
Pritchard Cairns et al. 
BMC Ecology and Evolution          (2024) 24:136  
https://doi.org/10.1186/s12862-024-02321-3

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

BMC Ecology and Evolution

A systematic review of poeciliid fish 
invasions in Africa
Joshua Pritchard Cairns1, Pedro Henrique Negreiros de Bragança2,3 and Josie South1,2* 

Abstract 

Background  This review compiles and synthesises the existing information concerning non-native poeciliid intro-
ductions to Africa. The recent upsurge in research on invasive poeciliids has revealed their widespread occurrence 
in Africa.

Results  Within the 87 relevant articles, 74% reported on the presence of Gambusia spp., 33% on P. reticulata, 19% 
on X. hellerii, 11% on X. maculatus, and 5% on other ornamental poeciliids. Overall, poeciliids have been documented 
as introduced to 25 different countries in Africa. With Gambusia spp. being introduced to 16 countries and P. reticulata 
to 19 countries. Our results are representative of the current state of research on invasive poeciliids in Africa. There 
was a concentration of studies in South Africa, with limited research elsewhere. Current distribution data is relatively 
patchy, although widespread surveys of multiple river systems in Morocco and South Africa, confirmed widespread 
and abundant established poeciliid populations. The ecological impacts of invasive poeciliids in Africa remain under-
studied but evidence indicates deleterious effects on native fish, invertebrates, and amphibians, many of which are 
critically endangered or endemic.

Conclusion  Current research is limited in reporting from certain countries and ecological impacts. An increased 
effort to monitor species composition in vulnerable waterbodies, especially in the many African countries where inva-
sive poeciliids are reported, should be completed to reveal further established populations. Future research should 
prioritise quantifying the ecological impacts of invasive poeciliids in the field and identifying both vulnerable 
and resistant native ecosystems to guide future management decisions.
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trade

Background
Non-native species that have established populations 
beyond their natural range and are causing ecological 
impact are considered invasive [13]. Globalisation and 

international trade are redistributing non-native species 
and increasing introduction rates [161], whilst climate 
change is acting synergistically to shift species ranges, 
exacerbate their environmental impacts and compli-
cate management efforts [86]. Successful invaders often 
exploit niche space in native ecosystems and establish 
viable populations directly impacting native species and 
the system [3]. Introductions can increase interspecific 
competition [84], predation pressure [25], transmit novel 
diseases [38] and co-introduced parasites [115], all of 
which contribute to the population declines of native and 
endemic species. Changes to community composition 
can alter food webs and nutrient transfer pathways [43], 
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reduce genetic and functional diversity [148], and affect 
the physical characteristics of habitats through ecosystem 
engineering [80]. Invasive species may also facilitate the 
establishment of other introduced species through “inva-
sion meltdown” processes [166]; these impacts can prop-
agate across other trophic levels [73] and contribute to an 
overall decline in biodiversity and biotic resistance [183]. 
The combination of invasive species and other drivers 
have contributed to 60% of all global extinctions [12, 95]. 
Furthermore, the economic burden of invasive species is 
accelerating and quadrupling every decade [49].

Human populations are also beneficiaries from the ser-
vices provided by freshwater ecosystems [79, 188], yet 
such key environments have been overlooked in conser-
vation targets until recently (30% by 2030 [27, 41]). Fresh-
waters exhibit disproportionate species richness per unit 
area and are subject to high levels of human exploitation, 
becoming highly vulnerable to anthropogenic and envi-
ronmental stressors, including species invasion [52, 176]. 
The threat of invasive species to freshwaters occurs con-
comitantly with other threats emanating from human 
resource exploitation, and negative impacts are likely 
synergistic. These include pollution, disturbance, and 
alteration of hydrological flows, which are underpinned 
by the environmental drivers of climate change, nitrogen 
deposition, and changes to the water cycle [52]. Further-
more, the transport mechanisms relocating freshwater 
species are advancing, including improved trade routes 
and the threat of unregulated e-commerce [150]. Thus, 
freshwaters are experiencing widespread species declines 
and losses in biodiversity [24] and the introduction of 
non-native species is a key factor driving these impacts 
[153].

Poeciliidae is a family of freshwater fish compris-
ing 274 valid species [70], many of which are popular in 
the ornamental aquarium trade due to ease of culture 
and broad tolerance to environmental conditions. Their 
native distribution range lies within the American con-
tinent, extending across locations from the Atlantic to 
the Pacific coasts. The northernmost records of naturally 
occurring poeciliids are in the southern United States, 
while the southernmost records are in the Argentinean 
Pampas (pers comms – P. Bragança). Poeciliids have been 
introduced to all continents other than Antarctica [64] 
and are easily recognized by the presence of the gonopo-
dium in males, an intromittent organ formed by modi-
fied anal fin rays 3,4 and 5, and viviparity or ovoviviparity 
among females.

Poeciliids exhibit life history and behavioural traits 
favoured in aquaculture, which are related to invasion 
success [11]. For example, their short generation times 
[18] female-dominated populations and early matur-
ing males [169] enable their proliferation across a wide 

salinity gradient [32, 134]. When introduced to isolated 
habitats, even a single pregnant female can establish 
a population [26, 45]. Some species can even produce 
viable populations in hypoxic and polluted environ-
ments [159, 177] and adapt rapidly in response to biotic 
pressures such as predator abundance [108], prey avail-
ability [123], and changing habitat characteristics [87]. 
Combining their reproductive mechanisms with high 
dispersal tendencies [51], aggressive behaviour [64] and 
polyphagous feeding habits [54], invasive poeciliids can 
quickly colonise novel ecosystems.

Invasive poeciliids can have detrimental impacts on 
native biota and ecosystem functioning. They have 
caused native species population declines at multiple 
trophic levels: through the co-introduction of alien 
parasites [63, 69]; predation of invertebrates [165], 
amphibians [164] and small fish [160]; hybridisa-
tion with closely related native species [64]; as well as 
negative interactions from interference competition 
[23] and aggressive behaviour [180]. Impacts from 
established invasive poeciliids can restructure native 
communities [90] and influence local environmental 
conditions [92]. Poeciliids have been primarily cultured 
and translocated to new continents through mosquito 
biocontrol programmes [123] and the international pet 
trade pathways [64]. Therefore, both intentional and 
accidental aquaria release are thought to be the pre-
dominant introduction vector [140].

Given that Africa is a malaria hotspot there have been 
many poeciliid biocontrol introductions into the con-
tinent in the past century. Despite the threat that poe-
ciliid invasions represent to native ecosystems, there is 
still limited and patchy information regarding the dis-
tribution, spread and impacts of non-native poeciliids. 
Another main knowledge gap in Africa is related to its 
native freshwater taxa, especially its fish diversity. At 
the same time, the freshwater ecoregions of Africa are 
extremely diverse, displaying high levels of endemism 
and consisting of several biodiversity hotspots, yet there 
are few taxonomy experts in the continent or working 
with African fish fauna [42]. This scenario is referred to 
as taxonomic impediment, which is a major challenge in 
delimiting and estimating the continent’s freshwater fish 
diversity, and consequently in estimating the impact of 
invasive poeciliids [22, 60, 78, 122, 168]. Furthermore, 
there are many functionally analogous endangered and 
endemic fish species (e.g. Aphaniidae and Procatopodi-
dae) which may be threatened directly by poeciliid inva-
sion impacts [74, 162], whilst threat from invasion to the 
cryptic freshwater biodiversity in Africa is unknown.

The purpose of this review is to collate and analyse 
the available information relating to poeciliid introduc-
tions into African countries. Where possible, a summary 
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is provided on the introduction events, establishment 
success, dispersal, and impacts. By evaluating the avail-
able literature, we can improve our understanding of 
the distribution of invasive poeciliids in Africa and the 
consequences of their introductions. Assessment of the 
results will allow the recognition of recurring pathways, 
vulnerable freshwater systems and significant gaps in 
knowledge. Based on our findings, native ecosystems and 
species requiring urgent ecological investigation can be 
identified and poeciliid management strategies can be 
informed.

Methods
This study followed the updated PRISMA 2020 guide-
lines for conducting and reporting systematic reviews 
[141]. Relevant literature was identified by specifying 
inclusion criteria, search strategies, exclusion methods, 
and outcomes for the required data. The search terms 
“poeciliid” AND “invasive” AND “Africa” were searched 
in the Google Scholar search engine. This initial search 
produced limited results, possibly due to the infrequent 
use of the term “poeciliid”. As such, further searches 
were undertaken replacing “poeciliid” with the names 
of the eight introduced species, preliminarily identified 
by scanning initial search results. The results retrieved 
were dated up to March 2023 and assessment completed 
by one reviewer independently. Articles considered for 
inclusion must have provided information on introduced 
poeciliids in Africa, encompassing any details of the fol-
lowing: year of introduction, origin, vectors, invasive 
pathways, specific locations, establishment success, per-
sistence, dispersal activity, impacts on native biota and 
ecosystems. The identification of relevant literature was 
conducted in a step-by-step exclusion process. First the 
title of each article generated was considered and those 
with evidently unrelated content were excluded. The 
abstracts of the remaining articles with potentially rel-
evant titles were then examined. Relevant abstracts were 
then carefully reviewed, and it was determined whether 
they fit at least one of the inclusion criteria. After con-
sideration of the full text, articles containing relevant 
information were compiled into a database. Reference 
lists were examined, and additional relevant articles 
were obtained applying the same exclusion procedure. 
To achieve comprehensive results, a recursive citation 
search (“snowballing”) was undertaken to find additional 
studies. Where articles were not accessible, the South 
African Institute for Aquatic Biodiversity (SAIAB) library 
platform was used to gain access to copies, or in some 
cases authors were contacted directly to request access. 
Expert insights via personal communications, and con-
sultation of the Global Biodiversity Information Facil-
ity (GBIF) supplemented the findings. Since the GBIF 

databases include numerous iNaturalist records, the 
iNaturalist database was also directly searched for occur-
rences (iNaturalist community; S1). For both databases, 
separate searches were conducted for each poeciliid spe-
cies, applying “Africa” as the continent filter. Following 
compilation of the material sourced, the findings were 
categorised according to each different poeciliid spe-
cies recorded as having been introduced to the African 
continent.

To synthesise ecological impact, each publication was 
scrutinised to complete an Ecological Impact Categorisa-
tion of Alien Taxa (EICAT) [85] assessment whereupon 
country, poeciliid species, impacted taxa, mechanism of 
impact and confidence of impact evidence were recorded 
along with justification for scoring (S2, S3).

Results
The searches undertaken produced the results that fol-
low. First, the term “poeciliid” retrieved 426 results of 
which nine were relevant. Replacing “poeciliid” with the 
species names produced the following results by spe-
cies with the number of additional articles matching the 
inclusion criteria shown in brackets: “Poecilia reticulata” 
retrieved 1,500 results (16), “Gambusia affinis” retrieved 
1,570 results (36), “Gambusia holbrooki” retrieved 1,090 
results (3), “Xiphophorus hellerii” retrieved 190 results 
(4), “Xiphophorus maculatus” retrieved 227 results (1), 
“Poecilia latipinna” retrieved 269 results (2), “Poecilia 
sphenops” retrieved 175 results (0), “Poecilia velifera” 
retrieved 53 results (0) (Fig. 1). There was a single report 
of Phalloceros spp. in the literature, however this was 
excluded as a search term because although the speci-
men was confirmed as the genus Phalloceros, the species 
was not known as there was only one Phalloceros species 
described at the time of recording (1976; Jubb et al. [98]), 
but 20 new species were described in 2007. The reference 
search produced three relevant French articles and so an 
additional search was carried out using the terms “poe-
ciliidés” AND “envahissant” AND “Afrique” but retrieved 
no relevant results. The subsequent replacement of 
“envahissant” with “introduction” produced nine results, 
although the only relevant articles retrieved were previ-
ously included from the reference search. Eight of the 
total results were categorised as grey literature; however, 
since they were all sourced from the reference search of 
peer-reviewed articles, their information was deemed 
reliable (Fig. 1). From the search results, a key article on 
G. holbrooki introductions was published on the Global 
Biodiversity Information Facility (GBIF) website (GBIF.
org [75], S1), which contributed 62 occurrences [173]. 
The total number of unique results from GBIF/iNatural-
ist reports, excluding duplicates from the Google Scholar 
search and repeated GBIF/iNaturalist records, were as 
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follows: G. affinis (36), G. holbrooki (16), P. reticulata 
(81), X. hellerii (23), X. maculatus (13) (S1).

The introduction of nine different poeciliid species 
have been confirmed across 25 African countries: the 
guppy, Poecilia reticulata Peters, 1859, the western mos-
quitofish, Gambusia affinis Baird and Girard, 1854, the 
eastern mosquitofish Gambusia holbrooki Girard, 1859, 
the green swordtail, Xiphophorus hellerii Heckel 1848, 
the southern platyfish, Xiphophorus maculatus Günther, 
1866, the sailfin molly, Poecilia latipinna Leseur, 1821, 
the common molly, Poecilia sphenops Valenciennes, 
1846, the Yucatan molly, Poecilia velifera Regan, 1914, 
and an undetermined species of the genus Phalloceros. 
Articles identified as relevant to poecillid introductions 
in Africa date from 1962 to 2023. Publication frequency 
increased from the 1980s onwards with the greatest 
number of articles published from the start of 2015 to 
the end of 2019 (Fig. 2a). Of the 88 included articles, 74% 
reported on introductions of Gambusia spp., 33% on P. 
reticulata, 19% on X. hellerii, 11% on X. maculatus, and 
5% attributed to the remaining species. Some articles 
provided information on multiple species. All underlying 
data on distribution, occurrence, vector, establishment 
status, and impact, including GBIF and iNaturalist infor-
mation, is summarised in S1a.

Gambusia affinis and Gambusia holbrooki were intro-
duced primarily for vector mosquito biocontrol, while 
Poecilia reticulata was introduced for both vector mos-
quito biocontrol and by the ornamental pet trade. The 
remainder of the species are popular ornamental fish. The 
primary causes of poeciliid invasions in Africa are vector 
mosquito biocontrol and the ornamental fish trade. Bio-
control-related introductions predominated the first half 
of the 20th century, whereas invasive populations associ-
ated with the ornamental trade have become increasingly 
frequent since the 1950s (Fig. 2b).

Gambusia spp.
Gambusia spp. were reported in 39% of African countries 
(S1). Results for G. affinis and G. holbrooki are combined 
because both were considered subspecies of Gambusia 
affinis until approximately 1990 [185]. Nonetheless, liter-
ature descriptions of the individual species are acknowl-
edged, even in cases of articles before 1990.

Gambusia spp. are reported as widespread and estab-
lished throughout Northern Africa. During the 1920s 
and 1930s, Gambusia spp. were introduced to Egypt 
and Algeria from North America [111, 185]; to Egypt 
and Libya from Italy [96, 185]; and to Morocco by 
French colonists [7] (Fig. 3; S1). Of these introductions, 

Fig. 1  PRISMA flow diagram showing the process for the identification, screening, and inclusion of relevant articles and citizen science platforms 
(n = number of articles) [82]. All underlying data is in S1
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only the G. holbrooki introduced to Algeria were 
intended for mosquito biocontrol [111]. Established 
G. holbrooki populations are widespread and abun-
dant in the north-east of Morocco [173]; this species is 
the most frequently reported alien species in Moroc-
can freshwaters [174]. Gambusia holbrooki is also 

considered to be common throughout Algerian wet-
lands [100] and has been reported at a range of fresh-
water habitats including irrigation ditches, dune ponds, 
and dams [10, 29, 163].  Gambusia affinis populations 
are established in Egypt, Libya, and Tunisia and were 
recently reported in freshwater habitats such as canals 

Fig. 2  a Number of relevant articles published each 5 years from 1960 to 2023, b Number of poeciliid introductions each decade from mosquito 
biocontrol and the ornamental trade

Fig. 3  Distribution map of the reported locations for Gambusia spp. in African freshwater systems. All underlying data and sources reported in S1
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[171], lakes (Shaltout et al., 2016); [61], oases [170], and 
a coastal lagoon [104].

Reports of Gambusia spp. in Western and Cen-
tral Africa are sparse (Fig.  3; S1). Gambusia affinis was 
reported in polluted sewers in Lagos, Nigeria [46] and is 
understood to be common in Ghanaian freshwater sys-
tems [139] but has only been reported at one location 
[14]. Multiple specimens were collected in freshwater 
habitats in the Democratic Republic of the Congo during 
1946-47 and in 1963 [170], but there is no information on 
their current establishment.

Gambusia spp. were introduced to multiple countries 
in Eastern Africa for mosquito control (Fig.  3; S1). In 
the 1920s, Gambusia affinis were introduced to Mada-
gascar and Zimbabwe from the United States [111, 
185] and to South Sudan from Italy [186]. Gambusia 
spp. were translocated from within Africa via introduc-
tions to South Sudan from Egypt in the 1930s [186] and 
Zambia from South Africa in the 1940s [5]. Gambusia 
spp. have established in artificial habitats in Zimbabwe 
[111], established in urban waters in Sudan [58], sam-
pled in several freshwater ecosystems in Madagascar in 
the 2000s [113, 184], and are harvested from rivers and 
resold for private mosquito control in Zambia (Pers 
comms – A. Jere). Gambusia affinis was also introduced 
to Kenya for mosquito biocontrol [66], although the date 
of introduction is unknown, and was first reported in the 
1960s [120]. Gambusia affinis populations are now con-
sidered established and widespread throughout Kenyan 
river basins [135]. Furthermore, Gambusia spp. were 
introduced to Comoro Islands [185], although the date 
is unknown, and were reported in Eritrea, Malawi, and 
the Mascarene Islands [34, 71]. Gambusia affinis was 
introduced South Africa in 1936 from North America for 
mosquito control [44] and naturalised populations were 
first sampled in the 1960s [34] and then were reported in 
multiple locations in the 1980s in both the Western Cape 
and Eastern Cape [44] (Fig. 3; S1). At the beginning of the 
21st century, G. affinis populations were established in 
50% of South African river systems [143].

Recent studies have documented abundant and wide-
spread populations of G. affinis in KwaZulu-Natal, 
Western Cape, and Eastern Cape provinces [35, 65, 
190] (Fig. 3; S1). Occurrence recordings have continued 
to detect G. affinis in these provinces during the last 5 
years, with additional scattered records from the North-
ern Cape, Limpopo, Mpumalanga, and Gauteng [93, 99]; 
S1). Additionally, G. affinis were recently reported near 
the South African border in Botswana [99] and were 
reported in the Hhohho Region of Eswatini [93]; S1.

Poecilia reticulata
Poecilia reticulata were reported in 41% of African 
countries (Fig. 4; S1), although there are limited studies 
of abundant populations [65, 77, 109].  Poecilia reticu-
lata occurrences are rare in Northern Africa and was 
only sampled in Algeria and Morocco in the 1970s 
[170]. They are considered present in Moroccan fresh-
waters in the 21st century [46]. Reports from Western 
Africa and Middle Africa are similarly limited, where P. 
reticulata was introduced to Ghana and the Republic of 
Congo for mosquito biocontrol, and reported in Cape 
Verde, and the Democratic Republic of Congo in the 
21st Century [94, 114, 170]; S1. Abundant populations 
were also sampled in sewers in Lagos, Nigeria [109].

In Eastern Africa, P. reticulata have been intro-
duced to 11 different countries (Fig. 4; S1). In the 1940s 
and 1950s, P. reticulata was introduced to Kenya, the 
Mascarene Islands, and Uganda for mosquito bio-
control [45, 111, 186]. They were also introduced to 
the Comoro Islands in the 1980s for mosquito bio-
control experiments [157] and to Malawi through a 
private institution, but the latter population did not 
establish [66]. In the 21st century, P. reticulata have 
been reported in a few locations in Tanzania, Malawi, 
Rwanda, and the Comoro Islands [34, 45, 77, 154]; 
while widespread established populations have been 
sampled in the Mascarene Islands, Kenya, and Uganda 
[48, 132, 154] (Fig. 4; S1).

Poecilia reticulata were first introduced to South Africa 
from Barbados but these individuals failed to establish 
[186]. In the late 1980s, introductions associated with 
the ornamental trade and floods in 1987 leading to the 
escape of captive individuals and reports of widespread 
occurrences in Kwa-Zulu Natal [34, 44, 99]. Established 
Poecilia reticulata populations are mostly restricted to 
urban freshwater habitats in South Africa [143].

Poecilia spp.
In Northern Africa, a range of Poecilia spp, were recently 
sampled in lakes, drains, and a lagoon. Poecilia latipinna 
was collected in Egypt [55], P. sphenops in Algeria [76]) 
and P. velifera in Libya [57] (Fig. 5; S1).

Phalloceros sp.
A Phalloceros sp. was sampled in rivers in Malawi in the 
1970s [98] and established populations were reported in 
1985 and 1995 (Fig.  5; S1). At the time of sampling the 
genus only comprised one species, Phalloceros caudi-
maculatus. However, 21 Phalloceros spp. are now con-
sidered as valid, so identification and confirmation of the 
specimens from Malawi still needs to be verified.
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Xiphophorus spp.
Xiphophorus spp. were reported in 24% of African 
countries. Xiphophorus hellerii were first introduced to 
Africa to Madagascar in the 1950s [72] and later intro-
ductions associated with the ornamental trade were to 
South Africa from Mexico in the 1970s and the Mas-
carene Islands [44, 102] (Fig.  5; S1). Naturalised X. hel-
lerii have been consistently sampled at freshwater sites 
in KwaZulu-Natal since their introduction [34] but their 
distribution is localised and are therefore considered as 
established but not invasive [59]. Established populations 
were sampled in Madagascar and the Mascarene Islands 
in the last 20 years [154, 182]. Furthermore, Xiphopho-
rus hellerii were sampled in a small number of natural 
freshwater habitats in the Democratic Republic of Congo, 
Morocco, and Cameroon [93, 116, 170] (Fig. 5; S1).

Xiphophorus maculatus is less commonly found in 
African countries. The only known introductions of X. 
maculatus were to Nigeria in the 1970s for aquaculture 
[107] and to South Africa via the ornamental aquarium 
trade [59]. Xiphophorus maculatus was sampled in rivers 
in the Mascarene Islands in the 1970s [71] and at wide-
spread freshwater sites in Madagascar in the late 1980s 
and 1990s [151, 172]. Naturalised X. maculatus have 
been sampled occasionally in Madagascar, the Mascarene 

Islands, South Africa, and Zambia in the last 20 years [34, 
154]) (Fig. 5; S1).

Impacts
We retrieved a total of 37 records of ecological impacts 
of invasive poeciliids in Africa attributed to X. macula-
tus, X. helleri, P. reticulata and Gambusia spp. Impacts 
recorded on native fish (n = 22, 59.4%), invertebrates 
(n = 13, 35.1%), and amphibians (n = 2, 5.4%) through 
competition (n = 18, 48.6%), pathogen transfer (n = 2, 
5.4%), and predation (n = 17, 45.9%) mechanisms (Fig. 6a, 
b; S2, S3). The confidence in the evidence for the EICAT 
categories varied with 27% classed as low, 43.2% as 
medium and 29.7% as high (Fig. 6a, b; S2, S3).

Mosquitos as a biocontrol agent
Mesocosm field studies were conducted between 1987 
and 1988 to evaluate the effectiveness of P. reticulata as 
a vector mosquito biocontrol agent in Grande Comore, 
Comoro Islands [157]. The percentage of egg rafts for 
mosquitos decreased from 41 to 6% when exposed to an 
initial 3–5 P. reticulata individuals. This decrease led to a 
reduction in the infection rate of Plasmodium falciparum 
(parasite causing malaria) in children aged between 5 and 
9 years old [157].

Fig. 4  Distribution map of the reported locations for P. reticulata, P. latipinna, and P. velifera in African freshwater systems. All underlying data 
and sources reported in S1
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When experimentally exposed to G. affinis, Anopheles 
gambiae spp. laid less eggs, which was suggested to be a 
result of kairomone interactions between the two species 
[33]. Mesocosm experiments in Kenya found G. affinis 
to be the most efficient predator of mosquito larvae out 
of five natural predators [106], demonstrating the effi-
ciency of mosquitofish as biocontrol agent in Kenya over 
alternative aquatic predators. However, G. affinis was the 
only fish out of the five predators tested but crucially, no 
native fish species were tested.

There are anecdotal reports of effective mosquito bio-
control by Gambusia spp. throughout Africa, although 
these are not backed up by empirical evidence. Local 
experts in Ghana believe introduced Gambusia individu-
als to act as effective mosquito biocontrol agents [46]. In 
Algeria, Gambusia introductions and establishment are 
thought to have caused declines in the population of the 
mosquito Anopheles labranchiae larvae at Guelma and 
their eradication at Ouargla [111]. The 1,000 Gambusia 
individuals introduced to Lake Tana, Ethiopia, have been 
described as initially effective in controlling mosquitoes 
[175] whilst in Nigeria, P. reticulata are considered effec-
tive in controlling mosquitoes in Lagos sewers [46, 109].

Gambusia spp. have been shown to selectively feed 
upon vertebrate prey in temporary pond manipulations 
[83] and long-term monitoring of Algerian freshwater 
habitats (in Dakhla, Estah, Saulaie and Lac Bleu) [10]. 
Thus, mosquito larvae are unlikely to be the preferred 
choice of prey in introduced ecosystems. Furthermore, 
the vulnerability of intermediate mosquito predators, 
like Lovenula raynerae [39], to Gambusia spp. may even 
cause an increase in mosquito populations following 
introduction for biocontrol. Gambusia spp. introduced 
for mosquito biocontrol have been ineffective in Uganda 
[46, 111, 187]. They are also understood to prefer fish lar-
vae over mosquito larvae in Madagascar [151].

Discussion
Despite being globally invasive, and well documented 
regarding distribution and ecological impacts across 
Europe and Australia, there is comparatively limited 
understanding of invasive poeciliids in Asia and Africa 
[97, 101, 112, 117]. Lack of information availability and 
synthesis regarding biological invasions is a barrier to 
effective policy and legislation formulation, which fur-
ther exacerbates the freshwater biodiversity crisis [36, 

Fig. 5  Distribution map of the reported locations for Phalloceros sp., Xiphophorus maculatus, and Xiphophorus helleri in African freshwater systems
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166]. This review summarises and synthesises the state 
of research on the African continent and confirms the 
presence and establishment of nine non-native poeciliid 
species in African freshwaters. There are major data defi-
cits in our knowledge of invasive population status, eco-
logical and economic impact, as well as patchy spread of 
occurrence records.

Pathways
The majority of poeciliid introductions at the begin-
ning of the 20th century were directed to vector mos-
quito biocontrol [186]. Declines in biocontrol-related 
introduction events followed the discovery of the 
insecticidal qualities of certain compounds, such as 
Dichlorodiphenyltrichloroethane (DDT) in 1939 [185]. 

Fig. 6  a Summary of recorded ecological impacts of invasive poeciliid species on multiple taxa in Africa according to EICAT categories coloured 
by confidence, b Summary of recorded mechanisms of ecological impacts of invasive poeciliid species in Africa according to EICAT categories 
coloured by confidence. Data sources and justifications for EICAT and confidence scorings found in S2 and detailed impact evidence in S3 
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However, limited pesticide availability and high opera-
tional costs renewed interest in larvivorous fish [187], 
which could explain vector mosquito biocontrol using 
poeciliids in developing African countries during 
the 1980s [46, 157]. Other contributing factors likely 
included pesticide bans by the Stockholm Convention 
[16], as well as the recognition of their impacts on non-
target organisms and persistence in the environment 
[68, 142, 179]. The complexity of vector mosquito bio-
control is now recognised and must be conducted with 
a comprehension of potential impacts on ecological 
processes and interactions [31]. Furthermore, poecili-
ids used for vector mosquito biocontrol are now known 
to negatively impact native biota [56, 147]; indigenous 
species have been demonstrated as efficient control 
agents [110, 131]; and the use of eco-friendly larvicides 
is gaining momentum (e.g., “green nanoparticles”) [9]. 
Therefore, future introductions via this pathway are 
unadvisable.

The ornamental aquarium trade is relatively unregu-
lated and ubiquitous globally [59, 140] and regulation 
of the trade is notoriously difficult [124, 149]. Live-
bearing ornamental fish, such as poeciliids, are traded 
more frequently due to their bright colours and higher 
reproductive success in captivity [11]. Therefore, orna-
mental trade represents a persistent introduction path-
way which has accelerated for poeciliid introductions 
in Africa since the 1950’s. Challenges in managing and 
assessing the risk of the ornamental fish introductions 
arise from difficulties in correctly identifying species in 
the aquarium trade [121, 181] and insufficient data on 
the ecological or socio-economic impacts of invasive 
species required to conduct Socio-Economic Impact 
Classification of Alien Taxa (SEICAT) assessments [8] 
and cost-benefit analyses [191]. Field impacts need to 
be documented urgently to provide evidence for future 
biosecurity policies.

Genetic barcoding studies of traded taxa in South 
Africa indicate progress in the field [181] and current 
DNA barcoding techniques will continue to allow more 
accurate identification and monitoring of freshwater 
fish, including poeciliids [17, 156, 182]. Establishing a 
relationship between commercial ornamental market 
import/export data and occurrence records has proven 
problematic [53] and needs to be supported by reliable 
DNA barcode libraries of aquarium stocks (e.g., [91]). A 
focus on monitoring the ornamental trade is needed and, 
despite the difficulty in penetrating it on a global scale 
[30], improved regulation and records will provide infor-
mation on the movement of invasive species (e.g., [128]). 
The illegal trade further complicates matters, although 
the scrutiny of e-commerce may aid understanding inva-
sion risk and propagule pressure [15, 136].

Adaptations
The physiological tolerance and behaviours of invasive 
poeciliids pre-adapt them for establishing populations in 
novel environments. Extreme plasticity and rapid adap-
tation potential of invasive poeciliids enables them to 
colonise sub-optimal environments and exploit vacant 
niche space [97]. Urban freshwaters are at high risk of 
invasion due to degradation of waterbodies excluding 
and extirpating more sensitive native species, thus lim-
iting biotic resistance to poeciliids in these instances, as 
well as general proximity to high density human popula-
tions increasing propagule pressure [2, 10, 35, 171, 184]. 
In Africa, naturalised poeciliids are found to seasonally 
alter their dietary niche in response to limited prey avail-
ability [109] and adjust their diets towards larger inverte-
brate prey in diverse communities [83]. These behaviours 
have contributed to the success of poeciliids in other con-
tinents, where they are abundant in unproductive sew-
age systems [130], capitalising on rich invertebrate and 
amphibian assemblages [152].

Observations of female-biased poeciliid populations in 
Africa [28, 57], indicate that there could be some sexual 
selection acting on the population which may contrib-
ute to establishment and spread success. Furthermore, 
reproductive adaptations such as the production of many 
offspring of large sizes, female sperm storage [118], and 
male-biased dispersal [37], allow their efficient coloni-
sation and persistence from small propagule pressure. 
Invasive poeciliids have successfully established and per-
sisted in freshwater ecosystems despite invading with 
low propagule pressure [146] and also undergoing severe 
reductions in genetic diversity [112]. Thus, the pre-adap-
tations of invasive poeciliids enable their persistence 
in introduced systems and potential impact on native 
biodiversity.

Biodiversity threat
Invasive poeciliids are threatening the conservation sta-
tus of many African freshwater species and are likely a 
strong contributing factor in regional declines in biodi-
versity. For instance, poeciliids have contributed to the 
decline, exclusion and extirpation of native Aphaniidae 
and Procatopodidae through competition [46, 74, 162, 
184]. Many of these species are facing anthropogenic 
pressures [50, 182], are classified as Critically Endan-
gered [119] and are trigger species in key biodiversity 
areas [133]. Invasive poeciliid predation can contribute 
to population declines in native African invertebrates 
(e.g. [83], [10]) and amphibians [35, 105]. The inverte-
brate and amphibian of certain African assemblages are 
species rich and biodiverse [4, 62, 158], so a regional 
elimination of taxa is possible and requires urgent empir-
ical assessments to implement mitigation measures. Any 
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alteration in community structure has the potential to 
cause negative effects and cascading impacts on native 
populations. Poeciliids contribute to top-down effects 
via the size-selective predation of invertebrates and 
overall reduction in organic matter decomposition rates 
[88]; whereas elsewhere they disrupt trophic cascades by 
preying upon insectivorous killifish, indirectly increas-
ing decomposition rates [167]. Poeciliids have also been 
shown to simultaneously drive top-down and bottom-up 
processes by predation of amphibians, which restructures 
amphibian assemblages via competitive release, and zoo-
plankton, driving phytoplankton increases [145]. Native 
species with generalist life-history strategies are found 
to co-exist with poeciliids [178], whilst specialist and 
functionally analogous species (e.g. lampeye killifish) are 
less resistant to invasion [117], which is concerning for 
the many endemic and geographically restricted species 
facing declines in African freshwaters. Therefore, biotic 
homogenisation is a likely outcome of poeciliid invasions, 
which reduces both taxonomic and functional biodiver-
sity, and will be exacerbated by multiple stressors of cli-
mate change and degradation [40].

The current evidence base is relatively sparse consid-
ering the long history of poeciliid introductions in the 
region. There is high confidence evidence of negative 
poeciliid impacts on invertebrate communities [10, 83] 
and native killifish [133, 184] which indicates an urgent 
need for research into negative effects on native biota. 
Whilst mesocosm tests are useful in analysing direct 
interactions between species [39, 125, 127], field studies 
assessing spatial and temporal changes in species compo-
sition [137, 138, 169] and the ecological niches of multi-
ple species [126] will provide the high confidence, robust 
data necessary to inform policy decisions.

Climate change and future perspectives
Climate change is influencing the likelihood of invasion 
and establishment of non-native freshwater species; a 
trend set to continue in the future [161, 182]. Given that 
invasive poeciliids inhabit many sub-optimal habitats 
in Africa [77, 109, 185], dominate hypoxic and brackish 
ecosystems over a wide distribution [173], and adapt to 
higher temperatures [97, 126]; deteriorating environ-
mental conditions will continue to favour their establish-
ment. Furthermore, the toxicity of pollutants is likely to 
increase with rising temperatures [67], which may con-
fer an advantage to tolerant poeciliids over native fauna 
in urbanised and agricultural freshwaters [58, 65, 173, 
185]. The synergism between propagule pressure, climate 
change and human disturbance can accelerate invasive 
species establishment and the ensuing ecological impacts 
[189].

Data limitations and recommendations
The recent increase in research on freshwater species 
compositions in Africa has improved understanding of 
the geographical distribution of poeciliids [65, 103, 174]. 
Nonetheless, there are still significant gaps in knowl-
edge, especially outside of Northeast Morocco and South 
Africa. The scarcity of data means that the threat of inva-
sive poeciliids to native biodiversity is mostly unknown, 
including the threat to biodiversity hotspots and areas 
of high conservation value [42, 81]. Additionally, it is 
extremely difficult to understand and fully quantify 
the threats represented by invasive poeciliids given the 
sparse and incomplete systematics of African fish fauna, 
driven by few local taxonomists, the lack of funding and 
conflict zones. The taxonomic impediment of the region 
requires urgent attention as threats caused by invasive 
species can be underestimated given that information 
on native species diversity and distribution is superficial 
[22, 47, 60, 122, 168]. Furthermore, previous ecological 
research in Africa is biased towards flagship charismatic 
species, which are not representative of the overall health 
of freshwater ecosystems [41].

Embracing modern molecular techniques (e.g., DNA 
barcoding, Single Nucleotide Polymorphism analysis) 
and ensuring equitable access to these is key to improving 
capacity to detect and manage invasive poeciliids [168]. 
A widespread use of cheap eDNA-based monitoring has 
the potential to remove some barriers to ecological sur-
veys, but this relies on suitable barcoding libraries and a 
drastic reduction in analysis costs before it can be imple-
mented in an acceptable manner. Intercontinental and 
intracontinental collaboration which follows knowledge 
equity principles is strongly recommended and needed to 
enhance capacity for African ichthyologists [168].

In locations where data is insufficient, invasive spe-
cies risk assessments will benefit from bioclimatic mod-
elling [97, 129]. Whilst species distribution modelling 
can inform management strategies [155], but ought to 
include anthropogenic, environmental, and biotic param-
eters [20, 89]. Furthermore, citizen science has proven 
to be a valuable tool in understanding water pollution in 
African countries [6], so conducting similar surveys with 
relevant stakeholders and vectors e.g., pet shop owners 
[181], fish hobbyists [144], and anglers, as well as utilising 
iNaturalist records may improve knowledge of poeciliid 
distributions.

Conclusion
African freshwater ecosystems host rich biodiversity 
and high levels of endemism which desperately need 
to be managed and conserved to support biological 
communities, ecosystem functioning and cultural bio-
diversity [42, 81]. From our results, it indicates that 
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the threat of non-native poecillids has been under-
estimated and the biocontrol aspect somewhat over-
estimated, hence the continued proliferation of species 
across waterbodies. We urge for more field evidence 
of the ecological impact of poecillids on native spe-
cies to increase management and biosecurity impera-
tives. Attempts to control invasive poeciliids have 
been limited in Africa, so future research should be 
directed at informing management strategies to miti-
gate their adverse ecological impacts by preventing 
introduction and removing established populations 
from isolated waterbodies. However, the plastic nature 
of poeciliids complicates control strategies and ecosys-
tem approaches are unlikely to be successful in eradi-
cation [21]. Restrictions on ornamental importations 
are minimal [59], so control efforts must focus on edu-
cating buyers and limiting their release. Educational 
campaigns should be directed at multiple stakehold-
ers [19] (e.g., governments, fish hobbyists, fishermen) 
with a focus on citizens living near vulnerable fresh-
water habitats. Encouraging people to engage with citi-
zen science and data collection through the iNaturalist 
platform and other similar initiatives can be a route to 
rapidly increasing locality knowledge. This can only be 
achieved through supporting regionally led scientific 
research, which must be driven by the development 
of the African research infrastructure, with a focus on 
current centres of excellence [1, 168] and provision of 
financial and technological capacity.
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