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Abstract 

The innate immune system is the first responder to infectious agents, cellular debris, and cancerous growths. This 
system plays critical roles in the antitumor immune responses by boosting and priming T cell-mediated cytotoxic-
ity but is understudied due to the complexity and redundancy of its various downstream signaling cascades. We 
utilized a mathematical tool to holistically quantify innate immune signaling cascades and immunophenotype 
over 8,000 tumors from The Cancer Genome Atlas (TCGA). We found that innate immune activation was predictive 
of patient mortality in a subset of cancers. Further analysis identified PHF genes as transcripts that were associated 
with genomic stability and innate activation. Knockdown of PHF gene transcripts in vitro led to an increase in cell 
death and IFNB1 expression in a cGAS-dependent manner, validating PHF genes as potential anti-tumor targets. 
We also found an association between innate immune activation and both tumor immunogenicity and intratumor 
microbes, which highlights the versatility of this model. In conclusion, interrogating activation of innate immune 
signaling cascades demonstrated the importance of studying innate signaling in cancer and broadened the search 
for new therapeutic adjuvants. 

Key points 

1. The custom ssGSEA algorithm presented in this article is an effective tool for estimating innate immune activation

2. This algorithm highlighted a new target to increase cGAS signaling in cancer cell lines.

3. In colorectal cancer, innate immunity was associated with tumor immunogenicity.

4. Innate immunity demonstrated weak associations with intratumor microbial abundance.
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Introduction
With the increasing interest and utilization of microbes 
as cancer therapy adjuvants [1, 2], the study of innate 
immune system activation in the tumor microenviron-
ment is of high interest. One well established micro-
bial adjuvant is the attenuated strain of Mycobacterium, 
bacilli Calmette-Guerin (BCG) in bladder cancer treat-
ment [3]. In more recent years, microbes have been 
engineered to secrete antigens or specifically enter and 
accumulate in the tumor microenvironment [1, 2]. The 
efficacy of this strategy may lie in the subsequent activa-
tion of the innate immune system in a previously immu-
nosuppressed environment.

In cancer, the innate immune system is tasked with 
sensing DAMPs and PAMPs in the tumor microenvi-
ronment and subsequently producing cytokines and dis-
playing neoantigens to the adaptive immune system [4]. 
This preliminary alarm system is essential for mounting 
a proper immune response, but the study of the innate 
immune system in cancer has been hindered by its com-
plexity. This system consists of dozens of PRRs that are 
triggered by an even more diverse group of ligands. Fur-
ther, the signaling cascades of the innate immune system 
consist of many intertwining pathways that converge 
and diverge in their secondary messengers and protein 
modifications. Due to this entanglement, the PRRs of the 
innate immune system are underexplored in the field of 
cancer immunology.

The increased accessibility of mathematical mod-
els and eruption of openly available genomic data allow 
complex topics to be more thoroughly explored. Gene 
set enrichment analysis (GSEA) is a tool used to calcu-
late the enrichment of a biological pathway into a single 
score [5], commonly used to summarize RNA sequencing 
data. This tool can also be used to quantify the enrich-
ment of a pathway within a single sample, also known 
as single-sample gene set enrichment analysis (ssGSEA) 
[6]. Using the ssGSEA algorithm with a custom ontology, 
our study investigated the level of activation of multiple 
innate immune pathways in the pan-cancer dataset from 
The Cancer Genome Atlas (TCGA). The innate immune 
pathways explored included toll-like receptor (TLR) sign-
aling, C-type lectin receptor (CLR) signaling, retinoic 
acid induced gene (RIG-I) signaling, nucleotide bind-
ing oligomerization domain (NOD) signaling, and cyclic 
GMP-AMP synthase (cGAS) signaling. TLR’s are com-
mon receptors of bacterial wall and membrane products 
as well as foreign DNA. CLR’s recognize fungal and viral 
particles. NOD receptors are known to respond to bacte-
rial cell wall components and self-antigens [7, 8]. RIG-I is 
a sensor for double stranded viral RNA [9]. Finally, cGAS 
recognizes cytosolic DNA from foreign sources and self 
[10]. All of these signaling pathways have the goal of 

triggering an immune response to resolve a threat, either 
in the form of a foreign invasion or cancerous growths.

The aim of this study is to highlight a new way of quan-
tifying and interrogating the innate immune system. 
It offers a broad introduction to the various utilities of 
this score system and a foundation for future work in 
therapeutic targets and adjuvants. In this study, the five 
main pathways of the innate immune system, mentioned 
above, were quantified in over 8,000 tumors of 29 dif-
ferent cancer types. Results from this work feature the 
importance of the innate immune system in patient out-
comes, its association with tumor immunogenicity, and 
its association with intratumor microbes. The insights 
from this model also identified a potential therapeutic 
target: PHD finger (PHF) proteins that can boost activity 
of the cGAS pathway and possibly the overall inflamma-
tory state of a tumor.

Methods
The cancer genome atlas data acquisition
Normalized RNA sequencing data was acquired from 
Wang et  al., Scientific Data, 2018. In brief, reads from 
TCGA tumors were aligned to the UCSC hg19 human 
reference, quantified and normalized via RSEM to allow 
for comparisons across multiple cancer types [11]. Copy 
number of each protein coding gene was acquired by 
R packages “TCGAbiolinks” and “RTC GAT oolbox” 
(https:// github. com/ Bioin forma ticsF MRP/ TCGAb iolin 
ks; https:// github. com/ mksam ur/ RTCGA Toolb ox) using 
the “getFirehoseData()” function. Intratumor microbe 
abundance was acquired from a SHOGUN analysis of the 
unaligned RNA sequencing reads from TCGA (ftp:// ftp. 
micro bio. me/ pub/ cancer_ micro biome_ analy sis/) [12]. 
All data normalization and handling were performed in R 
for appropriate downstream analysis.

Defining a custom ontology
A comprehensive gene list for each of the five innate 
immune pathways; cGAS, CLR, TLR, NOD, RIG-I; was 
manually curated using a variety of publicly available 
databases and literature reviews [7, 13–17]. Gene lists 
were first established based off large and commonly 
used ontologies including KEGG, Gene Ontology, and 
STRING [13–15]. Gene sets were summarized from all 
three lists to ensure there were no duplicate gene names. 
Gene names were also all individually verified with the 
UCSC hg19 annotation files to ensure proper gene name 
usage. Various review articles were used to supplement 
each summarized gene list [7, 16, 17]. Final gene lists for 
each of the five innate pathways can be found in Supple-
mental Table 1. The gene list was compiled into a “.gmt” 
file for use in ssGSEA score calculations.

https://github.com/BioinformaticsFMRP/TCGAbiolinks
https://github.com/BioinformaticsFMRP/TCGAbiolinks
https://github.com/mksamur/RTCGAToolbox
ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/
ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/
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ssGSEA score calculation
An activation score for each of the five pathways was 
calculated for each RSEM normalized RNA sequencing 
result following the “single sample extension” of GSEA 
as described in Barbie et  al. [18]. The R script for these 
calculations was obtained via GitHub repository (https:// 
github. com/ broad insti tute/ ssGSE A2.0). Each score 
was calculated using a raw rank metric, with a weight 
parameter of 75%. A Kolmogorov–Smirnov statistic 
was calculated with 1000 permutations. The normalized 
enrichment scores (NES) were compiled and used for 
downstream analyses.

siRNA treatments and interferon expression 
measurements
HCT116, Wildtype BJ, and cGAS knock out BJ cell lines 
(kindly provided by Dr. James Chen [19]) were cultured 
in Dulbecco’s Modified Eagle Medium (DMEM) and 
10% fetal bovine serum (FBS). All cell lines were grown 
in 37ºC and 5%  CO2. ON-TARGETplus siRNA mol-
ecules were obtained from Horizon Discovery for PHF2 
(L-012912–00-0005), PHF8 (L-004291–01-0005), and 
a non-targeting control (D-001810–10-05). Cells were 
treated with a final siRNA concentration of 25 nM using 
RNAiMAX (Invitrogen) as a transfection reagent. After 
treatment with siRNA for 48 h, cells were washed and 
harvested for subsequent RNA isolation and analysis. 
Cells were lysed and RNA was extracted with Trizol. 
cDNA was synthesized from RNA via the iScript cDNA 
synthesis kit (Bio-Rad 1,708,891). Relative expression was 
measured via RT-PCR with SYBR Green Reagents using 
a Bio-Rad CFX384 Real-Time System. Primers used to 
quantify expression of PHF and IFN transcripts are out-
lined in Supplemental Table 2.

Statistical analyses
All statistical analyses were performed in R or Graph-
Pad Prism 9. Partial correlations were performed with 
the R package, “ppcor”. Cox regression analyses were 
performed with the R package, “survival”. ANOVA, 
Mann–Whitney, and Student t-tests were performed in 
GraphPad Prism 9 where appropriate. Multiple hypothe-
sis testing was implemented using the Benjamini–Hoch-
berg method in R.

Data availability
Previously published RNA-seq experiments used in 
this study can be found on Gene Expression Omnibus 
under the following accessions: GSE174141, GSE99298, 
GSE146009, and GSE17538. TCGA level-2 sequencing 
data were obtained via controlled access. TCGA level-3 
and patient metadata were directly downloaded from the 

NCI GDC website (https:// portal. gdc. cancer. gov). Copy 
numbers of genes in TCGA tumors were obtained using 
the “TCGAbiolinks” and “RTC GAT oolbox” R packages. 
ssGSEA algorithm was obtained from its original authors’ 
submission to GitHub (https:// github. com/ broad insti 
tute/ ssGSE A2.0). Finally, intratumor microbe abundance 
values were obtained from Poore et al. [10] via ftp:// ftp. 
micro bio. me/ pub/ cancer_ micro biome_ analy sis/.

Results
Quantification of innate immune activation 
through ssGSEA
We utilized of a mathematical tool called single sam-
ple gene set enrichment analysis (ssGSEA) to quantify 
5 individual branches of intratumor innate immune 
activation using a custom ontology [5]. The quantifica-
tion scores for each branch were then used to further 
elucidate various tumor phenotypes. In brief, ssGSEA 
generates a ranked gene list from which a single score 
is generated that summarizes expression of a signaling 
cascade. A gene set was established for the signaling cas-
cades of toll-like receptors (TLR), C-type lectin receptors 
(CLR), nucleotide-binding and oligomerization domain 
(NOD)-like receptors (NLR), cyclic GMP-AMP synthase 
(cGAS), and retinoic acid-inducible gene I (RIG-I) based 
on curated databases and previous literature (See Meth-
ods, Supplemental Table 1) [7, 13–17]. After an ontology 
was established for each pattern recognition receptor, 
ssGSEA scores were calculated to summarize the degree 
of activation of each pathway from RNA expression levels 
(Fig. 1A).

To first validate that this strategy can quantitatively 
model innate immune activation, ssGSEA scores 
were calculated from a previously published sequenc-
ing experiment [20]. In Stothers et  al., bone marrow 
derived macrophages (BMDM) were treated with 
lipopolysaccharide (LPS) for 4 or 72 h. LPS is a strong, 
natural ligand of TLR4, which triggers downstream 
signaling in the TLR pathway. Whole transcriptome 
RNA-sequencing was then performed for each con-
dition. Proxies for TLR activation, such as Il6 (Gene 
ID:16,193) and Tnf (Gene ID:7124) expression, were 
significantly elevated after LPS stimulation (Fig.  1B). 
We calculated the ssGSEA score for intracellular 
TLR pathway activation after LPS stimulation and 
we observed similar changes after 4 or 72 h (Fig. 1C). 
Next, we investigated another published dataset of 
samples exposed to viral stimulation [21]. A549 cells 
were infected with respiratory syncytial virus (RSV) 
for 24 or 48 h and RNA-sequencing was performed. 
Genes involved in the RIG-I and NOD pathways gen-
erally increased with longer viral exposure (Fig.  1D). 
Similarly, expression of interferon genes also increased 

https://github.com/broadinstitute/ssGSEA2.0
https://github.com/broadinstitute/ssGSEA2.0
https://portal.gdc.cancer.gov
https://github.com/broadinstitute/ssGSEA2.0
https://github.com/broadinstitute/ssGSEA2.0
ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/
ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/
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with viral exposure (Fig.  1E). ssGSEA scores of NOD 
and RIG-I activation unambiguously recapitulated this 
trend (Fig.  1F). Therefore, by summarizing the key 
genes involved in the PRR pathways, we demonstrated 
that ssGSEA is an effective tool to generate scores that 
reflect innate immune activation by both viral and 
bacterial stimuli.

Pan‑cancer analysis of innate immune activation
To explore the functional impact of innate immune 
pathways in cancers, we calculated the custom ssGSEA 
scores for 8,554 human tumor samples, distributed 
among 29 cancer types in the Cancer Genomic Atlas 
(TCGA) cohort. Within each innate immune pathway, 
cancer types exhibited varying degrees of activation. 

Fig. 1 Quantification of Innate Immune Pathways Using Single Sample Gene Set Enrichment Analysis (ssGSEA). A The workflow of generating 
ssGSEA scores for each of the 5 innate immune pathways. B mRNA expression of Il6 and Tnf from mouse BMDMs at baseline, 4 h, and 72 h after LPS 
stimulation. C ssGSEA scores for TLR pathway calculated from mouse BMDMs at baseline, 4 h, and 72 h after LPS stimulation. D Heatmap of mRNA 
expression of genes in the RIG-I pathway, colored by z-score, from A549 cells treated with viral stimulus for 0, 24, and 48 h. All gene are annotated 
with official NCBI gene symbols. E RNA expression of type 1 interferons from A549 cells treated with a viral stimulus for 0, 24, and 48 h. F ssGSEA 
scores for NOD and RIG-I pathways calculated from A549 cells treated with viral stimulus for 0, 24, and 48 h. Comparisons that reached statistical 
significance were denoted by asterisks. Symbols: * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001 from a Student’s t-test. Abbreviations: TLR 
(Toll Like Receptor), CLR (C-type Lectin Receptor), RIG-I (Retinoic acid Inducible Gene I), NOD (Nucleotide Binding Oligomerization Domain), cGAS 
(Cyclic GMP-AMP Synthase), LPS (Lipopolysaccharide), FPKM (Fragments Per Kilobase of transcript per Million mapped reads), RPKM(Reads Per 
Kilobase of transcript, per Million mapped reads)
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For example, brain low grade glioma tumors (LGG) had 
demonstrably less PRR stimulation than cervical squa-
mous cell carcinoma and endocervical adenocarcinoma 
(CESC) (Fig.  2A). We interrogated a possible associa-
tion with innate immune scores and high-level patient 
demographics such as age and pathologic staging of dis-
ease. There were some weak correlations between innate 

immune scores and patients’ age at diagnosis (Supple-
mental Fig. 1). We also investigated if there was a pattern 
of innate immune activation in various pathologic stages 
(Stage I-IV). There was no clear pattern between disease 
staging and our activation scores (Supplemental Fig. 2).

The association of innate immune activation scores 
and patient survival was investigated via partial cox 

Fig. 2 Pan-Cancer Analysis of ssGSEA scores to Quantify Innate Immune System Activation. A Ridgeline plots of ssGSEA scores for five innate 
immune pathways compared across different cancer types. B A partial cox regression of ssGSEA scores and patient survival was calculated for each 
cancer type, which controlled for age, gender, pathological stage where applicable, tumor purity, and quantity of immune cell infiltrates. Beta 
values are shown only for regressions which met a statistical cut off p value < 0.05. C cGAS ssGSEA scores were associated with RNA sequencing 
data from all 29 cancer types and the statistics were averaged and plotted. GSEA was performed on a list of ranked r statistics from the pan-cancer 
associations and the top 10 downregulated and upregulated pathways are shown. D TLR ssGSEA scores were associated with RNA sequencing 
data from all 29 cancer types and the statistics were averaged and plotted. GSEA was performed on a list of ranked r statistics from the pan-cancer 
associations and the top 10 downregulated and upregulated pathways are shown. Abbreviations: TLR (Toll Like Receptor), CLR (C-type Lectin 
Receptor), RIG-I (Retinoic acid Inducible Gene I), NOD (Nucleotide Binding Oligomerization Domain), cGAS (Cyclic GMP-AMP Synthase)
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regression analyses, controlling for immune cell infiltra-
tion, tumor purity, patient age, and gender (Fig.  2B). In 
some cancer types, high innate immune activation was 
hazardous and in others advantageous. These results 
demonstrate the importance of the innate immune sys-
tem in clinical outcomes and highlight the diversity of 
their influence.

ssGSEA scores were also associated with transcript lev-
els of all protein coding genes, excluding genes already 
used to calculate the scores. For this analysis, tumor 
purity was controlled for as increasing immune cell 
infiltration will influence expression profiles. Associa-
tions were done across all cancer types and results were 
summarized to show pan-cancer trends. cGAS activa-
tion scores were negatively associated with 834 genes 
and positively associated with only 6 genes (Fig.  2C). 
The observation of decreased transcription when cGAS 
is highly activated is notable. In previous reports, DNA 
damage has been shown to induce global transcriptional 
stress by hindering RNA polymerase II [22]. Pathway 
enrichment analysis revealed genes involved in RNA pro-
cessing were enriched in downregulated genes and genes 
involved in type 2 immunity were enriched in upregu-
lated genes (Fig. 2C). Genes involved in mismatch repair 
and nucleotide excision repair also were negatively asso-
ciated with cGAS activation (Supplemental Fig. 3).

TLR activation scores were associated with all tran-
scripts in each tumor except for genes annotated to the 
TLR pathway in the same pan-cancer fashion. Most tran-
scripts were positively associated with innate immune 
activation. Pathway enrichment analysis suggests micro-
tubule assembly was negatively associated with TLR 
activation and cell-mediated immunity was positively 
associated as expected [23] (Fig. 2D).

Histone demethylases are negatively associated 
with genome instability and cGAS activation
Genes negatively associated with cGAS signaling in a pan-
cancer fashion were of particular interest. cGAS signaling 
is commonly suppressed in tumors to evade the anti-cancer 
immune response [17]. Focusing on genes that are upregu-
lated when cGAS activation is possibly suppressed, we 
hoped to uncover gene targets that, when interfered with, 
led to greater cGAS activation. Eleven candidate genes 
were found due to their strong association with cGAS 
activation. Among them were zinc fingers and chromatin 
modifiers (Fig.  3A). Two genes of interest include PHF2 
and PHF8 which are Jumonji-C histone demethylases. 
PHF2 has been shown to be crucial for genomic stability 
and participate in regulating expression of DNA damage 
repair and cell-cycle proteins [24, 25]. PHF8 has been noted 
to have possible oncogenic properties [26, 27], interacts 

with DNA damage response (DDR) proteins, and encour-
ages genomic stability similar to PHF2  [28].

These previous observations regarding PHF proteins are 
also applicable in vivo. In tumors with high microsatellite 
instability, there was significantly less PHF2 expression 
(Fig. 3B). When tumors were identified by either the PHF2 
or PHF8 copy number individually there were inconsistent 
patterns of cGAS activation (Fig. 3C). Interestingly, when 
tumors were grouped based on both PHF2 and PHF8 copy 
number together, tumors that lost both copies of PHF2 
and one copy of PHF8 had significantly elevated cGAS 
activation (Fig. 3C). Of note, there were no tumors in the 
database that had both copies of PHF2 and PHF8 simulta-
neously deleted. This further supports the hypothesis that 
PHF2 and PHF8 proteins impact genomic stability as seen 
in previous reports [24, 25, 28] and are potential suppres-
sors of DNA damage, a ligand for cGAS activation.

These results are particularly exciting as there is conflict-
ing evidence regarding PHF2’s influence in tumorigenesis. 
PHF2 has been noted as a tumor suppressor or an onco-
gene depending on the examined cancer type [29–33]. 
When evaluated in a holistic manner and across multiple 
cancer models, PHF transcripts were identified as crucial 
genomic stabilizers that are associated with the cGAS-
STING pathway activation. This strongly suggests that PHF 
proteins may be targeted to increase DNA damage and 
enhance cGAS activation to combat the immunosuppres-
sive environment of malignancies [34].

To determine if reducing PHF expression alone is enough 
to increase cGAS activation, PHF2 and PHF8 were knocked 
down via siRNA’s in HCT116 and BJ cell lines. Reduction of 
target PHF transcripts was confirmed via qPCR (Fig. 3D). 
When PHF2 and PHF8 were both downregulated, there 
was an increase in IFNB1 gene expression, a gene highly 
induced by the cGAS-STING activation (Fig.  3E). In ad 
dition to an induction of IFNB1 expression there is also 
more cell death as measured by lactate dehydrogenase 
(LDH) cytosolic leakage (Supplemental Fig.  4). To evalu-
ate if this effect was indeed dependent on cGAS, a cGAS 
knockout fibroblast BJ cell line was used. As expected, 
wild type fibroblasts had a decrease in PHF expression 
with respective siRNA treatment and an increase in IFNB1 
expression (Fig.  3F). cGAS knockout cell lines did not 
increase IFNB1 expression with reduction of PHF tran-
scripts suggesting that this increase in IFNB1 expression 
may be cGAS-dependent (Fig. 3G).

Innate immune activation is heterogeneous in colorectal 
cancer and is associated with tumor immunogenicity 
and immune cell exhaustion markers
Innate immune activation of colorectal cancer is of par-
ticular interest as this cancer type grows at the interface 
between tissue and trillions of bacteria in the microbiota. 
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Fig. 3 cGAS ssGSEA scores Highlight Immunomodulatory Effects of Targeting PHF Proteins. A Heatmap of the partial correlation coefficients 
between the top 11 genes with cGAS ssGSEA scores while controlling for tumor purity and immune cell infiltration. Asterisks indicate a p 
value < 0.05. B PHF2 and PHF8 expression from tumors classified by microsatellite instability groupings. MSI-L refers to tumors with low 
microsatellite instability and MSI-H refers to tumors with high microsatellite instability. C cGAS activation scores of tumors stratified based 
off copy number of PHF2 and PHF8. The dotted line represents the mean cGAS activation score of tumors with the two copies of both PHF2 
and PHF8. Statistical tests performed in comparison to tumors with 0 copy number of genes of interest. D PHF2 and PHF8 expression measured 
via qPCR in HCT116 cells after siRNA treatment (n = 5 replicates per condition). Statistical tests performed for each treatment group in comparison 
with Control Non-Targeting siRNA treatment. E IFNB1 and IFNA2 expression measured via qPCR in HCT116 cells after siRNA treatment (n = 5 
replicates per condition). Statistical tests performed for each treatment group in comparison with Control Non-Targeting siRNA treatment. F PHF2, 
PHF8, and IFNB1 expression was measured via qPCR in wild type BJ fibroblasts after siRNA treatment (n = 3 replicates per condition). Statistical 
tests performed for each treatment group in comparison with Control Non-Targeting siRNA treatment. G PHF2, PHF8, and IFNB1 expression 
was measured via qPCR in cGAS knock out BJ fibroblasts after siRNA treatment (n = 3 replicates per condition). Statistical tests performed for each 
treatment group in comparison with Control Non-Targeting siRNA treatment. Symbols in panels B-C: * = p < 0.05; ** = p < 0.01; *** = p < 0.001; 
**** = p < 0.0001 from a Mann–Whitney U test. Symbols in panels D-G: * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001 from a Student’s 
t test. Abbreviations: TLR (Toll Like Receptor), CLR (C-type Lectin Receptor), RIG-I (Retinoic acid Inducible Gene I), NOD (Nucleotide Binding 
Oligomerization Domain), cGAS (Cyclic GMP-AMP Synthase), RSEM (RNA-Seq by Expectation–Maximization)
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As expected, innate immune activation in colorectal can-
cer is largely heterogeneous (Fig.  4A). This result was 
investigated further by clustering tumors into 3 separate 
“innate groups” based on all 5 innate activation scores. 
Innate group 1 demonstrated the highest innate immune 
activity and group 3 demonstrated the lowest innate 
immune activation. To determine if higher immune acti-
vation corresponded with more immune cell infiltra-
tion, an algorithm to quantify immune cell populations 
in tumor tissue, TIMER was used [35]. Some, but not 

all, immune cell populations were elevated with innate 
immune signaling. Specifically, neutrophils, dendritic 
cells, and CD8 + T cells were significantly elevated in 
innate group 1 compared to innate group 3 (Fig. 4B).

The heterogeneity of innate activation in colon can-
cer tumors provided the opportunity to investigate the 
association between recognition by the innate immune 
system and tumor immunogenicity. Classically, a higher 
mutation burden in tumors is associated with more 
neoantigens [36]. This allows for greater recognition of 

Fig. 4 Colon Adenocarcinomas Demonstrated Heterogenous Innate Immune Activation Associated with Tumor Immunogenicity and Immune 
Cell Exhaustion. A Clustered heatmap of z-scores of the ssGSEA scores of all 5 innate immune pathways in colon adenocarcinomas. B TIMER results 
of the quantification of immune cell populations within tumors in each of the 3 groups of innate immune activation. C Absolute count and class 
of each mutation event for the three innate group identified. D Mutations within the protein-coding region of P53, KRAS, APC, and MUC16 were 
quantified for each innate group and then translated into a ratio of mutated versus non-mutated tumors. Chi-Square test p-values shown above. 
E RSEM normalized expression values of immune cell exhaustion markers PCDC1, CTLA4, HAVCR2, and LAG3 in each of the three innate immune 
groups. Symbols: * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001 from a Mann–Whitney U test. Abbreviations: TLR (Toll Like Receptor), 
CLR (C-type Lectin Receptor), RIG-I (Retinoic acid Inducible Gene I), NOD (Nucleotide Binding Oligomerization Domain), cGAS (Cyclic GMP-AMP 
Synthase), HR (Hazard Ratio), FDR (False Discovery Rate), RSEM (RNA-Seq by Expectation–Maximization)
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tumor cells by antigen presenting cells and CD8 + T cells. 
It has been hypothesized that pattern recognition recep-
tors may also contribute to the immune recognition of 
self-antigens. TLR7 is a key contributor to development 
of anti-nuclear autoantibodies in systemic lupus erythe-
matosus [37]. Additionally, NOD1 has been implicated 
as a key receptor in triggering cell death in malignancies. 
Finally, cGAS is known to recognize self-DNA [8, 38].

To further understand the association between tumor 
immunogenicity and the innate immune response, muta-
tion burden was measured in the three innate groups. 
Innate group 1, which had the highest innate activation, 
demonstrated the largest mutation burden (Fig. 4C). This 
observation cannot be confounded by tumor purity as 
less pure tumors would have reduced power to detect 
mutations. In addition to global mutation burden, fre-
quency of mutations in specific protein-coding regions 
commonly mutated in colorectal cancers was also sig-
nificantly different between groups. P53, KRAS, and APC 
mutations were less abundant in group 1, while muta-
tions in a putative tumor antigen MUC16 (which encodes 
for CA125) were significantly higher in this group 
(Fig. 4D). This result is of particular interest as CA125 is 
a known prognostic marker for colon cancer and can be 
used in conjunction with CEA levels to screen for cancer 
progression and recurrence [39]. Although in our data-
set, mutation burden of the four protein-coding genes 
was not associated with outcomes (Supplemental Fig. 5), 
MUC16 is commonly mutated in colon cancer tumors 
[40]. MUC16 is highly expressed in early-stage tumors 
[39], and associated with high innate immune activation. 
All three of these findings suggest the protein produced 
from the mutated gene of MUC16 may be an interesting 
and valuable target for cancer vaccine development.

The “hot” tumors of innate group 1 also exhibited 
increased expression of immune cell exhaustion mark-
ers such as PDCD1 (PD1), CTLA4, HAVCR2 (TIM3), 
and LAG3 (Fig. 4E). The association between high innate 
immune activity and exhaustion markers was recapitu-
lated in a separate cohort of colorectal cancer as well 
(Supplemental Fig. 6). These data support the hypothesis 
that innate immune activation is associated with muta-
tion frequency and therefore potentially tumor immuno-
genicity and immune cell exhaustion.

Associations with Innate Immune activation highlights 
a role of intratumor microbes in the tumor immunological 
microenvironment
Co-opting engineered microbes for cancer vaccines is 
an exciting new avenue for cancer therapy. Engineer-
ing microbes such as E. coli Nissle has the potential to 
reawaken the innate immune system and elicit a sys-
temic anti-tumor response [1]. Having an accessible tool 

to summarize the innate immune system activation in 
the tumor microenvironment can be valuable to under-
standing the response upon vaccination. In this paper, we 
took advantage of the innate immune activation scores 
to interrogate the relationship between tumor associ-
ated microbes and the induction or lack thereof of pat-
tern recognition receptors and their signaling cascades. 
Abundance measurements of intratumor microbes were 
sourced from Poore et  al. [12]. Principal component 
analysis indicated that the composition of the intratu-
mor microbes was distinct among different tumor sites as 
has been previously reported (Fig. 5A) [41]. For example, 
esophageal cancer had a particularly distinct taxonomy, 
with over half of all tumor-associated microbes belong-
ing to Proteobacteria (Fig. 5B). To evaluate the relation-
ship between the tumor microbiome and the innate 
immune activation, scores were associated with tumor 
microbe relative abundance. Colon adenocarcinoma and 
lung squamous cell carcinoma samples demonstrated 
multiple associations with multiple taxa, but the direc-
tion and degree of the associations was drastically differ-
ent. In colon adenocarcinoma samples, there are distinct 
associations of innate activation scores with taxa com-
monly found in the gut such as Enterobacteriaceae and 
more specifically Escherichia (Fig. 5C) [42]. In lung squa-
mous cell carcinoma on the other hand, there were few 
associations with these taxa and instead associations 
with Cloacibacterium, Alcanivorax, and Bacillus species 
(Fig. 5D). In addition, when a species is more abundant 
in the tumor, it is more likely to show associations with 
innate activation scores. For example, Escherichia is asso-
ciated with cGAS activation in COAD tumors but not 
LUSC tumors and this is most likely because Escherichia 
species was more abundant in COAD tumors (Fig.  5E). 
Alternatively, LUSC tumors harbored more sequences 
belonging to Alcanivorax and this taxon showed a 
unique association with multiple innate activation scores 
(Fig. 5F). Of note, these associations are not as strong as 
we expected in respect to their R values. There may be 
other contributors that trigger strong innate immune sig-
nals in the tumor microenvironment, such as self-anti-
gens mentioned previously. These results might provide 
a way to explain the conflicting observations from litera-
ture showing opposite effects of intratumor microbes in 
various cancer types [41].

Discussion
This study applies a mathematical tool to measure innate 
immune activation and thus phenotype 8,554 tumors 
across 29 different cancer types in the TCGA database. 
Different cancer types demonstrated various degrees 
of innate immune activation and in some cases, innate 
immune activation was predictive of patient outcomes. 
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Fig. 5 Intratumor Microbes were Associated with Innate Immune Activation in Mucosal Associated Cancers. A Taxonomic information from tumors 
within 7 different cancer types was used to make a Bray–Curtis dissimilarity matrix and plotted via a principal component analysis (PCoA). 
B Stacked barplots of the relative abundance of each phylum of bacteria compared across 7 different cancer types. C Chord plot of the associations 
between intratumor microbe abundance and ssGSEA scores in colon adenocarcinoma. Associations are colored by correlation coefficients. D Chord 
plot of the associations between intratumor microbe abundance and ssGSEA scores in lung squamous cell carcinoma. Associations are colored 
by correlation coefficients. E Scatter plot of the relative abundance of the common resident gut genus, Escherichia, and cGAS activation in colon 
adenocarcinomas. Pearson R values and P values displayed on graph. (left) Barplot of read counts assigned to Escherichia from COAD and LUSC 
tumors (right). F Scatter plot of the relative abundance of genus Alcanivorax and NOD activation in lung squamous cell carcinoma. Pearson R 
values and P values displayed on graph. (left) Barplot of read counts assigned to Alcanivorax from COAD and LUSC tumors (right). Abbreviations: 
PC (Principal Component), TLR (Toll Like Receptor), CLR (C-type Lectin Receptor), RIG-I (Retinoic acid Inducible Gene I), NOD (Nucleotide Binding 
Oligomerization Domain), cGAS (Cyclic GMP-AMP Synthase)
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This result emphasized the importance of the innate 
immune system in the antitumor response.

Immunophenotyping tumors based on specifically 
cGAS activation highlighted potential therapeutic tar-
gets. cGAS is a DNA sensing molecule that synthesizes 
the secondary messenger, cGAMP, which activates 
STING and facilitates its movement from the ER to the 
Golgi [38]. Multiple preclinical trials have attempted to 
target this pathway to boost antitumor immunity with 
varying degrees of success [43]. In this study, interrogat-
ing the cGAS signaling cascade as a complete pathway 
instead of as a singular protein led to new insights. This 
demonstrated an inverse relationship with global tran-
scription in tumors and with chromosome stabilizing 
proteins, PHF2 and PHF8. Carcinogenic cells classically 
have unstable genomes yet cGAS and STING are down-
regulated [44]. This study used PHF proteins as possible 
targets to boost cGAS activation in tumor cells. When 
PHF2 and PHF8 were transiently knocked down, this 
increased the downstream cytokine released upon cGAS 
activation, IFNB1, and increased cell death [17].

In addition to highlighting new therapeutic targets, this 
method of quantifying innate immune activation showed 
associations with tumor immunogenicity. When strati-
fied based on activation scores, colorectal tumors with 
greater activation harbored significantly more mutations. 
Tumor mutation burden is largely thought to increase the 
display of neoantigens on MHC class I molecules alarm-
ing the adaptive immune system [36]. These results sug-
gest that there is also a concurrent increase in the innate 
immune system activation with greater mutation bur-
den. How and if pattern recognition receptors can help 
to identify self-antigens is an interesting question that 
should be further explored.

Finally, this custom ontology interrogated the effect 
of intratumor microbes on the immunologic tumor 
microenvironment. Intratumor microbes have been of 
particular interest in recent years. In pancreatic cancer, 
it was estimated that there was an average of 1 microbe 
for every 146 cancer cells [45]. In some cancers, it is 
hypothesized that intratumor microbes help stimulate 
the immune system and aid in immune cell infiltration. A 
great example of this phenomenon is the effective use of 
the attenuated strain of Mycobacterium, bacilli Calmette-
Guerin (BCG), as an adjuvant in bladder cancer treat-
ment [3]. Conversely, intratumor microbes may aid in 
resistance to chemotherapy. In pancreatic cancer, intratu-
mor Gammaproteobacteria were found to metabolize the 
chemotherapeutic agent, gemcitabine [45]. Due to the 
unique effects of different tumor microbes on treatment 
outcomes, interrogating how the tumor microbiome 
interacts with the innate immune system is of great inter-
est. Tumor localization in the body affected the diversity 

of the tumor microbiome and the relationships with 
the innate immune system. Colon adenocarcinoma had 
some weak associations with intratumor microbes. On 
the other hand, lung squamous cell carcinoma not only 
had a distinct microbiome population but also an inverse 
relationship with its intratumor microbial abundance. 
Overall, associations with intratumor microbes remain 
weak, although statistically significant. This may suggest 
that there are additional triggers of PRR activation out-
side of intratumor microbes. One likely candidate may be 
neoantigens as mentioned previously. These results will 
hopefully propel further research into therapy adjuvants 
to trigger a greater anti-tumor immune response.

This study is limited by its exploratory nature. Its pur-
pose is to highlight a new way of quantifying and inter-
rogating the innate immune system. It offers a broad 
introduction to the various utilities of this score system 
and a foundation of future work into therapeutic targets 
and therapeutic adjuvants. In conclusion, evaluating the 
innate immune system using the scoring system devel-
oped in this study demonstrated the immune system’s 
complex relationship with patient outcomes, intratumor 
microbes, and demonstrated potential new therapeutic 
targets to further boost anti-tumor immunity.
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