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Abstract 

Background Isolating phylogenetic signal from morphological data is crucial for accurately merging fossils 
into the tree of life and for calibrating molecular dating. However, subjective character definition is a major limitation 
which can introduce biases that mislead phylogenetic inferences and divergence time estimation. The use of quan-
titative data, e.g., geometric morphometric (GMM; shape) data can allow for more objective integration of mor-
phological data into phylogenetic inference. This systematic review describes the current state of the field in using 
continuous morphometric data (e.g., GMM data) for phylogenetic reconstruction and assesses the efficacy of these 
data compared to discrete characters using the PRISMA-EcoEvo v1.0. reporting guideline, and offers some pathways 
for approaching this task with GMM data. A comprehensive search string yielded 11,123 phylogenetic studies pub-
lished in English up to Oct 2023 in the Web of Science database. Title and abstract screening removed 10,975 articles, 
and full-text screening was performed for 132 articles. Of these, a total of twelve articles met final inclusion criteria 
and were used for downstream analyses.

Results Phylogenetic performance was compared between approaches that employed continuous morphometric 
and discrete morphological data. Overall, the reconstructed phylogenies did not show increased resolution or accu-
racy (i.e., benchmarked against molecular phylogenies) as continuous data alone or combined with discrete morpho-
logical datasets.

Conclusions An exhaustive search of the literature for existing empirical continuous data resulted in a total of twelve 
articles for final inclusion following title/abstract, and full-text screening. Our study was performed under a rigorous 
framework for systematic reviews, which showed that the lack of available comparisons between discrete and con-
tinuous data hinders our understanding of the performance of continuous data. Our study demonstrates the problem 
surrounding the efficacy of continuous data as remaining relatively intractable despite an exhaustive search, due 
in part to the difficulty in obtaining relevant comparisons from the literature. Thus, we implore researchers to address 
this issue with studies that collect discrete and continuous data sets with directly comparable properties (i.e., describ-
ing shape, or size).
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Introduction
Discrete morphological data have been the primary 
focus of traditional systematic methods for phylogenetic 
reconstruction. Even following the success of molecular 
phylogeny, discrete morphological data remain crucial 
for merging fossils into the tree of life and for calibrating 
molecular dating [1]. However, a major limitation of dis-
crete morphological data is subjectivity in the definition 
of characters and character states, which in turn, may 
potentially introduce biases and mislead phylogenetic 
inference and divergence time estimation. The use of 
quantitative data e.g., geometric morphometric (GMM; 
shape) landmark data can allow for more objective inte-
gration of morphology for phylogenetic inference. Two- 
or three-dimensional landmarks can be used to capture 
the geometry of a biological structure, and shape differ-
ences can then be quantified using the relative positions 
of landmarks for each object in the sample [2–5] by scal-
ing and superimposing the landmark configurations, typ-
ically using Procrustes analysis [6].

However, challenges associated with the application 
of GMM data to the inference of phylogenetic topology 
include the widespread non-independence (e.g., covari-
ation) of landmarks due to functional or developmental 
correlation, which violates assumptions of standard trait 
evolution models. Therefore, a single landmark should 
not be treated as an independent character, but rather the 
entire landmark configuration [7]. To accommodate this 
concern, Álvarez-Carretero et  al. [8] described a Bayes-
ian method that extended the work of Parins-Fukuchi [9] 
by explicitly accounting for character correlation within a 
dataset of 3D cranium landmarks from carnivoran mam-
mals, showing promise for the analysis of continuous 
characters for phylogenetic and divergence time estima-
tion. Moreover, landmark configurations require Pro-
crustes superimposition to remove non-shape differences 
(scaling, rotation, translation) between configurations in 
a dataset, allowing geometric comparisons to be made in 
a shape space. This procedure scales the landmark con-
figurations to centroid size, and allows for further assess-
ment of allometry, the covariation between shape and 
size. Allometry can be assessed within a geometric mor-
phometric framework through regression of Procrustes 
superimposed landmarks against centroid size. Allomet-
ric variation can be difficult to tease apart from, but may 
also contribute to, true phylogenetic signal as the two 
sources of variation are often confounded [10].

Subjectivity may remain with GMM through the choice 
i.e., number and position, and manual placement of land-
marks which can result in observer and measurement 
error [11–13]. However, the development of automated 
GMM (whole bone shape) methods [14–18] that aim to 
reduce observer and measurement error associated with 

manual landmark placement, and thus increase accuracy 
in approximations of shape, has received recent atten-
tion in evolutionary morphology research [12, 19–21]. 
Although, further methodological studies are required to 
determine the most appropriate approach(es) for individ-
ual taxa and for the goals of individual studies [11]. For 
example, some automated landmarking approaches [e.g., 
ALPACA; 19] may be better employed within species or 
among closely related species; while others [e.g., MAL-
PACA; 21] are particularly suitable in broad phylogenetic 
contexts for landmarking the types of morphologically 
diverse (multi-taxa) samples commonly encountered in 
evolutionary studies.

If choosing to discretize GMM data for phylogenetic 
analysis [22, 23], another difficulty is in characterising 
and coding (i.e., discretizing) landmarks into character 
states. Moreover, arbitrarily delimiting discrete states 
from variation that is inherently continuous [24] (i.e., 
GMM; shape) can result in information loss [25]. How-
ever, improvements in discretization methods for contin-
uous data have recently been proposed [22].

Methods for analysing undiscretized continuous mor-
phological data i.e., as continuous quantitative charac-
ters in phylogenetic inference have been available using 
cladistic approaches such as parsimony [TNT;  25–29] 
and model-based methods such as maximum likelihood 
(ML) [CONTML in PHYLIP; 30] and Bayesian methods 
[31]. However, most attempts to integrate GMM data 
into phylogenetic inference have been criticised due to 
methodological concerns and unreliability [7, 32–34], 
although few studies have performed well in reconstruct-
ing ‘true’ phylogenetic relationships [35–38].

Analysis of continuous data (including GMM data) has 
been more commonly applied to taxonomy, especially in 
the delineation of species [e.g.,  39, 40]. Among marsu-
pial mammals cranial and/or dental linear measurement 
data have been applied in several studies on bandicoots 
(Peramelemorphia) [41, 42], whereas 3D landmark-based 
GMM of the cranium has been applied in Antechinus 
(Dasyuromporphia) [43].

Examples of reconstructing phylogeny from GMM 
data include the use of landmark configurations as con-
tinuous characters in what is referred to in the literature 
as ‘landmark analysis under parsimony’ (LAUP; spatial 
parsimony) or ‘Phylogenetic Morphometrics’ (PM) as 
proposed by Catalano et al. [27], Goloboff and Catalano 
[28], Catalano and Goloboff [26], [e.g., 23, 44–46]. Other 
studies have used landmark coordinates as continuous 
characters under parsimony [e.g.,  47], squared-change 
parsimony [e.g.,  23], minimum evolution [48, 49] [i.e., 
“Euclidean parsimony”;  50] [e.g.,  32], and with Brown-
ian motion modelling of evolutionary change under 
maximum likelihood (ML) [e.g., 23] and under Bayesian 
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inference [e.g.,  31]; while others have used principal 
component (PC) scores [e.g., 24, 47, 51] and eigenscores 
[eigenshape analysis descriptors; e.g.,  37] as continuous 
characters  under parsimony, and PC scores as continu-
ous characters under maximum likelihood [e.g.,  24, 35, 
39, 51]. However, the use of PC scores and landmark 
coordinates in phylogenetic inference have been heav-
ily criticized by some researchers, with Adams et al. [33] 
regarding PCs of shape data as both inappropriate and 
ineffective as cladistic characters [33], and Varon-Gonza-
lez et al. [32] suggesting the unreliability of phylogenetic 
estimation from shape data such as landmark coordinates 
[32], see also criticisms by Catalano et al. [27]; Goloboff 
[52].

An alternative approach to character-based methods 
for reconstructing phylogeny from GMM data is to cre-
ate trees based on distances (i.e., Procrustes, Euclidean) 
between taxa using cluster analysis. For example, neigh-
bour-joining [NJ;  53] [e.g.,  23, 24, 35, 44, 54–56] and 
unweighted pair group method with arithmetic mean 
[UPGMA;  58] [e.g.,  24, 35, 44, 56, 57, 59, 60] or other 
methods such as minimum evolution [ME; 61] [e.g., 59] 
and maximum likelihood using flexibly weighted least 
squares methods [fWLS; e.g., 62, 63].

Another procedure is to estimate the positions of fos-
sil taxa along a scaffold (molecular) phylogeny of extant 
taxa using quantitative data. For example, Revell et  al. 
[64] described a maximum likelihood method for placing 
individual taxa into a phylogeny of extant taxa using con-
tinuous character data. This approach performed well but 
was limited to the placement of only extant and recently 
extinct taxa, and with only a single taxon placed at a time. 
Extending this approach, Parins‐Fukuchi [36] presented 
a Bayesian method that places multiple fossil taxa on a 
phylogeny of extant taxa using quantitative characters 
modelled under Brownian Motion [65]. Importantly, 
their model treats branch lengths in terms of morpholog-
ical divergence as opposed to time, and moreover allows 
the placement of long extinct fossil taxa to be estimated.

Probabilistic approaches (e.g., under Bayesian infer-
ence) allow estimation of branch lengths and evolution-
ary rates and can improve estimates of uncertainty, thus 
potentially improving the accuracy of morphological 
phylogenetics compared to cladistic methods (i.e., parsi-
mony analysis) [9]. Recently, Zhang et al. [31] introduced 
a probabilistic total-evidence method for phylogenetic 
inference using multiple continuous (3D GMM landmark 
coordinates) characters in addition to discrete morphol-
ogy and molecular data from both living and subfossil 
taxa, and fossil ages. Their method was implemented in 
a flexible Bayesian framework and was found to result in 
a general, extendable, and fast approach for phylogenetic 
inference from multiple continuous characters [31], thus 

demonstrating promise for leveraging quantitative (i.e., 
GMM) data in phylogeny estimation moving forward.

Given the conflicting conclusions on the efficacy of 
GMM data for phylogeny reconstruction, coupled with 
the recent advancement in whole bone GMM approaches 
that enable the option to rapidly collect phenotypic data 
for taxonomic purposes, we review the current state of 
the field in using morphometric data for inferring phylog-
eny using the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses in ecology and evolution-
ary biology (PRISMA-EcoEvo v1.0.) reporting guideline. 
In addition, we assess the efficacy of morphometric data 
compared to discrete characters and offer some pathways 
for approaching this task with GMM data (which we here 
consider a subset of continuous data). Our objectives 
were to 1) test whether morphological phylogeny con-
gruence with a reference molecular benchmark improves 
when morphometric data are included, and 2) identify 
the challenges and benefits that could arise from the use 
of GMM data in phylogenetic reconstruction.

Methods
A search for relevant published literature was performed 
on October 11, 2023, in the Web of Science database 
using the PRISMA-EcoEvo version 1.0 reporting guide-
line of O’Dea et al. [66].

Data sources and search strategy
The search strategy was developed through an initial 
scoping review and subsequent rearrangement of ‘phylo-
gen*’ and ‘morpho*’ as root terms, and with ‘landmark*’ 
as an additional term to identify all relevant articles. 
Asterisks were used to include search results containing 
variations of the root terms ‘phylogeny’, ‘morphology’, 
‘morphometric’ and of the additional term ‘landmark’. 
The final search string comprised the following combina-
tion of keywords and Boolean operators: phylogen* AND 
morpho* AND (continuous OR landmark* OR shape). 
The search fields selected were “All Fields”. Inclusion cri-
teria were defined as: Publication Years “2003–2023”; 
languages “English”. Exclusion criteria were defined as: 
Document Types “Review Articles” and “Editorial Mate-
rial” (see Table  S1, Additional file  1 for inclusion and 
exclusion criteria). A date restriction of 2003 to 2023 
was applied, allowing for articles published over the last 
20 years, up to October 2023, capturing the advancement 
and maturity of the field of geometric morphometrics 
[67], which began in the late 1990s [68]. Deduplication, 
and both title/abstract and full-text screening of records 
were performed manually by one author in EndNote ver-
sion 20 [69]. Articles were independently assessed for 
individual study quality by two authors to determine final 
inclusion (Table S2, Additional file 1; Fig. 1).
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Eligibility criteria
Studies were included or excluded in this review 
according to predefined criteria (Table  S1, Additional 
file  1). These criteria would enable valid comparisons 
between phylogenies that are based on or included con-
tinuous data with those that did not, as well as com-
parison to a reference phylogeny based on independent 
(i.e., molecular) data.

Study selection
The search strategy identified an initial 11,123 records 
(Fig. 1). Five duplicates were found in records identified 
through the search. Of the 11,118 articles retrieved, 
10,975 were excluded because they did not meet the 
inclusion criteria. Of the 132 potentially eligible stud-
ies, a further 120 were excluded, resulting in a total of 
12 articles for final inclusion in the systematic review. 
We note that six of the twelve studies estimate phylog-
eny from GMM (i.e., 2D or 3D landmark) datasets, and 
seven studies are based on traditional linear morpho-
metric data (one study includes both GMM and linear 
morphometric data; see Fig.  2, Table  1; Tables S3-S4, 
Additional file 1 for full details).

Data collection, extraction
The key data sought from each study were the phylog-
enies that represented valid comparisons, in computer-
readable tree file format, Newick or nexus (see Table  1; 
S2-S3, Additional file 1) for phylogenetic reconstruction 
methods and tree comparisons). As the tree files were 
not available online for any of the included studies, the 
author(s) of each study were contacted and requested to 
provide these data. For six of the 12 studies the authors 
either could not be reached or were not able to provide 
the tree files. In these cases, phylogenies were written 
manually in Newick format based on article figures, using 
the function read.tree from the ape package [version 5.7-
1; 79] in the R programming language [version 4.2.2; 80]. 
Data collection was performed by one author.

Analyses
Molecular constraint trees
Molecular phylogenies were constructed for three studies 
in which a molecular reference phylogeny was not avail-
able, to provide a constraint against which the morphol-
ogy-based trees of these studies could be compared (see 
S4, Additional file 1 for molecular analyses and GenBank 
accession numbers).

Fig. 1 PRISMA-EcoEvo flowchart adapted from O’Dea et al. [66] for Web of Science literature search and study selection in the systematic review, 
showing stages of the workflow



Page 5 of 16Holvast et al. BMC Ecology and Evolution          (2024) 24:127  

Tree comparisons
Phylogenies were read into R using either ape::read.
tree or ape::read.nexus [79]. To provide equivalence for 
comparability between morphological and molecular 
phylogenies, trees based on taxa (i.e., tree tips) that did 
not match exactly or that differed in the number of taxa 
within the same study required pruning, taxon matching 
and/or taxon re-naming. Pruning and matching was per-
formed using functions from the ape package in R (see 

S5, Additional file 1 for taxon matching). To ensure con-
sistency, branch lengths were not included in analyses if 
they were not available for all tree comparisons within a 
single study.

First, we compared the congruence of the morphology-
based trees with the molecular reference phylogeny by 
computing generalized Robinson-Foulds (RF) distances 
[81] using functions from the Treedist v2.7.0 [82] pack-
age in R (R code available at https:// doi. org/ 10. 5281/ 

Fig. 2 Overview of morphological data obtained from included studies and analysed in the systematic review. Percentage of studies that include 
a) each continuous morphometric data type, N = 12 studies, and b) the number of morphological structures (1, 2, 3 or ≥ 4) at the ‘element’ level e.g., 
cranium, femur in continuous vs discrete (N = 10 studies) datasets. c) The average number of morphological characters per dataset for continuous vs 
discrete data. *One study was counted twice as it includes both 2D GMM and linear morphometric data

https://doi.org/10.5281/zenodo.13357792
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Table 1 Overview of morphological phylogenetic studies included in the systematic review. ‘Phylogenetic morphometric method’ 
refers to the treatment of the continuous morphometric data in the analysis with abbreviations adapted from Catalano and 
Torres [24]: Phylogenetic Morphometrics/ landmark analysis under parsimony (PM/LAUP); landmark coordinates as continuous 
characters AND (linear) parsimony (LC-P); Procrustes distances AND unweighted pair group method with arithmetic mean 
(PD-UPGMA); Procrustes distances AND neighbor-joining (PD-NJ); linear morphometrics AND linear parsimony (L-P); Procrustes 
distances AND minimum evolution (PD-ME); principal component (PC) scores as continuous characters AND parsimony (PC-P). Key: 
N number of terminal taxa in comparison trees; SR systematic review, GMM  geometric morphometric (landmark-based) data, linear 
MM  linear morphometric data, discrete discrete morphological-only dataset; continuous continuous-only dataset; combined combined 
discrete morphological and continuous dataset; GW  gap-weighted, SM GW  step-matrix gap-weighted, 7 OG seven original continuous 
quantitative characters; 40 larger dataset of 40 measurement and meristic characters; 3 sig three continuous characters carrying 
significant phylogenetic signal; 5 sig five continuous characters carrying significant phylogenetic signal. Continuous and combined 
datasets (i.e., tree comparisons) analysed ‘as such’ unless otherwise stated

Study Taxonomic group Continuous data Tree
comparisons

Phylogenetic 
morphometric 
method

N

Original study SR Analyses

Weisbecker et al. [44] Animal
(vertebrate)
Marsupial mammals
(Marsupalia)

1) Molecular N = 61 N = 45

2) Discrete N = 45

GMM (3D) 3) Continuous PM/LAUP N = 45

GMM (3D) 4) Continuous PD-UPGMA N = 45

GMM (3D) 5) Continuous PD-NJ N = 45

Gomez and Lois-Mile-
vicich [70]

Animal
(vertebrate)
cowbirds
(Icteridae)

1) Molecular scaffold N = 20 N = 20

2) Discrete N = 20

linear MM 3) Continuous PM/LAUP; L-P N = 20

linear MM 4) Combined PM/LAUP; L-P N = 20

Solis-Zurita et al. [46] Animal
(vertebrate)
Lizards
(Squamata: Phrynoso-
matidae: Sceloporus)

1) Molecular N = 20 N = 20

GMM (2D); linear MM 2) Continuous PM/LAUP; L-P N = 20

GMM (2D); linear MM 3) Combined PM/LAUP; L-P N = 20

Celik et al. [59] Animal
(vertebrate)
Kangaroos and walla-
bies (Macropodidae)

1) Molecular N = 35 N = 13

2)  Discreteb N = 21

GMM (3D) 3) Continuous PD-UPGMA N = 33

GMM (3D) 4) Continuous PD-ME N = 33

Perrard et al. [45] Animal
(invertebrate)
Vespinae wasps 
(Hymenoptera: Vespi-
dae: Vespinae)

1) Molecular N = 55 N = 52

2)  Discretea N = 55

GMM (2D) 3)  Combineda PM/LAUP N = 52

Cichocka and Bielecki 
[71]

Animal
(invertebrate)
Hirudinid leeches
(Clitellata: Hirudinida)

1) Molecular constraint N = 27 N = 31

linear MM 2) Continuous L-P N = 31

linear MM 3) Continuous GW L-P N = 31

linear MM 4) Combined L-P N = 31

linear MM 5) Combined GW L-P N = 31

Gold et al. [47] Animal
(vertebrate)
Crocodilians
(Crocodylia)

1) Molecular N = 18 N = 16

2)  Discretea N = 119

GMM (2D) 3)  Combineda PC-P N = 119

GMM (2D) 4)  Combineda LC-P N = 119

Vargas et al. [72] Animal
(invertebrate)
Octocorals
(Coelenterata: Octo-
corallia: Gorgoniidae: 
eastern pacific genus 
Pacifigorgia)

1) Molecular constraint N = 16 N = 15

2) Discrete N = 25

linear MM 3) Continuous GW L-P N = 25

linear MM 4) Combined L-P N = 25
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zenodo. 13357 792). In contrast to standard RF metrics 
which are strictly based on the number of identical splits 
shared between two trees, generalized RF metrics con-
sider potential similarities between non-identical splits, 
thus quantifying overall similarity between two trees 
[81]. Second, the number of resolved nodes with branch 
support 50 percent or higher (≥ 50%) were calculated as a 
percentage of the total number of nodes in the tree based 
on article figures or tables, or tree files. Third, support 
values for clades shared (i.e., equivalent splits) between 
alternative morphology-based trees were obtained from 
article figures or tree files and then averaged for each tree 
(see Table  S8, Additional file  1 for comparable clades). 
Note that support values were only available for four 
studies; and thus, the latter two analyses were based on 
a subset of the twelve included studies. The overall mean 

value for each data category across all studies was calcu-
lated for each of the three analyses.

Results and discussion
The inclusion of continuous morphological data did 
not improve phylogeny reconstruction in terms of the 
number of resolved nodes and their statistical support 
or congruence with molecular benchmark phylogenies 
(i.e., comparing tree distances), regardless of whether the 
continuous data were included alone or integrated into 
discrete morphological datasets. We note that branch 
support (i.e., bootstrap) is a measure of resolution (preci-
sion), while RF distance is more a measure of accuracy, 
although low resolution can also manifest as reducing 
apparent accuracy. Continuous or combined discrete 
and continuous data performed similarly well to discrete 
data in terms of tree distances to molecular benchmarks 

Table 1 (continued)

Study Taxonomic group Continuous data Tree
comparisons

Phylogenetic 
morphometric 
method

N

Original study SR Analyses

de Bivort and Giribet 
[73]

Animal
(invertebrate)
Mite harvestman
(Arachnida: Opiliones: 
Cyphophthalmi: South 
African Pettalidae)

1) Molecular constraint N = 38 N = 38

2) Discrete N = 50

linear MM 3) Continuous L-P N = 50

linear MM 4) Combined L-P N = 50

Hendrixson and Bond 
[74]

Animal
(invertebrate)
Mygalomorph spider
(Araneae: Mygalomor-
phae: Antrodiaetidae: 
Antrodiaetus)

1) Molecular N = 17 N = 17

2) Discrete N = 17

linear MM 3) Combined 7 OG, 
discretized

L-P N = 17

linear MM 4) Combined 7 OG, 
SM GW

L-P N = 17

linear MM 5) Combined 7 OG L-P N = 17

linear MM 6) Combined 40, SM 
GW

L-P N = 17

linear MM 7) Combined 40 L-P N = 17

linear MM 8) Combined 3 sig, 
SM GW

L-P N = 17

linear MM 9) Combined 5 sig, 
SM GW

L-P N = 17

linear MM 10) Combined 3 sig L-P N = 17

linear MM 11) Combined 5 sig L-P N = 17

Hardy et al. [75] Plant
Cape reeds
(African Restionaceae)

1) Molecular N = 297 N = 297

2)  Discretea N = 297

linear MM 3)  Combineda L-P N = 297

Edgar and Theriot [76] Protist
Diatoms
(Bacillariophyta: Aula-
coseia)

1) Molecular N = 24 N = 22

2) Discrete N = 70

GMM (2D) 3) Continuous SM  GWc L-P N = 68

GMM (2D) 4) Combined SM  GWc L-P N = 70

a Dataset includes DNA
b constructed using modern taxa only from discrete morphological matrix of Travouillon et al. [77] 
c modification (addition) to Wiens’ [78] step-matrix gap weighting method

https://doi.org/10.5281/zenodo.13357792


Page 8 of 16Holvast et al. BMC Ecology and Evolution          (2024) 24:127 

and support values for shared clades (Figs.  3a, 5a; see 
Tables 2 and 4 for full details), but are outperformed by 
discrete data in terms of the number of resolved nodes 
(≥ 50%) (Fig.  4a; see Table  3 for full details). Combined 
(continuous and discrete) data performed better overall 
than continuous data alone in two out of the three com-
parable analyses.

On average, the discrete- and combined data-based 
trees were (equally) most congruent with the molecu-
lar reference phylogeny (i.e., have the lowest generalized 
RF values), with the continuous data-based trees being 
least congruent (Fig. 3a; Table 2). When comparing dis-
crete- vs continuous-based trees, discrete data-based 
trees performed better in four studies (67%), while con-
tinuous data-based trees performed better in two studies 
(33%) (Fig. 3b). When comparing discrete- vs combined-
data based trees, discrete data-based trees performed 
better in two studies (25%), while combined data-based 
trees performed better in six studies (75%). When com-
paring continuous- vs combined-data based trees, con-
tinuous data-based trees performed better in one study 
(17%), while combined data-based trees performed bet-
ter in five studies (83%). There appears to be a tempo-
ral trend in terms of the advancement of morphometric 
methods (i.e., from linear morphometrics to 2D and 3D 
GMM) implemented between 2003 and 2023 (Table  2). 
Approximately half of the twelve studies represent phy-
logenies based on datasets comprising GMM data, 
while the other half comprise linear morphometric data 
(Table  1; Table  2). We also note that two of the twelve 

studies do not include a discrete data comparison (see 
Tables 1 and 2).

On average, discrete-based trees outperformed the 
continuous and combined data-based trees in terms of 
the number of resolved nodes (≥ 50%), with discrete-
based trees having the highest percentage and contin-
uous-based trees having the lowest (Fig.  4a; Table  3). 
When comparing discrete- vs combined-data based 
trees, discrete data-based trees performed better in one 
study (33%), while combined data-based trees performed 
better in two studies (67%) (Fig.  4b). When comparing 
continuous- vs combined-data based trees, continuous 
data-based trees performed better in one study (33%), 
while combined data-based trees performed better in 
two studies (67%).

On average, discrete- and continuous-based trees per-
formed similarly in terms of the average support value 
for shared clades, with continuous-based trees having the 
highest value and combined data-based trees having the 
lowest (Fig.  5a; Table  4). When comparing discrete- vs 
combined-data based trees, the discrete data performed 
better in one study (50%), while the combined data per-
formed better in the other (50%) (Fig.  5b). When com-
paring continuous- vs combined-data based trees, the 
continuous data performed better in one study (50%), 
while the combined data performed better in the other 
(50%).

Similar results (i.e., average values) and relative perfor-
mance of each data category were found when consid-
ering only those studies which include GMM data (see 

Fig. 3 a) Normalized generalized Robinson-Foulds (RF) distance from the molecular tree to the comparison trees averaged across all studies, 
N = 12. Lower values correspond to a closer match (i.e., most similar topology) with the reference tree, with zero being an equal match. b) 
Overall performance of different morphological data types across all studies for each pairwise data comparison where the percentage indicates 
the number of studies in which a given data type performed better. n indicates the number of studies included for each data type in each pairwise 
comparison
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Additional file  1, Tables S9-11). When comparing the 
performance of linear morphometric vs GMM (both 2D 
and 3D, where possible) data (regardless of the underly-
ing method), GMM-based studies with GMM data in 
combined datasets performed best, on average, in terms 
of congruence with the molecular reference phylog-
eny (i.e., had the lowest generalized RF values) (0.316) 
(Additional file  1, Table  S12). Overall, combined data-
sets (0.530, 0.316) performed better than continuous-
only datasets (0.617, 0.638) (Additional file 1, Table S12). 
Continuous-only datasets performed similarly for both 
GMM- (0.638) and linear morphometric-based (0.6174) 

studies, while combined datasets performed better for 
GMM-based studies (0.316) than for linear morphomet-
ric-based (0.530 studies.

When comparing the performance of linear mor-
phometric vs GMM data, linear morphometric-based 
studies with linear morphometric data in combined data-
sets performed best, on average, in terms of the num-
ber of resolved nodes (≥ 50%) (41%) (Additional file  1, 
Table  S13). Overall, combined datasets (41%, 36%) per-
formed better than continuous-only datasets (26%, 11%) 
(Additional file  1, Table  S13). Continuous-only datasets 

Table 2 Normalized generalized Robinson-Foulds (RF) distance from the molecular tree to the comparison trees, N = 12 studies. 
Key: discrete discrete morphological-only dataset; continuous continuous-only dataset; combined combined discrete morphological 
and continuous dataset; GW gap-weighted; SM GW step-matrix gap-weighted; 7 OG seven original continuous quantitative 
characters; 40 larger dataset of 40 measurement and meristic characters; 3 sig three continuous characters carrying significant 
phylogenetic signal; 5 sig five continuous characters carrying significant phylogenetic signal. Abbreviations adapted from Catalano 
and Torres [24]: Phylogenetic Morphometrics/ landmark analysis under parsimony (PM/LAUP); landmark coordinates as continuous 
characters AND (linear) parsimony (LC-P); Procrustes distances AND unweighted pair group method with arithmetic mean 
(PD-UPGMA); Procrustes distances AND neighbor-joining (PD-NJ); linear morphometrics AND linear parsimony (L-P); Procrustes 
distances AND minimum evolution (PD-ME); principal component (PC) scores as continuous characters AND parsimony (PC-P). The tree 
with the smallest distance from (i.e., most congruent with) the molecular tree is shown in bold. Note that some studies include more 
than one comparison based on a continuous morphometric or combined discrete morphological and continuous morphometric 
dataset (i.e., representing different treatments of continuous data and analytical approaches to the phylogenetic reconstruction)

a Dataset includes DNA
b modification (addition) to Wiens’ [78] step-matrix gap-weighting method

Study generalized RF distance

Discrete Continuous Combined

Weisbecker et al. [44] 0.34 PM/LAUP
PD-NJ
PD-UPGMA

0.609
0.526
0.527

n/a n/a

Gomez and Lois-Milevicich [70] 0.595 PM/LAUP, L-P 0.687 PM/LAUP, L-P 0.570
Solis-Zurita et al. [46] n/a PM/LAUP; L-P 0.773 PM/LAUP; L-P 0.575
Celik et al. [59] 0.418 PD-ME

PD-UPGMA
0.719
0.664

n/a n/a

Perrard et al. [45] 0.066a n/a n/a PM/LAUP 0.11a

Cichocka and Bielecki [71] n/a GW, L-P
L-P

0.457
0.453

GW, L-P
L-P

0.457
0.394

Gold et al. [47] 0.2403a n/a n/a PC-P
LC-P

0a

0a

Vargas et al. [72] 0.864 GW, L-P 0.868 L-P 0.816
de Bivort and Giribet [73] 0.538 L-P 0.467 L-P 0.477

Hendrixson and Bond [74] 0.547 n/a n/a 7 OG, discretized, L-P
7 OG, SM GW, L-P
7 OG, L-P
40, SM GW, L-P
40, L-P
3 sig, SM GW, L-P
3 sig, L-P
5 sig, SM GW, L-P
5 sig, L-P

0.531
0.52
0.52
0.566
0.699
0.527
0.537
0.55
0.537

Hardy et al. [75] 0.164a n/a n/a L-P 0.207a

Edgar and Theriot [76] 0.755 SM  GWb, L-P 0.650 SM  GWb, L-P 0.580
Overall average 0.453 0.617 0.459
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performed better for linear morphometric-based studies 
(26%) than for GMM-based (11%) studies.

When comparing the performance of linear morpho-
metric vs GMM data, GMM-based studies with GMM 
data in continuous-only datasets performed best, on 
average, in terms of the average support value for shared 
clades (99%) (Additional file 1, Table S14). Overall, con-
tinuous datasets performed better than combined data-
sets. Continuous-only datasets performed better for 
GMM-based studies (99%) than for linear morphomet-
ric-based studies (87.3%), while combined datasets per-
formed similarly for both GMM- (71.1%) and linear 
morphometric-based (70.4%) studies.

Limitations
Limitations of our study include the small sample size 
(12), in part due to the eligibility criteria excluding stud-
ies that did not contain valid comparisons. For example, 
when the study included a continuous-only tree, but no 
discrete-only or combined data tree to directly compare 
and thus determine the effect of including continuous 
data. In other cases, valid comparisons were available, 
but a molecular reference tree was not, and it was not 
possible to make one. For example, if the study focused 
on fossil taxa then it could not be included. We are lim-
ited to existing empirical data, which at present does not 
allow for large sample sizes. We found great difficulty in 
obtaining relevant (i.e., discrete vs continuous) compari-
sons from the literature despite a rigorous and exhaustive 
search, which hinders our understanding of the perfor-
mance of continuous data. Thus, we implore researchers 

to address this issue with more comparable analyses (i.e., 
targeting discrete vs continuous comparisons from the 
outset). We also note that a more pure “like for like” com-
parison i.e., between discrete data that describe shape 
variation and the quantitative treatment of the same data, 
is also interesting from a theoretical point of view and 
construction of such datasets should be encouraged.

The lack of support values for phylogenies within 
some studies meant that analyses comparing resolved 
nodes and average support values could only be based 
on a subset of the total number of studies included in 
the review (five and four out of 12, respectively). Fur-
thermore, phylogenetic accuracy between studies may 
not be directly comparable due to different dynamics/
resolution in different taxonomic groups. Different 
support measures might also not be directly compara-
ble, for example, for one study [74] Bayesian posterior 
probability for the molecular reference was compared 
to bootstrap values for all morphological comparison 
trees. We also note that molecular trees, used here as a 
benchmark comparison, are not errorless, but are com-
monly considered the ‘gold standard’ in phylogenetics.

We acknowledge that there are biases associated 
with the definition and scoring of discrete morpho-
logical data, however this does not preclude a com-
parison. Discrete characters represent an alternative 
and adopted route used for many phylogenetic studies, 
especially in the field of palaeontology. Therefore, our 
comparison does yield practical relevance for research-
ers using these approaches. The GMM datasets we ana-
lysed typically cover fewer elements or structures than 

Fig. 4 a) Number of resolved nodes with branch support 50 percent or higher (≥ 50%) as a percentage of the total number of nodes in the tree 
averaged across all studies, n = 5. b) Overall performance of different morphological data types across all studies for each pairwise data comparison 
where the percentage indicates the number of studies in which a given data type performed better. n indicates the number of studies included 
for each data type in each pairwise comparison. Note that discrete vs continuous comparisons were not available (hence the n/a values for this 
pairwise comparison). *One study was counted twice as it performed equally well for continuous and combined data
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do the discrete datasets. Thus, our comparisons more 
closely reflect the current state of the field for research-
ers deciding to use continuous vs discrete data, rather 
than the full potential of GMM data.

We note that only six of the twelve studies included in 
the systematic review estimate phylogeny from GMM 
(i.e., landmark) datasets. Seven studies are based on 
traditional linear morphometric data collected from 
morphological structures which are often utilised as 
taxonomically informative characters, which may be 
due to the time and labour required to collect GMM 
data. Furthermore, one study [76] did not include an 
‘as such’ comparison of continuous morphometric 

data. Here, 2D GMM data were not analysed as 
quantitative variables but were discretized using a 
modification (addition) to Wiens’ [78] step-matrix gap-
weighting method in both a continuous-only dataset 
and in a dataset combined with discrete morphological 
data, and in both cases were treated as continuous data 
in the analyses.

Future directions
Overall, our results suggest that continuous morphomet-
ric data do not perform well when applied to the infer-
ence of phylogenetic topology. Since none of the included 
studies used probabilistic methods, it would be valuable 

Fig. 5 a) Average support value for shared clades (i.e., equivalent splits) across alternative morphology-based comparison trees averaged 
across all studies, n = 4 studies. b) Overall performance of different morphological data types across all studies for each pairwise data comparison 
where the percentage indicates the number of studies in which a given data type performed better. n indicates the number of studies included 
for each data type in each pairwise comparison. Note that discrete vs continuous comparisons were not available (hence the n/a values for this 
pairwise comparison)

Table 4 Average support value for shared clades (i.e., equivalent splits) across morphology-based comparison trees, n = 4 studies. The 
tree with the highest average support value is shown in bold

a Dataset includes DNA

Average support value

Study Discrete Continuous Combined

Solis-Zurita et al. [46] n/a PM/LAUP; L-P 99 PM/LAUP; L-P 49

Perrard et al. [45] 98.2a n/a n/a PM/LAUP 93.2a

Cichocka and Bielecki [71] n/a GW, L-P
L-P

88
75

GW, L-P
L-P

92
92.5

Hendrixson and Bond [74] 66.3 n/a n/a 7 OG, discretized, L-P
7 OG, SM GW, L-P
3 sig, SM GW, L-P
3 sig, L-P
5 sig, SM GW, L-P

67.7
66.7
64.7
68.3
62.7

Overall average 82.3 87.3 73
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to explore how these methods might perform compared 
to parsimony or distance-based methods. Our findings 
suggest a temporal trend in terms of the advancement of 
morphometric methods (i.e., from linear morphometrics 
to 2D and 3D GMM) implemented between 2003 and 
2023, however, no trend is shown in the same timeframe 
for the improvement in continuous data compared with 
discrete data. In the case of GMM this may be due to the 
high dimensionality of the data and variation within these 
types of datasets. Thus, ‘noise reduction’ techniques [83, 
84] will be critical to the use of GMM data for phylogeny 
to enable the isolation of phylogenetic signal.

In addition, the full potential of GMM data e.g., whole 
body or whole osteology landmarking will be impor-
tant to explore in future. Despite the challenges associ-
ated with estimating phylogenetic topology from GMM 
data, the advancement of morphological phylogenet-
ics depends on improved methods for extracting and 
modelling quantitative morphological data. Hence, the 
potential benefits of leveraging quantitative data for this 
purpose warrant further investigations into how to best 
model the complexity and correlations inherent in GMM 
character data.

One promising approach is to objectively discretize the 
shape variation in landmark data, subdividing the land-
marks into “characters” and discretizing each of these 
into states using clustering algorithms [22]. Additionally, 
some continuous GMM characters do not appear to con-
tain phylogenetic signal at all which may be due to signal 
erosion over time, with rapidly evolving traits or phyloge-
netic signal being overwhelmed by functional covariation 
and phenotypic plasticity [74, 85]. Phylogenetic signal 
erosion/retention for molecular phylogenies have been 
quantified using stemminess analyses, saturation analyses 
and various other metrics [86–91]. Phylogenetic signal 
retention in morphological landmark data and across dif-
ferent taxonomic groups will be another important area 
for further research.

Conclusions
Our study provides a comprehensive and rigorous assess-
ment of the performance of existing empirical continu-
ous data using the PRISMA-EcoEvo version 1.0 reporting 
guideline, and identifies important challenges to over-
come, as well as benefits that could arise from the use of 
GMM data in phylogenetic reconstruction. We find that 
the inclusion of continuous morphological data does 
not improve phylogeny reconstruction, and our analyses 
show that overall, continuous morphometric data do not 
perform well when applied to the inference of phyloge-
netic topology. However, despite the challenges associ-
ated with estimating phylogenetic topology from GMM 

data, the advancement of morphological phylogenet-
ics depends on improved methods for extracting and 
modelling quantitative morphological data. Hence, the 
potential benefits of leveraging quantitative data for this 
purpose warrant further investigations into how to best 
model the complexity and correlations inherent in GMM 
character data.

Since morphological data is often used in conjunc-
tion with molecular data, it would also be valuable to 
explore how discrete and continuous morphologi-
cal data respectively interact with molecular data in 
producing emergent phylogenetic signals. Our study 
demonstrates the problem surrounding the efficacy 
of continuous data as remaining relatively intractable 
despite an exhaustive search, due in part to the dif-
ficulty in obtaining relevant comparisons from the lit-
erature. Our study was performed under a rigorous 
framework for systematic reviews, which showed that 
the lack of available comparisons between discrete 
and continuous data hinders our understanding of the 
performance of continuous data.. Thus, we implore 
researchers to address this issue with studies that col-
lect discrete and continuous data sets with directly 
comparable properties (i.e., describing shape, or size).
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