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Abstract 

A terrace in a phylogenetic tree space is a region where all trees contain the same set of subtrees, due to certain 
patterns of missing data among the taxa sampled, resulting in an identical optimality score for a given data set. This 
was first investigated in the context of phylogenetic tree estimation from sequence alignments using maximum 
likelihood (ML) and maximum parsimony (MP). It was later extended to the species tree inference problem from a col-
lection of gene trees, where a set of equally optimal species trees was referred to as a “pseudo” species tree terrace 
which does not consider the topological proximity of the trees in terms of the induced subtrees resulting from certain 
patterns of missing data. In this study, we mathematically characterize species tree terraces and investigate the math-
ematical properties and conditions that lead multiple species trees to induce/display an identical set of locus-spe-
cific subtrees owing to missing data. We report that species tree terraces are agnostic to gene tree heterogeneity. 
Therefore, we introduce and characterize a special type of gene tree topology-aware terrace which we call “peak 
terrace”. Moreover, we empirically investigated various challenges and opportunities related to species tree terraces 
through extensive empirical studies using simulated and real biological data. We demonstrate the prevalence of spe-
cies tree terraces and the resulting ambiguity created for tree search algorithms. Remarkably, our findings indicate 
that the identification of terraces could potentially lead to advances that enhance the accuracy of summary methods 
and provide reasonably accurate branch support.
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Introduction
Species tree estimation is frequently based on phy-
logenomic approaches that use multiple genes from 
throughout the genome. The estimation of species trees 
from multiple genes is necessary since true gene trees can 
differ from each other and from the true species tree due 
to various processes, including gene duplication and loss, 
horizontal gene transfer, and incomplete lineage sorting 

(ILS)  [1]. A traditional approach to species tree estima-
tion from multi-locus data is called concatenation (also 
known as combined analysis), where alignments are 
estimated for each gene and concatenated into a super-
matrix, which is then used to estimate the species tree 
using a sequence based tree estimation technique (e.g., 
maximum parsimony, maximum likelihood etc.). The 
concatenation approach, which is agnostic to the topo-
logical differences among the gene trees, can be statisti-
cally inconsistent [2] and can return incorrect trees with 
high confidence [3–6].

As a result, “summary methods”, that operate by sum-
marizing estimated gene trees and can explicitly take 
gene tree discordance/heterogeneity into account are 
becoming increasingly popular  [7–18]. Fundamental to 
most of these summary methods is the ability to search 
the tree space under certain optimization criteria (e.g., 
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maximizing pseudo-likelihood score  [12], maximizing 
quartet score [11, 18, 19], maximizing triplet score [17], 
minimizing deep coalescence [20]). As the size of the tree 
space grows exponentially with the number of taxa, find-
ing the optimal species tree with respect to a particular 
optimization criterion is challenging. Moreover, the pres-
ence of local optima and multiple optimal solutions make 
the tree search even more complicated.

A concept related to the presence of multiple optimal 
solutions is called “phylogenetic terraces” – regions of 
the tree space where all trees have the same score purely 
due to certain patterns of missing data. [21] first formally 
investigated this and showed that when phylogenetic 
trees are estimated from sequence alignments using max-
imum likelihood (ML), multiple distinct trees can have 
exactly the same likelihood score due to missing data 
(i.e., missing genes) – a phenomenon which was referred 
to as terraces and was further investigated in subsequent 
studies  [22–25]. Farah et  al.  [26] showed that a similar 
phenomenon can arise when species trees are estimated 
by summarizing a collection of gene trees. They intro-
duced the concept of “pseudo species tree terrace”, where 
potentially large numbers of distinct species trees may 
have exactly the same optimality score with respect to 
a set of input gene trees. There could be many reasons 
for multiple species trees to have an identical score, but 
the trees in a terrace are indistinguishable in an impor-
tant way: they “display” the same set of subtrees which 
subsequently results in identical optimality scores. For a 
species tree T and a locus/gene tree gt, the locus-specific 
induced subtree of T is obtained by pruning the taxa in T 
that are missing in gt. Two topologically different trees T1 
and T2 can induce the same locus-specific subtree due to 
certain patterns of missing data. This type of topological 
closeness in terms of identical sets of induced subtrees 
was not considered in pseudo species tree terraces (this 
is why it was called a “pseudo” terrace). For two trees to 
be in a pseudo species tree terrace, the only condition is 
that they have an identical optimality score. Therefore, 
pseudo species tree terraces can arise even without the 
presence of missing data.

The discovery of species tree terraces has implications 
for summary methods that navigate through and score 
the trees within the tree space. Because all of the trees 
within a species tree terrace have the same optimiza-
tion score, recognizing a terrace may help reduce com-
puting efforts by avoiding computation time that would 
otherwise be spent evaluating many trees with identical 
scores. However, it is possible that some trees in a terrace 
are topologically more correct than the other ones, which 
was systematically analyzed and empirically demon-
strated in [26]. As a result, in the presence of potentially 
large sets of equally optimal trees, detecting terraces and 

identifying relatively more reliable trees within the ter-
races and their neighborhoods may improve the perfor-
mance of tree search algorithms. Indeed, terrace-aware 
data structures led to substantial speedup of RAxML [27, 
28] and IQ-tree  [29] for estimating ML trees from 
alignments [23].

The conditions for datasets to have phylogenetic ter-
races, described in [21], are general and extensible to the 
gene tree-species context  [26, 30]. However, the combi-
natorial properties and mathematical characterizations of 
species tree terraces and the characteristics of the input 
gene trees and missing data patterns that lead to the pres-
ence of species tree terraces have not been elucidated 
in the gene tree-species tree context. In this paper, we 
mathematically characterize the species tree terrace and 
investigate various combinatorial properties of terraces. 
Moreover, we show that species tree terraces are not sen-
sitive to gene tree topologies and their discordance and 
as a result, one set of species trees acts as a species tree 
terrace for an extremely large number of different sets of 
input gene trees. Therefore, we introduce and formalize a 
special type of gene tree topology-aware species tree ter-
race “peak terrace”, describe its importance, argue why it 
suffices to only look at them to understand the properties 
of species tree terraces in general and investigate condi-
tions on the patterns of missing data and taxon coverage 
that give rise to peak terraces. In our study, we further 
explored, using a collection of simulated and real data-
sets, the presence and impact of species tree terraces and 
peak terraces. We showed that summary methods (e.g., 
ASTRAL, wQFM, etc.) may frequently estimate trees 
that fall within large species tree terraces with associated 
challenges in distinguishing trees in terms of their accu-
racy. In this connection, we investigated various ways to 
address these challenges associated with species tree ter-
races. We show that substantial improvements in species 
tree accuracy could be achieved if we can effectively lev-
erage the trees inside a terrace. Moreover, we investigated 
the potential for estimating branch supports of a species 
tree using trees within a terraced landscape.

Preliminaries
We now define some general terminology we will use 
throughout this paper; other terminology will be intro-
duced as needed. All trees T that follow are full binary 
trees with node set V(T), edge set E(T), and leaf set L(T). 
Let T be a full binary tree and let X ⊆ L(T ) . The homeo-
morphic subtree of T induced by X, denoted by T|X, is 
the unique tree obtained by restricting T to the leaf set X 
and then suppressing all the nodes of degree two in the 
resulting tree (see Fig. 1). If T ′  is a homeomorphic sub-
tree of T, then we say that T displays T ′ . We consider the 
restriction-based approach [31–33] where an incomplete 
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gene tree (i.e., a tree that can miss some taxa) gt is recon-
ciled with a species tree T by taking the homeomorphic 
subtree T ′ = T |L(gt).

The problem of inferring species trees from multi-
locus data using summary methods generally involves 
the following setup: we have as input a sequence 
G = (g1, g2, . . . , gk) of k gene trees such that L(gi) ⊆ X  for 
each i ∈ {1, 2, . . . , k} and we wish to find a species tree T 
that is optimal with respect to G according to a predefined 
scoring function sG(·) , which computes the score of a can-
didate species tree T with respect to a set G of input gene 
trees based on a particular optimality criterion. There 
are many scoring functions of interest such as the extra 
lineage (due to deep coalescence) score [20], the pseudo-
likelihood score  [12], triplet score  [17], and the quartet 
score  [11]. In this article, we will focus on the quartet 
score, but our results are general and extensible to other 
optimization criteria as well. A quartet is a binary tree 
on four leaves. We denote by ab|cd the unrooted quar-
tet tree in which the pair a, b is separated from the pair 
c, d by an edge. Given a binary tree T with at least four 
leaves, we denote by Q(T) the set of all quartets displayed 
by T. The quartet score of a species tree T with respect to 
an input sequence G = gi

k

i=1
 of gene trees denotes the 

number of quartets that are common between T and G , 
and is given by qG(T ) =

∑k
i=1 |Q(T ) ∩ Q(gi)|.

Species tree terraces
The concept of phylogenetic terraces  [21], originally 
described for tree estimation from sequence data using 
maximum likelihood, was later extended to species tree 
estimation from gene trees using summary approaches 
in  [26], which showed that for a fixed sequence G of gene 
trees, there can be potentially large sets of species trees 
with identical optimality scores. These sets of equally 
good species trees can arise regardless of the presence of 
missing data and were referred to as pseudo species ter-
races (see Definition 1).

Definition 1  (Pseudo Species Tree Terrace) Let 
G =

(

gi
)k

i=1
 be a sequence of gene trees and let sG(·) be a 

scoring function. A pseudo species tree terrace is a set S 
of the following form.

See Fig. 2 for an example of a pseudo quartet terrace. 
Note that every tree in this pseudo terrace has the 
same quartet score with respect to the input sequence 
of gene trees. However, some of these trees have the 
same score due to a very specific reason – they dis-
play the same set of subtrees. In order to highlight this 
point, we define species tree terraces which are pseudo 
species tree terraces with an additional condition.

Definition 2  (Species Tree Terrace) Given an input 
sequence G =

(

gi
)k

i=1
 of gene trees, two species trees T 

and T ′  are said to be in a species trees terrace if both of 
the following conditions hold. 

1.	 T and T ′ reside in the same pseudo species trees ter-
race with respect to G , and

2.	 the sequences 
(

T |L(gi)
)k

i=1
 and 

(

T ′|L(gi)
)k

i=1
 are 

equal.

In other words, trees in a species tree terrace not 
only have the same score with respect to G but also dis-
play the same homeomorphic subtrees when restricted 
to the leaves of the input gene trees. A few comments 
about Definition  2 are in order. Firstly, most scoring 
functions we care about turn out to have certain com-
mon properties. Given a sequence G =

(

gi
)k

i=1
 of gene 

trees, we call a scoring function sG(·) additive if the fol-
lowing holds for every species tree T. 

1.	 There exists a function c such that c(T , gi) = c
(

T |L(gi), gi
) 

for all 1 ≤ i ≤ k , and

S =

{

T : L(T ) =

k
⋃

i=1

L(gi) and sG (T ) = y for some y ∈ R+

}

Fig. 1  A full binary tree T and its homeomorphic subtree T|X where X = {A, C ,D, F}
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2.	 sG(T ) =
∑k

i=1 c(T , gi).

Clearly, the quartet score qG(·) is additive with c(T , gi) 
being the number of quartets common to both T and gi 
i.e., |Q(T ) ∩ Q(gi)| . The reader is encouraged to verify 
that other scores such as the extra-lineage score, the tri-
plet score, the gene duplication and loss score  [32, 33], 
and the pseudo likelihood score [12] are also additive.

It turns out that if we are dealing with only additive 
scoring functions, condition 1 in Definition  2 is redun-
dant. In other words, we have the following.

Proposition 1  (From [30]) Let G =
(

gi
)k

i=1
 be a sequence 

of gene trees and let sG(·) be an additive scoring function. If 
T and T ′ are species trees with L(T ) = L(T ′) =

⋃k
i=1 L(gi) 

that satisfy (T |L(gi)
)k

i=1
=

(

T ′|L(gi)
)k

i=1
 , then sG(T ) = sG(T

′).

One consequence of Proposition  1 is that if two trees 
are in a species tree terrace for a certain additive scoring 
function (say, the quartet score), then they are in a spe-
cies tree terrace for every additive scoring function. Let 
T and T ′  be two trees that display the same set of sub-
trees when restricted to the leaves of the input gene trees. 
Then for every additive scoring function, T and T ′ must 
have the same score (i.e., they must satisfy the first condi-
tion of being in a terrace). This is due to the fact that for 
an additive scoring function, the scores do not depend 
on the entire topology of T and T ′ . They only depend 
on the displayed subtrees. And since T and T ′   have the 
same displayed subtrees, they also have the same score 
for every additive scoring function. Therefore, they are 

on a terrace for every additive scoring function. In other 
words, the choice of the scoring function is irrelevant as 
long as it is additive. This motivates us to define an “addi-
tive version” of a species tree terrace that is independent 
of the choice of the scoring function.

Definition 3  (Additive Species Tree Terrace) Given 
an input sequence G =

(

gi
)k

i=1
 of gene trees, two spe-

cies trees T and  T ′  with L(T ) = L(T ′) =
⋃k

i=1 L(gi)
 

are said to be in an additive species trees terrace if 
(

T |L(gi)
)k

i=1
=

(

T ′|L(gi)
)k

i=1
.

This immediately lets us conclude the following 
corollary.

Corollary 1  Let T and T ′ be species trees residing in an 
additive species tree terrace with respect to a gene tree 
sequence G =

(

gi
)k

i=1
 . Then T and T ′  have equal score 

with respect to any additive optimization criteria (e.g., 
quartet score, triplet score, extra-lineage score, and gene 
duplication and loss score).

Since our focus is the quartet score which is an additive 
scoring function, for the remainder of the article we use 
“species tree terrace” and “additive species tree terrace” 
interchangeably.

Another point worth noting is that Defini-
tion  2 does not disallow terraces of cardinality one. 
In fact, given G =

(

gi
)k

i=1
 , every species tree T with 

L(T ) =
⋃k

i=1 L(gi)
 is part of some terrace (contain-

ing possibly only T itself ). Indeed, let T be an arbitrary 

Fig. 2  A pseudo quartet terrace S for the sequence G = (g1, g2, g3, g4) of gene trees. Any tree in S has a quartet score of 2 with respect to G
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species tree with L(T ) =
⋃k

i=1 L(gi) and consider the set 
S = {T ′ : L(T ′) = L(T ) and

(

T |L(gi)
)k

i=1
=

(

T ′|L(gi)
)k

i=1
} . Clearly, 

T ∈ S and therefore, |S| ≥ 1 . If |S| > 1 , then S is clearly 
a species tree terrace. However, note that even if |S| = 1 , 
the conditions in Definition  2 are vacuously true and S 
is technically a terrace. Such terraces of cardinality one 
are not very interesting in the context of phylogenomic 
analyses. Rather a much more interesting task is to inves-
tigate the conditions for which there exist more than one 
tree in a particular terrace.

From Definitions 1 and 2, it is clear that every pseudo 
species tree terrace can be partitioned into a set of spe-
cies trees terraces. In other words, there may be multiple 
terraces imbedded in a larger pseudo terrace at the same 
“elevation” in the landscape of tree space. Figure 3 shows 
how the pseudo quartet terrace S in Fig. 2 is composed of 
two different quartet terraces S1 and S2 . All of the trees 
in S1 (and likewise in S2 ) display identical trees when 
restricted to the leaf set of a particular gene tree. For 
example, when restricted to L(g1) , all the trees in S1 and 
S2 display ((a, b), (c, d)) and ((a, c), (b, d)), respectively.

Note that due to the extra condition that trees in a spe-
cies tree terrace must satisfy, terraces of size greater than 
one can only exist if there is missing data in the input 
gene trees i.e. for every 1 ≤ i ≤ k , L(gi)  =

⋃k
j=1 L(gj) . This 

is because if there exists i such that gi contains data from 
all the taxa, then for any species tree T, T |L(gi) = T  , and 
the only tree with leaf set 

⋃k
j=1 L(gj) that displays T is T 

itself. Pseudo species tree terraces have no such restric-
tions: large pseudo-terraces exist even without the pres-
ence of any missing data [26]. Some lower bounds on the 

sizes of such large pseudo terraces can also be derived as 
shown below.

Theorem 1  Let G =
(

gi
)k

i=1
 be a sequence of gene trees 

such that for all 1 ≤ i ≤ k , L(gi) = L , i.e., there is no miss-
ing data in any of the gene trees. If |L| = n , then there 
exists a pseudo quartet terrace of size at least (2n−5)!!

k

(

n
4

)

+1

.

Proof  Let TL be the set of all unrooted species trees on 
L. Note that we have |TL| = (2n− 5)!! . There are a total of 
(n
4

)

 quartets in a tree with n taxa. Therefore, for a gene 
tree gi ∈ G and a species tree T, both on the same set of n 
taxa, T can satisfy at most 

(n
4

)

 quartets (this is when gi and 
T have an identical topology). Hence, for a set G of k gene 
trees, the maximum number of consistent quartets with 
respect to a species tree T is k

(n
4

)

 . Therefore, we have 

qG(T ) ∈

{

0, 1, 2, . . . , k

(

n
4

)}

 . Now for 0 ≤ m ≤ k

(

n
4

)

 , 

let Tm = {T ∈ TL : qG(T ) = m} . Clearly, the sets Tm form 
a partition of TL and by the pigeonhole principle, there 
exists m such that |Tm| ≥ (2n−5)!!

k

(

n
4

)

+1

 . This set Tm is our 

required pseudo quartet terrace. 	 �

Since the numerator in (2n−5)!!

k

(

n
4

)

+1

 grows much faster 

with n than the denominator, the sizes of such pseudo 
terraces can grow very large very quickly even without 
missing data.

Fig. 3  The pseudo quartet terrace of Fig. 2 partitioned into two species tree quartet terraces S1 and S2
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We also note that terraces – unlike pseudo terraces – 
are agnostic to gene tree topologies and depend solely 
on taxon coverage (i.e., the taxa sampled in gene trees). 
This is a consequence of Proposition  1 which says that 
if two trees display the same set of trees, then they have 
the same score for an additive scoring function. In other 
words, even if we replace each gene tree gi with a differ-
ent gene tree g ′i , as long as the leaf sets remain the same, 
i.e. L(gi) = L(g ′i ) , two trees T1 and T2 that were once in a 
terrace will remain in a terrace. So, in a very real sense, 
for species tree terraces, the topologies of the gene trees 
in the input sequence G =

(

gi
)k

i=1
 do not matter. The only 

thing that matters is the taxon coverage, i.e., the sequence 
of leaf sets 

(

L(gi)
)k

i=1
 . As long as this sequence of leaf sets 

in the gene trees is fixed, any two trees that are once in a 
species tree terrace with respect to G will always remain 
in a species tree terrace for G′ (albeit the optimality scores 
of the terraces could be different due to the topological 
differences of the gene trees in G and G′ ). Therefore, we 
have the following theorem.

Theorem 2  Let S be a species tree terrace with respect to 
G =

(

gi
)k

i=1
 of gene trees and an additive scoring function 

sG(·) . Then S is a species tree terrace with respect to every 
sequence G′ =

(

g ′i
)k

i=1
 where for 1 ≤ i ≤ k , L(gi) = L(g ′i ).

Since the input gene tree topologies do not matter for 
determining whether a species tree belongs to a terrace, 
one set of species tree acts as a species tree terrace for an 
extremely large number of sequences of input gene trees 
as shown in the proposition below.

Proposition 2  Let G =
(

gi
)k

i=1
 be a sequence of gene 

trees and let S be a species tree terrace with respect to G . 
Let MS be the set of all k gene tree sequences G′ for which 
S is a species tree terrace. More formally,

Then |MS | ≥
∏k

i=1(2|L(gi)| − 5)!!.

Proof  Clearly, if L(gi) = L(g ′i ) for all 1 ≤ i ≤ k , then S is 
a species tree terrace with respect to G′ . Since there are 
(2n− 5)!! full binary trees on n leaves, the result follows. ��

The phylogenetic terrace, originally described by 
[21] in the context of estimating phylogenetic trees 
from sequence alignments, also depends solely on the 
taxon coverage. This is not a limiting factor for phy-
logenetic terraces as it is defined for a problem that 
takes sequence alignments as input, making the taxon 
coverage the only relevant information from the input 

MS =
{

G′ =
(

g ′i
)k

i=1
: S is a species tree terrace with respect to G′

}

.

data. Summary methods in the gene tree-species tree 
context, however, take a collection of gene trees – rep-
resenting the taxon coverage of the input gene trees 
as well as gene tree topologies and their discordance. 
Taking the gene tree discordance into account is fun-
damental for estimating species trees from a collec-
tion of gene trees using a statistically consistent way. 
Therefore, it is desirable to have variants of species tree 
terraces that are sensitive to gene tree topologies in 
addition to the taxon coverage. In this regard, we intro-
duce a special type of gene tree topology-aware ter-
races, which we call peak terraces.

Peak terraces
Peak terraces are species tree terraces with one extra 
condition: for any tree T in a peak terrace, the sequence 
(

T |L(gi)
)k

i=1
 must equal G (see Fig. 4). More formally, we 

have the following definition.

Definition 4  (Peak Terrace) Let G =
(

gi
)k

i=1
 be a 

sequence of gene trees. A set S is called a peak terrace 
with respect to G , if for every T ∈ S , L(T ) =

⋃k
i=1 L(gi) 

and 
(

T |L(gi)
)k

i=1
= G.

Peak terraces are named as such due to the fact that 
any tree in a peak terrace achieves the optimal score with 
respect to the input sequence of gene trees. For maxi-
mization problems (e.g., maximizing quartet score), the 
trees in a peak terrace have the highest score, whereas for 
minimization criteria (e.g., minimizing deep coalescence, 
minimizing gene duplication and loss), the trees in a peak 
terrace achieve the lowest “cost” (i.e., the highest score, 
where score = −cost ). We note that, in the landscape 
sense, the peak terraces for minimization problems are 
actually “basins” rather than “peaks”. The following prop-
osition shows the optimality of the trees in a peak terrace 
in the context of quartet scores.

Proposition 3  Given a sequence G =
(

gi
)k

i=1
 of gene 

trees, any tree T in a quartet peak terrace with respect to G 
must have the maximum possible quartet score with 

respect to G i.e., qG(T ) =
∑k

i=1

(

|L(gi)|
4

)

.

Proof  Since T is in a quartet peak terrace, for every 
1 ≤ i ≤ k , T |L(gi) = gi . Therefore, Q(T ) ⊇ Q(gi) , and so, 
qG (T ) =

∑k
i=1 |Q(T ) ∩ Q(gi)| =

∑k
i=1 |Q(gi)| =

∑k
i=1

(

|L(gi)|

4

)

.	�  �

Note that Proposition  3 implies that for a fixed 
sequence G of gene trees – unlike species tree terraces – 
there exists exactly one quartet peak terrace. However, 
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we would like to point out that this is true for not only 
quartet peak terraces but also any s-terrace where s is 
an additive scoring function. More interestingly, for a 
particular sequence of gene trees, there is exactly one 
peak terrace for all possible additive scoring functions.

The concept of peak terraces has impacts on species 
tree inference from a collection of gene trees using 
summary methods. Summary methods attempt to 
find a tree with the optimal score (e.g., quartet score), 
meaning that when the problem is solved exactly, the 
output species tree will reside in a pseudo species ter-
race with the optimal score. The trees in such a terrace 
are all optimal in terms of an optimization criterion, 
but they are topologically different and hence have dif-
ferent topological accuracies – posing a challenge for 
the search algorithms to find comparatively reliable tree 
from a pool of equally optimal trees. This phenomenon 
was systematically analyzed and demonstrated by [26], 
where it was observed that Phylonet [20, 34] (a method 
for estimating species trees by minimizing the num-
ber of extra lineages resulting from deep coalescence 
events) can produce trees with identical or competi-
tive quartet scores as ASTRAL, but ASTRAL is typi-
cally substantially more accurate than Phylonet. Note 
that a pseudo species terrace with the optimal score is 
not necessarily a terrace or a peak terrace, but a peak 
terrace is a pseudo terrace with the optimal score, and 
both are sensitive to gene tree topologies. Moreover, as 
we will show in the following, characterizing peak ter-
races is sufficient for characterizing terraces. Under-
standing peak terraces may thus potentially help in 
the development of terrace-aware data structures and 
algorithms to circumvent the challenges and ambigu-
ity posed by equally good trees, thereby improving tree 
search strategies for summary methods.

Another reason why peak terraces are important is 
the fact that every species tree terrace for some input 
sequence of gene trees is a peak terrace for possibly a 
different sequence of input gene trees. This different 
sequence is simply the sequence of gene trees displayed 
by the trees in the terrace when restricted to the leaves of 
the original sequence of input gene trees. In other words, 
we have the following fact.

Fact 1  Let G =
(

gi
)k

i=1
 be a sequence of gene trees. If 

S is a non-empty species tree terrace with respect to G , 
then S is also a peak terrace with respect to the sequence 
(

T |L(gi)
)k

i=1
 where T ∈ S.

Clearly, by definition, every peak terrace is a species 
tree terrace. Fact  1, however, tells us that every species 
tree terrace is also a peak terrace. It then follows that 
the set of all species tree terraces over all sequences of 
input gene trees is exactly the same as the set of all peak 
terraces over all sequences of input gene trees. So, if we 
want to understand the structural properties of terraces, 
it suffices to focus on the structural properties of peak 
terraces.

Although gene tree topologies do not matter for spe-
cies tree terraces, they do matter for pseudo-terraces. 
Indeed, if one of the input gene trees is changed while 
keeping the leaf set unchanged, two trees that were once 
in a pseudo-terrace may cease to remain in it. The same 
is true for peak terraces too. Unlike species tree terraces 
which only depends on the leaf sets of the input gene 
trees, peak terraces are sensitive to the topologies of the 
gene trees. Moreover, it is not guaranteed that any spe-
cies tree is a part of a peak terrace, meaning that the peak 
terrace can be necessarily empty for some set of inputs. 
The following fact highlights a simple sufficient condition 
for this to happen.

Fig. 4  Portion of the peak terrace S with respect to the sequence G = (g1, g2, g3, g4) of gene trees. Every tree in S displays each one of g1 , g2 , g3 , 
and g4
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Fact 2  Let G =
(

gi
)k

i=1
 be a sequence of gene 

trees such that there exists 1 ≤ i < j ≤ k for which 
L(gi) = L(gj) =

⋃k
m=1 L(gm) but gi  = gj . Then the peak 

terrace of G is necessarily empty.

Fact 2 tells us if there are two different gene trees that 
both contain all the taxa, then the peak terrace is neces-
sarily empty. In other words, missing data is a necessity 
for peak terraces to be non-empty unless the input gene 
trees are all identical. However, that alone is not suffi-
cient. The condition that all input gene trees be displayed 
is a rather strong one. A collection of trees is called com-
patible if there exists at least one tree that displays every 
tree in the collection. We have the following fact about 
peak terraces.

Fact 3  Let G =
(

gi
)k

i=1
 be a sequence of gene trees. 

The peak terrace of G is non-empty if and only if G is 
compatible.

Whether a collection of gene trees is compatible can be 
decided using the BUILD algorithm from [35].

Finding patterns of missing data that give rise 
to non‑trivial peak terraces
In this section, we aim to answer the following question: 
What patterns of missing data cause the peak terrace to 
be non-empty? To motivate the precise question we are 
interested in, consider, once again, the case where the 
input gene trees do not have any missing data, i.e., for 
each 1 ≤ i ≤ k , L(gi) = L =

⋃k
j=1 L(gj) . Fact 2 tells us that 

in this case, unless the input gene trees are not all iden-
tical, the peak terrace is necessarily empty. We can then 
ask the following natural question: Is it possible to remove 
taxa from some or all of the input gene trees so that the 
peak terrace becomes non-empty? More formally, we want 
to find the existence of a kernel, which we now define.

Definition 5  (Kernel) Let G =
(

gi
)k

i=1
 be a sequence 

of input gene trees such that for each 1 ≤ i ≤ k , 
L(gi) = L =

⋃k
j=1 L(gj) . A sequence X1,X2, . . . ,Xk ⊆ L , 

where |Xi| ≥ 4 for each 1 ≤ i ≤ k , is called a kernel if 
there exists at least one tree T in the peak terrace of the 
sequence 

(

gi|Xi

)k

i=1
.

Note that each kernel specifies a pattern of missing data 
for which a non-empty peak terrace exists. We first show 
that if there are not too many gene trees in the input, 
then such a pattern of missing data can always be found.

Theorem  3  Let L =
⋃k

i=1 L(gi) be the set of all taxa 
present in the data. If the number of input gene trees, k, 

satisfies the inequality k ≤
|L|
4

 , then there exists a kernel 
i.e. a sequence (Xi)

k
i=1 with |Xi| ≥ 4 such that there exists a 

T with L(T ) = L that displays (gi|Xi

)k

i=1
.

Proof  Let n = |L| and let L = {L1, L2, . . . , Ln} . For 
1 ≤ i ≤ k , we set Xi = {L4i−3, L4i−2, L4i−1, L4i} and let 
L′ = L \

⋃k
i=1 Xi . Note that for each 1 ≤ i ≤ k , gi|Xi is 

a quartet. Finally, let T ′ be any full binary tree with leaf 
set L′ . Now consider the tree T in Fig. 5, which contains 
the quartets g1|X1, g2|X2, . . . , gk |Xk , and the subtree T ′ . 
Clearly, T displays (gi|Xi

)k

i=1
.	�  �

Given a set of k complete gene trees (i.e., there is no 
missing taxa), Theorem  3 guarantees that if the num-
ber of gene trees is not too large ( k ≤

|L|
4

 ), we can throw 
away leaves from these trees to cause the peak terrace to 
become non-empty. The way we proved this is by explic-
itly describing which leaves we want to throw away from 
each gene tree. The point is, if k ≤

|L|
4

 , we can throw 
leaves away in such a way that the altered gene trees have 
disjoint leaf sets. In the first gene tree we throw away eve-
rything except four taxa L1, L2, L3, L4 ; in the second gene 
tree we throw away everything except taxa L5, L6, L7, L8 , 
etc. So, we can simply merge the altered trees together 
(and add in the remaining leaves) to find a tree (the tree 
in Fig. 5) that is in the peak terrace.

Theorem  3 gives a simple sufficient condition for the 
existence of a kernel based on the number of input gene 
trees. One might ask if there is an analogous necessary 
condition. It turns out there is not: no matter how many 
distinct gene trees are in the input sequence, there always 
exists a kernel provided that the gene trees have at least 
six leaves.

Fig. 5  The tree T used in the proof of Proposition 3
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Theorem  4  Let L be a set with |L| ≥ 6 and let 
G =

(

gi
)k

i=1
 be a sequence of gene trees such that for 

all 1 ≤ i ≤ k , L(gi) = L . Then there exists a kernel i.e. a 
sequence (Xi)

k
i=1 with |Xi| ≥ 4 such that there exists a tree 

T with L(T ) = L that displays 
(

gi|Xi

)k

i=1
.

To prove Theorem 4, we first need the following lemma.

Lemma 1  Let L be a set such that |L| = 6 . There exists 
a tree T with L(T ) = L , such that for every tree T ′  with 
L(T ′) = L , Q(T ) ∩ Q(T ′) �= ∅.

Proof  Let L = {a, b, c, d, e, f } . We claim that the tree T 
in Fig. 6 works.

Assume, for the sake of contradiction, that there 
exists T ′  with L(T ′) = L such that Q(T ) ∩ Q(T ′) = ∅ . 
Then there exists a pair of leaves in T ′  that are siblings 
(i.e., the number of edges on the path between these 
two leaves is two). Without loss of generality, let a be 
one of these leaves and let x be its sibling. Note that 
x  = b since otherwise, every quartet of the form ab | yz , 
where y, z ∈ {c, d, e, f } , would be in Q(T ) ∩ Q(T ′) . Let x’ 
be the sibling of x in T. Now choose leaves y and z from 
L \ {a, x, b, x′} . Clearly, since |L| = 6 , this can always be 
done. Now the quartet ax | yz ∈ Q(T ) ∩ Q(T ′) , a contra-
diction.	�  �

Now we can proceed to prove Theorem 4.
Proof of Theorem  4. Let L′ ⊆ L such that |L′| = 6 . By 

Lemma  1, there exists a tree T ′  with L(T ′) = L′ such 
that Q(L′) ∩ Q(gi|L

′) �= ∅ for each 1 ≤ i ≤ k . Now for 
each 1 ≤ i ≤ k , choose qi ∈ Q(L′) ∩ Q(gi|L

′) and set 
Xi = L(qi) . Clearly, T ′  displays (gi|Xi

)k

i=1
= (qi)

k
i=1

 , and 

so any tree T with L(T ) = L that displays T ′  completes 
the proof. �

The bound in Theorem  4 is tight. If the gene trees 
all have fewer than six leaves, then for certain input 
sequences, it is possible for no kernel to exist. This is 
because the existence of a tree similar to the one in 
Lemma 1 is not guaranteed if |L| = 5.

Lemma 2  Let L be a set such that |L| = 5 . Then for every 
tree T with L(T ) = L , there exists a tree T ′ with L(T ′) = L 
such that Q(T ) ∩ Q(T ′) = ∅.

Proof  Let T be any tree with L(T ) = L and let x ∈ L 
have no sibling. Since |L| = 5 , such an x can always be 
found. Let q = T |L \ {x} and q′ be a quartet on the same 
set of leaves as q (i.e., L(q′) = L(q) = L \ {x} ) but is topo-
logically different from q. Let T ′ be the tree obtained by 
attaching x to the internal branch of q′ . It can be very eas-
ily seen that Q(T ) ∩ Q(T ′) = ∅.	�  �

Due to Lemma 2, if the input sequence 
(

gi
)k

i=1
 contains, 

say, all the gene trees on five leaves, then no kernel is pos-
sible. In other words, we have the following theorem.

Theorem 5  Let X be a set with |X | = 5 . If G =
(

gi
)k

i=1
 is 

a sequence of gene trees containing every gene tree on X, 
then there does not exist a sequence (Xi)

k
i=1 with |Xi| ≥ 4 

such that there is a tree T1 that displays (gi|Xi

)k

i=1
.

Proof  For the sake of contradiction, assume there 
exists a sequence (Xi)

k
i=1 with |Xi| ≥ 4 such that there is 

a tree T1 which displays 
(

gi|Xi

)k

i=1
 . Let T = T1|X . Using 

Lemma 2, we can now obtain T ′ such that L(T ′) = X and 
Q(T ) ∩ Q(T ′) = ∅ . Since G contains every gene tree on X, 
it also contains T ′ . Furthermore, since T and T ′ have no 
quartets in common, neither do T1 and T ′ . So, T1 can not 
display T ′ , a contradiction.	�  �

It is worth noting that even though Theorem 4 is stated 
in a way that disallows missing data, a similar result also 
holds when there is missing data as long as there is a set 
of at least six leaves common to every input gene tree.

Corollary 2  Let G =
(

gi
)k

i=1
 be a sequence of (possi-

bly incomplete) gene trees. If |
⋂k

i=1 L(gi)| ≥ 6 , then there 
exists (Xi)

k
i=1 with |Xi| ≥ 4 such that there exists a T with 

L(T ) =
⋃k

i=1 L(gi)
 that displays 

(

gi|Xi

)k

i=1
.

Proof  We start with picking L′ ⊆
⋂k

i=1 L(gi) such that 
|L′| = 6 . The rest of the proof is almost identical to that of 
Theorem 4.	�  �

Fig. 6  The tree T used in the proof of Lemma 1. For every tree T ′ with 
L(T ′) = L(T ) , Q(T ) ∩ Q(T ′) �= ∅
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Extending to other scoring functions
So far, we have only been focusing on quartet scores. For 
example, we wanted our Xi ’s to be of size at least four 
because according to our definition, the quartet score 
of a tree with fewer than four leaves is undefined. How-
ever, our results are general and can easily be extended to 
other additive scoring functions too. Consider, for exam-
ple, the extra-lineage score for which we have the follow-
ing analogous propositions. The proofs of these are left 
to the reader (a proof sketch for Theorem 6 is provided). 
Note that, unlike the quartet score, computing the extra-
lineage score requires the gene trees and species trees to 
be rooted.

Proposition 4  Given a sequence G =
(

gi
)k

i=1
 of rooted 

gene trees, any tree T in an extra-lineage peak terrace 
with respect to G must have an extra-lineage score of zero 
with respect to G.

Theorem  6  Let L be a set such that |L| ≥ 6 and let 
G =

(

gi
)k

i=1
 be a sequence of rooted gene trees such that 

for all 1 ≤ i ≤ k , L(gi) = L . Then there exists (Xi)
k
i=1 with 

|Xi| ≥ 3 for each i such that the extra-lineage peak terrace 
of 
(

gi|Xi

)k

i=1
 is non-empty.

Proof sketch for Theorem 6. The main idea is to find 
a rooted tree T such that for any rooted tree T ′  with 
L(T ) = L(T ′) , there exists at least one rooted triplet that 
is common to both T and T ′ . It turns out that rooting the 
tree in Fig. 6 on any branch results in a tree that works. 
Then we proceed similarly as the proof for Theorem 4.

Experimental results
We have designed the experimental study considering the 
following research questions (RQs).

•	 RQ1: Previous studies demonstrated the prevalence of 
pseudo terraces in phylogenomic analyses [26]. Species 
tree terraces in the context of estimating species trees 
from a collection of gene trees (as we have formalized 
in this study) have more stringent conditions for their 
existence as the trees in a terrace need to display the 
same locus-specific trees. As a result, how prevalent 
are species tree terraces under realistic model condi-
tions, and what challenges do they present?

•	 RQ2: Can the accuracy of the estimated phylogenetic 
tree be enhanced through the utilization of species 
tree terraces?

•	 RQ3: Can we leverage trees within terraces to com-
pute branch supports for the estimated species trees?

•	 RQ4: Do the true species trees reside in large ter-
races? Can we decrease such ambiguities by analyz-
ing sufficiently large numbers of correct gene trees?

•	 RQ5: The conditions for peak terraces are more strin-
gent than terraces. Thus, how prevalent are peak ter-
races under varying levels of missing data?

Dataset description
We used the dataset generated and analyzed in  [36], 
which presents a method ASTEROID for estimating 
species trees from gene trees in the presence of miss-
ing data. The data were generated using Simphy [37] by 
varying a wide range of parameters such as the level of 
missing data, the level of discordance due to ILS, the 
number of gene trees and the number of taxa. Gene trees 
were inferred using ParGenes  [38] with one RAxML-NG 
maximum likelihood search from a single random start-
ing tree per gene under the general time reversible model 
of nucleotide substitution with four discrete gamma rates 
(GTR+G4)  [39, 40]. Missing data was introduced by ran-
domly sampling gene sequences, where each gene and 
each species has certain deletion probabilities (we refer 
to [36] for more details). The generated gene trees exhibit 
an average of around 60% missing taxa and 60% missing 
genes, making them suitable for investigating species tree 
terraces resulting from missing data. We also analyzed a 
biological dataset Life92-single with 92 species from the 
Eukaryote and Archaea domains [36, 41].

Methods used
In order to examine the prevalance of species tree terraces 
considering various optimization criteria used for spe-
cies tree construction (e.g., quartet score, RF score, etc.), 
we used a wide range of species tree estimation methods 
namely ASTRAL, wQFM, FastRFS, and ASTEROID.

Measurements
To assess the quality of the estimated trees (on simulated 
datasets), we compared them with the model species tree 
using normalized Robinson-Foulds (RF) distance [42]. The 
RF distance between two trees is the sum of the biparti-
tions (splits) induced by one tree but not by the other, and 
vice versa. We also investigated the quartet scores (the 
number of quartets in the gene trees that agree with a 
species tree) of the trees estimated by different methods.

RQ1: prevalence of species tree terraces
We first discover the terraces (if present) associated with 
the trees estimated by ASTRAL, which is arguably the 
leading coalescent-based method. Our experiments on 
20 replicates of data containing 75 species and 1000 gene 
trees revealed that ASTRAL-estimated trees land on 
notably large terraces across all the replicates. For exam-
ple, on a particular replicate (Rep-17) of this dataset, The 
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tree estimated by ASTRAL-III  [43] lands on a terrace 
of 14,175 trees. Since all of these 14,175 trees have the 
same quartet score, with respect to the gene trees under 
experimentation, any of these 14,175 trees could have 
been selected by ASTRAL. However, since these trees are 
topologically different, they have different RF scores with 
respect to the model species trees – raising an ambigu-
ity for the tree search algorithm. To further investigate 
this, we calculated the RF scores of these 14,175 trees and 
plotted them against the corresponding quartet scores 
(Fig.  7a). Remarkably, despite having the same quartet 
score, the RF rates of these trees vary significantly, rang-
ing from 0.236 - 0.347. Among the 14,175 trees within 
this particular terrace, we identified 707 trees that exhib-
ited higher accuracy than the ASTRAL-estimated trees, 
11,736 trees that were less accurate, and the remaining 
1,732 trees displayed identical RF rates to the ASTRAL 
tree. In Fig.   7 and related discussion, we refer to these 
three categories of trees within terraces as “better” (trees 
in the terraces that are more accurate than the ASTRAL-
estimated species tree), “worse” (trees within the terraces 
that have lower accuracy than the ASTRAL-estimated 
species tree), and “equal” (trees with an identical RF rate 
to the ASTRAL-estimated species tree), respectively.

We then investigated if the prevalence of terraces and 
the variation of the tree qualities within the trees in the 
terraced landscape extend to other species tree estima-
tion methods. Our investigations included the trees 
estimated by several popular methods, such as wQFM 
(which was demonstrated to have superior accuracy 
compared to ASTRAL  [18]), ASTEROID (specifically 
designed for handling missing data), and FastRFS. We 
found that the trees estimated by all these methods 
belong to terraces with different sizes and containing 
trees with diverse levels of tree accuracy and quartet 
scores (Fig. 7b). Each horizontal line Fig. 7b (represented 
by circles with different colors), positioned at different 
heights along the y-axis, represents a terrace correspond-
ing to the trees estimated by different methods. Finally, 
we show in Fig. 7c that these observations hold across all 
the 20 replicates we examined for this dataset. Remark-
ably, better trees (than the tree estimated by ASTRAL) 
exist in the species tree terraces across all these 20 rep-
licates, although their presence is limited in number for 
some of the replicates. In Fig.  7d, we demonstrate the 
same results as Fig. 7c but now we ran wQFM on the 20 
replicates. Interestingly, we observed that the sizes of the 
terraces where the wQFM-estimated trees reside are sub-
stantially smaller than those of ASTRAL. Also, wQFM-
estimated trees land on terraces with multiple species 
trees for 9 (out of 20) replicates, and no multiplicity of 
equally good trees was observed on the remaining 11 
replicates.

Finally, we investigated the prevalence of terraces on 
other simulated datasets from  [36] with varying num-
bers of taxa (25 - 125). The distributions of the trees 
inside the terraces across all these datasets are presented 
in Table  1. Similar trends, as observed on the 75-taxon 
dataset, were observed on other datasets. Note that the 
size of the terraces generally increases as we increase the 
number of taxa. This is expected because the number 
of candidate species trees grows exponentially with the 
number of taxa, making the terraces relatively large and 
thereby posing greater challenges to the tree search algo-
rithms. wQFM-estimated trees generally belong to rela-
tively small terraces while FastRFS-estimated trees land 
on larger terraces. As we mentioned earlier, this can be 
attributed to the relative accuracies of the trees estimated 
by different methods. Interestingly, we also observed that 
the number of better trees within the terrace is very small 
for wQFM compared to other methods, indicating that 
wQFM tends to select the tree with relatively high accu-
racy from within the corresponding terrace. In contrast, 
the terraces corresponding to other methods, such as 
FastRFS and ASTRAL, contain a substantial number of 
trees with better accuracy than the estimated trees. The 
underlying reasons for these different sizes of terraces 
for various methods remain unclear and warrant further 
investigation. It is possible that the diverse levels of ter-
race sizes are influenced by different algorithmic tech-
niques and nuances employed to explore the search space 
during tree estimation.

Prevalence of terraces in biological dataset  We analyzed 
the Life92-single dataset with 3199 single-copy gene trees 
covering 92 species from the Eukaryote and Archaea 
domains [36, 41]. Morel et al. [36] compiled these single-
copy gene trees from 41,222 multicopy gene trees origi-
nally inferred by Willams et al.  [41] by applying DISCO 
and filtering out resulting single-copy gene trees with less 
than four species.

We found that the species tree estimated by ASTRAL 
from these gene trees belongs to a very vast terrace with 
an astonishing number of 93,881,025 (around 94 mil-
lion) trees, and all with an identical quartet score of 
40,436,626. Interestingly, the ASTEROID-estimated tree 
lands on a separate terrace but has the same number of 
trees (93,881,025), yielding a quartet score of 40,323,847.

Given the influence of missing data in the terraced 
landscape, we next investigate the impact of removing 
genes with high rates of missing taxa on the size of the 
species tree terrace. Table  2 presents the variation in 
terrace size as gene trees with different rates of miss-
ing taxa are excluded from the analysis. All available 
gene trees are initially considered, and a species tree, 
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denoted as S0 , is estimated using ASTRAL. Subse-
quently, the missing rate threshold is progressively low-
ered, and gene trees with a missing rate exceeding the 
current threshold are discarded. Note that as we lower 
the threshold, more gene trees are discarded. For each 
threshold setting, the terrace is determined using the 
remaining gene trees and the initially estimated spe-
cies tree S0 . The results, as shown in Table  2, indicate 
that as the threshold decreases and more gene trees are 
excluded, the terrace size expands significantly.

Using all 3199 gene trees, S0 lands on a terrace con-
taining around 94 million gene trees. Interestingly, when 
we apply a threshold of 90%–discarding gene trees with 
more than 90% missing taxa–the number of gene trees 
drops to 1,006, yet the terrace size remains unchanged. 
However, at a 70% threshold, the number of gene trees 
decreases rapidly, resulting in a dramatic increase in the 
terrace size to around 2 trillion trees. This terrace size 
further expands to 18 quintillion trees when gene trees 
with more than 40% missing taxa are excluded.

Fig. 7  Prevalence of species tree terraces a Quartet score vs. RF rate of the trees within the terrace, comprising 14,175 trees, which contains 
the tree estimated by ASTRAL on a particular replicate with 75 taxa. The better, worse, and equal trees (with respect to the ASTRAL-estimated tree) 
are shown in different colors. The size of the circles is proportional to the number of trees. b The species tree terraces corresponding to the trees 
estimated by ASTRAL, wQFM, ASTEROID, and FastRFS, and the variation in tree qualities of the trees within the terraces. c Presence of terraces 
across all replicates corresponding to the ASTRAL-estimated trees. Each horizontal line (represented by circles with different colors), positioned 
at different heights along the y-axis, represents a terrace corresponding to the trees estimated by ASTRAL on different replicates. The particular 
replicate that we show in Fig. 7a,b is marked by a rectangular box. d Presence of terraces across all replicates corresponding to the wQFM-estimated 
trees
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This dramatic increase in terrace size as the missing 
rate threshold decreases (resulting in more gene trees 
being discarded) can be attributed to the reduced con-
straints on the possible species tree topologies that the 
remaining gene trees can support. Since all trees within 
a terrace display/induce the same set of gene-specific 
subtrees, fewer gene trees (resulting from excluding gene 
trees from the analysis) present fewer constraints on the 
display set, allowing for a large number of plausible spe-
cies trees within the terrace.

These experiments demonstrate that species tree ter-
races, despite having a stringent condition of displaying 
identical locus-specific trees, may frequently occur in 

phylogenomic studies. More importantly, while the pres-
ence of terraces introduces ambiguity and challenges for 
the tree search algorithms, it presents opportunities for 
finding more accurate trees. Our findings demonstrate 
that, in almost all cases, some trees within these terraces 
are better than the trees estimated by existing methods. 
For example, the average RF rate of ASTRAL-estimated 
trees over 20 replicates of the 25-taxon dataset is 0.285, 
while the average RF rate of the best trees within the 
terraces containing ASTRAL-estimated trees is 0.189, 
showing that there exist substantially better trees than 
ASTRAL despite having identical quartet scores. There-
fore, in the next section, we investigate the potential for 

Table 1  Average number of better, equal and worse trees in the terrace of the tree estimated by ASTRAL-III, ASTRAL-MP, FastRFS, 
wQFM, ASTEROID over 20 replicates of the 25-taxon to 125-taxon dataset

Number of Species Method Average number of 
better trees

Average number of 
equal trees

Average number of 
worse trees

Average total number 
of trees

25 ASTRAL III 89.8 110.6 1,384.9 1,585.3

FastRFS 12.2 30.2 1,028.4 1,070.8

wQFM 0.5 3.7 25.0 29.2

Asteroid 12.0 25.6 1,364.1 1,401.6

50 ASTRAL III 397.9 413.2 1,245.7 2,056.8

FastRFS 550.2 410.9 1,306.3 2,267.3

wQFM 647.4 638.8 494.6 1,780.8

Asteroid 74.7 198.7 1,130.1 1,403.4

75 ASTRAL III 191.0 244.4 2,146.8 2,582.2

FastRFS 195.7 305.6 1,777.6 2,278.8

wQFM 14.2 31.7 155.6 201.4

Asteroid 122.0 154.9 1,379.8 1,656.7

100 ASTRAL III 780.1 823.6 5,664.8 7,268.4

FastRFS 978.9 915.6 5,565.7 7,460.1

wQFM 30.0 69.4 443.6 543.0

Asteroid 1,687.2 1,182.1 3,894.8 6,764.1

125 ASTRAL III 778.3 952.3 7,035.8 8,766.3

FastRFS 1,395.6 1,176.3 7,120.0 9,691.8

wQFM 4.8 21.8 2,659.6 2,686.2

Asteroid 351.0 536.0 5,907.8 6,794.7

Table 2  Change in terrace size when gene trees with various missing rates are dropped. The species tree is estimated using ASTRAL

Missing rate threshold (%) Number of gene trees Terrace size

- 3,199 93,881,025

90 1,006 93,881,025

80 464 93,881,025

70 266 1,964,841,046,875

60 161 1,964,841,046,875

50 72 283,151,278,424,109,375

40 46 18,446,744,073,709,551,615
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leveraging the trees in a species tree terrace for finding 
relatively accurate species trees.

RQ2: leveraging terraces for improved phylogenomic 
analysis
In RQ1 (prevalence of species tree terraces), we 
observed that within a terrace containing a tree esti-
mated by a specific method (e.g., ASTRAL, wQFM, 
etc.), there are more accurate trees than the estimated 
ones. Hence, it becomes crucial to identify these rela-
tively accurate trees from within the terrace. However, 
as discussed earlier in Proposition 1 and Corollary 1, all 
trees in a terrace display identical locus-specific trees 
and thus share the same scores based on any additive 
optimization criteria (e.g., quartet score, triplet score, 
extra lineage score, duplication/loss score, etc.). Con-
sequently, distinguishing relatively accurate trees based 
on optimization criteria alone is not feasible.

One approach could involve computing consensus 
trees of the trees within a terrace. However, considering 
that there are both better and less accurate trees (than 
the estimated ones) in a terrace, computing consensus 
trees of all the trees may not yield improved accuracy. 
In contrast, our experiments demonstrate that comput-
ing the consensus of only the better trees significantly 
enhances results compared to computing the consensus 
of all trees within the terrace.

In Fig. 8 a, b, for each method (e.g., ASTRAL, wQFM, 
etc.), we show the average RF rates of the following four 
types of trees: i) trees estimated by a particular method, 
ii) consensus trees of the trees within the terrace that 
contains the trees estimated by that particular method, 
iii) consensus trees of only the better trees from within 

the terrace, and iv) the best tree, in terms of the tree 
accuracy, within the terrace containing the estimated 
tree. The results demonstrate that computing the con-
sensus of all trees within the terrace is not beneficial, 
as it combines the less accurate trees (which often out-
number the relatively good trees), leading to a decline 
in overall performance. On the other hand, computing 
the consensus of only the better trees yields signifi-
cant improvements for all methods across all datasets. 
Notably, as shown in Fig.  8, the accuracies of these 
consensus trees are comparable to the best trees in the 
terraces. This highlights the potential for enhancing 
species tree accuracy by identifying a subset of the ter-
race that contains more trees with better accuracy than 
worse trees. However, effectively distinguishing such 
trees remains a challenge as true trees are usually not 
known for real biological datasets. Therefore, the iden-
tification of relatively “good” and “bad” trees in a ter-
raced landscape in the absence of a model species tree 
requires further investigation in future studies.

RQ3: leveraging terraces for inferring branch supports
We infer branch supports on an estimated tree based 
on the trees within the terrace that contains the esti-
mated tree. Support on a specific branch was computed 
based on the fraction of trees (out of trees within the 
terrace) that contain that specific branch (i.e., bipar-
tition). We compared the branch support estimated 
using this way to the supports computed using local 
posterior probabilities [44] computed by ASTRAL. We 
assess the quality of the branch supports using the fol-
lowing two metrics.

Fig. 8  Utilizing terraces for enhanced phylogenomic analysis. We show the average RF rates (over 20 replicates) of different methods and compare 
them to the greedy consensus trees computed from the trees within their respective terraces. Consensus trees were estimated from all the trees 
as well as from only the better trees within each terrace. Additionally, the average RF rate of the best tree within a terrace is presented. Results are 
shown for both the 25-taxon dataset (a) and the 75-taxon dataset (b)
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Calibration: We first bin branches by their support 
into several groups and quantify the relationship 
between bins of branch support and the percentage 
of correctly placed queries in each bin. For example, 
for branches in the 50-60% support bin, we say the 
results are calibrated if roughly 55% of these branches 
are correct.
Empirical Cumulative Distribution Function (ECDF) 
Support values can be analysed by studying their 
ECDF, which involves separating the accurate and 
inaccurate branches. Ideally, incorrect branches have 
low support (uniformly distributed) and correct 
branches have high support (depending on the signal, 
and hence, the power). Generally, a wider difference 

between the distribution of correct and incorrect 
branches is desired.

The support values obtained by both terrace-based esti-
mation and ASTRAL are reasonably well calibrated 
with the accuracy (i.e., support values are closer to the 
expected values) as shown in Fig. 9 a, b. The difference 
between ASTRAL- and terrace-based methods are more 
pronounced at lower support levels, where the terrace-
based method tends to underestimate support values. 
For branches with relatively high accuracy, the terrace-
based method tends to assign higher supports than 
ASTRAL, as evidenced by the larger dot denoting ∼100% 
support compared to the support inferred by ASTRAL.

Fig. 9  Comparison of terrace-based supports to the supports computed using local posterior probabilities inferred by ASTRAL. a-b Support 
versus the percentage of correctly placed queries over twenty replicates of data on 25-taxon and 75-taxon datasets, respectively. Support values are 
binned at 0%, 10% . . . 80%, 85%, 90%, 95%, and 100% left inclusive (e.g., [0,10)); the last bin only includes 100%. Unity line ( y = x ): fully-calibrated 
support. Dot sizes are proportional to the number of branches within each bin. c-d Empirical cumulative distribution function (ECDF) of the support 
for correct and incorrect placements for 25- and 75-taxon datasets, respectively
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The results can be better understood by examining the 
Mean Squared Errors (MSEs) of accuracy (computed 
with respect to the unity line) as presented in Table  3. 
For branches with higher support values ( ≥ 80% ), ter-
race-based supports have comparable MSEs to those of 
ASTRAL, with a difference that is almost negligible. How-
ever, terrace-based support exhibits limited effectiveness 
in low support ranges ( < 80% ) with notably higher MSEs 
compared to ASTRAL-based support values.

Investigating the distribution of the support values, there 
is a large gap between the support distribution of correct 
and incorrect placements. For 25-taxon dataset, the gap 
is more prominent for terrace-based supports than the 
ASTRAL-based supports. With terrace-based supports, 
50% of the incorrect branches have less than 20% support 
whereas 50% of the incorrect branches have less than 35% 
support with ASTRAL-based method, showing the supe-
riority of terrace-based approach. However, as we increase 
the number of taxa, the support values for incorrect 
branches estimated by ASTRAL becomes more meaning-
ful than terrace-based methods as it assigns higher pro-
portion of incorrect branches with relatively low support 
values. For correct branches, both terrace- and ASTRAL-
based approaches perform well, with the majority of 
correct branches receiving 100% support. Notably, the 
terrace-based approach demonstrates a slight advantage 
over ASTRAL on the correct branches, as evidenced by 
the corresponding ECDF curve dipping below the one cor-
responding to ASTRAL-based support. This indicates that 
the terrace-based approach assigns more accurate branches 
with 100% support.

Overall, despite the existence of substantial numbers 
of less accurate trees in terraces, terrace-based approach 
was able to infer well-calibrated and meaningful support 
values, showcasing the promise of using the trees within 
a terrace for inferring support values. We believe that 
identifying relatively accurate trees within a large terrace 
and using them for computing support values could lead 
to the estimation of more reliable support values. We also 
note that the statistical guarantee of the terrace-based 
support values remains to be determined. Future studies 
need to explore these research directions.

RQ4: investigating the terraces containing true species 
trees and the impact of increasing numbers of correct 
input gene trees on terraced landscape
We have already demonstrated the presence of terraces 
and the associated ambiguity for species trees estimated 
by different summary methods. We now investigate 
if the true species trees also belong to large terraces. 
Indeed, as we show in Fig.  10, true species trees are 
also contained within substantially large species tree 
terraces. This further emphasizes the uncertainty aris-
ing from terraces, as it becomes impossible to distin-
guish the trees within a terrace based on any additive 
optimization criteria. Consequently, finding the true 
tree using summary methods under practical model 
conditions, even when they are statistically consistent, 
remains uncertain. This could be attributed to the fact 
that the number of input gene trees is limited and there 
is estimation error in them. Given a sufficiently large 
number of correct gene trees (i.e., no estimation error), 
summary methods that optimize statistically consistent 
measures such as quartet and triplet scores will con-
verge in probability to the true species tree. That means, 
if we increase the number true gene trees, the size of the 
terraces containing the true species tree should gradu-
ally decrease to one, allowing for the unique identifica-
tion of the true species tree using statistically consistent 
methods.

To further investigate this, we explore the size of 
terraces containing the true species tree in relation 
to the number of true gene trees. Figure  11 presents 
the results on two representative replicates from the 
25-taxon dataset. As expected, the size of the species 
tree terraces corresponding to the true tree asymptoti-
cally decreases with increasing numbers of true gene 
trees. Eventually, the size of the terraces should gradu-
ally decrease to one – containing only the true species 
tree. Simultaneously, the quartet score increases with 
an increasing number of true gene trees and decreas-
ing sizes of the terraces. These asymptotic trends sug-
gest that, with a sufficiently large number of true gene 
trees, the quartet score is likely to reach its maximum 
when a terrace contains only one tree, which is the true 

Table 3  The mean squared error (MSE) of the points computed with respect to the unity line and shown separately for low ( < 80% ) 
and high ( ≥ 80% ) support values. We compare terrace-based supports and ASTRAL-based supports

Number of Species Low Support High Support

Terrace-based ASTRAL-based Terrace-based ASTRAL-based

25 1.712 1.204 0.007 0.002

50 6.141 3.526 0.003 0.001

75 8.265 2.103 0.005 0

100 22.675 4.221 0.006 0.001

125 18.372 1.883 0.003 0
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species tree. This indicates that maximizing statisti-
cally consistent measures like the quartet score enables 
the unique identification of the true species tree with 
a high probability when a sufficiently large number of 
true gene trees is available.

RQ5: prevalence of peak terraces
Fact  2 indicates that when there is no missing data and 
the input gene trees are not all identical, the peak terrace 
is necessarily empty. If all the gene trees are identical (i.e., 
there is no gene tree discordance) and there is no missing 

Fig. 10  Distribution of species tree terraces that contain the true trees. We show the quartet score versus the RF rate of the trees within the species 
tree terrace, which contain the true species tree across all the replicates of the 75-taxon dataset. 19 out of 20 replicates demonstrate the presence 
of species tree terraces containing the true species tree. The true species tree always has an RF rate of 0, resulting in the blue line along the y-axis 
at an RF score of 0. As there exists no better tree than the true species tree, green dots are absent here. The sizes of the terraces across different 
replicates vary substantially and thus we normalize the size of the terraces for better visualization. As a result, the relative size of species tree terraces 
is not conserved

Fig. 11  Size of terraces in relation to the number of true gene trees. We vary the number of true gene trees from 100 to 564 and, for each case, 
show the size of the terraces. We present the results on two replicates of data, shown separately in (a) and (b), from the 25-taxon dataset. The size 
of a circle is proportional to the number of trees within a terrace. We color the circles with a color gradient which varies continuously from light 
purple to dark purple with increasing quartet scores
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data, the peak terrace will contain only one species tree. 
To increase the size of the peak terrace beyond one, the 
introduction of missing data is required and the gene 
trees must remain compatible (see Fact 3). In this experi-
ment, we investigate the prevalence of peak terraces and 
their growth under different model conditions of missing 
data.

We analyzed a no-ILS (i.e., no gene tree discord-
ance) dataset containing 50 species and 100 gene trees 
from   [36]. We introduced missing data controlled by 
two parameters, ds and df  , where ds(s) is the probability 
that taxon s will be missing in gene trees and df (k) is the 
probability that the k-th gene tree will be missing. Given 
these two parameters, the total amount of missing data is 
given by [1− (1− df ) ∗ (1− ds)] ∗ 100% . Note that since 
the original input tress were identical, they remain com-
patible even after taxa have been removed.

We present the size of the terraces under varying 
conditions of missing data in Table  4. These results 
indicate, as expected that the size of the peak terrace 
increases with higher levels of missing data. A peak 
terrace of size ≥ 1 was observed when the missing 
data exceeded 31%. Although the condition for form-
ing a peak terrace (i.e., displaying the input gene trees) 
is quite stringent, substantial amounts of missing data 
led to significantly large peak terraces. For example, 
we observed a peak terrace containing 924 quadrillion. 
trees under such conditions ( ds = 0.6 and df = 0.6 ). 
Another interesting trend was observed in the case 
of 75% ( ds = 0.5 and df = 0.5 ) and 70% ( ds = 0.7 and 
df = 0 ) missing data. Here, the 70% missing data sce-
nario resulted in a larger terrace size compared to the 
75% case. This suggests that terrace size tends to be 
more sensitive to the amount of missing taxa than to 
the total number of gene trees.

Conclusions
The mathematical characterizations of species tree ter-
races and the new results on terraces in the gene tree-
species tree context presented here are timely and 
important as large genome-scale phylogenomic studies 
with substantial amounts of missing data are becom-
ing increasingly common  [45, 46]. The multiplicity of 
equally good species trees in terraced landscapes, stem-
ming from certain patterns of missing data, poses various 
challenges as well as opens up several important research 
avenues. The ability to detect if a tree resides on a terrace, 
computing the size of the terrace, and enumerating the 
trees in a terrace can potentially improve the scalability 
and accuracy of summary methods. The size of species 
tree space increases exponentially with the number of 
taxa, making the search for optimal species trees under 
various optimization criteria a challenging task. Given 
the presence of large sets of equally optimal trees within 
terraces, it is essential to develop efficient algorithms that 
can strategically explore terraces and their surround-
ing tree space. Summary methods rely on the ability to 
explore and score candidate species trees based on spe-
cific optimization criteria. Since all trees within a species 
tree terrace share the same optimization score, identify-
ing these terraces can significantly reduce computational 
effort by avoiding redundant evaluations of equally opti-
mal trees. Therefore, efficiently identifying species tree 
terraces and guiding the search toward terraces with 
higher optimization scores can accelerate convergence. 
Moreover, it is possible that within a terrace, certain trees 
are topologically more accurate than others, and moving 
away from a terrace may cause us to overlook these more 
reliable trees. Thus, the presence of large sets of equally 
optimal trees introduces ambiguity, making it challeng-
ing to identify the most reliable trees within a terrace. 
One approach to mitigate this ambiguity is to estimate 
consensus trees, such as greedy consensus, majority 
consensus, maximum agreement subtree, or maximum 
clade credibility tree. Prior studies  [26] and our experi-
mental results suggest that computing consensus trees 
may result in improved species trees. Thus, the concept 
of species tree terraces holds significant promise for fast 
and improved species tree estimation. However, detect-
ing and exploring species tree terraces and leveraging 
that to improve the tree search strategies are challenging. 
Discovering various combinatorial properties of terraces 
and conditions for the presence of multiple equally good 
trees can contribute towards developing terrace-aware 
data structures and tree search algorithms.

We formally characterized species tree terraces and 
contrasted them with pseudo species tree terraces. We 
showed that, unlike pseudo terraces, species tree terraces 

Table 4  Prevalence of peak terraces under varying levels of 
missing data. This dataset contains 50 taxa and 100 genes with 
no gene tree discordance

ds df Missing data (in 
percentage)

Peak terrace size

0 0 0 1

0.2 0.2 36 1

0.3 0.3 51 3

0.4 0.4 64 11

0.5 0.5 75 16468

0.6 0.6 84 9.24× 1017

0.7 0 70 11363099

0.8 0 80 1.5908× 1014
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depend only on the taxon coverage and are agnostic 
about the gene tree topology. However, considering dif-
ferent genes having different topologies is central to 
developing statistically consistent species tree estimation 
methods. In this study, we introduced a new type of ter-
race called peak terrace which requires one additional 
condition than terraces, making it sensitive to the dis-
tribution of gene tree topologies. Moreover, despite the 
differences in their mathematical definitions and condi-
tions for existence, we showed that the set of species ter-
races is identical to the set of peak terraces. Therefore, we 
argued that understanding the structural properties of 
peak terraces suffices to understand species tree terraces 
in general. We proved various combinatorial properties 
of peak terraces and investigated patterns of missing data 
that lead to the existence of peak terraces. Although we 
explicitly considered the quartet score for investigating 
some of the properties of terraces, our results are general 
and apply to other additive scoring functions. We sys-
tematically performed a set of experiments investigating 
the presence of species tree terraces and the associated 
challenges and opportunities. We found that substantially 
more accurate species trees compared to the estimated 
ones can be found from within terraces if we are able to 
distinguish them using appropriate optimization criteria. 
Thus, we believe that this study will prompt more ana-
lytical and experimental studies to better understand 
the terraced landscapes of species trees and pioneer new 
terrace-aware methods, data structures, and optimiza-
tion criteria for computing species trees from gene trees 
despite missing data and gene tree heterogeneity.

This study can be extended in several directions. Effi-
cient terrace-aware data structures and algorithms for 
systematically navigating trees both inside a species 
tree terrace and its neighborhood would contribute 
to the improvement of the summary methods both in 
terms of accuracy and scalability. Therefore, investigat-
ing how to adapt the summary methods and algorithms 
to the existence of terraces is one of the most interest-
ing research avenues. Developing efficient tools to iden-
tify species tree terraces and enumerating trees in them 
(similar to the existing tools  [47] for counting trees in 
phylogenetic terraces) for different optimality criteria 
(e.g., quartet score, extra lineage score, etc.) is another 
important research direction. There are many questions 
of theoretical interest as well. For example, we consid-
ered the problem of finding the existence of a kernel 
given a gene tree sequence. A natural extension to this 
would be to find a kernel of the maximum size. Such a 
kernel would maximize the sum of the number of leaves 
remaining in the gene trees. One might also try to gen-
eralize Lemma 1, which asserts the existence of a binary 
tree T on six leaves whose quartets intersect every other 

binary tree on the same leaf set. One way to general-
ize this would be to consider trees larger than quartets. 
In other words, given k, let n(k) be the smallest number 
for which there exists a binary tree T on n(k) leaves such 
that for every binary tree T ′ with L(T ′) = L(T ) , there is 
at least one k-leaf binary tree that is displayed by both 
T and T ′ . By Lemma 1, we have n(4) = 6 . One might be 
interested in n(k) for k > 4 and ask how it grows with k. 
Overall, future studies need to investigate further combi-
natorial properties of species tree terraces, the challenges 
they pose, and solutions to these problems. We demon-
strated that for the peak terrace to be non-empty, all gene 
trees must be compatible, implying the absence of gene 
tree discordance. However, this scenario is impractical 
as gene trees are rarely fully compatible. Consequently, 
peak terraces may not frequently arise in real-world phy-
logenomic studies. Nonetheless, the concept of peak ter-
races, as we have formalized it, represents a significant 
theoretical advancement. Future research should aim to 
extend or “relax” this concept to accommodate gene tree 
discordance, making it more applicable to phylogenomic 
datasets.

Authors’ contributions
M.S.B. conceived and designed the study; M.H., M.S.B., and A.H.R. proved the 
theoretical results; K.R. and S.H. performed the experiments; M.S.B., K.R., S.H., 
and A.H.R. interpreted the experimental results; M.S.B. and A.H.R. supervised 
the study; All authors contributed to the final manuscript.

Funding
This work was partially supported by the Basic Research Grant at BUET and the 
Research and Innovation Centre for Science and Engineering at BUET (RISE-
BUET) Internal Research Grant (ID: 2021-01-016).

Availability of data and materials
The datasets analyzed in this study are from previously published studies and 
are publicly available at https://​cme.h-​its.​org/​exeli​xis/​mater​ial/​aster​oid_​data.​
tar.​gz.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 12 November 2023   Accepted: 16 September 2024

References
	1.	 Maddison WP. Gene trees in species trees. Syst Biol. 1997;46:523–36.
	2.	 Roch S, Steel M. Likelihood-based tree reconstruction on a concatena-

tion of aligned sequence data sets can be statistically inconsistent. Theor 
Popul Biol. 2015;100:56–62.

https://cme.h-its.org/exelixis/material/asteroid_data.tar.gz
https://cme.h-its.org/exelixis/material/asteroid_data.tar.gz


Page 20 of 20Habib et al. BMC Ecology and Evolution          (2024) 24:135 

	3.	 Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from 
concatenated data under coalescence. Syst Biol. 2007;56:17.

	4.	 Edwards SV, Liu L, Pearl DK. High-resolution species trees without concat-
enation. Proc Natl Acad Sci. 2007;104(14):5936–41.

	5.	 Leaché AD, Rannala B. The accuracy of species tree estimation under 
simulation: a comparison of methods. Syst Biol. 2011;60(2):126–37.

	6.	 DeGiorgio M, Degnan JH. Fast and consistent estimation of species trees 
using supermatrix rooted triples. Mol Biol Evol. 2009;27(3):552–69.

	7.	 Bayzid MS, Warnow T. Naive binning improves phylogenomic analyses. 
Bioinformatics. 2013;29(18):2277–84.

	8.	 Heled J, Drummond AJ. Bayesian inference of species trees from multilo-
cus data. Mol Biol Evol. 2010;27:570–80.

	9.	 Mossel E, Roch S. Incomplete lineage sorting: consistent phylogeny 
estimation from multiple loci. IEEE/ACM Trans Comput Biol Bioinforma. 
2011;7(1):166–71.

	10.	 Kubatko LS, Carstens BC, Knowles LL. Stem: Species tree estimation using 
maximum likelihood for gene trees under coalescence. Bioinformatics. 
2009;25:971–3.

	11.	 Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 
ASTRAL: genome-scale coalescent-based species tree estimation. Bioin-
formatics. 2014;30(17):i541–8.

	12.	 Liu L, Yu L, Edwards SV. A maximum pseudo-likelihood approach for 
estimating species trees under the coalescent model. BMC Evol Biol. 
2010;10:302.

	13.	 Liu L, Yu L. Estimating species trees from unrooted gene trees. Syst Biol. 
2011;60(5):661–7. https://​doi.​org/​10.​1093/​sysbio/​syr027.

	14.	 Larget B, Kotha SK, Dewey CN, Ané C. BUCKy: Gene tree/species tree 
reconciliation with the Bayesian concordance analysis. Bioinformatics. 
2010;26(22):2910–1.

	15.	 Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A. 
Inferring species trees directly from biallelic genetic markers: bypassing 
gene trees in a full coalescent analysis. Mol Biol Evol. 2012;29(8):1917–32.

	16.	 Chifman J, Kubatko L. Quartet from SNP data under the coalescent 
model. Bioinformatics. 2014;30(23):3317–24.

	17.	 Islam M, Sarker K, Das T, Reaz R, Bayzid MS. STELAR: A statistically consist-
ent coalescent-based species tree estimation method by maximizing 
triplet consistency. BMC Genomics. 2020;21(1):1–13.

	18.	 Mahbub M, Wahab Z, Reaz R, Rahman MS, Bayzid MS. wQFM: highly 
accurate genome-scale species tree estimation from weighted quartets. 
Bioinformatics. 2021;37(21):3734–43.

	19.	 Reaz R, Bayzid MS, Rahman MS. Accurate phylogenetic tree reconstruc-
tion from quartets: A heuristic approach. PLoS ONE. 2014;9(8):e104008.

	20.	 Yu Y, Warnow T, Nakhleh L. Algorithms for MDC-based Multi-locus 
Phylogeny Inference: Beyond rooted binary gene trees on single alleles. J 
Comput Biol. 2011;18(11):1543–59.

	21.	 Sanderson MJ, McMahon MM, Steel M. Terraces in phylogenetic tree 
space. Science. 2011;333(6041):448–50.

	22.	 Sanderson MJ, McMahon MM, Stamatakis A, Zwickl DJ, Steel M. Impacts 
of terraces on phylogenetic inference. Syst Biol. 2015;64(5):709–26.

	23.	 Chernomor O, Von Haeseler A, Minh BQ. Terrace aware data struc-
ture for phylogenomic inference from supermatrices. Syst Biol. 
2016;65(6):997–1008.

	24.	 St John K. The shape of phylogenetic treespace. Syst Biol. 
2017;66(1):e83–94.

	25.	 Dobrin BH, Zwickl DJ, Sanderson MJ. The prevalence of terraced 
treescapes in analyses of phylogenetic data sets. BMC Evol Biol. 
2018;18(1):46.

	26.	 Farah IT, Islam M, Zinat KT, Rahman AH, Bayzid S. Species tree estimation 
from gene trees by minimizing deep coalescence and maximizing quar-
tet consistency: a comparative study and the presence of pseudo species 
tree terraces. Syst Biol. 2021;70(6):1213–31.

	27.	 Stamatakis A, Ott M. Efficient computation of the phylogenetic likelihood 
function on multi-gene alignments and multi-core architectures. Phil 
Trans R Soc B Biol Sci. 2008;363(1512):3977–84.

	28.	 Stamatakis A, Alachiotis N. Time and memory efficient likelihood-based 
tree searches on phylogenomic alignments with missing data. Bioinfor-
matics. 2010;26(12):i132–9.

	29.	 Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and 
effective stochastic algorithm for estimating maximum-likelihood phy-
logenies. Mol Biol Evol. 2015;32(1):268–74.

	30.	 Sanderson MJ, McMahon MM, Steel M. Terraces in Gene Tree Reconcilia-
tion-Based Species Tree Inference. bioRxiv. 2020.

	31.	 Zhang L. From Gene Trees to Species Trees II: Species Tree inference 
by Minimizing Deep Coalescence Events. IEEE/ACM Trans Comput Biol 
Bioinforma. 2011;8(9):1685–91.

	32.	 Bayzid MS, Mirarab S, Warnow T. Inferring Optimal Species Trees under 
Gene Duplication and Loss. In: Proc. of Pacific Symposium on Biocomput-
ing (PSB). World Scientific Publishing Co., Inc.: Hackensack; vol. 18. 2013. 
pp. 250–61.

	33.	 Bayzid MS, Warnow T. Gene tree parsimony for incomplete gene trees: 
addressing true biological loss. Algoritm Mol Biol. 2018;13:1.

	34.	 Than CV, Ruths D, Nakhleh L. PhyloNet: A Software Package for Analyzing 
and Reconstructing Reticulate Evolutionary Relationships. BMC Bioinfor-
matics. 2008;9:322.

	35.	 Aho AV, Sagiv Y, Szymanski TG, Ullman JD. Inferring a tree from lowest 
common ancestors with an application to the optimization of relational 
expressions. SIAM J Comput. 1981;10(3):405–21.

	36.	 Morel B, Williams TA, Stamatakis A. Asteroid: a new algorithm to infer 
species trees from gene trees under high proportions of missing data. 
Bioinformatics. 2023;39(1):btac832.

	37.	 Mallo D, de Oliveira Martins L, Posada D. SimPhy: phylogenomic simula-
tion of gene, locus, and species trees. Syst Biol. 2016;65(2):334–44.

	38.	 Morel B, Kozlov AM, Stamatakis A. ParGenes: a tool for massively parallel 
model selection and phylogenetic tree inference on thousands of genes. 
Bioinformatics. 2019;35(10):1771–3.

	39.	 Tavaré S. Some probabilistic and statistical problems on the analysis of 
DNA sequence. Lect Math Life Sci. 1986;17:57.

	40.	 Yang Z. Maximum-likelihood estimation of phylogeny from DNA 
sequences when substitution rates differ over sites. Mol Biol Evol. 
1993;10(6):1396–401.

	41.	 Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics 
provides robust support for a two-domains tree of life. Nat Ecol Evol. 
2020;4(1):138–47.

	42.	 Robinson DF, Foulds LR. Comparison of Phylogenetic Trees. Math Biosci. 
1981;53:131–47.

	43.	 Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time 
species tree reconstruction from partially resolved gene trees. BMC 
Bioinformatics. 2018;19(6):153.

	44.	 Sayyari E, Mirarab S. Fast coalescent-based computation of local branch 
support from quartet frequencies. Mol Biol Evol. 2016;33(7):1654–68.

	45.	 Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome 
analyses resolve early branches in the tree of life of modern birds. Sci-
ence. 2014;346(6215):1320–31.

	46.	 Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. 
Phylotranscriptomic analysis of the origin and early diversification of land 
plants. Proc Natl Acad Sci. 2014;111(45):E4859–68.

	47.	 Biczok R, Bozsoky P, Eisenmann P, Ernst J, Ribizel T, Scholz F, et al. Two C++ 
libraries for counting trees on a phylogenetic terrace. Bioinformatics. 
2018;34(19):3399–401.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/sysbio/syr027

	Terraces in species tree inference from gene trees
	Abstract 
	Introduction
	Preliminaries
	Species tree terraces
	Peak terraces
	Finding patterns of missing data that give rise to non-trivial peak terraces
	Extending to other scoring functions

	Experimental results
	Dataset description
	Methods used
	Measurements
	RQ1: prevalence of species tree terraces
	RQ2: leveraging terraces for improved phylogenomic analysis
	RQ3: leveraging terraces for inferring branch supports
	RQ4: investigating the terraces containing true species trees and the impact of increasing numbers of correct input gene trees on terraced landscape
	RQ5: prevalence of peak terraces

	Conclusions
	References


