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Abstract 

Background  Colorectal cancer, a prevalent malignancy worldwide, poses a significant challenge due to the lack 
of effective prognostic tools. In this study, we aimed to develop a functional gene signature to stratify colorectal can-
cer patients into different groups with distinct characteristics, which will greatly facilitate disease prediction.

Results  Patients were stratified into high- and low-risk groups using a prediction model built based on the func-
tional gene signature. This innovative approach not only predicts clinicopathological features but also reveals tumor 
immune microenvironment types and responses to immunotherapy. The study reveals that patients in the high-risk 
group exhibit poorer pathological features, including invasion depth, lymph node metastasis, and distant metastasis, 
as well as unfavorable survival outcomes in terms of overall survival and disease-free survival. The underlying mecha-
nisms for these observations are attributed to upregulated tumor-related signaling pathways, increased infiltration 
of pro-tumor immune cells, decreased infiltration of anti-tumor immune cells, and a lower tumor mutation bur-
den. Consequently, patients in the high-risk group exhibit a diminished response to immunotherapy. Furthermore, 
the high-risk group demonstrates enrichment in extracellular matrix-related functions and significant infiltration 
of cancer-associated fibroblasts (CAFs). Single-cell transcriptional data analysis identifies CAFs as the primary cellular 
type expressing hub genes, namely ACTA2, TPM2, MYL9, and TAGLN. This finding is further validated through multiple 
approaches, including multiplex immunohistochemistry (mIHC), polymerase chain reaction (PCR), and western blot 
analysis. Notably, TPM2 emerges as a potential biomarker for identifying CAFs in colorectal cancer, distinguishing 
them from both colorectal cancer cell lines and normal colon epithelial cell lines. Co-culture of CAFs and colorectal 
cancer cells revealed that CAFs could enhance the tumorigenic biofunctions of cancer cells indirectly, which could be 
partially inhibited by knocking down CAF original TPM2 expression.

Conclusions  This study introduces a functional gene signature that effectively and reliably predicts clinicopatho-
logical features and the tumor immune microenvironment in colorectal cancer. Moreover, the identification of TPM2 
as a potential biomarker for CAFs holds promising implications for future research and clinical applications in the field 
of colorectal cancer.
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Introduction
Colorectal cancer (CRC) stands as a formidable chal-
lenge in the field of medicine, given its high prevalence 
and mortality rates worldwide [1, 2]. A distressing 20% 
of patients receive a diagnosis of distant metastasis upon 
their initial visit, and half of the remaining patients pro-
gress to Stage IV during therapy, demonstrating the 
highly metastatic nature of this disease [3]. Unfortu-
nately, the development of new therapeutic strategies 
for CRC has been met with limited success, as the tumor 
exhibits a high degree of insensitivity and resistance to 
treatment. In addition to the heterogeneous somatic 
mutations observed in CRC patients, extensive research 
has illuminated the significant role played by the stromal 
component, particularly cancer-associated fibroblasts 
(CAFs), in the progression of CRC [4].

The tumor microenvironment (TME) encompasses the 
cellular and non-cellular components surrounding the 
tumor. Numerous studies have underscored the contri-
bution of non-malignant cells within the TME, particu-
larly fibroblasts, in driving tumor progression through 
intricate interactions involving growth factors, cytokines, 
chemokines, enzymes, and the extracellular matrix [5–7]. 
These fibroblasts, known as CAFs, have been associated 
with poor prognosis not only in CRC but also in other 
malignancies such as breast cancer, highlighting their 
pro-tumor biological behavior [8–10]. Consequently, 
targeting CAFs has emerged as a focal point for thera-
peutic interventions in contemporary medical research. 
Although various prediction models have been devel-
oped to assess prognosis and therapeutic response in dif-
ferent tumor types, the clinical value of a functional gene 
signature (FGS) based on CAFs, capable of stratifying 
CRC patients into distinct groups with unique prognoses 
and therapeutic responses, remains significant.

In the present study, we have constructed an FGS com-
prising both anti-tumor and pro-tumor genes. Utilizing 
single-sample Gene Set Enrichment Analysis (ssGSEA) 
scores, we were able to classify CRC patients into high- 
and low-risk groups. To validate the prognostic efficacy 
of the FGS, we employed several independent Gene 
Expression Omnibus (GEO) datasets. Furthermore, we 
performed comprehensive analyses of the biological 
functions, tumor immune microenvironment (TIME), 
and mutation status using a multitude of algorithms. 
Then we identified several hub genes within the FGS 
and evaluated their expression patterns through single-
cell data and some molecular and cellular experiments. 
Lastly, we verified the bio-function of TPM2 in CAFs 
through some functional experiments.

In summary, this study introduces a novel FGS that 
encompasses anti-tumor and pro-tumor genes. Through 
its application, CRC patients can be stratified into 

high- and low-risk groups, enabling tailored prognostic 
assessments and therapeutic approaches. Additionally, 
our investigation sheds light on the biological functions, 
tumor immune microenvironment, and mutation status 
associated with CRC. The identification and evaluation of 
hub genes, especially TPM2, further enhance our under-
standing of the molecular intricacies underlying CRC 
development and progression.

Material and methods
Construction of the multiple gene signatures list
Initially, we selected 10 gene signatures to build the mul-
tiple gene signatures (MGSs) list. All of them were listed 
as follows:

1.	 HALLMARK_HYPOXIA: This gene signature con-
tained 200 genes and could be searched in GSEA 
database (http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​
cards/​HALLM​ARK_​HYPOX​IA.​html) [11]. It has 
been identified to be related to the clinicopathologi-
cal features and immune status of colorectal cancer 
in our previous studies [12, 13].

2.	 Cell death-related gene signatures: Autophagy-
related gene signatures including 232 genes, which 
were obtained from the Human Autophagy Database 
(http://​www.​autop​hagy.​lu/); Senescence, ferroptosis, 
pyroptosis, and cuproptosis related gene signatures 
were obtained from previous studies [14–17].

3.	 Immune-related gene signature: It was obtained from 
the Tracking Tumor Immunophenotype Database 
(http://​biocc.​hrbmu.​edu.​cn/​TIP/​index.​jsp) [18]

4.	 Cancer related gene signatures: HALLMARK_EPI-
THELIAL-MESENCHYMAL_TRANSITION and 
HALLMARK_ANGIOGENESIS included 200 genes 
and 36 genes, respectively (http://​www.​gsea-​msigdb.​
org/​gsea/​msigdb/​cards/​HALLM​ARK_​EPITH​
ELIAL_​MESEN​CHYMAL_​TRANS​ITION.​html and 
http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​cards/​
HALLM​ARK_​ANGIO​GENES​IS.​html).

5.	 Epigenetics related gene signature: It contained 900 
genes and was collected from three previous studies 
[19–21].

The list including all these gene signatures was shown 
in Supplementary Table 1.

Data source
The FPKM and counts data of the protein-coding RNA-
seq and the related clinical information of CRC patients 
were obtained from the TCGA database (https://​portal.​
gdc.​cancer.​gov/) on April 15, 2022. They contained 488 
tumor and 42 adjacent normal samples. Among them, 
468 tumor samples had complete clinicopathological 
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data, including survival, pathological stage, invasion 
depth, lymphatic metastasis, and distant metastasis.

The independent validation sets for the functional gene 
signature (FGS) included GSE39582 [22], GSE17538 [23–
26], GSE38832 [27], GSE28722 [28], and GSE103479 [29]. 
GSE39582, GSE17538, and GSE38832 (GPL570 platform) 
contained 562, 232, and 122 CRC patients, respectively. 
GSE28722 (GPL13425 platform) contained 129 and 
GSE103479 (GPL23985 platform) contained 155 CRC 
patients. All GEO datasets mentioned above had clinico-
pathological and survival data. Additionally, GSE60331 
(GPL15207 platform, 50 rectal tumor samples) was used 
to evaluate the ability of the FGS to classify different ther-
apeutic responses to immunotherapy [30]. GSE132465 
was applied to identify the levels and the specific cell 
type of the expression of the hub genes [31]. All the GEO 
sets were searched from the Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) on 
September 15, 2022. The details are shown in Supple-
mentary Table 2.

The procedure of the construction of the functional gene 
signature
First, the count data were used to identify the differen-
tially expressed genes (DEGs) between the tumor and 
adjacent normal samples. Supplementary Table 3 showed 
5498 DEGs with log2|FC|> 1 & adjust. p < 0.05, which 
were screened out using DESeq2 package (version 1.32.0) 
[32]. Second, we used univariate Cox regression analysis 
was used to evaluate the association between genes and 
overall survival (OS). The protective genes were defined 
as HR < 1 & p < 0.05, while the harmful genes as HR > 1 & 
p < 0.05. Supplementary Tables 4 and 5 showed the list of 
protective genes and harmful genes, respectively.

There were 24 genes in the intersection among DEGs, 
protective genes, and MGSs as the antitumor genes, and 
22 genes in the intersection among DEGs, harmful genes, 
and MGSs as the protumor genes. The complete FGS 
consisted of the antitumor genes and protumor genes 
(Supplementary Table 6).

After the screening out procedure, the anti-tumor gene 
was defined as a gene having HR < 1 (p < 0.05) and higher 
expressed in the adjacent normal tissues (log2|FC|> 1 & 
adjusted p < 0.05); while the pro-tumor gene was defined 
as a gene having HR > 1 (p < 0.05) and higher expressed in 
the tumor tissues (log2|FC|> 1 & adjusted p < 0.05).

ssGSEA score and consensus clustering
The ssGSEA scores of the TCGA and GEO samples were 
computed with the GSVA algorithm using the GSVA 
package (version 1.40.1) [33]. After all samples were con-
ferred with a specific ssGSEA score, which included anti-
tumor score and pro-tumor score, they were classified 

into low- and high-risk groups using the Consensus-
ClusterPlus package (version 1.56.0) [34]. Because FGS 
had two gene lists, the optimal cluster number is always 
2. Samples with relatively higher anti-tumor scores and 
lower pro-tumor scores were defined as the low-risk 
group, while the others were defined as the high-risk 
group.

Next, two groups would be compared in clinicopatho-
logical feature, gene expression, pathway activity, tumor 
immune microenvironment (TIME), etc. The complete 
pipeline of this study was shown in Fig. 1.

Analyses of cancer related signaling pathways and immune 
microenvironment
The activities of cancer related signaling pathways, 
including Androgen, EGFR, Estrogen, Hypoxia, JAK-
STAT, MAPK, NFκB, P53, PI3K, TGFβ, TNFα, Trail, 
and WNT, were evaluated using progeny package (ver-
sion 1.14.0) [35–37]. Every sample would be assigned a 
score according to the expressions of the marker genes of 
each pathway. Then, the scores of these pathways would 
be compared between the low-risk and high-risk groups 
using the Wilcox test.

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways were analyzed using the msigdbr (ver-
sion 7.5.1) [38], GSVA, edgeR (version 3.34.1) [39, 40], and 
limma (version 3.48.3) [41] packages. First, the FPKM 
data were converted into CPM form. Next, the scores of 
KEGG pathways were calculated using GSVA algorithm. 
Then, these fold changes of these scores would be com-
pared using limma package.

Several packages, including CIBERSORT [42], MCP-
counter (version 1.2.0) [43], xCell (version 1.1.0) [44], and 
ESTIMATE (version 1.0.13) [45], were used to assess the 
infiltration of immune cells and cancer associated fibro-
blast (CAF) in the tumor microenvironment (TME).

Differentially expressed genes and related analyses 
of gene function (kyoto encyclopedia of genes 
and genomes and gene ontology)
Due to controversies about the appropriate methods for 
screening out the DEGs using FPKM data, we calculated 
the fold change (FC) of the expression of genes using the 
edgeR package with counts data. While for the calcula-
tion of the microarray data, the limma package was used. 
The criterion was log2|FC|> 1 & adjust. p < 0.05.

After the DEGs were identified, they would be reor-
dered according to the FC. Next, we used the clusterPro-
filer (version 4.0.5) package to analyze the gene function 
enrichment of the DEGs, including KEGG and Gene 
Ontology (GO) [46, 47]. To better describe the enrich-
ment of gene function of different groups, we calculated 
the enrichment scores of hallmark-related pathways 

https://www.ncbi.nlm.nih.gov/geo/
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Fig. 1  The complete pipeline of the study



Page 5 of 25Zhu et al. BMC Cancer         (2024) 24:1199 	

between two groups. The gene signatures of hallmark-
related pathways were collected from the msigdbr 
package. The enrichment score of each sample was cal-
culated using the GSVA package. Then, the enrichments 
of hallmark-related pathways between the two groups 
were compared using the limma package. Pathways with 
log2|FC|> 1 & adjust.p < 0.05 were considered to be sig-
nificantly different.

Somatic mutation and prediction of immunotherapy
The mutation ratio of specific genes, mutation type, and 
tumor mutation burden (TMB) were compared between 
the low- and high-risk groups using the maftools (version 
2.8.05) [48].

After the TMB of every sample was calculated, the sur-
vival statuses between low- and high-TMB groups were 
compared. Meanwhile, the survival statuses of different 
groups with different risk scores plus TMBs were com-
pared, too.

We also used Tumor Immune Dysfunction and Exclu-
sion (TIDE), a website (https://​tide.​dfci.​harva​rd.​edu/) 
based on the ssGSEA algorithm, to evaluate the different 
infiltration of specific immune cells and the response to 
the immunotherapy [49, 50]. Higher dysfunction, exclu-
sion, and TIDE score meant lower infiltration, migration, 
activity of the pro-immune cells, which were equal to the 
worse therapeutic effect of the immunotherapy. Next, 
GSE60331 was applied to assess whether FGSs could pre-
dict the response of immunotherapy in an independent 
cohort.

Single cell analysis for hub genes
GSE132465 was applied to confirm the specific cell type 
that expressed the hub genes. GSE132465 contained 33 
samples of CRC patients in Korea, including 25 tumor 
and 10 adjacent normal samples. Ten paired tumor and 
adjacent normal samples from GSE132465.

To eliminate the batch effect, we used multiple CCA 
procedures in Seurat (version 4.1.1) [51, 52]. The thresh-
olds of quality control (QC) were 200 < genes < 5000 and 
percent.mt < 20%. We annotated cells into 6 main types, 
including B cells, epithelial cells, mast cells, myeloid, 
stromal cells, and T cells, using annotations provided by 
Lee et al. For detailed cell subtype analysis, we used cell 
markers collected from CellMarker 2.0 and Panglao DB 
[53, 54]. We divided the stromal cells into 6 subtypes, 
including progenitor cells, CAF, fibroblasts, endothelial 
cells, enteric glial cells, and smooth muscle cells.

In GSE132465, there were 39,197 cells included in the 
analysis. After QC, 38,085 cells were left, which con-
tained 5791 stromal cells.

Cell culture and culture conditions
Cell lines (SW480, RKO, SW620 and FHC) and CAFs 
were maintained at 37  °C in the humidified incuba-
tor with 5% CO2. Dulbecco’s Modified Eagle Medium 
(Thermo Fisher Scientific #11,965,092) was used as media 
with 10% FBS (Thermo Fisher Scientific #A5669401).

Cafs extraction and transfection
The tumor tissue samples were placed in Dulbecco’s 
Modified Eagle Medium (Thermo Fisher Scientific 
#11,965,092) containing 1% FBS (Thermo Fisher Scien-
tific #A5669401) after obtaining from patients. They were 
kept on ice and soaked in the medium during transfer-
ence. Then the tissue was shifted into a sterile 10 cm cul-
ture dish, removed blood clots and adipose connective 
tissue with sterile forceps. Sterile scissors were used to 
cut the tissue into approximately 1mm3 fragments. Then 
the tissue was rinsed with sterile PBS (Thermo Fisher Sci-
entific #10,010,023) and transferred to a new sterile 50 ml 
centrifuge tube. 20 mL of PBS was added and mixed and 
then discarded after 3–5 min. Repeat this 2–3 times until 
the PBS became clear. The tissue was then transferred 
to a 15ml centrifuge tube and centrifuged to remove the 
supernatant, and 8-10ml of 10% FBS culture medium 
containing collagenase I (1mg/ml, Millipore Sigma 
#1,148,089) was added. The tube was gently shaken on a 
37℃ shaker for 2–8 h until the tissue fragments appeared 
as a cloudy meat broth with no large fragments. The mix-
ture was then filtered through a 40-micron nylon mesh 
and then through a 100-micron nylon mesh. Then the fil-
trate was centrifuged at 300 g for 10 min to discard the 
supernatant while the pellet was resuspended in fresh 
DMEM culture medium, and placed in a 10  cm culture 
dish together with the filtered tissue fragments. The dish 
was cultured in a humidified incubator with 5% CO2 for 
approximately 3 days. If tissue fragments adhered to the 
dish and cells attached to the surface, the culture medium 
could be replaced. CAFs should start to emerge within 
approximately 1–2 weeks.

After fibroblast-like cells were gathered, tissue frag-
ments were abandoned, and the remaining cells were 
collected to another cell dish for latter culturing and 
transfecting. pSLenti-U6-shRNA-CMV-EGFP-F2A-
Puro-WPRE and shRNAs were purchased from OBiO 
Technology (Shanghai) Corp.,Ltd. Target sequences for 
shRNAs are included in Supplementary Table 10.

Co‑culture
After transfected with different virus, CAFs were seeded 
in the upper Transwell inserts in 6-well plates (Corning 
® #3412) while Tumor cells and SW620s were seeded in 
the below well. The plates were cultured in a humidified 

https://tide.dfci.harvard.edu/
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incubator with 5% CO2 for 48 h, after which the inserts 
were removed and tumor cells were collected for the fol-
lowing functional experiments.

Ki‑67 staining
Ki-67 Staining was conducted according to standard 
procedure. Briefly, tumor cells were seeded on the Corn-
ing BioCoat Cellware Poly-D-Lysine coverslips(Corning 
® #354,086) in 6-well plates overnight and fixed for the 
staining. 50-100 μl of permeabilization solution (Wuhan 
servicebio technology CO.,LTD #G1204) was used to 
permeabilize the cell membrane for 20  min at room 
temperature. 3% BSA (Wuhan servicebio technology 
CO.,LTD #GC305010) was used to block at room tem-
perature for 30 min. The ki67 primary antibody (Wuhan 
servicebio technology CO.,LTD #GB151141) was diluted 
in PBS to 1:300 and then added to the cell culture wells. 
The culture plate was placed flat inside a humidified box 
and incubated at 4  °C overnight. CY3 marked second 
antibody was added and incubated at room temperature 
for 50 min. DAPI stain solution (Wuhan servicebio tech-
nology CO.,LTD #G1012) was used at room temperature 
for 10  min to stain the nucleus. An anti-fade mount-
ing medium (Wuhan servicebio technology CO.,LTD 
#G1401) was used lastly. Images were acquired by 
NIKON ECLIPSE C1 for the following segments:

DAPI: excitation 330-380 nm, emission 420 nm;
CY3: excitation 510-560 nm, emission 590 nm;

Cell proliferation and cytotoxicity assay with cell counting 
kit‑8
After co-cultured with different CAFs, Tumor cells were 
digested into cell suspension at the density of 4*104 and 
seeded in a 96-well plate (100 μL/well). The plate was 
placed in a humidified incubator (37  °C, 5% CO2) and 
cultured for 24 h for the cells to adhere to the bottom of 
the plate. Then 10 µl of the Cell Counting Kit-8 solution 
(Abcam, #ab228554) was added to each well of the plate. 
The plate was incubated at 37 °C for 4 h in the incubator. 
Then absorbance at 450  nm of each well was measured 
using a Multiskan SkyHigh Microplate Spectrophotom-
eter (Thermo Fisher Scientific #A51119500C). Data was 
analyzed by Prism GraphPad (version 8.4.0).

Wound healing
After co-cultured with different CAFs, tumor cells were 
digested and seeded into 6-well plates for 4*107 cells to 
make sure the cells reach full confluence to mimic a con-
tinuous tissue layer. After adhered to the well bottom, a 
sterile pipette tip was used to create a straight scratch 
across the cell monolayer, simulating a wound. The wells 

were then washed with PBS and added DMEM without 
serum. Images of the wound were taken every 24 h until 
96 h after the first picture. The medium was replaced 
everyday to wash out dead floating cells. The area of 
the wound was analyzed by ImageJ (version 2.14.0) and 
Prism GraphPad (version 8.4.0).

Clonogenic assay
CAFs Co-cultured tumor cells, TPM2 shRNA CAFs Co-
cultured tumor cells, and non-treated Tumor cells were 
digested by Trypsin–EDTA (0.25%) (Thermo Fisher Sci-
entific #25,200,072) and resuspend multiple times by 
DMEM into a single-cell suspension. The density of the 
suspension was calculated by cell counting chamber. 
Then cells were seeded into 6-well plates for 800 cells 
per well. The plates were placed an incubator with 5% 
CO2 for approximately 2 weeks (medium was replaced 
once every three days) until the cells have formed suf-
ficiently large colonies, typically consisting of at least 50 
cells. After the incubation period, the colonies were fixed 
with 4% glutaraldehyde and stained with crystal violet 
(Biosharp #BS941-5  g). Then the stereomicroscope was 
used to count the colonies with more than 50 cells. The 
plating efficiency and survival fraction was analyzed by 
Prism GraphPad (version 8.4.0).

Transwell assay
CAFs Co-cultured Tumor cells, TPM2 shRNA CAFs Co-
cultured Tumor cells, and non-treated Tumor cells were 
digested by Trypsin–EDTA (0.25%) and resuspend by 
serum-free DMEM. The density of the suspension was 
calculated by cell counting chamber. Then cells were 
seeded into the upper chamber of Transwell inserts in 
24-well plates (Corning ® #3422) coated with Corning® 
Matrigel® Matrix (Corning® #356,237) for 2.5*104 cells 
per well. Then DMEM medium with 20% fetal serum was 
placed in the lower chamber. The plates were placed an 
incubator with 5% CO2 for 48 h. After incubation, the 
Transwell inserts were washed by PBS and then fixed by 
4% glutaraldehyde, then stained with crystal violet. Cells 
that have migrated to the lower surface were counted 
under a microscope. Data was analyzed by Prism Graph-
Pad (version 8.4.0).

RNA extraction, RT‑qpcr, and multiple 
immunohistochemistry staining
RNA extraction, RT-qPCR, and multiple immunohis-
tochemistry staining followed the routine procedures, 
which were reported in our previous study [13]. The 
primers used in RT-qPCR was shown in Supplementary 
Table 9.
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Western blot
Upon reaching the appropriate cell culture density, the 
cells were lysed using RIPA Lysis Buffer (Beyotime Bio-
technology #P0013B), supplemented with Protease and 
Phosphatase Inhibitor Cocktail (Beyotime Biotechnol-
ogy #P1045). The concentration of total cellular protein 
was determined using the Enhanced BCA Protein Assay 
Kit (Beyotime Biotechnology #P0009). Subsequently, 
25  μg of protein samples were combined with SDS-
PAGE Loading Buffer (New cell & Molecular Biotech Co., 
Ltd #WB2001), and the mixture was boiled at 95  °C for 
5  min. The protein samples were then loaded onto 12% 
Tris–Glycine-SDS PAGE gels (Nanjing Vazyme Biotech 
#E304-01) and subjected to electrophoresis in Tris SDS 
running buffer (Epizyme Biotech #PS105), focusing on 
the proteins GAPDH, MYL9, TPM2, and -SMA.

Following electrophoresis, the proteins were trans-
ferred to membranes using the Trans-Blot Turbo system 
(BioRad). To prevent nonspecific binding, the mem-
branes were incubated with Blocking Buffer (New cell & 
Molecular Biotech Co., Ltd #P30500) for 15 min at room 
temperature. Afterward, the membranes were washed 
three times with 10% TBST buffer and subsequently 
incubated overnight at 4℃ with primary antibodies. Fol-
lowing another round of washing with 10% TBST buffer, 
the membranes were incubated overnight at room tem-
perature with secondary antibodies for 1  h. The mem-
branes were then washed three times, and the protein 
bands were visualized using the Odyssey® DLx Imaging 
System (LI-COR, Inc). Finally, the acquired images were 
analyzed using Image J 9.0. All the antibodies used in this 
assay were shown in Supplementary Table 8.

Statistical analysis
Continuous variables, including the FPKM data, ssGSEA 
scores, TIDE scores, etc., were compared between dif-
ferent groups using the Wilcox test. Ranked variables, 
such as pathological stage, invasion depth, lymphatic 
metastasis, and distant metastasis, were analyzed using 
the Mann–Whitney U test. The prediction ability of hub 
genes was assessed using the receiving operation curve 
(ROC). Univariate Cox regression analysis was applied to 
identify genes that were significantly associated with the 
overall survival (OS) of the TCGA CRC cohort. The sur-
vival statuses, including OS, disease-free survival (DFS), 
and regression-free survival (RFS), were evaluated using 
Kaplan–Meier analysis. The association between contin-
uous variables was compared using Spearman analysis. 
A variable with p < 0.05 was considered to be statisti-
cally significant. All statistical analyses were performed 
using R (version 4.2.1) and R studio (version 1.3.1093) 
software. Some histograms, which displayed different 
distributions of the clinicopathological features between 

different groups, were drawn using Prism GraphPad (ver-
sion 8.4.0).

Results
Construction of functional gene signature
First and foremost, we embarked upon our analysis by 
employing univariate Cox regression analysis to screen 
and identify genes that exhibited a significant association 
with the overall survival (OS) of the TCGA CRC cohort. 
Subsequently, a total of 1019 genes, characterized by a 
hazard ratio (HR) of less than 1, were deemed as protec-
tive genes, thereby signifying that patients with a higher 
expression of these genes would be associated with a 
more favorable OS status. On the other hand, a cohort 
of 816 genes were categorized as harmful genes. In the 
next phase of our investigation, we identified 5498 genes 
that were differentially expressed between CRC tumor 
samples and their adjacent normal tissue counterparts, 
utilizing counts data analyzed with the DESeq2 package. 
The antitumor genes were defined as the intersection of 
protective genes, differentially expressed genes (DEGs), 
and genes within the gene set signatures (MGSs). Con-
versely, the protumor genes were delineated as the inter-
section of harmful genes, DEGs, and genes within the 
MGSs. Ultimately, the Functional Gene Signature (FGS) 
was composed of 24 antitumor genes and 22 protumor 
genes (Fig. 2A).

To further evaluate the intricate relationship between 
the antitumor and protumor genes, we conducted a com-
prehensive assessment of their expressions. These analy-
ses revealed a positive correlation among the expressions 
of most antitumor genes, as well as a positive correlation 
among the expressions of most protumor genes (Supple-
mentary Fig. 1A and B). In contrast, a negative correla-
tion was observed between the expressions of antitumor 
and protumor genes (Supplementary Fig. 1C).

To assign each sample with two distinct scores, 
namely the antitumor score and the protumor score, we 
employed the GSVA package. Subsequently, we applied 
the consensus clustering method to classify the CRC 
patients into discrete groups based on their GSEA scores. 
Given the composition of the FGS, the optimal number 
of clusters consistently remained at 2.

In our pursuit of unraveling the association between 
the antitumor and protumor scores, we conducted a 
comprehensive Spearman analysis. The results demon-
strated a negative correlation between the antitumor and 
protumor scores (R = -0.17, p = 0.00025) (Supplementary 
Fig. 1D). Consequently, we designated the group exhibit-
ing higher antitumor scores as the low-risk group, while 
the remaining group was deemed the high-risk group. 
Subsequent assessments revealed that the low-risk group 
exhibited significantly higher antitumor scores and lower 
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protumor scores when compared to the high-risk group 
(Fig.  2B). Upon careful examination of the heatmap, it 
became apparent that patients in both groups displayed 
a similar distribution in terms of gender. However, the 

low-risk group showed more favorable pathological fea-
tures, including stages, invasion depth, lymphatic metas-
tasis, and distant metastasis. Moreover, in tandem with 
the GSEA scores, the antitumor genes were more highly 

Fig. 2  The construction procedure of the functional gene signature. A The antitumor gene list was built by the intersection of TCGA_OS protective 
genes, MGSs, and TCGA DEGs. The protumor gene list was built by the intersection of TCGA_OS harmful genes, MGSs, and TCGA DEGs. The 
functional gene signature was constructed with the antitumor and protumor lists. B The violin and box plot indicated that low-risk group had lower 
protumor scores and higher antitumor scores. C The dimension reduction analyses, including PCA and t-SNE, showed that low-risk and high-risk 
groups could be classified according to the GSEA scores of FGS. D Compared to the high-risk group, the low-risk group had more expression 
of protumor genes, fewer expression of antitumor genes, and better pathological features, including stage, invasion depth, lymphatic metastasis, 
and distant metastasis. E Compared to the high-risk group, the low-risk group had relatively better OS, less pathological stage, invasion depth, 
lymphatic metastasis, and distant metastasis. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001
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expressed, while the protumor genes showed lower 
expression levels in the antitumor group (Fig. 2D). Finally, 
to ascertain the efficacy of the expression of the genes 
within the FGS in effectively distinguishing between the 
two groups, we employed dimension reduction tech-
niques, including principal component analysis (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE). 
The results revealed a separation of samples along one 
dimension in both the PCA and t-SNE analyses (Fig. 2C). 
We also checked whether patients in two groups had 
distinct clinicopathological features. The results showed 
that patients in high-risk group has poorer OS and path-
ological characteristics, including tumor invasion depth, 
lymph node metastasis, and distant metastasis (Fig. 2E).

To fortify the robustness of our evidence, we sub-
jected additional 5 independent CRC cohorts, namely 
GSE39582, GSE17538, GSE38832, GSE28722, and 
GSE103479, to comprehensive validation analyses. 
Beginning with GSE39582, our findings demonstrated 
that the low-risk group exhibited a lower number of 
deceased and relapsed patients (Supplementary Fig. 2A). 
Moreover, both the overall survival (OS) and the relapse-
free survival (RFS) of the low-risk group were supe-
rior to those of the high-risk group (OS: p = 0.002; RFS: 
p < 0.001). Importantly, akin to the TCGA CRC cohort, 
the low-risk group in GSE39582 showed significantly bet-
ter pathological features as well (Supplementary Fig. 2B). 
Similarly, in GSE17538, patients belonging to the low-risk 
group experienced improved overall survival (OS), and 
disease-free survival (DFS), and exhibited more favorable 
pathological stages (Supplementary Fig.  2C and E). The 
FGS was also effective in accurately classifying the DFS 
and pathological stage in GSE38832 (Supplementary 
Fig. 2D and Fig. 2F). In GSE28722, although the overall 
survival (OS) did not exhibit a statistically significant dif-
ference between the low-risk and high-risk groups, the 
alive patients in the low-risk group outnumbered those 
in the high-risk group. Besides, the low-risk group dis-
played significantly better disease-free survival (DFS) 
and more favorable pathological stages, including the 
TNM stage and Duke’s stage (Supplementary Fig. 2G, I, 
and J). Furthermore, in GSE103479, where only disease-
free survival (DFS) information was available, our analy-
sis revealed a significantly superior DFS in the low-risk 
group compared to the high-risk group (Supplementary 
Fig. 2H).

Molecular features and immune microenvironment
In this study, we sought to evaluate the disparities 
in the immune microenvironment between the two 
groups by utilizing CIBERSORT (Fig.  3A). The analy-
sis unveiled that the low-risk group displayed higher 
infiltration of plasma cells, CD8+ T cells, CD4+ T cells 

(memory resting and memory activated), activated den-
dritic cells, eosinophils, and neutrophils. In contrast, 
the high-risk group exhibited a higher infiltration of 
M0 macrophages. These findings suggest that patients 
in the low-risk group tend to possess a "pro-inflamma-
tory" tumor immune microenvironment (TIME), while 
the other group tends to have an "anti-inflammatory" 
TIME. Moreover, these results imply that patients 
in the low-risk group may exhibit a more favorable 
response to immunotherapy.

Furthermore, we employed the progeny package to 
assess cancer-related signaling pathways. Our analy-
sis revealed that 5 pathways, namely androgen, NFκB, 
PI3K, TNFα, and trail, were significantly upregulated in 
the high-risk group. Conversely, 3 pathways, including 
TGFβ, VEGF, and WNT, exhibited upregulation in the 
low-risk group (Fig.  3B). Basically, the hypoxic condi-
tion would activate epithelial-mesenchymal transition 
(EMT) and angiogenesis through VEGF and WNT 
pathways [55, 56]. Meanwhile, TGFβ signaling also 
promoted tumor metastasis and proliferation through 
EMT [57]. These findings were different from ours. 
However, solid conclusions needed both bioinformatic 
analyses and biology validation, which would be done 
through additional experiments.

Moreover, Fig.  3C elucidated that several immune 
checkpoint molecules, including CD276, CTLA4, 
TNFRSF4, TGFβ1, and TNFSF4, displayed higher 
expression in the high-risk group. This observation fur-
ther confirms the suppression of immune cell survival, 
infiltration, and migration, signifying a "colder" TME 
in the high-risk group. On the other hand, the secre-
tion of ICOS occurs when T cells are activated during 
infections or cancer invasion. Increased infiltration of 
ICOS+ effector T cells indicates a favorable response to 
immunotherapy [56]. Additionally, CD274, also known 
as PD-L1, exhibited higher expression in the low-risk 
group, suggesting that the TME in this group may have 
a greater infiltration of tumor-infiltrating lymphocytes 
(TILs) and increased expression of interferon-γ [58, 
59]. Interestingly, we discovered that most chemokines, 
including those belonging to the CXCL and CCL fami-
lies, exhibited higher expression in the low-risk group 
(Supplementary Fig. 3A and B). These chemokines play 
a crucial role in shaping and regulating the immune 
system, and their heightened expression can induce 
the activation of both innate and adaptive immune 
responses. Furthermore, such elevated expression is 
associated with improved prognosis in various types 
of cancer, including colorectal, endometrial, and breast 
tumors [60, 61]. Additionally, a majority of interleukins 
(IL) were also found to be highly expressed in the low-
risk group, which is characterized by smaller tumor 



Page 10 of 25Zhu et al. BMC Cancer         (2024) 24:1199 

size, fewer infiltrating anti-inflammatory cells, and a 
normoxic TME (Supplementary Fig. 3C) [62].

Somatic mutation and prediction of immunotherapy
Upon thorough examination, we have successfully 
confirmed the disparities in clinicopathological and 
molecular characteristics between the two groups. We 
proceeded with an assessment of the distinct patterns of 

somatic mutations, which were visualized in the waterfall 
plot (Fig. 4A). It became apparent that the low-risk group 
exhibited a higher frequency of most types of mutations. 
Among the top 30 frequently mutated genes, such as 
APC, TP53, TTN, KRAS, and FAT4, the ranking remained 
consistent between the two groups. Notably, most of the 
shared genes showed a higher mutation frequency in 
the low-risk group, emphasizing the prevalence of these 

Fig. 3  The analyses of tumor immune microenvironment and molecular expression. A The results of CIBERSORT showed that plasma cells, CD8 + T 
cells, CD4 + memory resting T cells, CD4 + memory activated T cells, monocytes, activated dendritic cells, eosinophils, and neutrophils were enriched 
in TIME of the low-risk group. While the TIME of the high-risk group had more infiltration of M0 macrophages. B The analysis of cancer-related 
pathways. It indicated that the Androgen, NFκB, PI3K, TNFα, and Trail pathways were upregulated in the high-risk group. While the TGFβ, VEGF, 
and WNT pathways were upregulated in the low-risk group. C Most immune checkpoint molecules were enriched in the high-risk group, 
except IL10, TNFRSF9, IL6, ICOS, and CD274. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001
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mutations in this group. Furthermore, the forest plot 
demonstrated that genes with a p-value less than 0.01 
displayed a higher mutation frequency in the low-risk 
group (Fig. 4B).

Moving forward, we delved into the assessment of 
tumor mutation burden (TMB). Our findings revealed 
a significantly higher TMB in the low-risk group com-
pared to the high-risk group (Fig. 4C). By stratifying CRC 
patients based on different TMB levels, we observed a 
greater number of patients with high TMB in the low-
risk group (Fig. 4H). Notably, we identified a significant 
positive correlation between antitumor scores and TMB 
(Fig.  4D). These results suggest that our FGS approach 
not only enables the classification of CRC patients based 
on clinicopathological and molecular features but also 
facilitates the distinction of somatic mutation patterns 
among these patients. Although the differences in TMB 
levels did not reach statistical significance in terms of 
overall survival (OS), the Kaplan–Meier curves deline-
ated the separation between the two groups (Fig.  4E). 
This observation aligns with the previously observed 
higher frequency of somatic mutations and elevated 
TMB in the low-risk group. Moreover, when combining 
TMB information with risk grouping, we observed the 
following ranking in terms of OS for CRC patients: high 
TMB plus low risk, low TMB plus low risk, high TMB 
plus high risk, and low TMB plus high risk (Fig. 4F). The 
differences among these four groups were statistically 
significant (p < 0.001), underscoring the enhanced predic-
tive capacity of FGS in OS for CRC patients when incor-
porating TMB information.

Furthermore, we employed the TIDE algorithm to 
predict the response to immunotherapy. According to 
TIDE, higher TIDE, dysfunction, and exclusion scores 
correspond to a worse response to immunotherapy [50]. 
Our results uncovered that the low-risk group exhib-
ited less infiltration of anti-inflammatory components, 
including cancer-associated fibroblasts (CAF) and type 2 

tumor-associated macrophages (TAM.M2). Additionally, 
the low-risk group displayed higher levels of interferon γ 
(IFNG) and CD274 (Fig.  4G). Moreover, it comprised a 
greater number of patients with microsatellite instabil-
ity (MSI) and higher levels of the T cell-inflamed signa-
ture (merck18). In the TCGA CRC cohort, 178 out of 238 
patients in the low-risk group, while 75 out of 234 in the 
high-risk group, responded favorably to immunother-
apy (Fig. 4I). To substantiate this evidence, we searched 
the GEO database for CRC cohorts in which patients 
received immunotherapy. Among the 50 rectal cancer 
patients from the GSE60331 dataset who received beva-
cizumab and chemoradiation therapy, we stratified them 
into low- and high-risk groups using FGS. Notably, 83.3% 
of patients (10 out of 12) in the low-risk group responded 
to immunotherapy, while only 34.21% of patients (13 out 
of 38) in the high-risk group showed a positive response 
(Fig. 4I).

In summary, our FGS approach effectively strati-
fies CRC patients into distinct groups based on clinico-
pathological, molecular, and somatic mutation features. 
Furthermore, it demonstrates the ability to predict the 
response to immunotherapy, a validation that has been 
solidified through the analysis of both TCGA and GEO 
databases.

Differentially expressed genes and related bio‑functional 
analysis
Next, we examined the differential gene expression and 
related pathways between the two groups. Utilizing the 
edgeR package, we calculated the differentially expressed 
genes (DEGs) based on the counts data. Our comprehen-
sive analysis unveiled 958 genes that exhibited increased 
expression in the high-risk group, while 273 genes dis-
played decreased expression (Fig.  5A). We added the 
list of the significantly changed DEGs to Supplementary 
Table 7.

(See figure on next page.)
Fig. 4  The analyses of somatic mutation and the prediction of immunotherapy. A The waterfall plots showed that the low-risk group had larger 
quantity and more types of somatic mutation. Additionally, many genes in the top 30 mutation list of the low-risk group had lower mutation 
rate in the high-risk group. B In the analyses of the differences of the quantity of the mutated genes (p < 0.01) between two groups, we found 
that most genes were more frequently mutated in the low-risk group. C The low-risk group had significantly higher TMB. D The spearman analysis 
revealed that the antitumor score was positively related to the TMB. E Although the K-M curves between low-TMB and high-TMB groups were well 
separated, but the difference had no statistical significance. F The high-TMB plus low-risk group had best OS, followed by the low-TMB plus low-risk, 
high-TMB plus high-risk, and low-TMB plus high-risk group. G The high-risk group had more infiltration of CAF and M2 type TAM, higher TIDE 
scores, dysfunction scores, and exclusion scores, and fewer expression of interferon γ, MSI, merck18, and CD274. It meant that the high-risk 
group had relatively “cold” TIME and worse response to the immunotherapy. H The stacking histogram showed different distributions of TMB 
between two groups. The low-risk group had larger ratio of CRC patients with high levels of TMB. I According to the results of TIDE for TCGA CRC 
cohort, the low-risk group had more patients that were responded to the immunotherapy. Meanwhile, in GSE60331 (CRC immunotherapy cohort), 
the low-risk group had significantly larger quantity of patients who were responded to the immunotherapy. * represents p < 0.05, ** represents 
p < 0.01, *** represents p < 0.001, **** represents p < 0.0001



Page 12 of 25Zhu et al. BMC Cancer         (2024) 24:1199 

Fig. 4  (See legend on previous page.)
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Fig. 5  The differentially expressed genes between two groups and related bio-functional analyses. A In TCGA CRC cohort, compared to the low-risk 
group, the high-risk group had 958 upregulated genes and 273 downregulated genes. B Based on the molecular signatures database, 17 KEGG 
signaling pathways were upregulated, and 9 KEGG signaling pathways were downregulated in the high-risk group. C The biofunction enrichment 
analyses of upregulated DEGs
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To further delve into the mechanism of this clus-
tering method, we conducted an analysis of the hall-
mark-related pathways using the Molecular Signature 
Database (MSIgDB). We discovered 26 pathways that 
exhibited significant changes between the two groups 
(adjust.p < 0.05) (Fig.  5B). Notably, several cancer-
related pathways, including EMT, Hedgehog, WNT-
beta catenin, KRAS, angiogenesis, Notch, TGFβ, and 
hypoxia-related pathways, were upregulated in the 
high-risk group. This observation partially elucidates 
why patients in the high-risk group demonstrated 
poorer clinicopathological features and overall survival.

Moreover, we observed that the mTORC1 signal-
ing pathway was impeded due to DNA damage and 
the deprivation of essential nutrients and oxygen [63]. 
Additionally, the oxidative phosphorylation signal-
ing pathway was impaired in the high-risk group, most 
likely due to the hypoxic tumor microenvironment 
(TME). These impairments in signaling pathways sug-
gest that the TME in the high-risk group is hypoxic 
and lacks crucial nutrients, such as amino acids and 
glucose. Consequently, this hampers the migration, 
survival, and tumoricidal function of immune cells. In 
contrast, interferon α and interferon γ responses were 
upregulated in the low-risk group, indicating a TME 
with potentially greater tumoricidal activities.

Subsequently, we utilized the clusterProfiler package 
to analyze the biological functions based on the DEGs. 
Regrettably, due to the limited number of downregu-
lated DEGs, we were unable to perform the cellular 
component (CC) analysis. Furthermore, the results of 
the KEGG, molecular function (MF), and biological 
processes (BP) analyses did not highlight any specific 
functions (Supplementary Fig. 4E-G). However, for the 
upregulated DEGs, our analyses revealed that extracel-
lular matrix remodeling related biofunctions, including 
collagen-containing extracellular matrix, extracellular 
matrix organization, and extracellular structure organi-
zation, were all upregulated in the high-risk group 
(Fig.  5C and Supplementary Fig.  4A-D). This observa-
tion prompts us to consider that, in addition to cancer-
related pathways, cancer-associated fibroblasts (CAFs) 
might also contribute to the worse clinicopathological 

features, survival outcomes, and response to immuno-
therapy observed in the high-risk group.

Moving forward, our attention will be directed toward 
exploring the hub genes and their association with CAFs, 
providing further insight into the intricate mechanisms 
at play.

The procedure of searching for hub genes
Initially, we undertook an analysis of the 582 colorectal 
cancer (CRC) patients in the GSE39582 dataset. Employ-
ing the FGS method, we divided the patients into low- 
and high-risk groups. Subsequently, we utilized the 
limma package to calculate the differentially expressed 
genes (DEGs) between the two groups. Our analysis 
identified 74 upregulated genes and 12 downregulated 
genes, which are visually represented in Fig. 6A.

Furthermore, we conducted a comparative analysis 
between the upregulated DEGs in the TCGA dataset and 
the GSE39582 dataset. This analysis revealed an intersec-
tion of 53 genes (Fig.  6B). Additionally, we identified 3 
genes that intersected between the downregulated DEGs 
in both datasets. These genes were then ranked based on 
their betweenness centrality, as illustrated in Fig. 6C.

To gain further insights, we assessed the differential 
expression of these genes between tumor and adjacent 
normal tissues, as well as their association with patient 
survival outcomes, including overall survival (OS) and 
disease-specific survival (DSS), in the TCGA CRC 
cohort. Intriguingly, we observed that five genes (ACTA2, 
TAGLN, TPM2, MYL9, and CNN1) exhibited consistent 
expression patterns across adjacent normal tissues, early-
stage tumors (stage I), and advanced-stage tumors (stage 
II-IV) (Supplementary Fig.  5). Notably, the expression 
levels were highest in adjacent normal tissues, followed 
by early-stage and advanced-stage tumor tissues. In 
terms of survival outcomes, the higher expression group 
for all five genes demonstrated significantly worse OS and 
DSS compared to the lower expression group, except for 
ACTA2 and OS (p = 0.15). The receiver operating charac-
teristic (ROC) curves revealed that these genes held valu-
able predictive abilities, with all areas under the curves 
(AUCs) above 0.7 (Fig.  6E). Furthermore, we observed 
a strong positive correlation in the expression levels of 
these genes within the TCGA CRC cohort (Fig. 6D and 

(See figure on next page.)
Fig. 6  The procedures of searching for hub genes. A There were 74 genes upregulated in the high-risk group and 12 genes upregulated 
in the low-risk group. B Fifty-three genes were the intersection of upregulated DEGs in TCGA CRC cohort and upregulated DEGs in GSE39582. 
Three genes were the intersection of downregulated DEGs in TCGA CRC cohort and downregulated DEGs in GSE39582. C Using String database 
and Cytoscape software, top 10 gene were screened out through these 56 genes according to the betweenness centrality. D The expressions 
of these genes were strongly positively related. E The area under curve (AUCs) of 5 hub genes were all above 0.7. It meant that these genes were 
valuable to predict the OS of CRC patients. F The spearman correlation coefficients of these hub genes were all above 0.85
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Fig. 6  (See legend on previous page.)
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F). Consequently, these five genes were selected as the 
hub genes for further analyses.

Conversely, the remaining five genes (ACTG2, 
MYH11, LMOD1, FLNA, and BGN) were excluded 
from further analyses for the following reasons: 1) 
The expression levels in early-stage tissues did not dif-
fer significantly from those in advanced-stage tissues 
(ACTG2,  MYH11,  LMOD1, and  FLNA); 2) Some genes 
did not possess significant survival prediction abilities 
(ACTG2, MYH11, LMOD1, and BGN); 3) BGN emerged 
as a typical oncogenic gene, with its expression increas-
ing in tandem with the deterioration of the pathological 
tumor stage (Supplementary Fig. 6).

Association between hub genes and CAF
We further explored the potential association between 
the FGS and cancer-associated fibroblasts (CAFs) using 
multiple algorithms, including xCell, ESTIMATE, MCP-
counter, and GSEA. In Fig.  7A, we observed that the 
protumor scores exhibited a higher positive correlation 
with CAF-related scores compared to antitumor scores. 
This finding suggests a potential relationship between the 
high-risk group and increased CAF infiltration.

To validate this relationship, we utilized GSEA analy-
sis and confirmed that CAFs were indeed significantly 
enriched in the high-risk group (Fig.  7B). Furthermore, 
based on the results from ESTIMATE, the high-risk 
group displayed higher stromal scores and lower immune 
scores, indicating a relative ‘colder’ tumor immune 
microenvironment (TIME) that could potentially impair 
the tumoricidal function of immune cells (Fig. 7C). Simi-
larly, in MCP-counter and xCell analyses, we observed 
higher fibroblast and stromal scores, as well as lower 
immune scores, in the high-risk group (Fig.  7E and F). 
The consistency of these results across all algorithms 
greatly enhances their reliability.

Subsequently, we investigated the relationship between 
the hub genes and CAFs. The findings revealed that all 
five hub genes exhibited a positive association with pro-
tumor scores and a negative association with anti-tumor 
scores (Fig.  7D). Moreover, their expressions were sig-
nificantly positively correlated with CAFs. These findings 
further support the notion that these hub genes may play 
a role in the interaction between the tumor and the CAF-
rich microenvironment.

We have successfully confirmed a highly positive asso-
ciation between the protumor scores and the hub genes 
with the infiltration of cancer-associated fibroblasts 
(CAF) through multiple algorithms. To further investi-
gate the precise expression location of the hub genes and 
identify additional genes for subsequent biology experi-
ments, we utilized an independent single-cell dataset 
(GSE132465).

In GSE132465, we selected 39,197 cells from 10 paired 
normal and tumor samples and divided them into the 
normal and tumor groups (Fig.  7G). Through care-
ful annotation using the provided annotations by the 
authors, we identified six cell types, including T cells, 
B cells, mast cells, stromal cells, myeloid, and epithelial 
cells (Fig. 7H). Notably, the epithelial cells in the tumor 
samples exhibited a highly active proliferative state, 
which may induce antitumor activity of the self-immune 
system, consistent with previous research [64].

We further analyzed the expression of the hub genes in 
these datasets and found that they were highly expressed 
in stromal cells (Fig.  7I). Specifically, CNN1 was 
expressed in approximately 10% of stromal cells, while 
TPM2 and MYL9 were expressed in around 60% of stro-
mal cells and 20% of epithelial cells.

Based on these findings and several considerations, we 
have decided to screen out two genes, MYL9 and TPM2, 
for molecular and cellular experiments. Firstly, these 
genes are expressed in both epithelial and stromal cells, 
allowing us to investigate their effects on the phenotype 
using CRC cell lines. Additionally, we can explore the 
impact of these genes on the communication between 
epithelial and stromal cells through knockdown or over-
expression experiments. Lastly, MYL9 and TPM2 exhibit 
specific associations with tumor CAFs while maintaining 
comparable expressions between tumor and normal sam-
ples in other cell types.

Identification of the expression of hub genes
First, we used mIHC to identify the expression of two 
hub genes described previously, MYL9 and TPM2, and 
the association between them and tumor cells at the tis-
sue level. Because α-SMA was a classical biomarker for 
CAF in types of malignancies [65], we used it to locate 
the CAF in both adjacent normal and tumor tissues. 
In line with our expectation, TPM2 and MYL9 were 
expressed mostly in tumor tissues, conversely, they were 
barely expressed in the adjacent normal tissues (Fig. 8A, 
B, and Supplementary Fig. 7). Meanwhile, a high similar-
ity of the localization was found between cellular compo-
nents marked by TPM2 and α-SMA. It meant that TPM2 
might be used as a potential CAF marker. Pan-CK was 
often used to localize epithelial cells. The results of mIHC 
showed that cellular components marked by α-SMA 
were different from those marked by Pan-CK, which also 
proved that α-SMA was a CAF marker.

To further evaluate the expression of α-SMA, TPM2, 
and MYL9 at the mRNA and protein levels, we employed 
RT-qPCR and Western blotting techniques. Initially, we 
assessed the transcriptional levels of these genes in tumor 
cell lines (SW480 and RKO) and primary CAFs. Subse-
quently, we calculated the mRNA expression ratios of 
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Fig. 7  The association between hub genes and CAF, and the analyses of the expression location of the hub genes. A The correlation 
between protumor scores and CAF was stronger than that between antitumor scores and CAF. B The GSEA analysis showed that the high-risk 
group had more infiltration of classic, inflammatory, and myo CAF. C The results of ESTIMATE indicated that the low-risk group had smaller 
stromal scores and larger immune scores, suggesting its TME was beneficial for immune cells to enhance the tumoricidal function. D The dotplot 
showed that the hub genes were positively related to the protumor and negatively related to the antitumor scores. Meanwhile, these genes 
were also positively associated with the CAF. E The MCP-counter analysis showed that the high-risk group had more infiltration of fibroblasts. F 
The xCell analysis revealed that the high-risk group had more infiltration of fibroblasts, larger stromal scores, and smaller immune scores, which 
was consistent with the previous results. G In single cell cohort (GSE132465), cells in normal and tumor samples could be separated using uMAP 
analysis. H Six types of cells were annotated using the annotations provided by the authors. I The hub genes were mostly expressed by the stromal 
cells. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001
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TPM2, two classical markers (FAP and α-SMA), between 
CAFs and SW480, as well as CAFs and RKO. The results 
revealed that the mRNA expression levels of TPM2 and 
the two classical markers were approximately one hun-
dred times higher in CAFs compared to tumor cells, 
including SW480 (Fig. 8C) and RKO (Fig. 8D). However, 
there was no statistically significant difference in the 
mRNA expression of MYL9 between CAFs and tumor 
cells.

Interestingly, the Western blot results exhibited slight 
discrepancies compared to the RT-qPCR results (Fig. 8E). 
Specifically, α-SMA expression was only observed in pri-
mary CAFs, confirming its specificity as a CAF marker 
rather than being present in tumor cells or normal 
colon epithelial cell lines (FHC). TPM2 displayed strong 
expression in CAFs, as well as in SW480. Similarly, MYL9 
exhibited comparable expression in CAFs, SW480, and 
FHC.

Although TPM2 demonstrated potential as a CAF 
marker, in this study, we showed that it is also expressed 
in tumor cell lines based on mRNA and protein lev-
els. This phenomenon was not found in a CAF-specific 
marker like α-SMA.

TPM2 function in the interaction between cafs and tumor 
cells
We silenced TPM2 in CAFs using shRNA of 3 different 
clones focusing on different sites and another empty vec-
tor clone. Western blot and RT-qPCR were used to ver-
ify the knocking-down efficacy. The results of Western 
blot and RT-qPCR assays showed that all three shRNA 
clones could efficiently knock down the TPM2 expres-
sion at the protein and mRNA levels without influenc-
ing the expression of the classic CAF marker, α-SMA 
(Fig. 9A and B). Among the clones, clone 3 displayed the 
superiority of the knocking-down ability. As a result, this 
clone was named shCAF3 and used for further functional 
experiments.

We chose the co-culture system described in the pre-
vious study (Fig.  9C) [66] to validate the biofunction of 
TPM2. Initially, we found that the co-culture with CAFs 
could greatly enhance the tumorigenic ability of colo-
rectal cancer cells. However, knocking down TPM2 in 
CAFs could partially reduce these enhanced malignant 

phenotypes of tumor cells brought by CAFs. These 
results were proven by the following assays. First, knock-
ing down TPM2 in CAFs could reduce the proliferation 
of colorectal cancer cells indirectly, which was validated 
using Ki67 staining (Fig. 9D) and CCK-8 (Fig. 9E). Next, 
the invasion (Fig.  10A), capacity of forming colonies 
(Fig.  10B), and migration (Fig.  10C) were also validated 
by transwell, clonogenic assays, and wound healing, 
respectively.

In conclusion, CAFs could significantly increase colo-
rectal cancer cells’ tumorigenic biofunctions through co-
culture, which could be partially inhibited by knocking 
down CAFs’ TPM2 expression in vitro.

Discussion
In this study, ssGSEA scores were employed to partition 
CRC patients into distinct high- and low-risk groups uti-
lizing FGS. Notably, patients classified as high risk exhib-
ited a more unfavorable survival status, accompanied 
by progression in the TMN stage. These findings were 
further substantiated across five independent datasets, 
lending credence to their robustness. Furthermore, an 
intriguing disparity in the TIME (Tumor Immune Micro-
environment) between the high-risk and low-risk groups 
was observed. The high-risk group exhibited diminished 
infiltration of tumor-infiltrating lymphocytes (TIL) and 
elevated expression levels of immune checkpoint mole-
cules, setting it apart from the other group. This discrep-
ancy in TIME implies that the low-risk group possesses a 
more vibrant and dynamic TME, ultimately culminating 
in a more favorable prognosis. In addition, a comprehen-
sive analysis of TCGA and GEO databases enabled the 
identification of differentially expressed genes (DEGs) 
between the two groups. Notably, five genes, namely 
ACTA2, TAGLN, TPM2, MYL9, and CNN1, displayed 
consistent expression patterns and exhibited a significant 
association with a poorer survival status. Furthermore, 
the correlation of these genes with cancer-associated 
fibroblasts (CAFs) was confirmed using single-cell data-
sets, adding another layer of evidence to their relevance 
in CRC. To validate these findings, the expression levels 
of two central hub genes, TPM2 and MYL9, were assessed 
in CAFs through western blot and RT-qPCR techniques. 
The results were consistent with the hypothesis, further 

(See figure on next page.)
Fig. 8  Biology experiments to verify the bioinformatic results. A Multicolor immunofluorescence tissue staining results of TPM2, α-SMA, pan-CK 
and DAPI on tissue chips of colorectal cancer tissues and adjacent normal tissues. B Multicolor immunofluorescence tissue staining results of MYL9, 
α-SMA, pan-CK and DAPI on tissue chips of colorectal cancer tissues. C RT-qPCR results of relative expression of FAP, TPM2, α-SMA and MYL9 
compared with GAPDH in SW480 cells. D RT-qPCR results of relative expression of FAP, TPM2, α-SMA and MYL9 compared with GAPDH in SW620 
cells. E Western blot analysis of α-SMA, TPM2, MYL9 with GAPDH as the loading control (Full-length blots/gels are presented in Supplementary 
Fig. 9). Relative protein expression (measured by grayscale value) on the right
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Fig. 8  (See legend on previous page.)
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solidifying their role in the context of CAFs. This valida-
tion was also corroborated by mIHC analysis of tissue 
chips, providing additional support to the previously 
established findings. Overall, this study sheds light on 
the intricate relationship between ssGSEA scores, risk 

stratification, TIME, DEGs, and CAFs in CRC. The com-
prehensive analysis of multiple datasets contributes to 
a deeper understanding of the molecular mechanisms 
underlying CRC progression and prognosis, potentially 
paving the way for more effective therapeutic strategies.

Fig. 9  Biology function of TPM2. TPM2 was knocked down using three different clones of shRNA against TPM2. Western blot (A) and RT-qPCR 
(B) results showed clone 3 had the highest silencing efficiency (Full-length blots/gels were presented in Supplementary Fig. 10). C Schematic 
of co-culture of CAFs and tumor cells. CAFs were seeded in the upper transwell inserts and Tumor cells were placed in the below well in a 6-well 
plate. The two cells were indirectly co-cultured for 48 h. TPM2 knockdown in CAFs influenced the proliferation of SW480 and SW620, which 
was validated by Ki67 staining (D) and CCK-8 (E). * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001
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The focus of recent studies has shifted towards explor-
ing the intricate components of the tumor microenviron-
ment (TME) rather than solely concentrating on tumor 
cells themselves. The TME encompasses four major con-
stituents, as elucidated by the study [67]: 1) immune cells, 
2) vascular components such as blood and lymphatic 
endothelial cells, 3) the extracellular matrix (ECM), and 
4) the stromal component comprised of cancer-asso-
ciated fibroblasts (CAFs) and mesenchymal stem cells 
(MSCs). Among these components, CAFs play a piv-
otal role, exhibiting numerous functions that promote 
tumor growth and contribute to drug resistance [68, 69]. 
Additionally, CAFs can exert indirect effects by secret-
ing ECM, which forms a barrier that hinders the infil-
tration of immune cells [70]. However, it is important to 

note that CAFs are not a homogeneous cell population, 
as demonstrated by recent studies [71–73]. Instead, they 
consist of distinct subpopulations that can be identified 
using various markers. These subpopulations exhibit dif-
ferences in their origin, phenotype, and functions across 
different types of cancer [71, 74]. This emerging under-
standing highlights the need for a more nuanced and 
comprehensive analysis of CAFs in order to fully compre-
hend their impact on tumor progression and therapeutic 
responses.

In our study, we have selected four hub genes, namely 
ACTA2, MYL9, TAGLN, and TPM2, which were 
expressed in fibroblasts of tumor samples. Consequently, 
they were deemed as CAF-related genes. Of particular 
interest is ACTA2, a protein-coding gene that encodes 

Fig. 10  A TPM2 knockdown in CAFs influenced the SW480 and SW620 tumor cell invasion ability. B TPM2 knockdown in CAFs influenced 
the tumorigenic capacity of SW480 and SW620. C TPM2 knockdown in CAFs influenced the SW480 and SW620 tumor cell migration ability



Page 22 of 25Zhu et al. BMC Cancer         (2024) 24:1199 

ACTA2, an exquisite form of actin known as alpha-actin, 
alpha-actin-2, aortic smooth muscle, and alpha-smooth 
muscle actin [75]. ACTA2, a universal cytoskeletal pro-
tein, plays a pivotal role in cell differentiation and migra-
tion, as elucidated in a recent study. Inhibition of ACTA2 
has been shown to significantly curtail cellular motil-
ity and Erk1/2 phosphorylation [76]. Patients exhibiting 
overexpression of ACTA2 have demonstrated height-
ened distant metastasis and an unfavorable prognosis 
[77]. Another gene of notable significance is MLY9, also 
referred to as MLC2, which encodes myosin light chain 
9. This gene regulates myosin II activity through post-
translational phosphorylation [78]. Recent research [68] 
has demonstrated the indispensable role of MYL9 in 
cytoskeletal dynamics and experimental metastasis [79]. 
Furthermore, its overexpression has been associated 
with enhanced matrix remodeling and the promotion 
of invasion in CAFs [80]. Moving on to TAGLN, it intri-
cately governs the expression of an actin-binding protein 
that is crucial in cytoskeletal alterations and transforma-
tions [81]. Overexpression of TAGLN has been shown 
to induce cell invasion and facilitate tumor metastasis 
[82]. Notably, in lung cancer, its expression can be aug-
mented under hypoxic conditions [83] whereas the loss 
of TAGLN inhibits tumor growth [84], In the context of 
ovarian cancer, TAGLN has been found to promote dis-
ease progression through its influence on matrix stiffness 
[85]. Lastly, we turn our attention to tropomyosin beta 
chain isoform 2 (TPM2), which has been implicated in 
colorectal cancer recurrence and has been identified as a 
TASC marker closely associated with a poor prognosis, 
as per recent single-cell analysis [86, 87]. Another illumi-
nating study [75], focusing on the single-cell analysis of 
CRC patients, has substantiated the presence of differen-
tially expressed genes (DEGs) between CAFs and normal 
tissue fibroblasts, including MYL9 and TPM2, thereby 
affirming their correlation with an adverse prognosis in 
the TCGA cohort of CRC [86].

Among those hub genes, our discerning analysis has 
illuminated the distinct overexpression of MYL9 and 
TPM2 in CAFs, while exhibiting relatively low expression 
levels in both tumor and normal samples. These findings 
align with the results obtained from our biology experi-
ments. On a histological level, both TPM2 and MYL9 
manifested heightened expression in tumor tissue when 
compared to normal tissue, elegantly coinciding with the 
presence of α-SMA sites. On a cellular level, although 
displaying slight deviations from the histological results, 
TPM2 demonstrated significant upregulation at both the 
mRNA and protein levels in CAFs, in contrast to normal 
colorectal epithelial cells (FHC) and colorectal cancer 
cells (SW480, SW620, and RKO). Conversely, MYL9 did 
not exhibit notable specificity between CAFs and other 

cell lines. It is noteworthy that Zhou et  al.’s single-cell 
analysis of colorectal cancer patients corroborated the 
differential expression of MYL9 in normal tissue and pri-
mary tumors through immunohistochemistry [86].

CAF original MYL9 high expression has been proven 
to bring tumorigenic enhancement to tumor cells by 
regulating the secretion of CCL2 and TGF-β1 [88] in 
colorectal cancer, which is consistent with our findings. 
However, another hub gene, TPM2, is also worthy of 
exploration. Tumor original TPM2 has been identified 
to play a pro-tumor role in the progression of several 
types of cancers, including prostate [89], hepatocellular 
[90], and colorectal cancer [91]. Besides, several previ-
ous studies have already found that the higher expression 
of CAF original TPM2 in CAFs might accelerate the dis-
ease progression in colorectal cancer [86, 92]. However, 
there is still some blank that should be filled in, because 
until now studies about CAF original TPM2 still stay at 
the bioinformatics level. In the present study, we identi-
fied that CAFs expressed higher TPM2 than MYL9 in 
both mRNA and protein levels. It might be more valuable 
to be used as a biomarker or therapeutic target. The co-
culture system of CAFs and colorectal cancer cells in the 
present study revealed that CAFs could enhance malig-
nant cells’ tumorigenic phenotype indirectly without 
physical contact. Knocking down CAF original TPM2 
expression could partially inhibit this kind of enhance-
ment. Selectively inhibiting TPM2 expression in CAFs 
instead of tumor cells might bring an anti-tumor effect in 
treating colorectal cancer. However, in TME, it is more 
complicated, the cellular interactions and molecular 
expression patterns are dynamically changing [93–95]. 
Whether inhibition of CAF original TPM2 has a similar 
anti-tumor performance in vivo is valuable to be further 
explored.

There are several limitations in the present study. 
While our diligent exploration of single-cell databases 
has bolstered our findings, we have not yet extinguished 
the existence of various CAF subgroups. Furthermore, 
although we successfully isolated CAFs from tumor tis-
sue and validated their identity through α-SMA, we 
have yet to fractionate them into distinct subpopula-
tions to unravel the diverse characteristics of CAFs. In 
future studies, we intend to employ cell cytometry to 
sort these cells and delve into the disparities among these 
subgroups.

Conclusion
In summary, we built a functional gene signature (FGS) 
that could stratify CRC patients into low- and high-risk 
groups. Compared to the high-risk group, the low-risk 
group had significantly better clinicopathological fea-
tures and prognosis. Meanwhile, the predicting ability 
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of FGS was assessed in several other independent CRC 
cohorts, which proved the FGS was valuable and stable. 
The further analyses into the diverse Tumor Immune 
Microenvironments (TIMEs) in colorectal cancer 
patients has unveiled that "hotter" TIMEs, character-
ized by intensified infiltration of tumor-infiltrating lym-
phocytes (TILs) and diminished expression of immune 
checkpoint molecules, portend a more favorable prog-
nosis. Notably, CAFs have been intricately associated 
with varying prognoses, and TPM2 may serve as a valu-
able marker for CAFs, potentially serving as a prognos-
tic factor of utmost import.
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