational diversity gradients: insights from montane small mammals in Kenya
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Material and methods
	Study area and sampling design
	Species checklist and occurrence records
	Community composition matrix
	Phylogenetic reconstruction
	Species trait assembly
	Inferring diversity indices
	Estimating diversity-environment associations

	Results
	Spatial scale inherence in diversity-elevation associations
	Effects of spatial scale on diversity-environment relationships
	Effect of spatial scale on human footprint correlation with diversity patterns

	Discussion
	Conclusion
	Acknowledgements
	References


