
'74470 177961

The ST Quarterly premiere issue

Tom Hudsons
ST Printer Driver

Voodoo Computing

Sophisticated GEM

Text Handling

Iconographies

The Digital Magnet
Plotting Magnetic Field Lines

Chips

Of Diagnostics),
and Debugging
Procedures for the 68000

PIONEER BUILDING
600 FIRST AVENUE
SEATTLE, WA 98104

1-206-624-9292

1-800-647-7741

The One Stop Shop

It speaks for itself.
The Shanner Planner™
gives you and comes with:

• Storage for four disks -3xh" or
5'/4" (specify preference
when ordering)

• 5 x 8" Notepad - can also
accommodate documentation
up to 300 pages

• Pen and Pencil Compartment
• Ruler Slot
• Business Card Section
• 5 Year Calendar
• Full Function Memory Calculator
• Each Shanner Planner comes

with either four 3V6" disks or
four 5’A" diskettes

The unique velcro locking system
ensures that your important media
and contents are safely secured in
their compartments at all times.

Measuring approximately the size of
a normal executive portfolio, The
Shanner Planner will fit comfortably
into any size attache or carrying case,
and comes packaged in an attractive
gift giving box.

The
Shanner
Planner Dealer Inquiries Accepted

Call 800/828-6637

Remember the expression “A picture is worth a
thousand words?” Take a second look. The Shanner
Planner™ is the first ever full system portfolio created
specifically for the computer user. Designed to
address the individual needs of the computer in¬
dustry, The Shanner Planner is tastefully constructed
of long lasting, durable, textured nylon (it’s the
in thing today) to maintain its smart appearance
over time.

. SHANNER INTERNATIONAL COUP.
The Shanner Planner™ is a creation of, marketed worldwide by,

” and is a Trademark of SHANNER INTERNATIONAL CORP.

See the local authorized dealer nearest you or use this SPEEDY order form.

Please send me_Shanner Planner(s) at $39.95 each, plus
$6.00 postage & handling. (CA residents add $2.60 per Planner for sales tax.)
Please indicate method of payment and media size required:

Media Size
□ Check □ Money Order □ VISA □ Mastercharge

Orders may be sent to:
Shanner International Corp.
453 Ravendale Drive, Mountain View, CA 94043

Account No

□ 3W □ 5 V

Name

Address

City State 7ip

Prices subject to change without notice. ST/ 7/86

For direct orders:
Call our HOTLINE 1-800-423-8673. In CA 1-800-626-9273.

Personal Pascal for Atari ST Computers
Just as Craftsmen Need Precision Tools... Programmers Demand Precision Software

Now OSS is proud to present
Personal Pascal, the first Pas¬
cal for Atari ST computers that
is destined to be the best!

Trust OSS to start you off in this
efficient and popular language
with a complete programming
system—everything you need
to start writing programs today!
Editor, Compiler, Linker, GEM
Libraries, and more.

Enjoy a language that starts
with the international (ISO)

standard and then adds dozens
of expert features. Compatible
string handling, powerful de¬
bugging options, special code
optimizer—and of course, the
famous OSS support!

Why wait? Purchase a copy of
Personal Pascal and maximize
not only the potential of your ST
computer, but yours as well.

Optimized Systems Software, Inc.

Also available from OSS:

Personal DiskKit—A disk
utility complete with full source
code.

Personal Prolog—Discover the
world of logic programming with
this language of the future.

For more information on OSS’s
complete line of ST software,
call or write for a free brochure.

Atari ST Computers are a trademark of Atari
Corporation. Personal Pascal” is a trade¬
mark ofO.S.S., Inc.

1221B Kentwood Avenue. San Jose. California 95129 (408)446-3099

CONTENTS

SUMMER 1986 VOLUME 1, NUMBER 1

Your Atari ST may be
missing part of its
operating system. Find
out what, and how to
fix it, on page 36.

page 20

FEATURES:

Capturing Music
on the ST

A MIDI Sequencer

Tom Jeffries 12 81
Stealing the ST Printer
Driver

ST Screen Dumps for Any

Printer

Tom Hudson 20 8

Tracking the Elusive
GDOS

Those Missing Metafiles

Tim Oren 36

Practical Software for
the Non-developer

Just How Useful is the ST?

Jack Powell 44

Sophisticated Text
Handling

GEM Text Tips

Cory Cole 52 181

page 13

DEPARTMENTS:

Procedures

Moving 16-Color Objects

AL Routines for C.O.L.R.

Object Editor

Joe Cbiazzese 29 81

Iconographies

The Digital Magnet

Plotting Magnetic Field Lines

David Small_32 8

Perspectives

Voodoo Computing

The Pragmatic Art of

Defensive Programming

David Small 60

Procedures

AL and C Routines

Fast Memory Manipulations

and More

Dan Matejka 64 8

Chips

Of Diagnostics and

Debugging

Procedures for the 68000

Jim Dunion 69

page 33

REVIEWS:

ST Assemblers

A START Comparison

Chris Chabris 77

Unix for the ST

Micro-C Shell

Russ Wetmore 83

Editorial 6

Dialog Box 7

88

Advertising
Information 89

j n These articles contain
IH a program listing.

PUBLISHER
James Capparell

EDITORIAL
DeWitt Robbeloth, Executive Editor

Michael Ciraolo, Editor
Jack Powell, Associate Editor

Dan Matejka, Contributing Technical Editor

CREATIVE SERVICES
Marni Tapscott, Art Director

Tim Barrett, Assistant Art Director/
Production Manager

Deborah Onodera, Ad Production Coordinator
Mark Gottlieb, Cover Photography

Contributing Artists: Matthew Foster, James Endicott,
John Hersey, Barney La Hayre, Maciek Albrecht,

Tom Hudson, Kat Guevara.
Jaciow Design, Consultants

ADVERTISING SALES
John Taggart, Director

(Please see Advertising Index, page 81.)

CIRCULATION
Les Torok, Director

Cathy Sulak, Subscription Coordinator
Daniel Barrett and Steven Kulin, Dealer Sales

MARKETING
Jon Loveless, Vice President Gary Yost, Director
Charles Cherry, Product Manager Lisa Wehrer,
Product Distribution Manager Rebecca Hale,

Customer Relations Eric Gupton, Technical Support
Supervisor Scot Tumlia, Technical Support

General Offices & Catalog Customer Service:
(415) 957-0886

Subscription Customer Service:
(614) 383-3141

START, 524 Second Street,

San Francisco, CA 94107
Credit Card Subscriptions & Catalog Orders:

(800) 443-0100 ext. 133
(Continental U.S. & Hawaii)

SUBMISSION INFORMATION
STart welcomes submissions. Please include both
hard copy printouts of articles and program listings
as well as disk files on ST compatible disks. Media
will be returned if self-addressed, stamped mailer
is supplied. STart assumes no responsibility for

unsolicited editorial material.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the
prior written permission of the publisher.

STart is an independent periodical not affiliated in
any way with Atari Corp. ATARI is a trademark of
the Atari Corp. All references to Atari products are
trademarked and should be so noted.

STart is a registered trademark of Antic Publishing,

Inc.
Copyright 1986 by Antic Publishing
All Rights Reserved. Printed in USA.

E D I T O R_LA L

READY, SET, START!

Antic Publishing are serious

about the new Atari ST computers,

and we know you are too. That’s why I’m

publishing START, the ST Quarterly.

ST owners need a powerful publication, and that’s what START is.

Let me tell you who we think you are, then you can look through this issue

of START and see if it meets your needs.

You are probably well experienced with computers—used them in school or

at your office—maybe you have owned one before. The important thing is that

you have carefully considered the ST computer and concluded that it is the best

buy for you. This is the machine you’ve been waiting for, and now you’ve got it!

Because you are experienced, you know you need the support of an active

community—retailers, services and product manufacturers—as well as tech¬

nical information and creative applications. You know there is a lot to learn—

about the machine and how to use it. You know there is a lot to share—proud

conquests and baffling problems. For this you need a publication that has the

right stuff in it.

We think you want high-end information that requires a good grounding on

your part both in computer fundamentals and practice. We think you want

substantial articles and programs that will repay your investment of time and

money in the ST and in START.

Is that you? If it is, take a look at our lineup this time: tough, strong pieces

by the best ST minds around, backed up by six programs on the bound-in

disk—no listings to type in, we think you’re beyond that. (Note: some copies

of START are sold without disk as a convenience to the trade and others with¬

out ST computers. If this copy does not contain a disk, you can order it for

$10.95, plus $2.00 for postage and handling, from START DISK, 524 Second

St., San Francisco, CA 94107.)

Because START is quarterly, we have the time to get, edit and present the

best material for you, and you don’t have to spend a fortune for complete ST

coverage! Here’s the deal: you can buy START on the newstand for $14.95 per

issue (with disk), or subscribe to START for $59.95 (4 issues) and also receive

12 issues of Antic, that include the ST Resource. That means an additional

monthly infusion of 30-40 pages of ST editorial material and programs in

Antic.

Finally, we invite you masters of the 68000 to bend your brains in our di¬

rection. Information on article and program submissions can be found in The

Dialog Box in this issue. The best ST articles and programs will always find a

privileged place in START.

James Capparell

Publisher

STart, the ST Quarterly 6 Summer; 1986

DIALOG BOX

START SUBMISSIONS

Programmers! Developers, hob¬

byists, students, gamesters,

hackers: share the wealth_of infor¬

mation. We have a new machine to

explore, a lot to puzzle out. STart

wants to hear from you, be it in a let¬

ter, article or program. This is your

forum, so take advantage of it. We’re

looking for those new discoveries,

technical tips, tutorials and bugs.

Submissions and queries are very

welcome. Please send correspondence

to the address below. Submissions

should be on both printed hard copy

and on 3 1/2-inch, single-sided ST

disk. (We prefer double-line spacing

for articles; very long programs need

not be placed on hard copy.) A cover

letter, briefly describing your pro¬

gram or article, is suggested. If you

wish your material returned, please

include a self-addressed, stamped

mailer. STart is looking for original

information and will be unable to

publish articles or programs which

have appeared in user group newslet¬

ters or on bulletin board systems.

Our address is:

STart Editors

do Antic Publishing

524 Second Street

San Francisco, CA 94107

ST LANGUAGES

I am very interested in learning C but

do not know which compiler would be

best for me. I want to write good

entertainment and/or role-playing,

Ultima-type games. Okay, I may be 12-

years old, but I am serious. Which

compiler should I get?

Tim Gallo

Via CompuServe

| Many languages are available for the

ST, including a few esoteric rarities such

as Modula-2 and Personal Prolog. STart

considers C the most flexible language for

the ST, but not necessarily the easiest to

use. Alcyon C, included in the developer’s

toolkit from Atari, is difficult to use and

slow to compile. Unfortunately, Alcyon

was the first and has therefore established

certain standards. Of the several other C’s

available on the ST, MegaMax is the easi¬

est to use, but it is also the most expensive

(for more details, see “Practical Software

for the Non-Developer,” in this issue).

GST-C is more affordable and is nearly as

friendly as MegaMax, though not as fast.

But GST-C has no floating point and its

link system is incompatible with Alcyon

C’s. Other versions offer greater incom¬

patibility with Alcyon, or greater diffi¬

culty of use.

If you are creating from scratch, in-

compatiblity is not a problem. But if you

are dealing with a program written for Al¬

cyon C, such as a magazine listing, you

are sure to run into trouble. At STart we

have decided to make our C listings com¬

patible with Alcyon C because a standard

of some kind must be established. In most

cases, our listings will also work with

MegaMax C. Some changes may be

needed for GST-C or Lattice (usually for

the linkage). Haba Hippo C will have

many problems.

If you don’t insist upon C, we recom¬

mend O.S.S.’s Personal Pascal. Pascal is

very close to C and Personal Pascal is the

only language currently available with

full, understandable documentation on the

GEM AES and VDI calls. With any other

language (excepting Alcyon C) you will

need to buy the Abacus ST books, num¬

bers 2, 3, and 4. ■

WHERE'S
MY
DISK?

ART is a magazine with its

programs on disk. Normally

you will find the disk bound

into the magazine and for sale on the

newsstands at a combined price of

$14.95.

But we know that some of you ST en¬

thusiasts want to read STart first, with¬

out paying $14.95, so we have provided

a limited number of copies without disk

for $4.00 each.

If this is your situation, you can com¬

plete your copy of this collector’s issue of

STart by ordering the companion disk

direct from us, for $10.95 plus $2.00

shipping and handling. See the handy

order form.

START.
The ST Quarterly

STart, the ST Quarterly 7 Summer. 1986

AUTHORS

*J hristopher Chabris is studying

computer science in the Division of

Applied Sciences at Harvard Univer¬

sity. His fields of interest include ar¬

tificial intelligence, analysis of

algorithms, and parallel processing.

Christopher is a regular contributor to

Antic magazine and other Atari-ori¬

ented publications. He has extensive

experience with 68000 systems pro¬

gramming, and his “Introducing

68000 Assembly Language” appeared

in the November 1985 issue of Antic.

An internationally-ranked chess

player, Christopher has represented

the United States in competitions

abroad and is among the top 50 play¬

ers in the United States under 21

years of age. Currently, he is develop¬

ing ST software and writing a book

on artificial intelligence programming

in Pascal.

Twenty-two-year-old Joe Chiazzese, to¬

gether with his partner Alan Page, is

putting the finishing touches on

Flash, an ST terminal program. He

was born and raised in Montreal,

Quebec. After completing high school,

Joe attended Dawson College with

every intention of becoming a nuclear

physicist. But, during his first year, he

purchased an Atari 800 and quickly

decided he preferred programming.

He moved to Toronto where he en¬

rolled at DeVry Institute of

Technology.

Joe wrote many small public do¬

main programs with the 8-bit Atari,

but nothing of commercial value.

When the 520 ST was announced, he

immediately bought one. At the end

of September 1985, he met Alan Page;

Flash is their first major project.

Corey Cole joined the “micro revolu¬

tion” shortly after the introduction of

the Apple II. He has been program¬

ming professionally since 1975, and

creating word processing and typeset¬

ting software since 1981. When Atari

announced the 520ST in January of

1985, Corey saw a new revolution be¬

ginning, and decided to join the

cause.

Corey is the president of Visionary

Systems, which is currently develop¬

ing state-of-the-art word processing

and personal publishing products for

the ST. Like the Atari ST, Visionary’s

products will feature “power without

the price.” Corey shares his San Jose,

CA home with his wife Lori, two

dogs, and an assortment of computers

and musical instruments. Not content

with traditional software marketing

practices, Corey and Lori expect to

• have their own small computer user

in late June.

Jim Dunion worked for the old Atari,

first in the Software Development

Support Group and later in Alan

Kay’s research group. While there, he

authored DDT—Dunion’s Debugging

Tool, probably the best known debug¬

ger for the 8-bit Atari.

Jim has worked in the computer

field since the early days of micro¬

processors and was a founder of a

small retail computer store in Atlanta,

GA, that eventually became Peachtree

Software. At present, he is at The Sys¬

tem Works in Redmond, WA, where

he is working on the user interface

portion of a maintenance planning

and control system.

Tom Hudson is the creator of DEGAS,

the popular ST paint program. Cur¬

rently a freelance software developer,

Tom was head of programming for

ANALOG Computing magazine from

1982 to 1985. He first worked with

STart, the ST Quarterly 8

computers on an IBM 1620 during his

high school years. While earning an

Associate of Science degree in data

processing, Tom taught non-technical

people how to program microcom¬

puters, and from 1978-1982 he

worked as a programmer/operator at a

savings and loan association while

earning his Bachelor of Science degree

in data processing.

After leaving ANALOG in the

summer of 1985, Tom wrote DEGAS

for Batteries Included. He lives in

Mission, Kansas where he is hot at

work completing CAD-3D, a three-di¬

mensional graphics system for the ST.

If you want to talk to Tom, you can

often find him on-line on the 16-bit

section of CompuServe’s SIG*Atari,

where he recently became a SYSOP.

Tom Jeffries has been a professional

musician for more than 15 years. He

has played first trumpet with the St.

Paul Chamber Orchestra and the San

Jose Symphony; he has recorded with

Dave Brubeck and numerous TV and

radio shows. Though members of his

family have been involved in comput¬

ers since the 1950’s, Tom managed to

avoid serious work with them until

1984, when he became interested in

the Commodore 64’s SID chip.

Tom currently heads a company

called Singing Electrons, developing

and translating soundtracks and mu¬

sic-related software for microcom¬

puters. He has written programs for

most available micros, including the

Atari ST, the entire Atari 8-bit line,

the Amiga, the Apple II, the Com¬

modore 64, and the IBM PC. In addi¬

tion to the ST version of MIDImagic,

mentioned in his article, Tom is cur¬

rently completing an ST version of CZ

PATCH, for Dr. T’s Music Software.

Daniel Matejka has been programming

professionally, on and off, for seven

years. Three years ago, in Colorado

Springs, he stumbled upon the crowd

that makes and markets DB Master, a

best-selling database on the Apple II

which has been incarnated on several

other machines as well. Dan was par¬

tially responsible for the IBM PC and

Atari ST versions of that program.

Dan now lives in Fairfax, CA. He

has since branched out and is writing

programs independently. Antic’s Disk

Doctor is his, and Antic’s forthcoming

game, Red Alert, is the result of a col¬

laboration with Stanley Crane, one of

the original DB Master programmers.

Tim Oren is a familiar name among the

community of ST developers. He is

the author of ST PROFESSIONAL

GEM, a biweekly GEM programming

column available on Antic’s Online

CompuServe edition, and was a mem¬

ber of the original, Digital Research

GEM development team.

At Digital Research, Tim designed

and implemented the GEM Resource

Construction Set, and worked on

parts of the AES and the Desktop.

Since leaving DRI, he has been the

GEM interface designer for Knowl¬

edgeSet (formerly Activenture), which

is planning to release a CD ROM-

based encyclopedia for the Atari ST.

Tim has a master’s degree from Mich¬

igan State University In his free time,

he enjoys hiking throughout the

glorious Monterey countryside, where

he currently resides.

David Small was a longtime contributor

to the now defunct Creative Comput¬

ing magazine and a frequent contrib¬

utor to Antic. His last piece

demonstrated how to read and write

IBM disks from the Atari ST (ST Uses

IBM Disk Files, Antic, November

1985). David has published three

books and written over a hundred

magazine articles. He and his wife,

Sandy, both have Computer Science

degrees from Colorado State Univer¬

sity. They are co-authors of “Guide¬

book for Winning Adventures” (Baen

Enterprises, NY, NY), and their fourth

book is due to be published January,

1987.

Though their two children purpor¬

tedly keep them busy changing di¬

apers, the Smalls have, nontheless,

found time to complete their latest

project: tricking the Atari ST into

thinking it is a Macintosh. David has

worked for several computer com¬

panies, and today is a consultant,

freelance writer, and diaper changer.

He briefly existed in San Jose, spent

some time in exile in Austin, Texas,

and now lives in Denver, Colorado.

Russ Wetmore attended Morehead State

University with the idea of receiving a

degree in music composition, but

somehow ended up in the computer

field. Maybe it was the influence of

his father, who designs flight simulat¬

ors for the military. In any case, Russ

started in the late 1970’s as a pro¬

grammer with Adventures Interna¬

tional, the Scott Adams company

famous for its puzzling text adven¬

tures. While there, Russ wrote his

first big hit, Preppie, memorable as

one of the first Atari programs to use

the vertical blank interrupt to support

continual background music.

Russ then went off to form his

own company, Star Systems. There, he

wrote the integrated software package

HomePak, which was snapped up by

Batteries Included. He has since been

kept busy adapting HomePak to most

available microcomputer brands. The

ST version should be available very

soon. Russ is also a SYSOP on Com¬

puServe’s S1G Atari, and author of the

terminal software for the 8-bit Atari’s

new XM301 modem. ■

STart, the ST Quarterly 9 Summer, 1986

Be A Hero To W nie The Pooh
Last night the blustery wind came up and

mixed up everything in the Hundred Acre

Wood. If you can find the lost articles,

like Pooh’s honey pot and Eeyore’s tail, and

return them to their rightful owners, the

characters in the Hundred Acre Wood will give a

Hero Party in your honor!

Children can play this adventure game over and

over again, and never play the same game twice.

The “Save Game" feature allows players to

work on one game in more than one sitting.

For ages 6 and up.
Reading comprehension, logical thinking, map reading skills.
For Apple II+/lle/IIc, IBM. Atari ST, Commodore and Amiga.

At software dealers everywhere...or call toll free
800-423-5290 outside CA. 800-452-6000 inside CA.

delightful graphics and an intriguing challenge. ”

- Compute! magazine

©SIERRA

Look For Winnie The Pooh At These Fine Dealers:

ARIZONA ILLINOIS MICHIGAN NEW YORK TEXAS
DSD Enterprises

602-833-0303

CALIFORNIA
Software World
Bakersfield
805-322-3500
Computertime
Citrus Heights
916-969-4111
Computer Insights
Fremont
415-490-0685
Boots Camera
Fresno
209-432-0446
Computer Place
Downtown Mall
Redding
918-246-3282
Home Computing
Conters

Tanforan Park Mall
San Bruno
415-588-1201
Affordable
Computer Systems

San Jose
408-251-0102
Home Computing

Bay Fair Mall
San Leandro
415-278-8881
B & C Computervlslons
Santa Clara
408-749-1003

Affordable Computer
Systems

Santa Cruz
408-458-1644
Computer Haven
Upland
714-985-3278
ECX Computer Co.
Walnut Creek
415-944-9277

FLORIDA
Computer Logic
St. Petersburg
813-546-3137

GEORGIA
Computer World
Rome
404-232-7003

HAWAII
Data 1
Honolulu
808-946-1733
PC Pricebusters
Honolulu
808-523-1641
Maul Microcomputers
Kahului
808-877-7522
Data 1
Pearl City
808-487-5411

IDAHO
Stokes Bros.
Boise
208-323-1666

General Computer Store
St. Charles
312-584-6836

INDIANA
World Central Computer
Richmond
317-962-0995

KENTUCKY
Software Source
Louisville
502-456-4486

LOUISIANA
ECO Data Centers
Monroe
800-826-0606

MAINE
Mementos
Caribou
207-492-1581
Hands On Computer
Westbrook
207-854-1155

MARYLAND
Home Computers
Company

Towson
301-337-2733

MASSACHUSETTS
Nichols Electronics
Pittsfield
413-443-2568
The Bit Bucket
West Newton
617-964-3080

Canton Computers
Canton
313-459-4340
Family
Computer Center

Berkley
313-543-0520
Rentertainment
East Detroit
313-445-2983
Software Pius
Breton Village
Grand Rapids
616-942-7780
Compusoft
Kalamazoo
616-344-1164
Castle Communications
Lansing
517-371-4321
Computer Depot
Mt. Clemens
313-792-1717
Command Computer

Systems
Warren
313-573-8130
Basic Bits & Bytes
Westland
313-595-3171

MINNESOTA
Wizard's Work
New Hope
612-545-2136

MISSOURI
Southland Electronics
Aurora
417-678-4623

Basic Computer
Services, Inc.

Florissant
314-837-4495

NEBRASKA
Hobby Town
Lincoln
402-464-2858

NEW JERSEY
Computers Plus
Bloomfield
201-429-8523
Gemini Enterprises
Cedar Knolls
201-267-0988

Computer Centres
Fairfield
201-882-8370
Software Station
Morristown
201-455-7858
Software Spectrum
North Plainfield
201-561-8777
Family
Computer Centres

Ridgewood
201-445-7503
Family
Computer Centres

South Orange
201-762-6661

NEW MEXICO
Valliant Co.
Albuquerque
505-247-4175

Buffalo Family
Computer Center

Buffalo
716-835-0648
Little Computer Shop
Centereach
516-467-4352
Seneca Computer
Systems

Geneva
315-789-0734
Computer Dome
Johnson City
607-729-9222
Software City
Mt. Kisco
914-666-6036
47th Street Photo
New York
212-260-4417
Omnis
Computer Supplies

Schenectady
518-372-4491
Software City
Syracuse
315-445-2577
Thruway
Computer Center

Thruway Shopping
Center Plaza
Walden
914-778-3535
J.J. Stocker Co.
Watertown
315-782-3780

TDS Computers
Carr boro
919-929-4595
Software City
Charlotte
704-366-5218
TDS Computers
Durham
919-286-3775
Specialty Cash

Register Co.
Hickory
704-322-4884
Software City
Raleigh
919-833-1707

OHIO
Magic One Computer
Barberton
216-753-0431
Futuretronics
Elyria
216-322-2831
Micro Wave Magic
Fairfield
513-874-6560

OREGON
Creative Computers
Beaverton
503-644-1160
Ruth Kahn Co.
Bend
503-388-4807

Walk Office Systems
Brownsville
512-548-0151
Computer Discoveries
Dallas
214-484-9104

VIRGINIA
Fairfax Computer

Products
Fairfax
703-691-1930

WASHINGTON
Butler's

Computer Service
Federal Way
206-941-9096
Take-A-Byte, Inc.
Kennewick
509-582-3311

WISCONSIN
Starting Computers
Brookfield
414-781-4444
The Software Shop
Fond Du Lac
414-921-8448
Comp “U" Serv
Milwaukee
414-649-8326

NORTH CAROLINA
Selective Software
Arden
704-684-9997

PENNSYLVANIA
Software Hut
Philadelphia
215-462-2268

SHIFT INTO...

ONLY $549*
(10 MegaByte System)

wThe necessary Peripheral for any serious Atari ST user.**
Tom Hudson

Author of Batteries Inciuded’s
BestSeliing DEGAS program.

| Improves the ST’s overall performance (3-20X improvement
on disk transfers)

| Atari™ compatible with software and other DMA Buss Devices

| Includes Hard Disk format and partition utilities

| High-Performance 20, 30, and 60MB SupraDrives are
also available

‘The 10MB SupraDrive is available only directly from Supra Corp. Higher
capacity Drives are available from your local dealer.

Supra Corporation
1133 Commercial Way / Albany, OR 97321 / (503)967-9075

by Tom Jeffries

Take advantage of your ST's built-in MIDI interface.

This Simple Sequencer lets you record, save to disk,

and playback music created on your synthesizer. Cre¬

ates music files compatible with MIDIMagic, from

Q-R-S Music Rolls. Pertinent files may be found on

your START disk within the folder labeled MIDISEQR

STart, the ST Quarterly 12 Summer, 1986

CAPTURING...
the basic principles of a sequencer. It is

compatible with at least one commercial

program that will provide better graph¬

ics, or you can add your own graphics

routines. More on all that later.

SEQUENCERS

Many kinds of information can be sent

over MIDI, but the most important is

note data: a steady stream of bytes spec¬

ifying which keys are being pressed and

released. A MIDI instrument can also

receive such data and behave as though

the data’s source is the keyboard. In

other words, it plays the notes being

sent to it over MIDI just as though

someone was playing the notes on the

keyboard.

A sequencer can either save the data

stream as it comes from the synthesizer

(adding some kind of time code so that

it knows note lengths) or send a pre¬

viously saved stream of data to a synth

to be played. You can buy a stand-alone

dedicated sequencer with both hardware

and software built-in, or you can use

software to turn your micro into a se¬

quencer.

In some ways a sequencer is like a

tape recorder. You can play into it and

save the result, or you can play back

previously created music. However, there

are some important differences. A tape

recorder (at least a conventional analog

tape recorder) reproduces in analog (infi¬

nitely varying) format any sounds that

are sent to it. A MIDI sequencer can

only record certain limited kinds of

data: note on, note off, volume, etc. It

cannot store a voice, for example, be¬

cause vocal chords do not send MIDI in¬

formation. Pitches are stored as note

numbers with a range of 0 to 127.

There are, however, some things you

can do with a MIDI sequencer that you

cannot do with a tape recorder. For ex¬

ample, with a tape recorder you cannot

change the speed of a piece without

changing the pitch. A good professional

sequencer can change the speed without

changing the pitch—or change the pitch

(transpose) without changing the speed.

You can also change the sound on play¬

back. Maybe you like the keyboard on

one synthesizer but the sounds on an¬

other. With a sequencer you can record

a sequence (a song or part of a song)

using the keyboard you like, then play it

back through the synthesizer that has

the sounds you want. The only real lim¬

itation is that both synths must be

MIDI-equipped.

Sequencers for professional use have

some incredible features. Some of them

take months to learn how to use, and

took years to write. The Simple Se¬

quencer 1 have written does not have

lots of fancy features, but it can provide

a lot of entertainment, and you can add

your own features to suit your needs.

With this sequencer you can play music

on your MIDI-equipped synthesizer, “re¬

cord” your playing in the memory of

your ST, and, if you wish, save it on

disk. You can play back anything you

have previously entered, and change the

tempo during playback.

COMPATIBILITY WITH
MIDIMAGIC

Our modern digital sequencers are not

the first method of storing note data for

later playback. The player piano was

enormously popular near the beginning

of this century. Composers like Scott

Joplin or George Gershwin could cut a

piano roll of one of their compositions

and everyone with a player piano could

buy a copy of the roll and listen to the

music at home.

Q-R-S (Buffalo, NY) is the company

that owns the rights to the old piano

rolls. Many of these old, paper rolls are

now being translated to MIDI-compati¬

ble disk files and distributed by a com¬

pany called Micro-W (Butler, NJ), along

with a program called MIDIMagic,

which displays the songs on a graphic

screen similar to that of the old player

pianos.

I wrote the ST version of MIDIMagic,

and since I knew 1 wouldn’t have time to

add fancy graphics to the Simple Se¬

quencer, I made the files that the Simple

Sequencer produces compatible with the

files that MIDIMagic reads. If you own

MIDIMagic, you can play the music you

create with the Simple Sequencer with

the MIDIMagic program and see what a

piano roll created from your playing

would look like. The piano roll offers an

all-too-good display of keyboard tech¬

nique, and, if you hold on to a note a lit¬

tle too long, you will be able to see it as

well as hear it.

(Editor’s note: Your START disk con¬

tains two MIDIMagic songs, compliments

of Micro-W, which may be played on the

Simple Sequencer. Although the songs

themselves are public domain, the actual

performances are copyrighted and, there¬

fore, may not be reproduced or resold.

Any songs you create with Simple Se¬

quencer are yours to do with as you like.

You may not sell, copy, or distribute disks

of your songs that use the MIDIMagic

graphic driver program, which is

copyrighted by Micro-W. However, Micro-

W informs us that it would be interested

in hearing any unusual compositions you

create, for possible marketing.)

THE PROGRAM

To use the Simple Sequencer, first make

sure your synthesizer is plugged in prop¬

erly (one cable from the OUT socket of

your synth to the IN socket of your ST,

and a second cable from the IN socket

of your synth to the OUT socket of your

ST). Make sure your audio connections

are all set and your synthesizer is on.

Alert boxes should guide you through

the program fairly easily. Recording will

not start until you press a key on your

synth, so you can wait as long as you

want before starting.

The program is a fairly standard

STart, the ST Quarterly 14 Summer, 1986

GEM application and has lots of com¬

ments, so I will not bore you with a

line-by-line analysis. There are five main

sections: Program Control (initialization,

Main Loop, User I/O), MIDI Input, MIDI

Output, Disk I/O, and Screen Displays.

SCREEN DISPLAYS AND
PROGRAM CONTROL

If you have been following Antic maga¬

zine’s articles on the ST the screen dis¬

play routines will not have any surprises

for you. Note that, either by design or by

accident, the screen resolution (as repre¬

sented by the number returned by the

GetrezQ call early in the program) can

be used to make automatic adjustments

in the Y values for v_gtext calls as long

as you are in either medium or high res¬

olution. If you are using this program

entirely on a monochrome monitor you

may want to change to larger letters and

reposition the text appropriately.

There is one point to note about the

Init() function. I have arbitrarily set the

maximum song file size to 37,000 bytes,

which happens, for reasons unrelated to

the ST, to be the maximum size for

MIDIMagic song files. You can create

larger files: just change the number

#defined near the beginning of the pro¬

gram as MAXSONG. Malloc(-IL) will

return the maximum amount of memory

available. To maintain compatibility with

different compilers (more on that subject

later) I have used a temporary variable

and a cast operation to set the pointer

notebuffer. Alcyon C should allow you

to eliminate the extra step; Megamax is

stricter about data types and will only

accept the syntax as is, since all bios and

xbios functions are defined as returning

a long word.

MIDI INPUT

The MIDI input and output routines are

the real meat of this program. In_loop()

sets up the beginning of the file in MID-
►

FIGURE 1.

Note Octave MIDI# Note Octave MIDI# Note Octave MIDI# Note Octave MIDI#

c 0 0 b 2 35 a# 5 70 a 8 105
c# 0 1 c 3 36 b 5 71 a# 8 106
d 0 2 c# 3 37 c 6 72 b 8 107
d# 0 3 d 3 38 c# 6 73 c 9 108
e 0 4 d# 3 39 d 6 74 c# 9 109
f 0 5 e 3 40 d# 6 75 d 9 110

f# 0 6 f 3 ' 41 e 6 76 d# 9 111

g 0 7 f# 3 42 f 6 77 e 9 112

g# 0 8 g 3 43 f# 6 78 f 9 113
a 0 9 g# 3 44 g 6 79 f# 9 114

a# 0 10 a 3 45 g# 6 80 g 9 115
b 0 11 a# 3 46 a 6 81 g# 9 116
c 1 12 b 3 47 a# 6 82 a 9 117
c# 1 13 c 4 48 b 6 83 a# 9 118
d 1 14 c# 4 49 c 7 84 b 9 119
d# I 15 d 4 50 c# 7 85 c 10 120
e 1 16 d# 4 51 d 7 86 c# 10 121
f 1 17 e 4 52 d# 7 87 d 10 122
f# 1 18 f 4 53 e 7 88 d# 10 123

g 1 19 f# 4 54 f 7 89 e 10 124

g# 1 20 g 4 55 f# 7 90 f 10 125
a 1 21 g# 4 56 g 7 91 f# 10 126
a# 1 22 a 4 57 g# 7 92 g 10 127
b 1 23 a# 4 58 a 7 93 Highest allowable
c 2 24 b 4 59 a# 7 94 MIDI note number.
c# 2 25 *c 5 60 b 7 95
d 2 26 c# 5 61 c 8 96
d# 2 27 d 5 62 c# 8 97
e 2 28 d# 5 63 d 8 98
f 2 29 e 5 64 d# 8 99
f# 2 30 f 5 65 e 8 100

g 2 31 f# 5 66 f 8 101

g# 2 32 g 5 67 f# 8 102
a 2 33 g# 5 68 g 8 103
a# 2 34 a 5 69 g# 8 104 * "middle" c on the piano

STart, the ST Quarterly /5 Summer. 1986

IMagic compatible format- tempo indica¬

tion at byte 56, and note and time data

starting at byte 64. It puts a short rest

at the beginning (it sounds better that

way), then calls a routine that reads the

200Hz timer to get a beginning time; all

note timing data uses this as a reference

point. The timer routine does not return

to In_loop() until something comes in

on the MIDI channel.

In_loop() then gets all available

MIDI data and then does a little parsing

to make sure that the contents of the file

will work properly with the MIDIMagic

display routines. Then it calls the timer

again and waits for the next MIDI data.

The note length is derived from the

length of time between the first note

data’s beginning and the second note

data. $FF signals timing data, unless it

is followed by another $FF, signaling the

piece’s end. Because of the sign-extend¬

ing which many C compilers perform on

8-bit numbers, the highest number that

can be used for a note length is $7F. If

the note is longer, the program will keep

repeating $FF 7F until the variable

notelength is below $7F.

When you press [Esc] to signal your

recording’s end, the timer routine tells

In_loop() you are done by returning a

0. Three $FFs are added to the file’s end

to signal the end, and control is passed

back to the LoopO in the Program Con¬

trol section.

You will notice something rather odd

in the way that the timer function reads

location $04BA. S04BA, where the

200Hz click is stored, is in protected

memory so you cannot read it from the

68000 chip’s user mode. (*pter)() has

to be defined as a pointer to a function

so that the XBIOS function Supexec can

be used to go into supervisor mode to

read the time.

S04BA, where the 200Hz click is

stored, is in protected memory so you

can’t read it from the 68000 chips’s user

mode. The XBIOS function Supexec al¬

lows you to go into supervisor mode,

execute the function designated by your

call to Supexec, and return to user

mode. (*pter)() is therefore defined as a

pointer to the time-reading function to

be passed to Supexec.

In_timer() is a weak link in this

program since the timings returned are

not as accurate as a full scale profes¬

sional sequencer would require. The so¬

lution, I think, would be to use one of

the 68901 timers while shutting off as

many of the other interrupts as possible.

I do not recommend using the evnt

_timer() function in GEM: it seems to

fail fairly often, especially when there is

lots of I/O going on.

MIDI OUTPUT

The output routine reverses the input

routine. In this case I used simple

nested counting loops for timing. Note

that I keep checking for -1 for a timing

byte or the end of the song. Many

compilers will turn $FF into

SFFFFFFFF or something equally ob¬

noxious, so -1 avoids lots of problems.

Allnotesoff() prevents notes from stay¬

ing on when you quit in mid-song, by

sending a MIDI “note off” signal to every

possible note. MIDI does provide a spe¬

cial code for all notes off, but not every

synthesizer implements it.

DISK I/O

If you find fsel_input() or many of the

other GEM gems confusing, I highly rec¬

ommend studying DOODLE, which

was written by Tom Rolander and Tim

Oren and is the property of Digital Re¬

search, Inc. I borrowed Setpath() from

DOODLE; you can do the same since

they explicitly grant permission to do so

as long as proper credit is given.

I also included two functions that

can be found in the standard C libraries

of most compilers: Strlen() and

Strcat(). I did so in consideration for

Alcyon C users, who, in order to use

these two short functions, would other¬

wise have to link in 20,480 bytes of

LIBF.

I want to point out one “undocu¬

mented feature” (some people call them

bugs) of fsel_input(), since it caused

me an inordinate amount of grief, fsel

_input() sets the clipping rectangle for

its own purposes and doesn’t reset it on

exit. If you are writing a program with¬

out windows and therefore don’t expect

to have to worry about clipping, this

“feature” can cause a bug that is difficult

to track down.

I have tried to make this program

as compatible as possible with different

compilers. If you are using Megamax,

STart, the ST Quarterly 16 Summer, 1986

delete or comment out the line #define

of Supexec.

POSSIBLE ADDITIONS TO
THE SIMPLE SEQUENCER

One of the nice things about having a

program published in START is that you,

the reader, can enhance the program.

The Simple Sequencer could use several

additions, some mentioned above. For

example, fancy graphics would be nice.

There are several small routines I did

not put in; an available memory indica¬

tor, for example, or some code allowing

the user to preset the playback tempo

instead of having to wait until the song

starts. (Of course you can use a disk ed¬

itor to change the tempo byte before

loading the song, but that’s not exactly

elegant.) A file mixing program could

take several tracks recorded with the Se¬

quencer and mix them down to a single

track for playback.

For those of us who are real klutzes

at the keyboard, a good step editor—

permitting composition one note at a

time—would be nice so that we could

compose a song on the computer key¬

board at our leisure and have it sound

like we had performed it on the

synthesizer.

If you really want to write some mu¬

sic without playing it on your sequencer

and cannot wait to get (or write) a step

editor, you can use any program that al¬

lows you to construct a file one byte at a

time (like the SID.PRG that comes with

the developer’s kit). Make sure you allow

the proper header space and put the

tempo byte in the right place (byte 56

with the first byte being byte 0), and

start your music data at byte 64, prefer¬

ably with a short rest ($FF $14 works

well). Each note requires three bytes to

start, $90, the note number (see figure

1), and a key velocity (unless you know

what you are doing use $40). There are

several ways to turn off a note, but for

compatibility with MIDIMagic use $90,

the note number, and 0. Good luck.

MORE ABOUT MIDI

MIDI is a complex and sometimes prob¬

lematic tool. Each instrument maker

seems to have implemented the MIDI

standard a little differently, so things

that work on one synthesizer may not

work on another. By the time you see

this, the Simple Sequencer will have

been tested on a variety of synths, but if

you run into problems please let me

know through START Magazine.

One further note: do not try to send

program change messages or Channel

Pressure messages to the ST without

changing the parsing routine in In_

loop() appropriately. These status bytes

are used so rarely 1 decided not to in¬

clude the extra code, if you use them

you’ll have to make the necessary

adjustments.

I hope that the Simple Sequencer is

as much fun for you to use as it was for

me to write. I’m really looking forward

to seeing what people come up with as

enhancements. ■

Reference:

• ANTIC magazine, Play it Again,

Atari, June 1985; Midi Driver,

March 1986.

• Digital Research, Inc., 60 Garden

Court, P.O. Box DRI, Monterey, CA

93942, (408) 649-3896.

• The International MIDI Association,

11857 Hartsook St., North Holly¬

wood, CA 91607. (818) 505-8964.

• KEYBOARD magazine, 20085 Ste¬

vens Creek Boulevard, Cupertino,

CA 95014-9967, (408) 446-1105.

• Micro-W Distributing, 1342B Route

23, Butler, NJ 07405,

(201) 838-9027.

• Q-R-S, 1026 Niagra Street, Buffalo,

NY 14213, (716) 885-4600.

cop11

BACKUP PROTECTED
SOFTWARE FAST.
From the team who brought you
COPY II PLUS (Apple), COPY II PC
(IBM) and COPY II MAC (Macintosh)
comes a revolutionary new copy
program for the Atari 520 and 1040 ST
computers.
• Copies many protected programs—

automatically. (We update
COPY II ST regularly to handle new
protections; you as a registered
owner may update at any time for
$15plus$3s/h.)

• Supports single and double sided
drives.

• Includes both a fast sector-based
copier and a true bit copy mode for
protected disks.

Requires an Atari 520 or 1040 ST
computer with one or two drives.

Call 503/244-5782, M-F, 8-5:30
(West Coast time) with your 2S
in hand. Or send a check
for $39.95 U.S. plus $3 s/h, $8
overseas.

$39.95

Central Point Software, Inc.
9700 S.W. Capitol Hwy. #100
Portland, OR 97219

CentmlPoint
Software

J isKmivmm)

Backup utilities also available for the IBM, Apple II, Macintosh and Commodore 64.
This product is provided tor the purpose of enabling you to make archival copies only.

STart, the ST Quarterly 17 Summer, 1986

■4N

Hr issues of START, the ST Quarterly
(with disk), plus 12 issues of Antic
(ST Resource included). $59.95
Mail the attached card today!

Finally, a magazine devoted entirely to the
Atari 520 and 1040 ST:

thestqvarterly

STart
Look to START for comprehensive

articles and programs covering
applications, programming theory
and techniques, languages, and

Subscribe today and receive the most
complete ST coverage available!
■ Get ST disk-based programs with

every issue.
and ST

I Get in-depth reviews of important
products, and exclusive product

The Price War Is Over
We Will Beat Any Price

Anywhere
Atari ST

Hardware

Atari 1040ST. ..Call
Atari 620ST RGB. ..Call
Atari 620ST Mono . Call
Atari 620ST (CPU) Call
Atari SF364 . Call

Call
Atari SM124 Call
Atari SC1224 . . Call
ST Station. . Call
Supra Hard Disk. Call

Printers
Panasonic. Call
Epson . Call
Ciiiien. Call

Atari ST

Software

Supra Hard Disk.Call phonal Diakit.Call
-pv . . Sundog.$22.00
L nnters VIP Professional ... Call

p.n.onnio „ 11 Silent Service.$24.00
p .Flight Simulator Call
.? Micro C Shell Call

Cll‘Cal1 Mindflhadow $3100

\Tnrlprrm Print Master $24 96
IVlOUeiXlh p M Art Gallery $19.96

Avatex 1200 .$89.00 Easy Draw. Call
QM1 1200ST.$129.00 Graphic Artist.Call
Hayes 1200 .Call Music Studio.$37.60
Atari XM301 . $37.96 2Key Accounting $32.99
Supra/MPP 1000E.$37.60 Home Planetarium $19.76

_ Joust.$19.76
J CP/M Emulator $32.99

Specials Apple][Emulator Call

AVaUi 1200 '®M Emulator Call

PR Conn /Amodam >1.9 00 C ..; 5*

AMuriUr Pin. .>2.96 P*sc“‘
1200 .*<9 00 C

Sakata SC100 .$128.96 0 ~a
Teknika MJ-10 .$178.00 ”..
Teknika MJ-22.Call "CSD H*

Atari S-Bit

Hardware

Atari 130XE.$116 00
Atari 66XE Call
Atari 1060 .Call
Indus GT.$188.00
Atari XCll.Call
Atari 1027 . $98.00

Accessories
US Doubler.$42.00
Rambo XL.$29.96
R-Time Cart.$43.00
The Duplicator.Call
Indus Expander .Call
Bonus SS/DD 6.26 .$6 99
Bonus DS/DD 6.26 $7 60
Flip f File All Sues ..Call
Paper 1000 Sheets.$11 00
Paper 2600 Sheets .Call
Maxell 3.6.. $19.00
Sony 3.6.$21 00
Fuji 3.6 .$19.00

Interfaces
CP/M Emulator
Apple][Emulator
IBM Emulator.
Megamax C.
Metacomco Pascal

. $32.99
Call
Call
Call
Call

P:R: Connection .
Supra Microprint.
Supra 1160.
Supra Micronet.
Supra Microstuffer .
U-Pnnt.

$66.00
$29.00
$39.00
$149.00
$67.00
$48.00

Apeface. Call
Call Atari 860 . Call

UCSD Pascal. Call ST Printer Cable $8.99

Regent Spell. ..Call
Regent Word. $36.00
rcefeni word 11

Regent Base
VIP I.it*

Call /-- ^1
Micro C Shell. Call
Rubber Stamp.Call I
Megafont 11 .
Meta 68000 Asm . Call
Brattacas.Call

Avatex 1200 d.>.. Atari 130XE
$8900 ST Talk .$13.00 $ 115jO0

Typesetter ST.$24.00
Hayes Compatible! zoomracks.$4899 128K Of Memory!

Everyday Low Price!Uodul*"2.Cali LoWest Price Anywhere!
Personal Prolog.Call
KingB Quest II.Call

Atari 130XE
$115.00

128K Of Memory!

Atari S-Bit

Software

Aerojet.$1
Action!.$•*
Basic XE.$'
Basic XL.%l
Battalion Command .. $S
Battle of Antietam $<
B/Graph.$1
Broadsides.$S
Computer Baseball $1
Computer QB.$1
Conflict in Nam $1
Crusade in Europe $1
Silent Butler $1
Gemstone Warrior.$1
War in Russia.$<
Dec. In the Desert $1
Kennedy Approach ... $1
Solo Flight. $1
Learning Phone. C
Syncalc 130XE. $:
Megafont 11+. $1
Rubber Stamp $1
Paperclip. $:
Mac/66. $■
Print Shop. $:
Karateka. $!
Lode Runner. $:
Atarivriter Plus. $:
Pamer Grenadier. $-
Hacker. $1
Space Shuttle. $1
Mindshadov. $!
Great Am. Rd Rce $1
F-16 Strike Eagle.$:
Silent Service.%'
Gunship. $
Synfile 1S0XE. $
Page Designer.$
Typesetter. $'
HomePak . $
OSS Toolkits. $
Printshop Lib. 1/2/3 .. $
Chmp. Lode Run .$
Ultima IV.$
Sparta Dos CS. $
Home File Manager $
Music Painter. $
Star Raiders. $

Black IWtch Systems
S»ad

TO ORDER (Visa, MasterCard): Call TOLL FREE 1-800-ATARI-02
For technical information, order inquiries, or for MD orders call 301-757-1329, or write

Black Patch Systems, P.O. Box 501, Arnold, MD 21012
Risk Fr*# Policy: In-stock items shipped within 24 hours olorder. No deposit on C.O.O. orders. Free shipping on prepaid cash orders within the continental U S. Vol

ST SCREEN DUM

STEALING
THE ST PRINTER

DRIVER
PS F O R ANY PRINTER

ff his Desk Accessory lets you install your own cus¬

tomized printer driver for either vertical or horizontal

screen dumps at the press of the [Alternate] [Help] key

combination. Printer drivers are included on the START

disk and several can also be found on-line on Com¬

puServe. TOS must be in ROM for this program to

operate properly. Programs related to this article may

be found in your START disk within the folder labeled

PRNTDRVR

If you don’t own an Epson FX

model printer, or one of its com¬

patibles, you may find your ST

screen dumps leave a lot to be desired.

That masterful work of art may look like

it was filtered through Venetian blinds—

or worse, it may be just a jumble of non¬

sense letters. Or, how about an infinite

form-feed?

One of the features most often men¬

tioned in “wish lists” for the Atari ST is

the ability to load screen printer drivers

for various printers other than those

built into the ST. There are several rea¬

sons one might want to print the com¬

puter screen—aside from impressing

friends with printer artwork. Printers

such as the Okimate 20, for example,

can be a perfect source of low-cost over¬

head transparencies by transferring their

see-through, plastic-like pigment to ace¬

tate sheets. Or, if a bug appears in a

commercial program, you may docu¬

ment the problem by dumping the

screen to the printer and forwarding it

to the company.

Fortunately, when Atari created the

ROM version of TOS, they created a vec¬

tor which is called to perform the

graphic screen dump process.

This article will describe the screen-

dump process and how to alter the

screen-dump vector to point to a user-

installed printer driver routine. Since

there are a good number of printer driv¬

ers already written for the DEGAS paint

program, the screen-dump routine in¬

staller presented here will follow the

DEGAS printer driver standard. (DEGAS

printer drivers can be found in DL4 of

the Ataril6 section of CompuServe’s

SIG*Atari, as well as on the DEGAS

disk. We have also include some on the

START disk with the extender .PRT.)

If you wish to use the installer imme¬

diately, skip to the section USING THE

INSTALLER, and have fun! ►

STart, the ST Quarterly 21 Summer, 1986

STEALING...
THE BUILT-IN ROUTINES

Each ST computer comes equipped with

a simple screen-dump routine in TOS

designed primarily for Epson-compatible

printers. It may be started by pressing

[Alternate] and [Help] simultaneously, or

by calling the Atari BIOS trap #14 ex¬

ception processor with a parameter of

20 decimal (Scrdmp). The GEM Desk¬

top also has a convenient drop-down

menu selection which starts the screen-

dump routine.

For the [Alternate] [Help] version of

the screen dump, the AC1A Receiver

Buffer Full Interrupt routine performs a

series of tests to determine the type of

interrupt that occurred. If it is an intel¬

ligent keyboard (1KBD) interrupt, the

key combination pressed is checked to

see if it is [Alternate] [Help], If so, the

interrupt sets a flag telling the vertical-

blank handler to start the screen dump.

The flag that gets everything started is

PRTCNT, which is located at $4EE. Nor¬

mally, the value stored in PRTCNT is a

-1 (word). When the Alt-Help keystroke

is detected, the interrupt increments

PRTCNT, making it zero.

The system vertical-blank (VBLANK)

handler is what actually starts the screen

dump. Each time the code is executed

(50 or 70 times per second, depending

on the type of monitor you are using), it

tests the PRTCNT location to see if it is

zero. If not, the VBLANK routine pro¬

ceeds normally. However, if PRCNT con¬

tains zero, the VBLANK executes the

SCRDMP routine to dump the screen to

the printer. In the RAM-based TOS, this

is a direct BSR (Branch to SubRoutine)

instruction. In the ROM TOS, the

SCRDMP routine is executed via an in¬

direct J SR (Jump to SubRoutine) to the

address contained at $502. This routine

does all the set-up work and calls a rou¬

tine called PRTBLK, which does the job

of printing the specified portion of the

screen (in the case of the Alt-Help or

Scrdmp functions, the entire screen is

dumped to the printer).

During the screen dump, the dump

routine watches the PRTCNT location to

see if it changes from its zero status. If

so, the user has pressed Alt-Help again

indicating he or she wants to abort the

screen dump operation, and the dumper

will exit. After the dump is complete,

the PRTCNT location is reset to -1 and

system operation returns to normal.

Interestingly, Atari has a vector to the

screen dump routine, but none to the

PRTBLK routine. Logically, PRTBLK

should have had a vector pointing to it,

since it does the actual printing. A

pointer to a table containing all the

printing parameters is passed to

PRTBLK, but without a vector that we

can alter, this information is useless.

The key to harnessing the screen-

dump routine and having the

system execute our own screen-

dump code is the screen-dump vector at

$502. We install our routine in a safe

portion of memory and repoint the

screen-dump vector to our code.

When a system trap instruction is

used to start the screen dump, the trap

handler simply calls a routine which sets

PRTCNT to zero, simulating the action

of the Alt-Help keystroke. It then calls

the SCRDMP, either by a direct BSR

(RAM TOS) or via the screen-dump vec¬

tor at $502 (ROM TOS). After the screen-

dump code returns, the PRTCNT flag is

reset to -1, and the system processing

returns to normal.

Since there are two ways of initiating

a screen dump in the ST (Alt-Help and

TRAP #14), the programmer must be

sure that each calling method will prop¬

erly call the installed dumper. In the

ROM TOS, this is no problem—one vec¬

tor change takes care of all the screen

dump possibilities. In the RAM TOS, the

programmer must install a pre-VBLANK

processor and a pre-TRAP 14 handler

which will intercept the Scrdmp call and

execute the desired user-installed code.

For the sake of simplicity, this article

assumes that the ROM TOS is installed.

Atari says the ROM TOS is installed in a

majority of machines at this point, mak¬

ing the restriction of ROM TOS a minor

one.

WHAT ABOUT THE
CONFIGURATION?

The built-in screen-dump routine uses a

special printer configuration word,

PCONF1G, to determine what type of

printer is being used. This word has bits

that refer to the port (serial or parallel),

the type of printer (color or black &

white), the mode (draft or final), and so

on. The PCONFIG word is set up by the

“Install printer” desk accessory provided

with the ST.

The location of PCONFIG has not

been documented by Atari as of April

1986, but in the ROM TOS it is located

at $E4A. I don’t recommend using this

location in any programs until Atari

guarantees that it will not change.

DEGAS drivers are typically set up for

one configuration anyway, so they do

not need to look at the PCONFIG word.

THE PRINTER DRIVERS

When I was writing DEGAS, in June of

1985, the support of various printers,

including color printers, was a major

concern. The existing screen-dump rou¬

tine in the ST was a simple, black &

white driver for Epson printers that only

printed images with four levels of gray¬

scale. I was not satisfied with the out¬

put, and decided that since no mecha¬

nism was then available to load screen-

dump drivers into the system, I would

create a standard driver format for

DEGAS. This driver format, while not

infinitely flexible, will allow screen

dumps in color or black & white, to the

parallel or serial port, to impact or laser

printers, or even to plotters.

■V 7/i at, the ST Quarterly 22 Summer; 1986

The drivers are not limited to simple

screen dumpers, either. Since the driver

is passed a set of parameters giving the

color palette and screen address, a num¬

ber of useful utility routines could be in¬

stalled with DEGAS thinking they were

printer drivers. Two that come to mind

are a color rotation handler for color pal¬

ette animation and a screen “clipping”

routine which would allow the user to

define an area of the screen to be held

in a buffer for later use. The possibilities

are endless.

The DEGAS printer drivers are de¬

signed to be a block of executable, posi¬

tion-independent 68000 object code

2000 bytes in length, which begin ex¬

ecution at the first byte in the block.

The 2000-byte length was arbitrarily as¬

signed, and is adequate for black &

white and color drivers alike, with care¬

ful programming techniques.

The drivers are called with the C

statement:

scrdump(command, resolution,

screen,palette,workarea)

int command,resolution;

long screen,palette,workarea;

If the word command is a zero, the

driver should initialize itself and the

printer and return with a 1 in D0.W if

the operation was successful, or a zero if

there was an error. Typically, the ini¬

tialization function sends the printer a

command to set the linefeed and graph¬

ics mode accordingly, to check to see if

the printer is connected and powered

on. The printer driver is ALWAYS ini¬

tialized before each screen dump.

If command is a 1, the driver is to

perform the screen-dump function. Dur¬

ing this process, the driver continually

tests the keyboard to see if [Undo] has

been pressed, and abort if it has. A suc¬

cessful screen dump returns a 1 in

D0.W. An aborted screen dump returns

with a 2 in D0.W. If any error occurs

during the screen dump, the driver re¬

turns with a zero in D0.W.

The word resolution indicates the

graphics mode that the driver is to use

in dumping the screen to the printer. A

zero in this value indicates the 16-color,

320-by-200 pixel low-resolution mode,

a 1 indicates the 4-color, 640-by-200

pixel medium-resolution mode, and a 2

indicates the 640-by-400 pixel mono¬

chrome mode.

The longword (four-byte) screen is a

pointer to the base address of the screen

data that will be used for the screen-

dump operation.

The longword palette is a pointer to

an array of 16 word values that contain

the colors used on the screen. These are

in the standard form, in which the low

three nibbles contain the red, green and

When Atari

created the ROM

version of T0S, they

created a vector... to

perform the graphic

screen dump.

blue settings of that color. These nibble

values range from 0-7. For example, if a

particular color palette entry contains

$0456, the red level is set at 4, the

green level is 5, and the blue level is 6.

These entries can range from $0000

(black) to $0777 (white).

Longword workarea is a pointer to a

1280-byte (once again, an arbitrary

length) portion of memory reserved for

the driver’s use. The driver can put

whatever information it likes in this

area, including print buffers and working

variables. Since the driver code must be

position-independent, this is the best

place to put variables.

Commented source code for two

DEGAS drivers (the Epson-compatible

black & white driver and the Epson

JX-80 color printer driver) are included

on the START disk as examples so other

programmers can see how one is writ¬

ten. Many printers are very similar and

will only require the modification of

various control codes to produce an op¬

erating driver. Others may require a bit

more work, and I explain possible solu¬

tions below.

Note that the Epson black & white

driver can provide screen dumps in two

different formats, and uses the [Alter¬

nate] key to determine which format the

user wants. If [Alternate] is not pressed,

the driver prints a large image of the

screen sideways on the page. If the key

is pressed, the screen is printed in a ver¬

tical format, slightly smaller. If you write

a driver for another black & white

printer, it is a good idea to to maintain

this “standard.” Color printer drivers

rarely have enough room to fit both

horizontal and vertical routines in 2000

bytes, so they are written to be vertical-

format only.

THE EPSON BLACK &
WHITE DRIVER

Take a look at the EPSON.S file on the

START disk. The first thing you notice

in this driver is that it saves all the

68000 processor registers in the work

area, using A0 to point to the work

area’s start. The A0 register is main¬

tained throughout the driver code, and

always points to the work area. All

working variables (PHASE, KBSHIFT,

etc.) are set up as offsets from this ad¬

dress. PHASE is always referenced as

PHASE(AO). This is necessary because

the driver code must be position-inde¬

pendent and absolute addresses cannot

be used. If the 1280-byte work area is

insufficient, the Malloc function can al¬

locate needed memory. Because of a bug

in the current GEMDOS Malloc call, ►

STart, the ST Quarterly 23 Summer, 1986

STEALING...
this procedure is not recommended. So

far, all printer drivers have been written

using just the 1280-byte work area pro¬

vided, with room to spare.

The driver uses a bit mask byte,

PHASE, to mask off data to be added to

the print data buffer. As each line of

pixels on the computer screen is proc¬

essed, PHASE is shifted right one or

two bits, depending on the resolution.

The bits that are on in PHASE deter¬

mine which pins in the print head are

used for that line of pixels. When

PHASE is initialized to 192 decimal

(SCO or %11000000), the mask is set

for two print head pins. When it is set

to 128 decimal (S80 or %10000000), it

is set for one pin. As the mask is shifted

to the right, it finally becomes zero. At

that point, a print line 8 dots high is

ready to be printed, and the PHASE

mask is reset.

An important part of the printer

driver is the code labeled printit:. This

is a useful subroutine which takes care

of several concerns. First, it provides a

single subroutine which prints any num¬

ber of bytes to the Centronics parallel

port. Second, it takes care of printer

time-out handling just in case the user

tries printing out a picture without a

printer connected. If the driver makes

270,000 unsuccessful attempts to send

a byte to the printer, it returns an error

code. More than a quarter of a million

tries may sound like a lot, but this takes

about 30 seconds, a good figure for most

printers—especially those which shut

down when the print head reaches a

certain temperature. The 30-second

time-out value also allows certain

printers to operate at their slowed-down

speed without causing the screen dump

to abort. If the operation was successful,

printit: returns with a zero in D0.W. If

it failed, printit: returns a -1.

Finally, printit: takes care of saving

the 68000 registers D1-D2 and A0-A2,

some of which may be altered by the

TRAP instructions used to send data to

the printer.

Both printer drivers included on

the disk contain their own rou¬

tines for getting pixel values

from the screen. While these routines

take up precious room in the 2000-byte

driver file, they are faster than going

through the Line A “get pixel” routine. If

you find yourself needing room in the

driver, you may want to use the Line A

calls to save space, at the expense of

some speed.

The horizontal-format screen dump

prints an image 800 printer-dots wide,

an even multiple of the 200 or 400-pixel

high screens. This is an easy conversion

for the driver.

The vertical-format dump is a little

more complicated. This dump is 960

dots wide, which is a multiple of three

for the low-resolution 320-pixel-wide

mode, but only 1.5 for the medium and

high-resolution modes. To take care of

this, the driver outputs two printer dots

for each pixel with an even X coordi¬

nate, and only one each for pixels with

an odd X coordinate. Thus, vertical-for¬

mat screen dumps may show strange ef¬

fects on vertical lines.

Another important routine in the

black & white driver is the ppix: sub¬

routine, which converts the luminance

level of a given color register value to a

number ranging from 0-7. This gives

standard DEGAS screen dumps 8 levels

of gray-scale, a good range for most pic¬

tures. The number of gray-scale levels

could be set to any value, depending on

the programming of the driver. This

gray-scale value is then used as an index

into the gray-scale pixel table, which is

built during the driver initialization at

1200(A0).

This driver assumes that the print

head is configured with bit 0 at the

head’s bottom. If you want to modify

this driver for a printer with bit 0 at the

top, you’ll have to flip the bits in the

PHASE byte and reverse the directions

of their shift operations.

If you are using a printer such as the

Okidata Microline 193 which uses the

character $03 to control graphics func¬

tions, you’ll have to set up a special in¬

tercept routine in printit: which takes

care of graphic data bytes with an $03

value.

THE JX-80 COLOR
DRIVER

One of the ST’s big selling points is the

ability to generate stunning color graph¬

ics, and as a result, many users will

want to produce color printouts of their

graphics masterpieces. Fitting a color

printer driver into a 2000-byte block of

code was a real challenge, but 1 think

the solution used in the JX-80 color

driver is effective. It produces fairly ac¬

curate representations of colors very

efficiently.

The JX-80 color printer driver is on

the START disk as JX80C.S Most of the

basic routines used in the JX-80 driver

will look familiar; they were lifted ver¬

batim from the DEGAS Epson driver,

and perform the same functions. There

are several significant exceptions.

You will notice that there are now

two tables built during the initialization

phase. The first, BLACK Oocated at

200(A0)), is a gray-scale table in which

each entry is a 16-bit table. Each of

these table entries is a 4-bit by 4-bit

mask (16 bits total) which is overlayed

on the printer dot pattern. The table

ranges from black (all bits on) to white

(all bits off).

The second table, WHITE (located at

300(A0)), is a white-scale table similar

to BLACK. Instead of adding black as

the brightness of a pixel diminishes, the

WHITE table adds white as the bright¬

ness of a pixel increases. We will see

how this works in a moment.

STart, the ST Quarterly 24 Summer, 1986

The process of printing a color pic¬

ture on most personal color

printers is the same, regardless of

the printer. There is usually a multicolor

ribbon containing yellow, magenta and

cyan portions. Most color impact

printers also have a fourth color, black,

for normal printing operations, such as

program listings. Our color printer

driver is simplified because it does not

use the black portion of the ribbon. We

get black by mixing the other three

colors.

To make the various colors needed

for each screen-dump line, the print

head must make three separate passes

over each print line, one in each color. It

is best to make the three color passes

starting with a yellow pass, then a red

pass, then a cyan pass, to reduce color

contamination problems on the ribbon.

If, for example, the cyan pass was made

first, followed by the yellow pass, the

yellow ribbon would pick up cyan ink

from the paper, making the yellow rib¬

bon more of a green color. The same ap¬

plies to the magenta ribbon, which is

less contaminated by yellow than by

cyan.

Since there are only three basic colors

present on the ribbon, some sort of al¬

gorithm is needed to mix them on the

paper to produce colors that approximate

those on the computer screen. This is

accomplished by the combination of a

large table, cvalues:, which provides

color information, and a simple al¬

gorithm for adjusting brightness.

cvalues: is at the end of the listing. It

contains 512 one-byte entries (one byte

per color possible on the ST) made up of

two groups of three bits each (the high-

order two bits are not used). Each three-

bit group represents a printer color to be

used for the corresponding screen color,

and the two colors specified in the byte

are mixed in a 50-50 combination on

the paper. The color specified by the

low-order three bits is used on even

printer dots, and the color specified by

the next three bits is used on odd

printer dots. For a solid color, the two

colors are set to the same value.

The three bits give a total of eight

color combinations, of which white and

black are not used, leaving six colors to

be mixed. The total number of combina¬

tions of the various colors is 20. Twenty

colors out of 512 would not be a very

good proportion, so additional process¬

ing is done using the BLACK and

WHITE tables.

Each pixel’s color is analyzed accord¬

ing to the following steps:

1. The total brightness of the pixel’s red,

green and blue components is calcu¬

lated, ranging from 0-21.

The key to

harnessing the

screen-dump routine

... is the screen dump

vector at $502.

2. If the color’s table entry is zero, the

program goes to the gray it: routine,

which calculates a level of gray-scale

for the pixel, similar to the process

used in the black & white driver. This

is a special case for all colors which

have the same red, green and blue

levels, and produces a good gray.

3. If the pixel’s brightness is less than 7,

black dots are added from the

BLACK table (see the blakck:

routine).

4. If the pixel’s brightness is equal to 7,

the color is left as is (no adjustment of

the black & white content).

5. If the brightness is greater than 7,

white pixels are added from the

WHITE table (see the whitck:

routine).

With the addition of varying levels of

black and white to the original color

mix, the driver can create a total of 20

(basic colors) * 20 (6 black addition lev¬

els + normal + 13 white addition lev¬

els) or 400 colors, as well as eight levels

of gray scale. While the colors may not

match the screen image exactly, the

color approximations are quite acceptable

for general-purpose use.

PRT FILES

A special procedure is required to trans¬

form driver source code to .PRT files. In¬

cluded on the START disk is SAVER.C,

the C source code for a program which

will save assembled printer drivers to

disk in the standard DEGAS .PRT for¬

mat. To use SAVER.C, compile it to an

object file using your C compiler. Next,

assemble the assembly source for the

printer driver you want to save into an

object file. Now, link these files together

using LINK68 or a comparable 68000

linker program to produce an executable

.PRG program file. (See SAVER.BAT on

your START disk for an example of using

the EPSON.S driver.)

Remember that to successfully link

the SAVER.C and the printer driver, the

printer driver’s executable code MUST

start with the label s_dumper, so that

SAVER.C knows where the driver code

starts.

Once you have linked SAVER.C and

the printer driver into an executable pro¬

gram (such as SAVER. PRG), you must

execute the SAVER.PRG program to

create the final printer-driver file. The

program displays the file selector box.

Enter the name of the printer driver file

(be sure to use an extension of .PRT on

the filename). The program will report

the success or failure of the write opera¬

tion and return to the desktop. If the file

write was successful, the printer-driver

file is ready to use with DEGAS or the

printer driver installer program. ►

STart, the ST Quarterly 25 Summer, 1986

STEALING...
THE INSTALLER

Also on the START disk are the files IN-

STALL.ACC, INSTALL.C and INSTAL.S.

INSTALL.ACC is a GEM Desk Accessory

which performs the installation of a

DEGAS printer driver. INSTALL.C is the

C source code for the accessory, and

INSTAL.S is the AL source code for

the assembly language portion of the ac¬

cessory. These two source files must be

compiled and linked with ACSTART.O

in order to produce an executable

desk accessory. (See INSTALL. BAT on

your START disk.)

The C source code is fairly straight

forward, except for a couple of interest¬

ing points.

When started by the GEM desktop

code, the installer displays a two-button

alert box which gives the user the choice

of a VERTICAL or HORIZONTAL

printout. This option is very important.

You’ll recall from the above discussion

on printer drivers that the DEGAS driv¬

ers examine [Alternate] when initialized

to see if it is being pressed. If it is, the

driver shifts to a vertical print format; if

not, the screen dump is printed side¬

ways. Unfortunately, when the screen

dump is initiated by the Alt-Help key¬

stroke, [Alternate] will ALWAYS be

pressed as the driver is initializing, and

therefore all Alt-Help dumps would be

printed vertically!

This was an undesirable result, but

fortunately the ST BIOS has a way to get

around the problem. There is a TRAP

#13 call included in the OSBIND.H file

called Getshift which allows you to get

or set the status of the keyboard’s Con¬

trol, Alternate and Shift keys so that the

next call to Getshift will think certain

keys are being pressed. Some early ver¬

sions of the OSBIND.H file contained

an error in the way the Getshift call

was #defined. Take a look at your

OSBIND.H file and be sure the definition

reads:

#define Getshift(a) bios(ll,a)

The earlier definitions left out the pa¬

rameter specifier (a).

The first alert box allows the user to

tell the installer which type of output is

desired before loading the printer driver.

Furthermore, if the user wants to change

the output format at a later time, he or

she simply selects the “Printer Driver”

accessory and clicks on the appropriate

button to change the output format. The

result of the alert is determined and the

variable prtmode is set to either 0 (no

shift keys pressed) or 8 (Alternate key

pressed). Use this variable to set the

shift key state when the screen dump is

called.

Once a

printer driver is

installed, you can

print the screen to

whatever printer the

driver is compatible

with.

The program then calls the GEM

file selector dialog and accepts a

printer-driver filename. The file

is opened and read into the address of

the scrdmpO function. This function is

defined in the INSTALL. S file, and is

nothing more than 2000 bytes of re¬

served memory. If the file read into

memory was less than 2000 bytes in

length, an alert box appears informing

the user, and the installer aborts without

installing a driver.

If the file is the correct length (no

check is made to see if the file is over

2000 bytes, because some drivers

downloaded with terminal software may

have extra bytes tacked onto the end of

the file), the driver is installed by calling

the install() function. This simply re¬

places the screen dump vector at $502

with the address of our screen dump

control routine, dumpctrl().

Whenever the system is asked to per¬

form a screen dump from this point on,

the VBLANK code will call dumpctrl()

to do the dump. dumpctrl() requests

the system screen resolution, the phys¬

ical base address of the screen and the

color palette, then sets the keyboard

shift bits according to the contents of

prtmode and initializes the printer

driver (command — 0).

The printer driver returns a success

code of 0 or 1. If the value is 1, the ini¬

tialization was a success, and the printer

driver is called again with a command

word of 1, telling it to dump the screen.

When complete, control returns to the

system.

USING THE INSTALLER

First, you must have TOS in ROM in

order to use this desk accessory. To get

the printer driver installer up and run¬

ning on your ST, just copy the IN¬

STALL.ACC file from the START disk to

the disk you use to boot your system.

You should also place an appropriate

printer driver file on this disk. If you

can’t find the right one on your START

disk, several have been placed on Com¬

puServe. Now, boot your ST with the

disk containing INSTALL.ACC and the

Desk drop-down menu will have a new

entry called “Printer Driver.”

To install a particular printer driver

on your computer, select the “Printer

Driver” menu item. A dialog box will

appear giving the credits for the installer

accessory. At this point, you will have

two options: Horizontal or Vertical. A

horizontal screen dump is printed side¬

ways on the printer paper in a fairly

large image size. A vertical screen dump

STart, the ST Quarterly 26 Summer, 1986

is printed right-side-up on the paper,

slightly smaller. Choose your format. You

can always change it later.

The computer will display the file se¬

lector dialog, showing all the printer

driver files (.PRT) on the current disk.

Pick your printer driver and click on

“OK” (if you already have a driver in¬

stalled and just wanted to change the

format from horizontal to vertical, you

can click on “Cancel” to avoid reloading

the file).

You will be notified of problems in

installing the printer driver. Be sure you

always have a successful load before try¬

ing to perform a screen dump. Failure to

do so could lock up your computer.

Once a printer driver is installed, you

can print the screen to whatever printer

the driver is compatible with, either in

color or black & white. Just press Alt-

Help like you normally would or use the

GEM desktop’s “Print screen” option.

To abort a screen dump using the

DEGAS drivers, press [Undo]. This is

the only difference between the installa¬

ble DEGAS drivers and the built-in

driver, which aborts when Alt-Help is

pressed a second time.

It is not necessary to set the printer

configuration by using the “Install

Printer” desk accessory when using the

DEGAS printer drivers. The DEGAS

drivers are specifically written for one

configuration and do not use the infor¬

mation in the “Install Printer” dialog.

FINAL WORDS

As more and more printer drivers be¬

come available for the ST series, the ma¬

chine will become more useful to a

larger group of people. I hope this infor¬

mation and the printer driver installer

will inspire more programmers to write

DEGAS-format printer drivers—They’re

not just for DEGAS any more! ■

REFERENCE:

• The Motorola MC68000 Microprocessor

Family: Assembly Language, Interface

Design, and System Design, by Thomas

L. Harman and Barbara Lawson. Pre¬

ntice-Hall, Inc., Englewood Cliffs, NJ

• A Hitchhiker’s Guide to the BIOS,

Atari Corp.

Regent
REGENT BASE

| A FULL FUNCTION
RELATIONAL DATABASE

H Regent Base’s procedural language
make it a natural for handling any of your

■■ small business needs. Modules are
available for Invoicing, Accounts

__ Receivable, Checkbook Balancing,
General Ledger, etc.

Regent Base is a relational database
- written specifically for the Atari ST. Don’t

settle for simple clones of IBM products.
Regent Base is easy to use and state-of-

- the-art!

REGENT SOFTWARE
7131 Owensmouth, Suite 45A
Canoga Park, CA 91303
(818) 883-0951

ATARI ST ■ ■ I I I

DStAA/lce

wkn*t M*fce VW Nervous

f echnical support, personal service, com-
I petitive prices.
Disclone full service quality tested diskette
duplication, packaging, documentation pro¬
duction and processing ensures precise
duplication, thorough quality control and
expedient response to your requirements.
NOclone state of the art hardware based
copy protection is true piracy protection for
authorized allotments only. Each application
is uniquely encrypted. Install routines are
coded for nontransferrable hard disk allot¬
ments.
Disclone offers a choice of diskettes. Com¬
mittment dates are guaranteed. Fast turnover

■ up to 1000 in 24 hours, any format.
■ up to 10,000 in one week, any format.

OtSCLONE SQFTNNKRE PRODUCTION SERNMCES

1050 North Fifth Street, San Jose, California 95112
(408) 947-1161 OUTSIDE CA: 1-800-826-4296

STart. the ST Quarterly 27 Summer, 1986

Advanced Technology for LESS!
The SD-2000 Disk Drive System

is this year’s most exciting new
peripheral for the ATARI ST™, and
it’s the only one of its kind for any
computer anywhere in the world.

Fast, full featured and compact,
the SD-2000 is smaller and more space
efficient than one single stand-alone
Atari drive. Complete with A + B drive
identification, slip-proof rubber feet,
pop-up elevating kickstand, this
versatile drive system measures only
4V2" W x 8V2* D x 2Va" H and includes
two 3.5" 1 MB, double sided,

double density drives, and is finished in
a sleek contoured, color-coordinated
gray metal case.

And there’s more! Through the
advanced engineering of the Shanner
System, there’s now no longer the need
for that extra power supply and cum¬
bersome cable. Both Shanner drives
operate off a single power supply
through its unique “LOW POWER
DESIGN" capability.

The SD-2000 comes complete with
power supply, I/O Cable, registration
card and manufacturer’s warranty.

You be the judge.

with pop-up
kickstand

The Shanner

SD-2000
Disk Drive

$42995’
SHANNER INTERNATIONAL CORP.
The SD-2000 is a creation of, and marketed
worldwide by Shanner International Corp.

’“Atari and Atari ST are trademarks of Atari Corp.
•Manufacturer's Suggested Retail Prices.

See the local authorized dealer nearest you or use this SPEEDY order form.
Exp.

Please send me_SD-2000 Disk Drive(s) Account No. _ Dale
at $429.95 each, plus $15.00 for postage & handling.
(CA residents add $27.95 for sales tax)
Please indicate method of payment: Name -

D Check D Money Order D VISA D Mastercharge Address
Orders may be sent to:

Shanner International Corp. City_
453 Ravendale Drive
Mountain View, CA 94043

State- Zip .

Prices subject to change without notice. Dealer Inquiries Accepted. S7/86

For direct orders, call our HOTLINE 1 -800-423-8673. In CA 1 -800-626-9273.

PROCEDURES

Moving
16-color
Objects

AL Routines for C.O.L.R. Object Editor

BY JOE CHIAZZESE

Using AL routines within a C structure, this article
demonstrates how to move 16-color objects (created with
the C.O.L.R. Object Editor) swiftly around the screen.
All related program files may be found within the
COLRMOVR folder on your START disk.

■ M Jf hile playing the popular 8-bit Atari game Karateka, a visually sophisticated

I/I# Karate cartoon, 1 was inspired to duplicate the main character’s actions on the

W W Atari ST. Two day’s work convinced me that I’m a terrible artist, but did at least

produce a set of assembler routines to manipulate images created with Antic’s C.O.L.R.

Object Editor.

These routines should serve as a great learning tool for many people. To show how to

use them from C, I’ve written a demonstration program which allows any size image

(within reason) to follow the mouse around on the screen.

The complete program has three parts: the assembler routines to handle the images,

the C routines to make the program logic easier to understand and the image itself.

Creating the final program requires four steps: 1) drawing the image and converting it to

source code, 2) assembling the image-handling routines, 3) compiling the main C

program, and 4) linking all the files together. ►

START, the ST Quarterly 29 Summer, 1986

PROCEDURES

Objects...

CREATING THE IMAGE

Though you may follow this procedure using your own display

image, 1 originally tried it with the karate character and sam¬

ple files on the START disk include this data. After drawing

the karate characters image, C.O.L.R. Object Editor’s Create

Source option was used to save the image as assembler source

code statements with a label. This was not quite enough: in

order to link the image’s label to the C code, the label must be

global. Do this by adding the .globl label directive to the im¬

age code data using any standard programming text editor.

The .globl directive can be put anywhere in the source

code created by C.O.L.R. Object Editor. I suggest the top so it

can be found easily. Since Alcyon C adds the underscore char-,

acter in front of all its external variables and routines, the im¬

age’s label must begin with an underscore so the image label

matches that defined in the C program, as must the names of

the routines in the assembler source code. For example, the

routine 1 call save_screen in C must be _save_screen in as¬

sembler to match it.

I wanted

generic assembler routines

which would work with any size

object.

C/ASSEMBLER INTERFACE

1 wanted generic assembler routines which would work with

any size object, and not just the specific karate character ex¬

ample. The routines designed, therefore, had to accept param¬

eters from an outside source. When the subroutine is called,

the return address is pushed onto the stack. Since C places all

parameters on the stack in reverse order, the parameters are

accessed at the current stack position plus four bytes (the re¬

turn address is 32 bits long requiring 4 bytes to hold it). For

example: put(device,char); pushes char on the stack first fol¬

lowed by device with the stack growing downward.

THE ASSEMBLER ROUTINES

The assembler portion of the demonstration consists of five

routines, each with a very specific function as discussed

below.

_save_screen copies a block of specified width and height

from the screen to a buffer. The buffer must be allocated by

the C program and it is the programmer’s responsibility to in¬

sure there is enough room. The buffer can either be an array

or a block of memory allocated from the operating system, in

which case a pointer is needed to tell the routine the buffer’s

location. All the routines expect the object’s width to be spec¬

ified in words, not pixels. The height is in lines. (Both of these

numbers are displayed when creating source with the C.O.L.R.

Object Editor.) All buffers and screen positions are passed as

absolute addresses.

The C portion of the program is responsible for converting

x and y coordinates into absolute screen addresses. The ad¬

dress is calculated and then passed to the assembler routines

which, in themselves, have no provision for such conversions.

_restore_screen reverses the effect of_save_screen by

replacing the previously saved block of screen memory.

_shift_image is a little more complex. Given the address

and size of the original object, it shifts the image to the right

by the specified offset and stores the result where told. The re¬

sult is an image one word wider than the original. This new

image is used by all the other routines; the original only serves

to create another image which can be shifted to the right by

up to 15 pixels. Even if the offset is zero, the object should be

put through this routine because it creates an image which is

one word wider, and the assembler routines actually expect to

be working on an object which is a word wider than the width

specified. If the given width is two, for example, the routines

manipulate an object of width three.

The shifted images are necessary because screen memory is

arranged in word-sized, 16-bit chunks. Each shifted image

corresponds to an image that begins on different bits, or pix¬

els, of a word of screen memory.

To have the background show through the empty portions

of the object, you need a mask for the object. Rather than cal¬

culate the mask for every object, the _make_mask routine

automatically creates one. All it needs is the size and address

of the object and a place to put the mask. Each mask uses half

the memory space of its image.

Finally, _draw_image_ takes the image, the mask, and the

saved background, mixes them all together, and puts the final

picture on the screen with background showing through. First,

the background is loaded, ANDed with the mask, then ORed

with the image. This causes any blank sections of the image to

appear transparent.

I chose to mix in the background from the saved buffer and

not the screen. Although this means the background has to be

saved first for the routine to function properly, there’s no need

to restore and save the screen again if the picture is drawn in

the same screen block. So, if the picture is drawn at point A’, it

can be moved up to 15 pixels to the right and still be drawn

STakt, the ST Quarterly Summer; 1986

on the same block using only an image shifted by a different

offset.

THE C ROUTINES

The main routine is simple: it opens the workstation, ini¬

tializes and if successful, calls follow_mouse() (which is re¬

ally the main routine). It then cleans up and closes the

workstation.

open_workstation() and close_workstation() are the

standard GEM routines used in most programs. I make it a

habit to put them in every program in case I need them later.

finish_up frees the memory allocated by initialize().

initializeO does several things: it checks the resolution

and returns you to the Desktop if the resolution is anything

but low. It saves the screen’s base address in scrbase, then al¬

locates memory for all the images and masks. You will also

find yourself back at the Desktop if sufficient memory is not

available.

The default palette is saved so that it can be restored at

program’s end. A new palette is set and the background is

filled with a wall pattern. The image is then shifted through all

16 different positions within a word and each one is stored for

later use. At the same time a mask is generated for each of the

images. Finally, to initialize the main loop, a screen block is

saved once and oldpos is set to point to it.

On entry of follow_mouse(), we encounter a while loop

which continues until a key is pressed. To avoid repeatedly re¬

drawing the image at the same place, a DO loop has been

placed within the while loop which will exit if the mouse is

moved or a key is pressed. The x and y coordinates of the

mouse are used to calculate the absolute screen position. We

now wait for the next vertical blank to occur to minimize

flicker. (A certain amount of flicker will still be noticeable

when the image is at the top of the screen. To eliminate this

calls for a complicated technique of multiple-screen image

switching which is beyond the scope of this article.) If the ob¬

ject is in the same screen block, it is simply redrawn; other¬

wise we restore the background where the old image was, save

the new block, point the old position to the latest one and

then draw the image.

CUSTOMIZING

If you want to change the program so that your own picture

gets dragged around the screen, go to the top of the C file and

change the #define statements to reflect the size etc. of your

own picture. OBJW is the width in words, OBJH is the height

in lines and COEOBJECT is the label of your picture. Link it

in and that’s it. (Don’t forget to make your object label a

global!) ■

Software Discounters /--
of America 1^°’
Orders Outside PA-1-800-225-7638
PA Orders - 1-800-223-7784
Customer Service 412-361-5291 Satu

• Free Shipping on orders over $100
in continental USA

• No surcharge for VISA/MasterCard
• Your card is not charged until we ship

Saturday

Your ST Software Connection!

ABACUS BOOKS
ST Gem Prog. Ref
ST Graphics & Sound
ST Internals
ST Logo
ST Machine Language
ST Peeks & Pokes
ST Tricks & Tips
Call For Low Prices!
•Optional Program Disks

are available for most
books! Call

ACADEMY
Typing Tutor S23
ACCESS
Leader Board Golf Call

ACTIVISION
Borrowed Time $33
Hacker $29
Mmdshadow $33
Music Studio $39
ADVENTURE INT’L.
Fantastic Four S16
Spiderman $16
ARTWORX
Bridge $19
Compubridge $19
Mail Li $14

Spellbreaker $33
Starcross . $33
Suspect $29
Suspended $33
Wishbringer $25
Witness $25
Zork 1 $25
Zork 2 or 3 . $29
MARK OF THE UNICORN
Hex $25
PC Intercomm . . $79
Final Word $95
MICHTRON
Bulletin Board System $33
Calendar $19
OOS Shell $25
Flip Side $25
Gold Runner $25

M-Disl $25

Strip Poker
BATTERIES INCLUDED
DEGAS $25
Home Pak Call
Paperclip Elite Call
ELECTRONIC ARTS
Financial Cookbook $33
EPYX
Rogue $25
Temple Apshai Trilogy $25
Winter Games Call
FIREBIRD
The Pawn $29
FTUSOFTWARE HEAVEN
Sundog $25
HABA
Check Minder $39
Phone Book $39
Haba View $39
HIPPOPOTAMUS
Hippo Aril $25
H ippo Backgammon $25
Hippo Clean $19
Hippo Computer

Almanac. $23
Hippo Concept $59
Hippo Disk Utilities $33
Hippo Jokes & Quotes

Mi Dupe
Mi-Term saa
Mudpies $25
Soft Spool S2S
MICROPROSE
Silent Service S26
MI-GRAPH
Easy Draw . $95
MINDSCAPE
Brataccus $33
MIRAGE
Tool Box Vol 1 $19
Forth . $33
H& DBase $59
OSS
Personal Disk Kit $25
Personal Pascal $49
Personal Prologue Call
OMNITREND
Universe 2 $49
ORIGIN
Ultima 3 $39
PENGUIN/POLAR WARE
Crimson Crown $25
Oo-Topos $25
Transylvania $25
PRYORITY
Forbidden Quest $23
OMI

TELARIUM
Amazon $33
Fahrenheit 451 $33
Nine Princes in Amber $33
Perry Mason Case ol the

Mandarin Murder $33
TIMEWORKS
Data Manager Call
Swiftcaic Call
Sylvia Porter s Personal

Financial Planner Call
Word Writer Call
UNISON WORLD
Print Master $26
Art Gallery 1 $19
VIP TECHNOLOGIES
VIP Professional Call
VIP Professional Lite $65
XLENT
Rubber Stamp $23

$26 Types
ACCESSORIES
Bulk Disks 3’ r
CompuServe Slant

Kit (5 hr> $14
Dust Covers Call
Kra't Joystick $9
Panasonic 1080 cps dot

matrix printer Great Deal
Panasonic 3131 letter

ity daisy wheel
Call

OMI 300/1200 Baud
Modem w/ST Talk $147

Supra 10 Meg Hard
Disk Drive $599

Supra 20 Meg Hard
Disk Drive Call

Supra 300 Baud Modem
w/Omega Terminal S59

Supra 300/1200 Baud
Modem w/Omega
Terminal $147

WicoBoss $12
Wico Bat Handle $17

$14

$23
Hippo Pixel
Hippo Ram Disk $23
Hippo Simple $33
HippoWord $59
INFOCOM
Ballyhoo $25
Cutthroats $25
Deadline $33
Enchanter $25
Hitchhikers Guide to

the Galaxy
Infidel.
Seastalker

St Talk.
QUICK VIEW
Zoom Racks $49
REGENT
Regent Base Call
Regent Word $33
Regent Spell $33
SIERRA ON LINE
Black Cauldron $25
Hint Books.Call
Kings Quest 1 $33
Kings Quest 2 $33
Ultima 2 $39
Winnie the Pooh $19
SSI
Phantasie Call
SUBLOGIC
Flight Simulator Call

$29
$25

Have you seen our
on-line catalog ol
800 software titles
for Commodore,
Atari, Apple & IBM?
It's on CompuServe's
Electronic Mall—
Just type GO SDA
and shopping for
software will never
be the same again!
P.S. If you don't own
a modem or
subscribe to Com¬
puServe. call us. do
we have a deal for

P.O. BOX 111327—DEPT. ST—BLAWNOX, PA 15238

•Ordering and Terms: Orders with cashier check or money order shipped im¬
mediately. Personal/company checks, allow 3 weeks clearance No C O D s Ship¬
ping: Continental U.S.A.—Orders under $100 add $3; free shipping on orders over
$100. PA residents add 6% sales tax. AK. HI, APO, FPO, PR—add $5 on all orders
Sorry—no International orders. Defective merchandise will be replaced with
same merchandise. Other returns subject to a 15% restocking charge—NO
CREDITS! Return must have authorization number (412) 361 5291 Prices subject
to change without notice. Summer Hours: Mon.-Fri. 9A.M.-5:30 P.M. EDT • Sat. 10
A.M.-5 P.M.

STart, the ST Quarterly Summer. 1986

1CONOGRAPHICS

The
Digital
Magnet
Plotting Magnetic Field Lines

BY DAVID SMALL

This spectacularly colorful graphics program simulates
magnetic field line generation. If you are more interested
in detail than color, you can also run it on a monochrome
system; it works in any resolution. Related files may be
found within the MAGNETS folder on your START disk.

/I guess magnets have always fascinated me. As a kid, 1 loved to play with iron filings

and magnets, electromagnets, and whatnot.

One day in freshman physics we were discussing formulas governing magnets. I woke

from my usual haze just enough to note the formulas and think, “This would make a neat

program.” At our local computer center, there were two unused Tektronix 4013 graphics

terminals hooked up to a Cyber mainframe, so 1 spent some time on them and wrote the

original Magplot, a magnetic field lines plotter.

The program wasn’t a waste of time. After all, it helped me pass my freshman physics

class. It also earned a reputation for pulling computer time out of the mainframe; when I

ran the program, I could hear the chatter of teletypes in the next room slow down,

sometimes stop, a result of all the floating point arithmetic going on.

Well, enough history. Let’s look at the program.

THEORY

The formula for attraction between two charged particles is:

(CHARGE1 * CHARGE2) / (DISTANCE SQUARED) ►

STart. the ST Quarterly J2 Summer, 1986

Plotting magnetic field lines in GRID mode, or...

...in POINT-POINT mode.

STart, the ST Quarterly JJ Summer, 1986

ICONOGRAPHICS

Or, the attraction/repulsion between two objects is dependent

on their distance squared. You’ll find this same relationship in

other popular formulas, such as for gravity.

With multiple particles, you must calculate the force ex¬

erted at an>- point by summing up the charges exerted on each

point by each particle. The easiest way to do this is to calcu¬

late each force as a vector, then add up the vectors. You end

up with a vector which, at a given point, represents the sum

total of the attraction/repulsion being exerted on it at that

point.

This is similar to figuring out the direction a satellite will

go by summing up the relevant gravitional pulls from all the

bodies (the sun, planets).

If you then draw a small line in the direction the vector

points, recalculate the attraction/repulsion, and so on, you will

obtain a picture of the field lines around magnets. If you’ve

ever done the experiment with iron filings and a magnet, the

plots done by this program will look remarkably familiar.

Two like forces will repel each other; you’ll see the field

lines reflect this, as the “ + ” and “ + ” points repel one an¬

other. Opposite forces attract, again, you’ll see the field lines

traveling from “ + ” to “ — ”,

There’s also a physics theorem that field lines plotted this

way will never cross one another. This is the case in the

program.

PROGRAM

The program was originally written in Cyber BASIC, and over

the years has ended up on an amazing variety of graphics-ori¬

ented computers. The ST and C language are the latest target,

and one of the faster implementations; the 68000 and C seem

to be pretty adept at floating point arithmetic, which this pro¬

gram spends a vast amount of time doing. You will see a cer¬

tain amount of BASIC within the code in this incarnation of

the program, including the entirely global variables. Please feel

free to optimize it. Quite honestly, the original program took

me so long to get working properly under BASIC, 1 have a

mental block about playing with it too much.

The program has three main sections. The first involves ini¬

tialization and setup of controlling variables. Since the ST’s

processor is not infinitely fast, there are some practical limits

to make the plot occur reasonably quickly I’ve set these up as

easily tweaked variables in a procedure called initglobals; feel

free to play around with them. Here’s the rundown:

A) linelength: This is how far a line is drawn in a given

vector’s direction. Too long, and the smooth curves of the field

lines will become jagged; too short, and the CPU will spend

too much time calculating between points.

B) clipit: This variable, if found to be True, “clips” field lines

to the size of the screen; in other words, if you’re drawing a

field line and it goes offscreen, the line is terminated. The

problem here is that offscreen lines are pure CPU calculation

and the wait on them can get pretty tedious; on the other

hand, most plots look far more complete if you include the off¬

screen line. If you select no clipping, then the line is termi¬

nated only if it goes wildly out-of-bounds and has little chance

of returning on to the screen area.

C) degreeinc: The starting point for each line is on a circle

around positively charged points. The line then travels to a

negative point, by whatever route, or gets terminated off¬

screen. degreeinc determines the degree increment between

starting lines. The lesser this variable, the more lines are plot¬

ted off each positive point; on the other hand, it takes longer

to generate a given plot. If you make this variable very low,

you’ll have quite a dense and good looking plot, but it will

take awhile to generate.

D) k2: This is a miscellaneous force constant that deter¬

mines how much strength a magnetic field has. If you’ve ever

wanted to play god and turn off magnetism, here’s your

chance. The value is more or less kludged to make good plots.

E) radius: This value determines the “black hole" radius

around a negative point and also determines the starting ra¬

dius of each positive point.

The second section of the program lets you input the

charge points using the mouse. This is done primarily within

inputpoints(). Admittedly, it is a bit kludgy, but it does not

require resource files or calls to the AES. This shortens and

simplifies the program, particularly if you don’t have the Re¬

source Construction Set.

When the mouse button is pressed during point input, the

point’s X and Y locations are recorded, and a “menu” for

positive/negative is displayed. Click on either POS or NEG to

select that point’s charge. I store the X,Y, and charge of the

point in three arrays, xcoord, ycoord, and (creative name)

charge.

The “menu” is then erased.

When you press [Shift] or [Alternate], you exit the while

loop that inputs the points, and proceed to the program’s third

main section which deals with plotting the picture.

PLOTITO

There are two ways of creating the picture. One gives a fairly

accurate picture of the field lines by plotting continuous lines,

the other a good-looking plot by plotting one line on a grid

overlaying the picture area. 1 include both; you select which

one you’d like with the gridstyle option. If you want the grid

approach, exit the point-input process with [Alternate]; if you’d

like the point-point approach, use [Shift].

STart. the ST Quarterly $4 Summer, 1986

ICONOGRAPHICS

In grid mode, we start at all X’s and Y’s forming a grid on

the surface, calculate the line direction at that particular point,

draw the line, and move to the next point. The line’s color is

drawn based on the amount of force present at that particular

point (the vector summation), which makes for a spectacular

display in low or medium-resolution.

In point-point mode, we run several nested loops. In order,

they are: 1) Cycle through all positive points; 2) Start a line at

N points around each positive point; 3) Sum charges at each

point; draw the line.

The charge summer is set up as a separate call to make

grid plotting easier. The CPU spends most of its time here, as

the variables are double floating point, required because of the

fractions involved. You’ll find the distance between points

being calculated as sqrt ((xl-x2) squared + (yl-y2)

squared). You’ll also find the basic force equation here.

The charge summer inputs the point as xl, yl (old BASIC

variable names) and outputs the next point on the line, scaled

to linelength, in the same variables.

VDI’s v_pline (polyline draw) then draws the line and

proceeeds to the next point.

CONSIDERATIONS

There are some interesting practical considerations that I ran

into when designing this program.

0 How should the lines start in order to create an even plot?

This was solved by using polar coordinates around each

positive point. (You can’t begin a line at a negative point be¬

cause it travels towards the nearest negative point—itself.)

0 How do you terminate the line? This was not trivial. It is

easy if the line goes offscreen, but, when the line nears a

negative point, there is a “black hole effect”; the distance is

so short that the negative point becomes the only relevant

force. The line is drawn one linelength past the negative

point, which causes it to overshoot the negative point; it

then turns around, overshoots, and so forth, creating a

ping-pong effect.

The solution here is to terminate a line whenever it be¬

comes radius close to any negative point. This stops the

ping-pong effect. Regrettably, it involves calculating the dis¬

tance to every negative point on each line draw, which in¬

volves extra CPU time; perhaps a simpler solution would be

a subtraction against each negative point’s coordinates.

C> What if the line goes offscreen? There is special code to

handle this case, if you decide to let the line wander off¬

screen and return. The variable newline “initializes” the

line for subsequent v_plines so you don’t get a strange

skipping effect.

There are some miscellaneous routines to make the plot

work on any style monitor. The high-res monitor, of course,

gives the cleanest picture, but there are only two colors, black

and white. The two color modes allow some interesting pos¬

sibilities for color and animation. I cycle through the color reg¬

ister numbers (either 0-3 or 0-15) while drawing the force

lines, and the result is a pleasing multi-color force line; if the

color registers are then rotated “underneath” the plot, so to

speak, the force lines become animated, travelling from

positive to negative points. You’ll see the rotation code in the

line drawing routine.

As the code notes, the GEM color number seldom corres¬

ponds to the extended BIOS call hardware color number. This

caused me some trouble, and I had to include a fair amount of

code just to deal with this problem.

You might find the “POS/NEG” code to be useful in writing

resolution independent codes. I calculate all the X and Y con¬

stants on the basis of character width and screen size returned

from the VDI “open workstation” call. ■

HOW TO RUN

MAGPLOT
1. Double click on the program’s file icon,

MAG2I.PRG. Once the program is loaded, the top screen

will read: Exit: (SHIFT = pt-pt; ALT = grid). At this

point, pressing [Shift], [Alternate], or [Control] will exit

you to the Desktop.

2. Click the mouse anywhere on the screen where you

would like a point, then click on either POS or NEG to

select that point’s charge. Continue inputting points like

this until you have as many as you like. A quick demo is

two points—one positive and one negative—a distance

from each other on the screen.

Having chosen your points, press [Alternate] to

plot in GRID mode, [Shift] to plot in point-point mode.

Try both to see the difference. During the actual plot¬

ting—or when finished, you may restart by pressing

[Shift], or exit the program by pressing [Control].

MAG21 works in all resolutions but is flashiest in low-

res. On color monitors, the program will color-cycle at

the end of point-point mode.

STakt, the ST Quarterly 35 Summer, 1986

TRACKING
THE ELUSIVE

GDOS
THOSE MISSING METAFILES

by Tim Oren

A valuable examina¬

tion of GDOS and

metafiles by the pro¬

grammer who helped

write the GEM system.

Discover why Atari's

"color Mac" is currently

incapable of using multi¬

ple fonts. Never heard of

GDOS? Read on.

An important chunk of GEM

was left out of the Atari ST

when TOS was placed in ROM.

It’s called GDOS, and its absence is the

reason your ST does not have multiple,

Macintosh-like fonts. But GDOS (Graph¬

ics Device Operating System) can be

added to your system, and with its

associated “metafiles,” you may output

identical images to'such diverse periph¬

erals as the screen, printers, cameras,

and more. GDOS was first used for the

ST in Easy Draw, from Migraph. An of¬

ficial version should be available from

Atari soon.

In theory, a fully implemented GEM

system utilizing metafiles permits,

among other things, graphic output to

various peripherals at the highest resolu¬

tion of which the peripheral is capable.

For example, a metafile, creating a pic¬

ture image on a medium-resolution

screen, will take advantage of the high¬

est matrix density of a graphics printer.

The same picture may also be output to

a plotter or camera. Again, much of this

is “in theory.” Digital Research has yet

to complete full implementation of all

capabilities of GDOS—and its related

OUTPUT.PRG application. But some of

the abilities are currently available for

the ST. Let’s take a closer look.

TOS STRUCTURE

To understand the role of GDOS on the

Atari ST, let’s look at the system soft¬

ware (TOS) which already exists in

ROM. (See figure I.) There are two sec¬

tions: GEMDOS, which handles disk

and keyboard input and output, and

GEM, which manages the mouse and

on-screen graphics and windowing.

GEMDOS has three parts. The BIOS^

STart, the ST Quarterly 36 Summer, 1986

mm &

TRACKING

(Basic Input/Output System) handles

hardware level interaction, such as get¬

ting a single character from the key¬

board or reading a sector from a floppy

disk. The XBIOS (Extended BIOS) con¬

tains hardware level calls peculiar to the

ST, such as setting palette registers and

configuring the sound chip. The BDOS

(Basic Disk Operating System) handles

disk interactions at the logical level, such

as creating, writing, and reading files.

The GEM portion of TOS, with

which we will be the most concerned, is

first is the VDI(Virtual Device Interface),

which handles graphic I/O functions

such as drawing lines and performing

bit-blit operations. (Bit-blit stands for Bit

Block Transfer, a technique of moving—

or copying—a block of pixels from one

place to another.) The AES (Application

Environment Services) performs logical

level screen actions, such as window

handling, drawing and processing di¬

alogs, and animating the menus. Finally,

the GEM Desktop application provides

the user’s window and icon interface to

The terms “virtual" and “device” in

the definition of VDI mean that it, in ef¬

fect, creates a new graphics machine

which you can program instead of writ¬

ing directly to the graphics screen your¬

self. The “VDI machine” is able to create

lines and circles, write graphics text, blit

portions of the screen, and so on. An

application which uses only VDI calls to

create graphics should work on any ma¬

chine which uses GEM, or on any device

attached to the ST for which a VDI

driver has been written. By accepting

this restriction, a developer gains por¬

tability for his or her program, and lever¬

age for his or her efforts.

ST'S ABSENT GDOS

On most GEM machines, the VDI con¬

sists of three parts: fonts, drivers, and

GDOS. Fonts define various styles and

sizes of characters which can be written

on an output device. A driver is the

piece of code which implements the VDI

machine for a particular output device.

The GDOS is the device-independent

part of the VDI, which (among other

things) sends an application’s VDI calls

to the correct output device.

However, there is currently a problem

in using this method with the Atari ST.

The VDI as implemented in the ST’s

ROMs includes only a single device

driver and set of fonts. The driver in¬

cludes code for all three resolutions of

the ST’s graphic screen, and there are

two font sizes defined for each resolu¬

tion. The parts missing from the ROMs

are the GDOS and VDI drivers for other

devices, such as printers.

Because the GDOS is missing, a

GEM program on the ST loses the de¬

vice independent capabilities of the VDI.

Specifically, it is unable to load new

drivers or fonts, or to use the NDC

(Normalized Device Coordinate) scaling

system to draw pictures. The lack of a

GDOS leads to several problems for ST

also composed of three major parts. The the file system. developers and users. (We can point the

STart, the ST Quarterly $8 Summer, 1986

finger two ways here: Digital Research

did not deliver the GDOS code to Atari

soon enough, and, in any case, Atari did

not have enough room in their TOS

ROM to include it.)

Since VD1 graphics cannot be written

directly to a printer, programs are forced

to do bit-by-bit printer dumps of screen

images, using specially written driver

code. Thus, a paint program like DEGAS

has to include a different driver for each

printer which might be hooked to the

ST. Worse, no other program can make

use of these drivers. Because there is no

standardized GDOS to define the driver

interface, each developer ends up wast¬

ing a good deal of time.

A second problem is the loss of abil¬

ity to load fonts. Although there is a way

to force the ST screen driver to accept a

different font (see sidebar), the standard

GDOS load and unload font commands

are not available. Also, since Digital Re¬

search purchased its original fonts from

an outside source, the GEM developer’s

software has never included a Font Edi¬

tor. These two problems have so far pre¬

vented the creation of a wide variety of

fonts on the ST, such as has occured on

the Macintosh.

Fortunately, a GDOS has been

written for the ST by Digital Re¬

search, and should soon become

available to developers. As of April 1986,

Atari is testing a final version of the

GDOS software. Already one product

which incorporates the GDOS, Easy-

Draw from MiGraph, has been released.

(Developers should be warned, however,

that the GDOS shipped by MiGraph is a

preliminary version which may contain

bugs in functions not actually used by

Easy-Draw).

The GDOS for the ST is shipped as

a loadable program, GDOS.PRG, which

is placed in the AUTO folder to be run

at boot time. The GDOS is a terminate-

and-stay-resident program which means

that once it is loaded it returns control

(but not consumed memory) to the OS.

When it is run, it places a pointer to it¬

self in the 68000’s TRAP 2 vector, sav¬

ing the previous value, which is the

vector to the VD1 and AES. When an

application is running, all TRAP 2 calls

are screened by the GDOS, which proc¬

esses functions that it recognizes and

passes others on to the AES and ROM-

resident VDI code.

ASSIGN.SYS

When it is first run, GDOS also reads

a file named ASSIGN. SYS (see figure 2).

This file tells the GDOS which drivers

and fonts should be loaded into RAM for

all programs to use. (This loading sub¬

tracts from the RAM available for your

applications to run.) The exact format of

ASSIGN. SYS is described in the VDI

manual. For our purposes it suffices that

it associates numeric device IDs with

their driver filenames and font files.

It is useful to know a few of the stan¬

dard device IDs. The value one (1) is al¬

ways associated with the screen. Device

ID 21 is the printer, if one is installed.

Device ID 31 is for a metafile driver,

which will be described later. A device

ID must used with the open workstation

v_opnwk VDI call, so that the GDOS

can tell which physical device you want

to address.

Notice, by the way, that you do not

need to open the screen as a worksta¬

tion if you are using the AES. The AES

automatically initializes the screen work¬

station at boot time, and returns its han¬

dle as a result of the graf_handle call.

Your application then uses this handle as

an input to the v_opnvwk VDI call,

which opens a VIRTUAL workstation for

your use.

This is a good point to define the dif¬

ference between a physical workstation

and a virtual workstation. The physical

VDI workstation is associated directly

with the device itself, so only one phys¬

ical station can be open for any one de¬

vice at a time. A virtual workstation is a

software construct which is associated

with the physical workstation, but saves

an independent set of VDI parameters

such as line thickness, writing mode,

text style, and so on. Using the virtual

workstation method, your application,

the desk accessories, and the AES itself

can all write to the display screen via its

physical workstation, but without de¬

stroying each other’s VDI parameter

settings. ►

FIGURE 2.

SAMPLE ASSIGN.SYS FILE
Olp SCREEN.SYS

IBMLSSIO.FNT

IBMLSSI4.FNT

IBMLSS18.FNT

IBMLSS36.FNT

21 FX80.SYS

EPSHSSIO.FNT

EPSHSS14.FNT

EPSHSS20.FNT

EPSHSS36.FNT

31 META.SYS

; ROM-resident screen driver

; Epson printer driver

; Metafile driver

STart, the ST Quarterly JQ Summer, 1986

TRACKING... Returning to the ASSIGN.SYS

file, the driver filenames all

end with a SYS extention. For

example, FX80.SYS is a driver for an

Epson FX-80 printer, and META.SYS

is the metafile driver. The special name

SCREEN.SYS refers to the screen drivers

which are already present in the ST’s

ROMs.

Font files always have names ending

in FNT. One or more font files will be

associated with each driver. Fonts come

in a variety of styles and sizes, and the

file name usually describes the device,

style, and size of the characters it

contains. For instance, a file named

EPSHSS10.FNT contains a 10-point type

face for use with the Epson printer’s

high resolution mode.

Note that an application is not re¬

stricted to only those fonts named in the

ASSIGN.SYS file. When the GDOS is

present, the application can also use the

vst_load_fonts VDI call to bring addi¬

tional font files into RAM from the disk.

It can then use set_font to switch to the

alternate typeface. However, fonts loaded

in this manner are only available to the

application which called them; they will

disappear when the program terminates.

Using the GDOS and alternate driv¬

ers, your program can write to devices

such as the printer using the same

graphics commands that work on the

screen: lines, circles, text, and so on.

However, bit-blit operations only work

with the screen and internal RAM of the

ST. To create a bit image on the printer,

you must first store the image in a file

and then use the VDI’s Output Bit Image

File v_bit_image command to write the

file to the output device.

In many cases, the device driver

builds a bit-by-bit image of the printed

page in memory, and you will need to

use the update workstation call, v_

updwk, to force output to actually

begin, and then the clear workstation

function, v_clrwk, to advance to a

new page. The output window function,

v_output_window, is also available

if you need to force only a part of the

picture to the printer.

METAFILES

It is the metafile driver, however, which

has the most interesting implications for

ST developers. To understand the defini¬

tion of a metafile, recall the notion that

the VDI creates a virtual graphics en¬

gine, which is driven by commands sent

by the application via the VDI bindings.

In these terms, a metafile is simply a re¬

cording of the commands which created

a given picture. By “replaying” these

commands with a suitable program, you

can generate a copy of the picture on

any VDI output device.

Such a program is provided with the

GDOS distributed by MiGraph and Digi¬

tal Research. It is a full-fledged GEM

application called OUTPUT. PRG, which

you may invoke from the Desktop. If

your application simply needs a method

to create graphics which may be re¬

played for any device, this stock pro¬

gram should suffice. Unfortunately, due

to bugs in the shell_write call, there is

currently no reliable way to invoke

OUTPUT.PRG from an application.

A GEM application generates a meta¬

file by opening a physical workstation

with the metafile device ID 31. By de¬

fault, the metafile will be named GEM-

FILE. GEM, but you can change this by

executing a vm_filename command im¬

mediately after opening the metafile

workstation. From this point on, you

can use most Control, Output and At¬

tribute VDI functions with the worksta¬

tion, (see figure 3). Note that, like a

printer, a metafile can only accept bit

image data if it is provided in a file.

The metafile commands are accumu¬

lated in a buffer and written to the disk

when the buffer is filled. Closing the

metafile workstation forces the contents

of the buffer to the disk and closes the

metafile.

IMPLICATIONS

Useful though the “playback” ability of

the metafile may be, it has greater im¬

plications for those writing applications

which do on-screen graphics editing.

Consider a standard “Paint” type ap¬

plication, such as DEGAS or Neo¬

chrome. When such a program

generates a square or circle on the

screen, it becomes a mere collection of

bits. There is no way, short of erasing

and redrawing, to change the size or

shape of the object once it has been

drawn.

Let’s extend the notion of metafile to

solve this problem. If the metafile is a

copy of the instructions which drive the

VDI engine to create a particular picture,

then you can equally well store this se¬

quence within the program’s memory.

This allows you to edit the commands,

rather than the bits generated. This

technique is the origin of “Draw” type

graphics programs, which allow the fig¬

ures on the screen to be manipulated as

objects rather than images.

In such a program, the objects on

screen are typically equipped with “han¬

dles” which may be moved using the

mouse to redefine the location and size

of the figure. You can also edit such at¬

tributes as color, line type and size, and

fill pattern. In each case, the user’s ac¬

tion results in a modification of the

stored VDI command sequence, which is

then replayed in whole or part to re¬

generate the picture on the screen. In

most of these programs, you can also

group sets of drawing objects, which

may then be scaled and edited together.

Beyond simple screen editing, many

other types of programs are made possi¬

ble with the concept of graphical objects.

For instance, objects can be linked up to

fields or records of a database. The re¬

sult is a point-and-click information re¬

trieval system. This approach is best

STart, the ST Quarterly 40 Summer, 1986

VDI
METAFILE

COMMANDS
FIGURE 3.

exemplified by the Filevision package

available for the Macintosh. We have so far assumed that

the location, size, and shape

of the objects are under

user control. If these values are instead

determined by the program, we get an¬

other family of applications.

When the values are computed from

underlying data, the result is a data

graphing application. Such a grapher

might also allow you to manipulate han¬

dles on the objects forming the graph,

and cause a change in the related values.

You could also write a program

which would relate each object’s loca¬

tion, size, and shape to those of the

other objects on the screen. For in¬

stance, you might force two lines to lie

parallel, or to be of equal length. Such

“constraint based” graphics editors are as

old as Ivan Sutherland’s original Sketch¬

pad program, and are available in some

CAD packages, but have yet to appear

on machines of the ST’s size and price.

As a final idea, consider a program¬

ming language which would include

graphic objects in its command set and

workspace. In such a language, you

could write routines to compute objects’

appearances as the result of a simula¬

tion. The results might range from

simple animation sequences, such as

a bouncing ball, to very complex situ¬

ations like a rendezvous with a space

station.

Whatever the application envisioned,

a program which uses graphic objects

must be able to read as well as write

metafiles, because that is the format

in which graphical commands will be ►

OPCODE SUB-OPCODE VDI CALL FUNCTION

3 - v_clrwk Clear Workstation

4 - v_updwk Update Workstation

5 2 v_exit_cur Exit Alpha Mode Escape

5 3 v_enter_cur Enter Alpha Mode Escape

5 20 v_form_adv Advance Form

5 21 v_output_window Output Window

5 22 v_clear_disp_list Clear Display List

5 23 v_bit_image Output Bit Image File

6 - v_pline Polyline

7 - v_pmarker Polymarker

8 - v_gtext Graphic Text

9 - v_fillarea Fill Area

11 1 v_bar Bar

11 2 v_arc Arc

11 3 v_pieslice Pie

11 4 v_circle Circle

11 5 v_ellipse Ellipse

11 6 v_ellarc Elliptical Arc

11 7 v_ellpie Elliptical Pie

11 8 v_rbox Rounded Rectangle

11 9 v_rfbox Filled Rounded Rectangle

11 10 v_justified Justified Graphic Text

12 - vst_height Set Absolute Character Height

13 - vst_rotation Set Character Baseline Vector

14 - vs_color Set Color Representation

15 - vsl_type Set Polyline Type

16 - vsl_width Set Polyline Line Width

17 - vsl_color Set Polyline Color Index

18 - vsm_type Set Polymarker Type

19 - vsm_height Set Polymarker Height

20 - vsm_color Set Polymarker Color Index

21 - vst_font Set Text Face

22 - vst_color Set Text Color Index

23 - vsf_interior Set Fill Interior Style

24 - vsf_style Set Fill Style Index

25 - vsf_color Set Fill Color Index

32 - vswr_mode Set Writing Mode

39 - vst_alignment Set Graphic Text Alignment

104 - vsf_perimeter Set Fill Perimeter Visibility

106 - vst_effects Set Graphic Text Special Effects

107 - vst_point Set Character Height, Points

108 - vsl_ends Set Polyline End Styles

112 - vsf_updat Set User-defined Fill Pattern

113 - vsl_udsty Set User-defined Line Style Pattern

114 - vr_recfl Fill Rectangle

129 - vs_clip Set Clip Rectangle

STart, the ST Quarterly 41 Summer, 1986

TRACKING...

USING
FONTS
WITHOUT
GDOS
The following technique will let you

load and use alternate fonts without

using GDOS. Your font must be in the

standard format (including header) as

defined in the VDI manual. Either com¬

pile the font into your application, or load

it from a file at run time.

Instead of doing the normal vst_load

_fonts call, you will alter your applica¬

tion’s control array directly. Control

stored. This requires a more detailed un¬

derstanding of their format, because the

VDI does not provide an input function.

The definitive document on metafile for¬

mat is currently the GEM VDI manual,

but the following paragraphs should pro¬

vide enough information to allow you to

do some exploration.

STRUCTURE

The metafile is composed of a header

followed by an arbitrary number of com¬

mands. Each command consists of at

least four words, and is generated by one

of the functions given in the table in fig¬

ure 3. The first word in the four is the

command opcode. The second word is

the number of vertices in the command.

This field is used with the polyline and

polymarker commands, for instance.

The third word is the number of integer

parameters required for the command.

The fourth word is the sub-opcode,

when it is required. If any of the last

three fields are not used for the com¬

mand, they are forced to zero.

words 7 and 8 must be a 32-bit pointer to

the font. Control words 10 and 11 are a

32-bit pointer to a scratch buffer which

will be used by the VDI when doing spe¬

cial effects such as bold or italics. Control

word 9 must be set to the length in words

of this buffer. The buffer should be at

least four times the size of the largest

character in the font.

After setting up the control array, you

should be able to select the font using the

set_font function. When you are done

with the font, or with your program, do a

regular vst_unload_fonts call so the

VDI doesn’t continue to think the font is

available.

(Thanks to John Feagens of Atari for

this information.)

Immediately following the required

four words are the vertices, if any were

specified. This is an image of the ptsin[]

binding array associated with the VDI

function which created the command.

After the vertices, the integer param¬

eters, if any exist, are written. They are

an image of the intin[] binding array.

The close workstation command

forces a final single word command to

be written at the end of the metafile. It

is a word of all ones (hexadecimal

FFFF).

The standard metafile header consists

of 14 words. Only the first four are re¬

quired. The first word is a tag value,

again hexadecimal FFFF. The next word

is the length of the header in words. The

third word is a version tag, and the next

word shows whether the metafile work¬

station was opened for Raster Coordi¬

nates (RC), or Normalized Device

Coordinates (NDC).

The remaining entries in the header

provide information which will help

OUTPUT. PRG when it attempts to re¬

generate the drawing on another device.

You may set them using VDI calls after

opening the metafile workstation. If they

are not set, they are filled with zeros,

and OUTPUT will use default values to

generate the display.

The first four optional values define

(in order) the minimum and maximum

X and Y coordinates to be found in the

metafile. This allows OUTPUT to bound

the space in which graphics will appear.

Your application may set these values

with the v_meta_extents call.

The next two words in the header are

the physical page size on which the

graphic should be reproduced. The units

are tens of millimeters, and the values

are given in width-height order. While

Appendix H of the VDI manual de¬

scribes this call, there is no standard

binding provided, so you will have to

write your own if you wish to use it. If

you do not set this value, OUTPUT will

do its best to fit the drawing onto the

target device, using the assumption that

its pixel elements are square.

The final four words in the header

may be used to define the coor¬

dinate space for the metafile.

They contain, in order, the X and Y co¬

ordinates of the lower left corner of the

drawing area, and the X and Y values of

the upper right corner. These values are

mapped onto the drawing area as de¬

fined in the last paragraph. Again, there

is no standard binding for this function,

but it is described in the VDI appen¬

dices. If the information is omitted,

OUTPUT will use a default raster or

STart. the ST Quarterly 42 Summer, 1986

normalized coordinate space, depending

on how the metafile was opened.

As a last refinement, consider the

v_write_meta VDI function. This

works only with metafiles, and allows

you to insert commands of your own

definition into the metafile. This ca¬

pability could be useful, for instance, in

establishing the data/object relationships

in the applications proposed earlier.

If you use this ability, you must avoid

sub-opcodes 10, 11, 50, 51, and 81,

which are used by Digital Research’s

GEM Draw program. These codes are

given special handling by OUTPUT;

their functions are defined in the VDI

appendices should you wish to use

them. With these exceptions, OUTPUT

will ignore commands inserted with

v_write_meta, since it has no idea how

they should be interpreted. You may also

encounter problems if the metafile is

later edited using a graphics program

which does not understand your special

commands. In most cases, the informa¬

tion will be lost in the editing process.

In this article, I have tried to show

how GDOS and metafiles fit into the

framework of the ST’s software, and how

they can be used to avoid wasting effort

on rewriting of device drivers. If more

applications appear which use the

GDOS, it should encourage manufac¬

turers of printers and other peripherals

who want to sell to the Atari market to

write drivers compatible with GDOS.

This can save us all time which can be

better spent on programs that stretch

the abilities of the ST. ■

REFERENCE:

• Smalltalk-80: The Language and its

Implementation, by Adele Goldberg

and David Robsen, Addison-Wesley

Publishing Company, Menlo Park, CA

• Sketchpad: A Man-Machine Graphical

Communication System, by Ivan E.

Sutherland, Proceedings - Spring Joint

Computer Conference, 1963,

pp. 329-346.

• The Programming Language Aspects of

Thinglab, a Constraint-Oriented Simu¬

lation Laboratory, by Alan Borning,

ACM Transactions on Programming

Languages and Systems, 3:4, October

1981, pp. 353-387.

EASY-DRAW
irSATOOLNOTAM

There is a difference between paint
r* jfe and draw programs. Paint programs

//ytf/ are ^creational packages that
•; a**ow freeform painting on a dot-by-

dot basis. With each new stroke you
obliterate everything you cover. And

erasing permanently removes everything
you’ve created.

An object-oriented drawing program like
Easy- Draw is a versatile, powerful tool you use to
create business graphics, presentation
materials, line drawings complex
illustrations on a figure-by-figure /y1V\
basis. It lets you: lay down yX VbSlr s
solid or transparent t /wsY/fo/ S.
figures to build vX

composite drawings • size, move and manipulate
objects individually and collectively • use a grid
system for controlled, precise scale drawings
• produce print- outs with accuracy
exceeding your screen images f \—n.
• create custom drawings easily. yXMj'jy? inyited
Ask your dealer for
Easy- Draw, the drawing n

easy*
Draw

720 S. 333rd St., Suite 201
I" Federal Way, WA 98003
1 (206)838-4677

XhyMlGRdPH,

STart, the ST Quarterly 43 Summer, 1986

PRACTICAL
SOFTWARE
FOR THE
NON DEVELOPER
JUST HOW USEFUL IS THE ST?

by Jack Powell
ASSOCIATE EDITOR

When it comes to everyday

applications—word proc¬

essing, spreadsheets and

databases—how practical is the ST?

The 520ST has been available for almost

a year and there is no longer any ques¬

tion of support from a growing list of

software producers. But what programs

actually transform this 68000-based

bargain box into a viable, practical tool?

START examined practical ST prod¬

ucts in three major categories: word

processors, databases and spreadsheets.

Synopses by category and by product are

based on the opinions of START editors,

plus those of several outside reviewers

who tested these products for Antic

magazine. ST programming languages

are also examined as they are the tools

by which “practical” products are

created.

ILLUSTRATIONS BY MACIEK ALBRECHT

If a product was reviewed in Antic,

we include the date of the review. Prod¬

ucts marked “FINAL” are currently avail¬

able. To indicate the future direction of

practical ST software, we have included

announced products, labeled “PRESS,”

for press release. Unless otherwise

noted, all editorial commentary is made

on products which are in final release

state and have been submitted for re¬

view. If a product is copy protected, it is

so noted. START welcomes comment

and rebuttal from both users and

manufacturers.

AN OVERVIEW

ST word processors range in price from

$145 to absolutely free. At the high end,

Final Word, from Mark of the Unicorn,

is the only really full-featured word

processor currently available. But it is a

throwback to the mainframe systems

STart, the ST Quarterly 44 Summer, 1986

and unforgivably complicated on a ma¬

chine designed for friendly interface. At

the other price extreme, 1ST Word, from

Atari, is more in the ST style. It is

mouse driven, has plenty of GEM win¬

dows and bright graphics, but it doesn’t

support such elementary print com¬

mands as line spacing. Verdict: the Atari

ST still lacks a powerful, up-to-date

word and document processor that takes

advantage of the machine’s architecture.

Users of dBase II/III will be right at

home on the ST. With both H & D

Base, from Mirage Concepts, and

dBMAN, from VersaSoft, on hand, many

currently available dBase II/III programs

may be ported directly to the Atari ST.

Those who find dBase-type databases

unnecessarily complex may prefer the

simplicity of DB Master One, from Atari.

It is not, however, relational and has

very limited report capabilities. Again,

the former programs are all-text, IBM

clones, while the latter is simple and

uses friendly GEM. ST owners are still

waiting for such friendly powers as

R:base 5000 or Framework.

What? Only two spreadsheets? That’s

right. Early press releases from several

companies touted Lotus 1-2-3 clones

they were preparing for the ST. Only

VIP came through with a product. The

pattern continues here: the all-text,

powerful VIP, and the simpler, GEM-

based A-Calc.

Languages are included in this over¬

view to show that tools exist to create

new software. There are plenty of lan¬

guages for the Atari ST. Unfortunately,

all are primarily designed for developers.

Currently, no languages are available for

the hobbyist or casual user. ST LOGO

and ST BASIC are hopelessly clumsy.

The remaining languages are compilers,

most with complicated linking pro¬

cedures and numbing compile and link

time. The ST desperately needs a lan¬

guage that is fun to use, like Turbo Pas¬

cal, or ACTION! on the 8-bit Atari’s.

WORD PROCESSORS

1ST Word

Atari Corp., 1196 Borregas Avenue,

Sunnyvale, CA 94086,

(408) 745-2000

Free

FINAL

This fully GEM-based word processor—

which is bundled with the 1040ST and

520ST—is currently the best, entry-

level, GEM-based word processor. It also

1

works nicely as a programmer’s text edi¬

tor. Limitations in print formatting fea¬

tures—including the inability to print in

anything other than single-space—de¬

tract from this otherwise excellent prod¬

uct. Any company planning to charge

money for a word processer has stiff

competition here. Not copy protected.

(Antic review 6/86)

Final Word

Mark of the Unicorn, 222 Third

Street, Cambridge, MA 02142,

(617) 576-2760

$145.00

FINAL

A thorough—but pricey—text-oriented

word processor/document processor. De¬

scribed by our reviewer as a clone of the

IBM PC Perfect Writer, this is an entirely

command-driven word processor with

no GEM interface. The program, which

uses virtual memory, is packed with fea¬

tures including multiple-buffers. It was

found to be powerful, but difficult to

learn. The documentation, as well as the

program, reflects the fact that Final

Word was a straight port from IBM and,

in many cases, does not take advantage

of the ST’s individuality. Copy protected.

(Antic review 4/86)

Let’s Write

Mark Williams, 1430 W. Wrightwood,

Chicago, IL 60614, (312) 472-6659

$99.95

FINAL

Essentially, this is Micro EMACS with

word-wrap—which is familiar to most

ST developers since it was provided, in

one form or another, with the ST devel¬

oper’s package. (EMACS was a popular

programmer’s text editor on mainframe

systems.) Let’s Write is an entirely com¬

mand-based program that is obviously a

throwback to the Unix mainframe sys¬

tems. The package includes a spell

checker, and the Kermit telecommunica¬

tions module (which was also supplied

with the developer’s kit). Not copy

protected.

HabaWriter

Haba Systems, 6711 Valjean Avenue,

Van Nuys, CA 94106, (800) HOT

HABA (US), (800) FOR-HABA (CA)

$74.95

FINAL

HabaWriter was the first GEM-based

word processor for the ST. Ian Chad¬

wick, who reviewed it for Antic, found

version 1.0 to be buggy and mostly

unusable. Since then, Haba has released

version 1.1, which has not yet been eval¬

uated. Copy protected. (Antic review

3/86) ►

•2 c

STart, the ST Quarterly 45 Summer, 1986

SOFTWARE...
Express

Mirage Concepts, 4055 W. Shaw, #8,

Fresno, CA 93711, (800) 641-1441

$49.95

FINAL

Express is a “letter processor,” limited in

word processing capabilities and de¬

signed primarily for simple letter output

with mailmerge. This was the first word

processor available for the ST and, as

such, was roundly—and unfairly—con¬

demned by the new ST community. Ex¬

press is not really a word processor but

is designed as an easy-to-use letter de¬

signer with simplified mailmerge system.

As such, it works fine. Not copy pro¬

tected. (Antic review 1/86)

HomePak

Batteries Included, 30 Mural Street,

Richmond Hill, Ontario, CANADA

L4B 1B5, (416) 881-9941

$69.95

PRESS

Integrated word processor, terminal pro¬

gram, and database fashioned after the

popular 8-bit program of the same name

by Russ Wetmore. Batteries Included

plans to have this product on the market

by June 1986.

ST Writer

Atari Corp., 1196 Borregas Avenue,

Sunnyvale, CA 94086,

(408) 745-2000

Free

FINAL

John Feagans and a team of Atari pro¬

grammers got fed up waiting for a word

processor to come out for the early ST’s.

So they re-wrote the code of the 8-bit

Atari Writer program and got it up and

running on the ST (all in two weeks, it

is rumored). The program can currently

be found on CompuServe and in several

user’s group libraries. We use this pro¬

gram in-house, partly because it can

adapt to most of the many incompatible

text formats available on the ST.

DATABASES

H & D Base

Mirage Concepts, 4055 W. Shaw,

Fresno, CA 93711, (800) 641-1441

$99.95

FINAL

A dBase II clone (80% compatible). The

first “serious” available ST database.

Fashioned after dBase II, H & D Base

can use dBase II command programs

ported from other machines. Also, most

of the many dBase II books found in

stores will apply to this program. Inter¬

estingly, since H & D Base was written

in Forth, the programmers have left in a

command to “turn on” the Forth kernel

so you can program in Forth as well as

H & D Base. In April 1986, some bugs

were being ironed out of the first re¬

leases, but customer support seems to

be excellent. Not copy protected. (Antic

review 7/86)

dBMAN

VersaSoft, 723 Seawood Way, San

Jose, CA 95120, (408) 268-6033

$149.95

FINAL

dBMAN is currently the only available

relational database for the ST which is

compatible with both dBase II and

dBase III. The final package arrived in

our offices in April 1986, too late for re¬

view. An introductory price of $99.95

will be offered until July 1st. Not copy

protected.

DB Master One

Atari Corp., 1196 Borregas Avenue,

Sunnyvale, CA 94086,

(408) 745-2000

$49.95

FINAL

This easy to use, non-relational, GEM-

based database was packaged with the

ST during December, 1985. DB Master

One is an excellent “simple” database. It

is very fast and easy to use with limited

reporting capabilities and field types.

Stoneware plans on releasing packages

that will increase the complexity of this

database. In the meantime, this is a very

good package for organizational uses.

Not copy protected. (Antic review 6/86)

Zoomracks

Quickview Systems, 146 Main Street,

Los Altos, CA 94022,

(415) 965-0327

$79.95

FINAL

Zoomracks is an oddity. Based on the

structure of rack cards (such as “punch-

in” time cards), this program is more a

data organizer than a true database.

Currently there are no mathematical ca¬

pabilities. The card rack metaphor

would seem an excellent use of GEM,

but Zoomracks is another IBM PC port

which does not use GEM. The screen

has a cluttered appearance. The success

STart, the ST Quarterly 46 Summer, I486

or failure of this product will depend

upon the willingness of ST owners to

adapt to its unusual metaphor—assum¬

ing that metaphor works. Not copy pro¬

tected. (Antic review 6/86)

Hippo Simple

Hippopotamus Software,

985 University Avenue, Suite 12,

Los Gatos, CA 95030, (408) 395-3190

$49.95

FINAL

An “easy to use” home database, found

by our reviewer to be frustrating and

confusing—mainly because of the poor

documentation. Version 1.0 seemed to

“have been rushed to market a little too

quickly.” Copy protected. (Antic review

3/86)

The Manager

BMB Compuscience Canada, 500

Steeles Avenue, Milton, Ontario L9T

3P7, Canada, (416) 876-4741

$169.95

PRESS

The Manager is allegedly the power¬

house relational database system ST

owners are waiting for. Its firm de¬

scribes it as a “paperless office”. The im¬

plication here is that this product will

eliminate the need for paper in your of¬

fice. Well... we’ll see. The product was

first demonstrated at the November

1985 COMDEX in Las Vegas. It looked

pretty impressive—but still no GEM.

db One

Oxxi, 3428 Falcon Avenue, Long

Beach, CA 90807, (800) 453-4900

$59.00

PRESS

A relational database which is promised

to include mailing list, labeling, check¬

book, and inventory.

SPREADSHEETS

VIP Professional

VIP Technologies Corp., 132 Aero

Camino, Santa Barbara, CA 93117,

(805) 968-4045

$179.95

FINAL

VIP Professional is allegedly compatible

with Lotus 1-2-3, and is currently the

only full-featured, heavy-duty spread¬

sheet for the ST. This product tumbled

through some rough PR waters during

its release and is still suffering from a

legal fight between parent company, VIP

Technologies, and Shanner International,

the marketing firm hired by VIP to

launch their product. Originally prom¬

ised—and advertised—as a GEM prod¬

uct with windows, the “mouse" version

of VIP had not yet appeared in April

1986. The Antic reviewer found this to

be a good product—if a little slow. Antic

also recommended any buyer contact

VIP and be sure of full customer support

before purchase is made. Copy pro¬

tected. (Antic review 5/86)

A-Calc

The Catalog, 524 Second Street,

San Francisco, CA 94107,

(800) 443-0100 Ext. 133

$59.95

FINAL

A-Calc is a GEM-based spreadsheet cre¬

ated in Great Britain which holds 256

columns and 512 rows. This mouse-

driven spreadsheet is easy to use, but

not as complete as a Lotus 1-2-3 system.

Not copy protected.

LANGUAGES

MegaMax C

Megamax, Box 851521, Richardson,

TX 75085, (214) 987-4931

$199.95

FINAL

Full, one-pass C compiler with editor

and “smart” linker. Arguably the finest C

compiler available for the ST, this pack¬

age is currently crippled by a 32K array

dimension limit and a 32K code limit.

These limitations—which the company

promises to repair—are imposed by the

Macintosh OS, from whence this system

was ported. Compile and link time is

extremely fast and end code is relatively

small. In most cases, MegaMax C is

compatible with Alcyon C. The price,

however, is pretty hefty. For another

$100, you could get the developer’s

kit—and all the GEM documentation.

Not copy protected.

Metacomco Lattice C

The Catalog, 524 Second Street,

San Francisco, CA 94107,

(800) 443-0100 Ext. 133

$149.95

FINAL

A complete development C. Lattice C is

the industry standard C and currently

the only commercially available ST C

which is at least as complete as Alcyon

C in the developers toolkit. Its linker, ^

STart, the ST Quarterly 47 Summer, 1986

SOFTWARE...
however, is not completely compatible

with Alcyon’s. Not copy protected.

GST-C

The Catalog, 524 Second Street,

San Francisco, CA 94107,

(800) 443-0100 Ext. 133

$79.95

FINAL

This C implementation is easy to use

and includes a 1ST Word-type editor

and GEM shell. An added bonus is the

excellent “superstructure library” which

simplifies many GEM commands much

like OSS’s Personal Pascal. Major short¬

coming: no floating point and uses same

link as Lattice C which, therefore,

makes it incompatible with Alcyon C.

Not copy protected.

Haba Hippo-C

Haba Systems, 6711 Valjean Avenue,

Van Nuys, CA 91406, (800) HOT-

HABA (US), (800) FOR-HABA (CA)

$59.95

FINAL

You get what you pay for when you buy

Haba Hippo C, the least expensive of

available ST C’s . It does not support

floating point arithmetic and contains a

number of compatibility problems, many

due to its UNIX-like shell called HOS.

Few ST-specific C programs written in

the developer’s Alcyon C will compile

properly in Hippo-C. Unfortunately, this

was the first commercially available C

for the ST market and a lot of owners

snapped it up. Copy protected. (Antic

review 2/86)

Personal Pascal

Optimized Systems Software, 1221-B

Kentwood Avenue, San Jose, CA

95129, (408) 446-3099

$74.95

FINAL

Personal Pascal is the closest thing to a

friendly language that currently exists for

the ST. It is also one of the only lan¬

guages to include detailed documenta¬

tion on how to access and use the

complex GEM VD1 and AES commands.

In another first, its editor actually in¬

cludes an auto-indent feature, helpful in

structured program formatting. From ex¬

perience, we can add that any product

purchased from this company includes

excellent customer support. Not copy

protected. (Antic review 5/86)

a-a

Metacomco Pascal

The Catalog, 524 Second Street,

San Francisco, CA 94107,

(800) 443-0100 Ext. 133

$99.95

FINAL

A full, ISO 7185 standard which com¬

piles to native code. Not copy protected.

Modula-2/ST

TDI Software Ltd., 1040 Markison

Road, Dallas, TX 75238,

(214) 340-4942

$149.00

FINAL

Created by Professor Niklaus Wirth, the

inventor of Pascal, ST owners are truly

lucky to have an opportunity to try this

new language. Our reviewer found this

to be a generally solid implementation of

the language, though with weak docu¬

mentation (particularly of the GEM sys¬

tem), and clumsy user interface. Not

copy protected. (Antic review 5/86)

H & D Forth

Mirage Concepts, 4055 W. Shaw,

#108, Fresno, CA 93711,

(209) 227-8369

$39.95

FINAL

An 83-standard Forth with access to all

GEM commands as well as BIOS and

XBIOS commands. Holmes & Duck¬

worth used this Forth for in-house de¬

velopment of such products as H & D

Base. This is a “best buy” for ST Forth

programmers. It deviates from 83-stan-

dard in that the stack is 32-bits wide, so

there are no double words, and multiple

dictionaries are not allowed. Otherwise,

H & D Forth is very thorough and rea¬

sonable. Remarkably, no royalties need

be paid for professional development

with this product. Not copy protected.

(Antic review 6/86)

4xForth

The Dragon Group, 148 Poca Fork

Road, Elkview, WV 25071,

(304) 965-5517

$99.95

FINAL

An 83-standard developer’s Forth which

includes limited multi-tasking capabili¬

ties. 4xForth was the first commercially

available language for the ST (not count¬

ing developer’s C and LOGO). Customer

support seems to be excellent with this

company. By April 1986, however, free

STart, the ST Quarterly 48 Summer, 1986

Forths are beginning to appear in public

domain, and H & D Forth certainly

seems a comparative value. Not copy

protected. (Antic review 12/85)

Cambridge LISP

Metacomco, 26 Bristol Square, Bristol,

United Kingdom BS2 8RZ

$199.95

PRESS

This is the only LISP currently planned

for ST. After some delay, Metacomco still

plans releasing this language for the ST.

You can expect it late summer or early

fall.

DevPacST

HiSoft, 180 High Street North,

Dunstable Beds, United Kingdom

LU6 1AT, (0582) 696421

$79.95

FINAL

A complete assembler-editor system.

(See Christopher Chabris review, this

issue of START.) Not copy protected.

A-Seka

The Catalog, 524 Second Street,

San Francisco, CA 94107,

(800) 443-0100 Ext. 133

$39.95

FINAL

A high-speed, fully RAM-based as¬

sembler with debugger. (See Christopher

Chabris review, this issue of START.)

Not copy protected.

GST-ASM

The Catalog, 524 Second Street,

San Francisco, CA 94107,

(800) 443-0100 Ext. 133

$59.95

FINAL

GEM-based assembler/editor. (See

Christopher Chabris review, this issue of

START.) Not copy protected. ■

DISCOUNT SOFTWARE

M III 37 S. Broad St.
PP7*^ Fairborn, Ohio 45324

ORDERS ONLY PHONE:1-<800)-282-0333

E EBSSSK? 1-15131-879-9699

ATARI 520 ST
PERSONAL COMPUTER SYSTEM

$6599
$839.95 with Color Monitor

The Atari 520 ST Comes Complete With:
ST LOGO'" and ST BASIC'" to create programs. ^

1ST WORD is the perfect wordprocessing package for all letter
and business writing

NEOchrome Sampler is a full-color painting program.

2nd Drive For Only $69.95 ms*
When you buy the complete 520 ST, SF 354 Drive ft Monitor System

TOP HITS
VIP Professional .
Haba Hippo C Compiler
ACCESS Loader Board
FIREBIRD The Pawn
FIREBIRD Starglidor
Temple ol Apshai Trilo£
EPYX Rogue
Winter Games
F 15 Strike Eagle

Master Type (Ages 6 *■)
Print Master.
Art Gallery I
Black Cauldron
Ballyhoo

IE ONLY - I
add $2 orders under $50. HARDWARE and all orders r
subject to additional freight charges. Add $5 for COD c
vice charge. Ohio residents add 5.5% sales ta*. Personal
No waiting whan paid by credit card, certified check or
ty and price change. WE CHECK FOR STOLEN VI
BY AN AUTHORIZATION NUMBER.

shipping via UPS in
quiring shipment vi
ders. VISA/MasteH

ProCopy
INTRODUCTORY OFFER

$2495 STKS5T
Regular $34.95 Offer ends July 31, 1986

Software can easily be damaged by heat, humidi¬
ty, magnetic fields, wear 8c tear or just dirt. The ex¬
posed surface of a disk can be affected by even a
touch. The best way to preserve your software is to
make backups. ProCopy provides the solution.

■ Duplicates virtually any protected disk.
■ Reasonable update policy available.
■ Protects against accidental loss of

expensive software.
■ Not copy-protected for your convenience.
■ ProCopy works on all Atari ST computers.

ORDER TODAY AT THIS REDUCED RATE
Send $24.95 (check or money order). VISA
8c MC accepted. Add $2.00 shipping 8c
handling in U.S. 8c Canada. Overseas ship-
ping 8c handling add $4.50. (*»&«*)
Atari ST Is a registered trademark of Atari Corp. IS-r^c.)

Available Only From

PROCO PRODUCTS
P.O. BOX 665

CHEPACHET, RHODE ISLAND 02814 USA
(401) 568-8459

STakt, the ST Quarterly 49 Summer, 1986

DISK INSTRUCTIONS

elcome to the START Disk Directory. All program

listings referred to in this issue are on your START

disk, which is provided in a special envelope bound

into the magazine. We recommend you read articles related to

the programs on the disk before attempting to run the pro¬

gram. If you just can’t wait, jump on down to FAST START. (If

you purchased the $4 version of START, without disk, you can

still purchase the disk by sending $10.95 for disk, plus $2.00

for postage and handling, to START DISK, 524 Second St., San

Francisco, CA 94107.)

Use a pair of scissors to open your disk envelope along the

outside vertical edge. Remove your START disk, place it in

your disk drive and click the disk icon to see its contents.

(Please refer to your ST owners manual if you are uncertain of

proper Desktop procedures.)

Your START disk contains six folders, each with programs,

listings and data related to its particular START article. A run¬

nable version of each program (usually recognized by its .PRG,

or .TOS extender) is included, along with all related source

code. Also, each folder contains a .BAT “batch” file specific to

its program. Detailed information on the batch files and pro¬

gram compilation is contained in README.TXT. All programs

were tested and compiled with developer’s Alcyon C on a

520ST with TOS in ROM.

The START disk is single-sided and very full. We recom¬

mend transferring programs you wish to try to another disk.

Desk Accessory programs with .ACC extenders must be trans¬

ferred from their folders and placed on a “boot” disk before

they will operate properly.

FAST START

Write protect your START disk before trying any programs.

Slide the disk tab until you see light through the little hole. To

be really safe, make a back-up copy of your disk.

COLRMOVR.STQ: Joe Chiazzese’s demonstration of 16-

color icon movement works only in low-resolution. Open the

folder and click on NEWMOUSE.PRG. Your screen will show a

karate character which may be moved with the mouse. Exit

the program by pressing [Esc]. NEWMOUSE.C is the C

source code; COEUTIL.S, the AL source code; KARATE.S, the

karate character bit image; and NEWMOUSE.BAT, the batch

file for compilation.

MAGNETS.STQ: David Small’s magnetic field line pro¬

gram will work in any resolution. Click on MAG21.PRG and

read the instructions in David’s article. MAG21.C is the C

source code of the program, and MAG21.BAT the batch file.

MIDISEQR.STQ: You’ll need a MIDI-compatible synthe¬

sizer for this. Hook up both input and output lines between

synthesizer and computer. Click on SEQUENCR.PRG to

run the program, then read Tom Jeffries’ article for

instructions. Two demonstration songs, ARABESQU.SNG and

ENTRTAIN.SNG, have been included, courtesy of

Micro-W Distributing, Inc. Please print (c)NOTICE to screen

or printer for important information. SEQUENCR.C is the

main source code and SEQUENCR.BAT the batch file.

PRNTDRVR.STQ: Tom Hudson’s program is a Desk

Accessory which must be transferred to a boot disk. It will

only work with TOS in ROM. Transfer INSTALL.ACC, and

any of the .PRT files which match your printer. We have

included four driver files: EPSON.PRT, for Epson printers;

PROWTR.PRT, for NEC/Prowriters; CGP220/PTR,

for the Radio Shack color printer; and OKI20C.PRT, for the

Okimate-20 color printer. Please note, the Okimate-20 driver

is for those Okimates configured with standard IBM interfaces.

Many more drivers may be found on CompuServe (see article).

Your local Atari user group may be helpful if you can’t get on

CompuServe. Once you have transferred the above files and

booted the disk, you will find “Printer Driver” in the drop¬

down Desk menu. Complete instructions may be found in

Tom’s START article. INSTALL.C is the C source code; IN¬

STALLS is source for the AL routines; EPSON.S and JX80C.S

are sample printer driver sources; SAVER.C is source for the

printer driver generator; and INSTALL.BAT and SAVER.BAT

are batch files.

ROUTINES.STQ: Dan Matejka’s C and AL routines may

be tested by clicking on PRTSHELL.PRG. This program will

call FILE.ONE and FILE.TWO, so they must be on the same

disk as PRTSHELL.PRG. PRINTOUT.C is the main C source

code; MEMOPS.S, the source for the AL routines;

PRTSHELL.C, is C source for the demo shell program; and

PRTSHELL.BAT the batch file.

GEMTEXT.STQ: To run Corey Cole’s GEM text demon¬

stration, you will need both TEXTDEMO.PRG and

TXDEMO.RSC on the same disk. Click on TEXTDEMO.PRG

and follow the instructions in Corey’s article. TEXTDEMO.C

is the main C source code; TEXTDEMO.H, the defines for

TEXTDEMO.C; TXDEMO.C and TXDEMO.DEF, are

resource file sources; TXDEMO.H is the resource file header;

TEXTDEMO.BAT, the batch file; and DEBUG.C is a

generic debugging aid. ■

STart, the ST Quarterly 50 Summer, 1986

C703I 644-8S81 £ PER TITLE FOR PJH

Tired of ganes, databases, spreadsheets, and writing letters on your new
528ST or 164051. Hhat do you do with your NEOCHROHE and DEGAS artwork?

Helcone to XLEHT Software's CREATILITIES for the ATARI ST.

TYPESETTER ST STAMP ST * HEMFMTST * ST HISIC

TVPESETTER ST by oorfhan t voung
This CREATIVE package is United only by your ovn Pagination.

* Conplete page designing flexibility * Use your DEGAS and h
HEOchrone art # HIGH resolution printouts # Use custon fonts * k ^
Supports both color and nono * Print to Epson w/Graftrax, HEC, jj f
Prowriter, Panasonic, Genini, SG and conpatibles. * $39.95 *

| RUBBER STAMP ST by voung t oorfhrn

Manipulate your artwork! Expand * Shrink * Rotate * Flip *
i i Mirror * Add text * Fill * Overlay and More * Create ads
logos, Typesetter ST icons.... Print half page, labels, index &
Rolodex cards. * $39.95 *

HEGAFHT ST by dellinger t rognlie

Print text files in different
fonts, print graphics in Multiple
sizes, create fonts. $39.95

NEOCHROHE is a trade mark of ATARI
DEGAS is a trade nark of BATTERIES INCLUDED

THIS AD HAS CREATED USING TMSETTEt

ST MUSIC BOX by. OORFHAN & VOWG

* Mouse driven editor * Aninated player *

* Conpose in up to B voices # $49.95 *

STart, the ST Quarterly 51 Summer. 1986

SOPHISTICATED
TEXT HANDLING

A Window On GEM Special Effects

by Corey Cole

How to manipulate

text in GEM. A thorough

investigation of sophisti¬

cated text handling.

Technical tips—and pit-

falls to avoid. Including a

full-featured C program

that lets you test all pos¬

sible GEM text capabili¬

ties. Related files may

be found within the

GEMTEXT folder on your

START disk.

STart, the ST Quarterly 52 Summer, 1986

IL
L

U
ST

R
A

T
IO

N
 B

Y
 J

O
H

N
 H

E
R

SE
Y

Before the advent of Apple’s

Macintosh, microcomputer pro¬

grammers had an easier time

using text in their programs. Computer

screens generally could only display a

single font. As computers became more

sophisticated, users began to expect

more from them: the Macintosh deliv¬

ered reasonably priced proportional

spacing and multiple type fonts.

Thanks to GEM, the Atari 520ST has

many of the advanced text display fea¬

tures previously found only in expensive,

dedicated publishing systems. Let’s ex¬

plore the use of some of these.

USING GEM TEXT

GEM helps programmers by doing much

of the hard work needed for sophisti¬

cated text display. You can ignore most

of GEM’s overwhelming set of opera¬

tions for displaying and dealing with

graphics text. If you are just trying to

display plain text in a window, you only

have to worry about where to put it. Be¬

yond that, you can use as many of the

more advanced features as you need.

Think of GEM’s VDI calls as a tool¬

kit; the basic set of tools for text consists

of only seven VDI calls. The calls

v_gtext and v_justified actually display

the text. You can set text size in pixels

with vst_height, or in points (a typog¬

rapher’s unit measuring 1/72 of an inch)

with vst_point. The vst_effects call

specifies characteristics such as boldface,

italics, underlining, outlining, shadow¬

ing, and “light” (grey shading); vst_

alignment positions and aligns the text.

You can check the width of a string or of

a single character with vqt_extent and

vqt_width.

Depending on your application, you

may need vst_rotation and vst_color

(which set baseline rotation and fore¬

ground/background colors), and vqt_

attributes (which returns the charac¬

teristics of the current typestyle). Once

the final GDOS becomes available (see

“GDOS & Metafiles” by Tim Oren, this

issue), you may have use for vst_load

_fonts, vst_unload_fonts, and vst_

font—which allow you to deal with

proportionally spaced and alternative

typestyles. Finally, you may need vswr

_mode and vjbar to deal with “re¬

versed” (white on black) text or italic

characters, and vs_clip to keep your

text in the window.

Unfortunately, there is a darker side

to the ST’s GEM. Several of the above

features were omitted from the Atari

version of GEM; others have bugs. A few

features crucial to some applications

never found their way into GEM at all.

is a multiple of eight). You should use

the “Replace” writing mode and, when¬

ever possible, try to do your own clip¬

ping (rather than relying on the vs_clip

function). Each of these techniques

improves text display speed.

PUTTING IT TOGETHER

TEXTDEMO.PRG, on the START disk,

demonstrates the use of most of GEM’s

text display features. It opens a window

and displays lines of text according to

your specifications. With TEXTDEMO,

you can easily display several lines of

text with different attributes, since

TEXTDEMO will not erase the window

w
Character Attributes

. -P; 1 Cancel |

Font i.d. (always use 1 on ST) ; 1
Char. Height (Points or Pixels): IB
Is "Character Height" in pixels? H

Special Effects Flags (Decinal): 0
Foreground (Text) Color : 1
Background (Line) Color : B

This makes developing text applications

on the ST a real challenge—and tends

to turn your life with GEM into a love/

hate relationship.

At this point, let me recommend Tim

Oren’s article on GEM text—column

#10—which may be found in the Pro¬

fessional GEM section in ANTIC On Line

on CompuServe. (Many Atari user

groups have reprints of this article as

well.) As Tim mentions, it is a good idea

to start your text display on a byte

boundary in memory (X-coordinate that

until you give it an explicit “Erase Win¬

dow” command.

To use TEXTDEMO, pull down

the “Display” menu, and select “Char

Attributes.” The Character Attributes

dialogue is shown in figure 1. The first

field is the “Font i.d.” (as in the vst_font

VDI call). Changing the Font i.d. has no

effect currently; this option is included

for use after GDOS is released (see the

“Bug Box” sidebar).

Character Height may be specified

in either pixels or points. Note that the

STart, the ST Quarterly 53 Summer, 1986

TEXT HANDLING.,
number of pixels applies only to the part

of the character above its baseline.

The Special Effects value is the sum

(in decimal) of the special effects bits

you wish to be set. These bit values are:

1 = bold, 2 = light, 4 = italic, 8 =

underline, 16 = outline, and 32 =

shadowed. Try various combinations.

The effects of the Foreground and Back¬

ground Color values depend on your

current resolution and color map, but 0

is generally white, while 1 is generally

black. You can get some very interesting

effects on a color monitor!

After clicking on the OK button,

select “Display Line” from the

Display menu. (For conven¬

ience, pressing any key on the keyboard

is equivalent to selecting “Display Line”.)

The Line Attributes dialogue (figure

2) allows you to specify a line of text to

display (up to 30 characters), and its

positioning and alignment. Position is in

pixels relative to the display window’s

top left corner, and is the line’s left base¬

line position.

A single letter specifies Justification.

Character justification adds space be¬

tween characters, while word justifica¬

tion adds space only between words.

Horizontal Alignment is also spec¬

ified with a single letter, which deter¬

mines the horizontal “anchor point” for

text display (left edge, centered, or right

edge). There is no visible difference be¬

tween the various horizontal alignments

when justification is in effect.

Vertical Alignment determines the

position of each character relative to the

specified Y-coordinate. That coordinate

will fall on the top line, ascent line, half

line, base line, descent line, or bottom

line of the character cell. Since “Bottom”

and “Base” begin with the same letter,

we use “F” (Floor) for bottom alignment.

The results of changing vertical align¬

ment value will probably surprise you;

specifying “Floor” moves text up with

respect to the drawn “Baseline,” while

specifying “Top” moves the text down.

Finally, the Baseline Rotation value

specifies a vector along which to display

the text’s baseline. Even though this is

specified in tenths of a degree (0 is nor¬

mal, 900 is straight up, etc.), there are

only four meaningful ranges on the

ST screen—normal, backward, up,

and down.

Accepting the line attribute dialogue

(pressing [Return] or clicking on “OK”)

displays the text line. If you are just

changing character attributes, and want

an immediate display, an easy trick is

to press any keyboard key, then press

[Return]; this brings up the line attri¬

bute dialogue, then accepts it without

changing any line attribute values.

TEXTDEMO draws a rectangle

around your nominal text line in color 2,

and draws a dotted line along the base¬

line in color 3 (both are black on the

monochrome monitor). If you are using

baseline alignment, the text will be ver¬

tically centered in the line rectangle.

If your text window becomes too

cluttered, you can use “Erase Window”

at any time. “Quit” in the Exit menu re¬

turns you to the GEM desktop (or your

shell). There are several ways to crash

the system by specifying unusual com¬

binations of the dialogue parameters.

This is intentional—it allows you to

find out in advance where GEM is

most likely to choke on your own text

applications.

HOW IT WORKS

You should be able to learn quite a

bit about how the various GEM text

functions interact by first trying several

minor variations of character and line at¬

tributes and then displaying the result¬

ing strings above or next to each other.

Start by experimenting with the pro¬

gram in this fashion, before spending

W
Line Attributes

I Cancel I

Text; Here is your text line.

Display at (X-coardinate): ID
Display at (Y-coordinate): IQ
Line Width (in pixels) ; 3QQ
Line Height (in pixels) ; 2Q

Justification (None/Char/Uord/Both): B
Horiz. Align. (Left/Center/Right) : L
Uert (Floor/Desc/Base/Half/Asc/Top): B
Baseline Rotation (degrees * 10): Q

STart, the ST Quarterly 54 Summer, 1986

significant time with the code and

“how it’s done.” The source code for

TEXTDEMO.PRG is in several files—

TEXTDEMO.C and TEXTDEMO.H con¬

tain the main code, while DEBUG. C

contains procedures for formatting nu¬

meric strings (used in TEXTDEMO’s di¬

alogue-handling routines). In addition,

TXDEMO.RSC, TXDEMO.DEF, and

TXDEMO.H contain TEXTDEMO’s re¬

sources (the menu and dialogue boxes).

DEBUG. C is generic—you can use it to

debug your own GEM applications.

The general flow of control in

TEXTDEMO is similar to that of Digital

Research’s “doodle/demo” application,

from which several pieces were bor¬

rowed. TEXTDEMO begins (in gemlnit)

by initializing the desktop and opening a

single window which completely fills the

desktop’s work area. The initial text line

is set to fill most of the window’s width,

and to be vertically centered in it. The

initialization routine also allocates and

clears a buffer large enough to cover the

entire screen. This is the “save buffer,”

and lets TEXTDEMO easily redraw the

text window after it has been covered

(as by the attribute dialogues).

After initialization, control

passes to mainLoop, which

consists entirely of an evnt

_multi in a loop. The evnt_multi looks

only for messages and keyboard events

(treating any of the latter as equivalent

to selecting the “Display Line” menu

item). The only messages considered are

“menu item selected” and “redraw” (the

latter happens on beginning the pro¬

gram, and whenever a window leaves

the desktop, as after a dialogue is dis¬

played). Redraw is accomplished by

copying the save buffer back into the

text window.

Selecting the “Char Attributes” menu

item invokes charDial. This procedure

initializes the fields of the Character At¬

tribute dialogue, then calls GEM’s form

handler, and finally (if the dialogue was

not cancelled) stores the user-entered

values back into the global textLine

structure. The initialization and saves

are performed by initChDial and

saveChDial. Four general-purpose

procedure set and retrieve values from

the dialogue fields: getName, getNum,

setName, and setNum. You may find

this approach useful for editing complex

dialogues in other applications. The save

routine also uses a simple “character de¬

coder” (decode()) to convert an entered

character into the corresponding nu¬

meric value—this is easy, since GEM’s

attributes are all set with consecutive

low numbers.

lineDial, invoked when a key is

pressed, or when the “Display Line”

menu item is chosen, is only slightly

more complicated. lineDial uses the

same approach as charDial to initialize

and read the dialogue. When the di¬

alogue is OK’d, lineDial restores the

window—this is unnecessary for the

other dialogues, since dismissing them

causes GEM to issue a Redraw message

to the application. Here, however, we

want to display another line, then save

the modified work area, which means

we need to clean out the window first.

As is typical in GEM (and in other

graphics-oriented environments), some¬

thing like 90 percent of our code is de¬

voted to handling the user interface. We

finally come to the application’s heart

in drawLine. This routine looks up

the values stored in the global textLine

structure, and attempts to display a line

of text based on them.

As mentioned, it is faster for an ap¬

plication to do its own clipping when

displaying text. This is only significant

if the text will in fact be clipped, and

drawing off the screen without clipping

is likely to crash the system (or at least

GEM), so we ignore that advice and clip

to the text window.

We then call text Style, which calls

GEM’s attribute functions with the spec¬

ified character and line attributes. This

“environment” approach for defining

display attributes may seem odd if

you have used systems in which the at¬

tributes are specified in the display call.

That approach is unusable in GEM, since

there are so many different attributes.

GEM’s technique also lets you set the

attributes once, then use them several

times (as in displaying several lines of

text with common attributes).

Pay close attention to the verbose

comment about vst_height, in the

textStyle procedure—the correct values

for the default system font sizes are

probably not what you expect them to

be: size is specified in height above

baseline, not total character cell height.

JUSTIFIED TEXT

Displaying justified text under GEM

is trivial—you simply call v_justified

instead of v_gtext. It wasn’t all that long

ago that displaying or printing justified

text was one of programmer’s more ►

STAR!
The ST Quarterly HI

STart is a magazine with its pro¬

grams on disk. Normally you will find

the disk bound into the magazine and

for sale on the newsstands at a com¬

bined price of $14.95.

But we know that some of you ST en¬

thusiasts want to read STart first, with¬

out paying $14.95, so we have provided

a limited number of copies without disk

for $4.00 each.

If this is your situation, you can com¬

plete your copy of this collector’s issue of

STart by ordering the companion disk

direct from us, for $10.95 plus $2.00

shipping and handling. See the handy

order form.

STart. the ST Quarterly 55 Summer. 1986

TEXT HANDLING..
cumbersome tasks. Of course, you still

need to put reasonable amounts of text

on each line, so that the spaces aren’t

too large or too small (line-breaking is a

subject deserving its own article).

You will find the problems with

GEM’s justification feature (and with any

display involving proportionally spaced

characters) when you try to mix char¬

acter styles in a line, or if your text is

user-editable. Since you must specify X

and Y coordinates for each text display

operation, you need to determine where

to start each “piece” of the text line

(when mixing styles).

When using a monospace font and

not justifying, this is easy: determine the

character width in each style, and multi¬

ply by the number of characters dis¬

played. To get the width of each sub¬

string, increment the X-coordinate by

this amount each time.

The task is just a little harder with

non-justified proportional type. GEM

provides the vqt_extent call, which re¬

turns a box describing the exact size of

a string in a given style. Use this to find

the width of each sub-string, and incre¬

ment as above (but see the Bug Box if

your string is italic).

Justifying text makes things much

tougher—where the substrings will go

depends on how many spaces there are

in each of them, as well as on the nomi¬

nal string widths. Your best bet is to

avoid the situation. If you can’t, you have

to pre-scan the string, counting spaces

and characters-of-width, etc.

Much of GEM is based on the Small¬

Talk model for user interface. SmallTalk

recommends a single procedure,

“scanLine.” With several functions—

depending on a flag, it will display a

string, measure the string’s width (in¬

cluding the effects of justification on it),

find the X-offset corresponding to a

given index within the string, or return

the index of the character closest to a

specified X-offset.

A GEMTEXT GLOSSARY
Alignment: The relative positioning

of text, compared to the coordi¬

nates specified in a vq_text or

v_justified VDI call. The most com¬

monly used vertical alignments are

"baseline" (recommended if you

plan to mix fonts, since the base¬

lines of all text on a given line must

be the same) and "top". You are

familiar with top alignment from

non-graphics text; it simplifies the

issue of determining clipping and

erasure boundaries. Horizontal

alignment determines whether the

text will be displayed to the right of,

centered on, or to the left of, your

specified position. Both horizontal

and vertical alignment are set using

the vst_alignment call (VDI opcode

#39).

Alpha Text: A GEM term for the text

normally used by a computer sys¬

tem (what non-GEM applications

would display, the system font).

Baseline: An imaginary line on

which the capital letters in a line of

text rest. When mixing type fonts

on a line, the rule is to use the

same baseline for all of the fonts.

BitBIt: Bit Block Transfer, a term bor¬

rowed from SmallTalk, refers to the

copying of a rectangular block of

pixels (screen bit locations) from

one place to another, possibly per¬

forming a transformation on the

way. In GEM, characters are dis¬

played by copying a bit image of

the character from memory to the

screen, a process made possible by

the the speed of the 68000 chip.

Cell Width and Height: In GEM,

the size of a rectangle of sufficient

size to display a given character

with an appropriate amount of

white space on all sides. In a

monospace font, all characters

have identical cell width and height.

Font (or Typefont): A set of charac¬

ters having the same general ap¬

pearance, style, and size. The 8x8

screen font on the color ST monitor

is an example; the italic version of

this screen font is another "font."

GDOS: The "Graphics Device Op¬

erating System." GDOS is a portion

of GEM which allows GEM to deal

with certain device-dependent

features, such as multiple "work¬

stations" (screen and printer, for

instance), and multiple type fonts.

GDOS was not released with the

initial RAM or ROM versions of

TOS, but should be available

shortly. It is an overlay to the main

part of GEM, and so can be pro¬

vided after the fact (i.e. GDOS

would not have been part of the

ROM code in any case). Until

GDOS is released, many functions

of GEM are unavailable (see the

"Bug Box" sidebar).

Graphics Text: A GEM term for text

displayed within GEM by plotting

individual characters as graphics

images (see BitBIt).

Justification: Adjusting character

and/or word spacing in a line to

make the string fit a specified

width. The term is also used ("Left-

Justified," "Center-Justified," etc.) to

refer to horizontal alignment (see

Alignment).

Leading: Amount of space between

lines (distance from the baseline of

one line to the baseline of the next).

A good rule of thumb is to use ap-

STart, the ST Quarterly 56 Summer, 1986

proximately 20 percent extra lead

with proportional space type; 10

Point type looks best with 12 Points

total line leading. TEXTDEMO.PRG

refers to it as "Line Height" to

avoid confusion.

Monospace Typefont: A typefont

in which all characters have the

same width. All of the standard

ST screen fonts are monospaced.

Monospaced characters are easily

manipulated from a computer

program, since no special width

calculations need be made.

Pitch: The normal way of measuring

monospace fonts. Pitch is the num¬

ber of characters which fit in an

inch, horizontally (Elite type is 12

Pitch, or 12 characters per inch,

while Pica type is 10 characters per

inch). Note that GEM never deals

with pitch—monospace character

sizes are instead set by character

height above the baseline, in pixels!

Point Size: The most common way

of specifying the size of propor¬

tional space fonts. A point is 0.0138

inch. All characters in a font are

nominally guaranteed to fit in an

area with a height equal to the

point size. Thus, consecutive lines

will not overlap if the leading is at

least equal to the point size. GEM

allows programs to specify Point

Size in full points (half-points would

be better), and will display with the

font most closely matching the

specified point size.

Proportionally Spaced Typefont:

A typefont in which different char¬

acters may have different widths

(for instance, the letter "i" will prob¬

ably be significantly narrower than

the "W"). Nearly all books, maga¬

zines, and newspapers use propor¬

tionally spaced type—it uses much

less (30 percent-50 percent) space,

reads quickly and is visually more

pleasing. GEM provides support for

proportional fonts, but these fea¬

tures are incomplete on the ST at

this time.

Raster vs. NDC Coordinates:

GEM allows positions to be spec¬

ified either in terms of absolute

screen locations (Raster Coordi¬

nates) or relative locations in terms

of an idealized screen (Normalized

Device Coordinates, or NDC).

Since typefonts are available only

in certain pre-specified sizes, any

program that needs to use text is

well advised to stick with Raster

Coordinates, which are signifi¬

cantly faster than Normalized

Coordinates.

Style: A generic term for the attri¬

butes of a text character. These in¬

clude the character's type family,

and "special effects" such as bold,

italics, underlining, etc. Modest use

of special effects enhances text

readability and appearance.

Typeface: Collection of all sup¬

ported sizes of a given font, but

staying with a single style.

Type Family: A collection of related

typefaces. Popular type families in¬

clude Helvetica and Times Roman.

The entire collection of mono¬

spaced screen fonts for the various

ST resolutions could also be said to

comprise a "family" of type.

Why put all that utility in a single

routine? There are many ways to justify

text or to display certain sequences—

kerning, ligatures, and so on. (Editor’s

note: for a better treatment of these ad¬

vanced topics, see resources listed at end

of article.) The same algorithms must

be used for any of the four operations

mentioned, since inconsistent sizes

or positions could otherwise result.

Unfortunately, GEM does not provide

such a scanning routine.

This means there is no straight¬

forward way to accomplish mouse-ori¬

ented editing in justified or proportional

text. You can try to second-guess GEM’s

justification algorithm (and hope that it

will be consistent on other GEM sys¬

tems to which you later port your ap¬

plication), and “scan” accordingly, or you

will have to do your own justification.

Once again, your best bet is to not allow

direct editing of justified or proportional

text—if you can survive without it.

ITALIC CHARACTERS

Using italic characters under GEM also

appears to be quite simple—initially.

Simply call vst_effects, specifying the

“Skewed” special effect, then do either a

vq_text or a v_justified call to display

the text. If your entire string is italic,

this will work fine, as long as you leave

a little extra room on the string’s right.

The bad news comes when you mix

italic and non-italic characters. It seems

that skewed characters in GEM really

are skewed—GEM displays them ap¬

proximately half a character position to

the right of where they should go! This

means that, if you are using Replace

Mode (recommended for smooth dis¬

play), the next non-skewed character

you display will erase the right edge of

the last skewed character. (If you have

1ST Word, you will be able to demon¬

strate this phenomenon. Type “GEM” in

italics, followed immediately by a non-

italic space.) In addition, unless you take

STart, the ST Quarterly 57 Summer, 1986

TEXT HANDLING

THE
BUG 5
BOX

Yes, GEM does have a few bugs. Here are

several specifically related to text han¬

dling. START welcomes comments, addi¬

tions, and—especially—fixes.

Italic characters are offset from their

ideal “cell” location, so the right

halves of characters are clipped when

italic characters abut non-italic

characters.

The v_justified call produces

strange (and apparently unpredict¬

able) results when both the word-spacing

and character-spacing flags are False

(no justification desired). This case

should be the same as using v_gtext, but

is not. Use v_gtextfor non-justified text.

The rightmost pixel of bold charac¬

ters (when using any of the system

fonts) is clipped. This is not, strictly

speaking, a bug—it is a “feature" which

ensures that the width of characters in the

system font remains constant even if bold

characters are used.

2 The vqt_extent VD1 call (opcode

116) returns an incorrect value

(much too large) for italic text.

3GD0S is not included with TOS.

Therefore, only the monospaced sys¬

tem fonts are available. (VDI opcode

#119, vst_load_fonts, will crash the

system. So will attempting to open a

workstation other than the screen, such

as a printer.) Application packages using

GDOS are beginning to appear on the

market, and Atari is evaluating a version

of GDOS for release.

4 There is no “scan” function corres¬

ponding to justified graphics text

display, making v_justified (opcode

#11-10) useless for text editing applica¬

tions (see article).

7Text display slows down significantly

wider some conditions. In particu¬

lar, characters which do not fall on an

even eight-pixel boundary take much

longer to display than those which do,

and text display becomes much slower if

clipping is needed. Also, display of pro¬

portionally-spaced characters using ver¬

sion 1.2 of GEM on the IBM PC is in¬

credibly slow; we can hope that the

GDOS Atari releases will be faster (the

“Blitter” chip can also be expected to

improve all of the speed problems

significantly).

8 GEM allows text to be rotated in

tenths of a degree, but does not sup¬

port fractional point sizes! (Rotations

other than at 45 degree angles are rare,

whereas certain half-point sizes, such as

5.5 Point type, are quite common.)

special precautions (as 1ST Word does),

you may end up with “mouse droppings”

(extra displayed pixels) at the beginning

of the italic string.

If this isn’t enough, GEM also returns

incorrect values if you do a vqt_extent

(VDI #116) on an italic string. You have

to get the width of a string of italic char¬

acters the hard way—call vqt_width

(opcode 117) for each character, ignor¬

ing the left and right “alignment delta”

values returned.

There is no such easy work-around

for the position problem; how well you

solve it depends on how much work

you’re willing to do. The simplest “solu¬

tion” is not to mix italic and non-italic

text at all. If you can get away with this,

you probably don’t even have to worry

about the half-character positioning er¬

ror—no one will notice.

CONCLUSION

GEM has given us an excellent set of

tools for displaying clear and “interest¬

ing” text. Although these tools contain a

number of bugs and “blind spots,” with

a little care they can be used to greatly

enhance the appearance of ST screen

text. Using GEM for leverage, you can

write text-oriented programs with much

more sophistication, and in significantly

less time, than on non-GEM systems.

Use GEM’s text features—your applica¬

tion and its users will benefit! ■

REFERENCE:

• Phototypography: A Guide to Typeset¬

ting and Design, by Allan Haley,

Charles Scribner’s Sons,

New York, NY

• Publication Design, Second Edition,

by Roy Paul Nelson, Wm. Brown

Company Publishers, Dubuque, IA

• Smalltalk-80: The Language and its

Implementation, by Adele Goldberg

and David Robsen, Addison-Wesley

Publishing Company, Menlo Park, CA

STakt, the ST Quarterly 58 Summer. 1986

ST CALC
ST CALC™ is a fully implemented GEM™ PI!
based spreadsheet for home and business C1,
use. This is by far the most powerful —-fL
spreadsheet available for the price. Better —jj
yet, all commands are mouse controlled ^
for speed and ease of use. ST CALC™ _i
also uses less memory than other spread- —£
sheets for the ST, leaving more room for ~ji
your data and formulas. If you’ve never IT
used a spreadsheet before, you'll be —,
amazed how easy ST CALC™ is to learn
and use. The experienced user will love
the speed of a mouse controlled spread- ISL
sheet. L—

PUT ST CALC™ TO WORK

FOR YOU AND BENEFIT

FROM THE RESULTS

IRSII Replicate
Replicate Cell
Set Co limn Width

5832.88
$95.80

c*|l $56.89
i Width $25.81

M 58.88
"SITW $16.15
$202.38 $202.30

$988.88 $379.66 -28.34 19.78

ONLY $49.95
FEATURES

50 columns by 999 rows
- ^ Extensive use of GEM™ windows
✓ All commands are under mouse

control
^ Built in 10 keypad calculator
^ On-line help windows (No commands

to memorize)
✓ Built in sort routine
^ Developed exclusively for the Atari ST

10 macros controlled by the function
keys
Split-screen capabilities

^ Note Pad

MOUSE CONTROL
Extensive use of the GEM™ windows
make ST CALC™ a fast, extremely easy-
to- use spreadsheet. With over 50
commands available from the mouse,
the ease of use is unsurpassed. Imagine
being able to move or copy an entire
column of figures with a simple mouse
control.

CALCULATOR
ST CALC™ includes an easy to use 10
key calculator that can be pulled down
at anytime and operated either by
mouse or keyboard. With the point of a
mouse, the results of the calculation can
then be transferred to the cell of your
choice.

NOTE PAD
ST CALC™ lets you attach a personal
note of up to 4 lines to any cell. The cell
is then highlighted to remind you there
is a note attached. For example, you
could attach a note to the insurance cell
of your personal finance spreadsheet
reminding you that the cell applied only
to car and home insurance. The note pad
can be pulled down at any time.

• 11 preprogrammed Templates for use
with ST CALC™ or VIP Professional™

• load-and-go and these templates will
take the work out of tedious
spreadsheet setup.

Templates include: I; ' _I_
Check Register
Depreciation schedules
Investment Portfolio Analysis
Name & Address directory
Home Inventory
Loan Amortization Schedules I
Personal Finance Statement /:
and more VIP PROFESSIONAL is

VIP TECHNOLOGY

ST STAND

IF YOU DON’T HAVE OUR CATALOG .
. . YOU’RE MISSING OUT ! ! !

Become a preferred
customer and save
$$$$

• SPECIALS
• CLOSE-OUTS
• BARGAINS
• REVIEWS
• WHAT'S NEW
• PLUS MUCH

MORE!
SEND S2.00

DELUXE DUST COVERS

Deluxe Leather Grain /rirs

PROTECT YOUR INVESTMENT L?
Custom fitted, attractive leather brown color:

HELPMATE ST o„iy $39.95

HELPMATE ST™ INCLUDES:
• 10 Key calculator
• Appointment calendar with alarm functions
• Telephone/name index

All in one program _fl_

rt is that HelpMate ST stays "hidden" in
il needed, and then can be called up for
lile another program is running. The pull
; can be used with most ST programs or by

Coming Soon!!

INVENTORY
MASTER ST™omy $179.95

only $29.95
+ $5.00 Min. Shipping & Handling

Custom made just for the ST, beautifully
finished stand to hold your ST monitor, 2 disk
drives, a modem, disk files, ETC...

, • COMPUTERS—100/800 600/800/t?00XL 65/130XE
a OP • DISK 0RIVES-ASTRA 1620 ATARI 1050 ST DRIVES

ST HARO DRIVE INDUS GT PERC0M 88SI/88SP0 RANA 1000
IRAK • PRINTERS—ATARI 1025/1027 AXIOM SLP/GLP
OKIMATE 10 « RECORDER-ATARI 410 . MODEM—ATARI 1030

- • COMPUTER-ATARI 520/1040ST • PRINTERS—ATARI 825
AXIOM 550 CITOH/PROWRITER 8510 CPA 80/EP 150
EPSON MX/RX/LX/FX80 W/ & W/D TRACTOR FEEO
GEMINI/STAR SG 10 X PANASONIC 1091/1092 RITEMAN II/PIUS

.<j • MONITORS—B W RGB MONITOR TEKNIK7
* • PRINTERS—EPSON FX 100/185

INVENTORY MASTER ST™ is a power¬
ful, Inventory control and Report genera¬
tion program. It will do more than just
keep track business inventory, such as:
detailed report generation, fast and easy
data retrieval, versatile data entry, takes
the work out of decision making, plus
much more.

^COMPUTER,
El PALACE nsf
OPEN M-F. 9-6 Sat 10-4 (Pacific Time) ‘l

2160 W 11th Avenue Eugene. Oregon 9/402

USE YOUR CREDIT CARD & CALL

Toll Free 1-800-452-8013
★ ORDERS ONLY, PLEASE ★

There's never a penally tor using your credit cartl!

For Information. Call (503) 683-5361
Prices subject to change without notice.

SHIPPING INFO Minimum S? 90 Ground S4 75 Air Actual
Cost depends on weight Cali (5031683-5361 lor information
WARRANTY INFO: Everything that we sell is warranties by
the manutacturpr It any item purchased Irom us tails lo per
form properly when you receive il Call us at (5031 683-5361
so that we can assist you No returned merchandise acceoled
without aulhoruation Detective software will be replaced

. 2 Day Air Shipping AVAILABLE •

Being a rational contemplation of the vagaries surround¬
ing computers, programming, and the precariousness of
heavenly bodies and telephones in juxtaposition to
floppy disks. Mr. Small expounds upon mayonnaise,
cosmic rays and his personal, violent hatred of structured
programming.

ro the outsider, computers are clean, utterly rational and cut-and-dried. They appear

to be the same machines I was taught about at college: number crunchers governed

by strict physical laws.

When I graduated and entered the real world, I learned it just ain’t so. And over the

past ten years, since my initiation into Hackerdom, I have formulated a valuable

principle, which I will share with you.

But first, let us examine for a moment a typical computer, to get an idea how uncertain

and fragile a medium it is.

DIGITAL AMNESIA

We’ll begin with memory—a frighteningly transient thing. Most personal computers

today use “dynamic RAMs,” a Faustian bargain to pack a lot of memory into a small area.

The “dynamic” means that if you don’t access that memory at least 100 times a second, it

will fade away.

STart, the ST Quarterly 60 Summer, 1986

PERSPECTIVES

Now, you say, you’ve got to be kidding. One hundred times

a second? That’s pretty fast. But every computer working today

is actively struggling just to keep its marbles. Turn on an Atari

8-bit computer; just sitting there, displaying “Ready,” it is con¬

tinually accessing and “refreshing” its memory.

Now let’s talk about cosmic rays. Cosmic rays have a truly

witty effect on dynamic RAMs. They make memory cells flip

randomly.

Used to be, with the older RAMs, memory wasn’t so sen¬

sitive. Not anymore. In Denver, a personal computer owner

can reasonably expect one memory “soft hit,” or failure, per

week, during normal solar activity; this gets worse during so¬

lar flares.

Dynamic RAM chips are also the most skittish and easily

zapped chips known. They have a nasty habit of “ringing” and

“undershooting,” which means they generate negative voltages

which they feed to other chips, destroying all the chips in¬

volved. Also, any brief, transient power “spike,” (like your next

door neighbor’s washing machine turning on), can flip a few

bits.

Count on this: For every system crash caused by RAM

failure, there are ten unseen events where RAM bits get

flipped. They just happen to get flipped somewhere where it

doesn’t matter at the moment.

Think of dynamic RAM as 65,536 dominoes stacked on

top of each other. One small push, and down they go.

And then, there are diskettes.

TRUST NOTHING

Data is stored on diskettes with tiny, tiny, tiny magnetic fields,

which are both remarkably durable and very sensitive. For in¬

stance, my daughter Jennifer once smeared mayonnaise across

a 3 1/2-inch diskette (opening the little sliding door to do it,

too). The diskette survived. Flowever, I once had a phone ring

next to a diskette; the diskette was completely erased. (Now 1

treat the phone as if it had the plague and keep it across the

room.)

And how about keyboards? When you press a key, you

bring two contacts together. What you’re not told is that those

contacts bounce against each other before coming to a rest,

something like dropping a bouncy rubber ball. Whenever the

computer looks for a key, it must deliberately wait for awhile

before looking for another key, because the first key is still rat¬

tling from being pressed.

1 could go on about rise times, about marginal clocks,

about how even trying to view a crystal with an oscilloscope

will cause the crystal to quit working. But the end point re¬

mains the same: Computers are a very “iffy” item.

You are working in a medium that is lucky just to keep

running, that often fails through no fault of your own. Add to

this the fact that human beings are not perfect and computers

demand perfection in their programming, and you get the ulti¬

mate question of the Frustrated Programmer: Is this problem

in my program or in the computer?

Something wonderful, childlike, and naive dies in a pro¬

grammer the first time a computer genuinely screws up. Up to

that point, you are sure the problem is yours, somehow, some¬

where. Afterwards, you are never the same. It’s like learning

the truth about Santa.

So what philosophy does a sane person adopt?

Working with computers is like performing sorcery. Treat

programming as you would treat casting spells. You’ll go far.

Just as sorcerers drew pentagrams to control and bind the

demons they summoned, 1 find 1 must adopt certain defensive

measures to prevent computers from causing a lot of trouble.

My philosophy is contained in ten maxims.

MAXIM NUMBER ONE:

When you’re having a bad day, stop working.

Every programmer has had days like this. Compilers mys¬

teriously quit working. Disks stop loading. The hard disk

flakes out. Nothing works right. You sit and think of alternate

approaches, try them, and find your way blocked. The next

day, of course, everything works right.

The thing to do here is to quit. Consider yourself bad luck I

that day. Anything you touch is going to fail. Remember those I

cosmic rays massaging your memory chips.

So lock your backup disks in a vault, and go do something I

useless, like creating a structured design for your next

program.

MAXIM NUMBER TWO:

Comment your code to death.

Dark Ages spellcasters wrote down every detail of their

spellcasting in their spellbooks, or “grimoires,” because they

wanted to be able to retrace their steps in case of failure. Ac¬

cept that your memory is not perfect. You will probably have

to return to your code one day and fix it, or use it in another

program. So comment it. It only takes a minute more, and it

pays for itself many times over.

MAXIM NUMBER THREE:

“Programming is an art best learned by apprenticing to a mas¬

ter.” Or “Steal from the best.” (Quote attributed to Russell

Smith.)

Medieval sorcerers had no problem with borrowing each

other’s spells. Working out a spell, and keeping the demons

from snatching you away to the inferno, was no easy task,

right up there with debugging assembly language. Once you

got something working right, it was most valuable. ►

STart, the ST Quarterly 67 Summer, 1986

PERSPECTIVES

Good programmers, the true Hacker brethren, know this

instinctively. This is why they are usually happy to share code.

And looking at someone else’s code is often the only way to

pick up clever tricks.

Chris Crawford taught me all about ensuring that the deci¬

mal flag is cleared before doing interrupt processing; other¬

wise, arithmetic you do on the 6502 during interrupts can

mysteriously go bad, unpredictably and untraceably.

John Harris found sections of his sound generation code

(from "Frogger”) being used in other games. Rather than being

insulted, he understood the implied compliment: His code was

worth copying.

So, let other people look at your code. Don’t be embar¬

rassed; asking for comments is the sincerest way to flatter

someone.

Find out who your local hackers are and join their group.

Hackers are basically people who believe in freedom of infor¬

mation exchange. If you become part of the loose, informal

hacker group around you, you will have access to code, tools,

and amazingly creative people.

MAXIM NUMBER FOUR:

Use the best tools, and be willing to pay for them as neces¬

sary. Your time is valuable, and it is a pleasure to use good

tools.

Use quality assemblers, compilers, interpreters. The time

spent tracking down just one bug in your tools is worth the

cost of using good tools to begin with. After all, you wouldn’t

expect sorcerers to skimp on the quality of newt eyeballs if

they thought their spells might backfire.

Use fast tools. You’ll be assembling, compiling and inter¬

preting many times on any project. Even saving a few seconds

per assembly is worth it. This also makes hard disks and

RAMdisks worthwhile. The time you save is your own; noth¬

ing is more stultifying to the senses than watching a computer

do something for the eightieth time.

Fast tools include a fast printer. You need to make lots of

printouts as part of the game. If you stick with something that

prints slowly, you’ll be waiting a long time before you can

make progress.

On my most recent project, making an Atari ST think it

was a Macintosh, the program ended up being 7000 lines long

(which ought to tell you something about how loosely my

head is screwed on; it’s all assembly language, too). Anyway,

the printout is 120 pages long and takes awhile to print. Not a

good job for a slow printer.

The time you save pays for itself. Your work gets done

faster, which in the case of a freelancer, means you are avail¬

able for other work.

MAXIM NUMBER FIVE:

Keep a copy of everything you do—disks and printouts. Put it

somewhere, file it away, but keep it. You will always come back

to it.

Corollary: Reformat a disk you will “never use again” and

you’ll need it tomorrow.

Among the very few bright things I did at college was to

keep most of the programs 1 wrote, just one extra printout. It

only took a minute back then. And now I have a library of de¬

bugged routines and software.

This is especially important to freelancers. You haven’t time

to redevelop the wheel, and it is impossible to remember eve¬

rything about a project you did awhile back. But if you have a

printout of, for instance, how to set up a player-missile table,

and better yet, if you can import that code off an old diskette

directly into the editor, you’ve saved a lot of time.

Remember the John Harris syndrome: He kept all his

floppy diskettes, including the master to the superb “Frogger,”

in one notebook. Once, he went to a computer show and dem¬

onstrated that disk. Someone stole the notebook and he lost all

his disks and an incredible amount of development time. This

is the real story of why a pirated Frogger showed up a year be¬

fore the real Frogger; John was busy rewriting all his old code.

MAXIM NUMBER SIX:

Backup your backups. Keep three of everything.

Computers typically fail as you back up the master of your

program. This takes out not only the master, but the backup,

since both are in the computer at the same time.

The solution is a third diskette. Just write a copy of your

current program out to it every so often, then take it out and

file it.

Don’t be hasty to use your backups. Whatever killed your

master disk might take the backup, too. Make sure you’ve

fixed the problem. Test first.

Recently, I had the charming experience of trashing an

Atari ST hard disk. I closed the current directory, and opened

up the backup disk to repair the hard disk. The backup’s

directory promptly and permanently disappeared, leaving

me the fun job of retyping the whole program I had been

working on.

MAXIM NUMBER SEVEN:

Frame this; hang it over your desk: Don’t be clever.

There are so many clever tricks to use in a computer, and

so little reason to use them. Unless you really need the speed

and code size of a clever hack, avoid it. There are always side

effects.

STart. the ST Quarterly 62 Summer, 1986

PERSPECTIVES

Some sorcerers used Latin and took other steps to make

their spells unintelligible. They used lots of incense (which re¬

minds me of structured programming: It makes your eyes

hurt, and confuses the whole ceremony, but does make you

feel you have accomplished something).

Avoid Utterly Clever Constructs. The worst offender in this

department is C, which I have to come to see as an abbrevia¬

tion for “Clever.” C is a wonderful language to write code to

show off with; “Gee, Fred, I never thought of doing it that

way.”

Fortunately, it is possible to write legible C code, that actu¬

ally can be understood when reread. (This is contrasted to

APL, a language once accurately described as “Write Only”.)

Anyway, odds are, in a month, you’ll forget just how that

witty piece of code works, so why go to all the bother?

MAXIM NUMBER EIGHT:

If it works, don’t fix it.

The computer doesn’t care how it looks. So it’s a kludge?

An utter pile of trash? So what? If it works, leave it alone and

do something else.

Skip the indenting of your code; don’t sweat the trailing

comments and “pretty printing.” Don’t be a neat-freak; neat-

freaks accomplish little. Leave it and go do something else.

You owe it to yourself.

Consider code development as you would consider crossing

an unstable, dangerous bridge. Sure, maybe you have to do it

once. But who wants to do it twice? Look at Chris Crawford’s

Eastern Front code. There are sections that are not clean, ele¬

gant, or structured. It works. It is art. Who cares what the

code looks like?

MAXIM NUMBER NINE:

Always give your code the maximum chance to work. Or: It’ll

always think of something you don’t.

When summoning demons in the old days, you wrote de¬

tailed contracts specifying exact terms of employment and

payment. You tried to think of every condition—because de¬

mons were notorious for wriggling through loopholes. Really

smart sorcerers added a “catch all” to the contract to cover

what they didn’t think of.

Do the same. Write defensive code.

Using a variable? Initialize it just before you use it. Don’t de¬

pend on its value staying the same from the start of the pro¬

gram; you might use it for something else, or, (horrors!) the

memory location it occupies might get clobbered accidentally.

Don’t end a loop just by checking for a value equalling an¬

other value. Check for greater than or equal, or less than or

equal; you might miss the equaled value. Give your program a

chance to recover gracefully.

MAXIM NUMBER TEN:

Structured programming is useless in the real world.

You don’t need to program in a structured way. Give your¬

self some credit. You’re neither a moron nor a menace to soci¬

ety. Don’t use a language that forces structure on you.

Corollary: If a GOTO statement is so terrible, how come

every microprocessor has one? And uses it frequently?

Pascal, to quote Chris Crawford, is the fascism of computer

languages. And Pascal is The Great Language of Structured

Programming. You can only do things one way—and there’s a

lot of mindless quibbling you have to go through to get it

done.

Pascal also produces notably inefficient code, for the simple

reason that computers don’t use structured code, people do.

Putting it mildly, something is lost in the translation. Personal

computers are not yet at the point where you can afford to

throw away a great deal of processor time letting the computer

trundle through your “structure.”

It is fine to draw up a general idea of what you’re going to

do, but carry it too far, and it’s like working inside a strait-

jacket. You cannot think of everything at once, and that in¬

cludes the structure of your program. Try to lay everything out

in the beginning and you will throw out all the perfectly good

ideas which occur during the coding process.

So use an anarchist’s language such as C and obey just

enough rules to get by. Don’t take any extreme position, be it

writing a thousand lines of uncommented assembler or pre¬

structuring your program. Remember, there are enough things

working against you that you must retain maximum flexibility

to get things done.

CONCLUSION

Thus ends my Pragmatic Programmer’s Philosophy. But 1 have

more ideas. Many more. Should I be given the opportunity to

speak again, I could tell you about Avoiding Burnout: The Ca¬

reer Programmer’s Plight, or Fooling the Boss with Massive

Printout. If the START editors will only let me.

(Editor’s note: Perspectives is a forum for commentary on

the programmer’s art by its diverse practitioners. START wel¬

comes reader response to the ideas and opinions expressed in this

department.) ■

STart, the ST Quarterly 63 Summer. 1986

PROCEDURES

Al
andC

Routines...
Fast Memory Manipulations and More

BY DAN MATEJKA

These two AL routines, plus a full, C “Help” text window
module will speed your programs and make them more
professional Both AL routines—wry fast implementa¬
tions of a standard memory move and memory initializa¬
tion—are accessed as functions from your main C pro¬
gram. The C text window module provides a
standardized method of displaying text to screen or
printer with auto-word-wrap. All programs may be
found on the START disk within the folder labelled
ROUTINES.

■ M When Stanley Crane and I were writing DB Master One, the database bundled

Mm MW w^t^1 ST last Christmas, we found frequent need for wholesale memory

W W moves and initializations. DB Master One is a RAM-based system which loads

the entire file from disk once each session, does its work all in memory, then writes it all

back to disk. Necessary—but boring—operations like memory moves should be

completed as quickly as possible. Straight C wasn’t speedy enough, so we wrote the code

ourselves to handle these situations.

STart, the ST Quarterly 64 Summer, 1986

In developing Disk Doctor for Antic publishing, I needed a

friendly method of displaying “help” information on the

screen. Since this would be a useful—and reusable—routine,

1 wrote a stand-alone C module for the purpose.

This article describes two assembly language routines—ac¬

cessed as linked C functions—which provide a fast block

memory move and an equally fast memory initialization. Fol¬

lowing this is an analysis and description of the C printout

module, PRINTOUT, which reads standard text files from disk

and displays them to either screen or printer, left-justified and

with word wrap. PRINTOUT will also provide an example of

practical usage of the two AL routines.

MEMORY ALTERATIONS, WHILE YOU WAIT

The two memory operations we’re going to talk about are

setmem() and movmem(). They can be found as 68000 as¬

sembly language source code in the file MEMOPS.S, on your

START disk.

setmemO initializes memory to a chosen byte and

movmemO grabs memory and copies it to some other loca¬

tion. Our version of these two functions is five times faster

than their Alcyon C counterparts. This can make all the differ¬

ence in the world to the person sitting in front of the terminal

watching, for example, a scrolling screen. Screen scrolling is

most painlessly accomplished by grabbing memory corres¬

ponding to each line of interest and putting it somewhere else.

Both functions were designed to be called from a C host—

specifically a C host compiled by Digital Research’s C compiler

(the Alcyon compiler included in the developer’s toolkit from

Atari). This compiler allows unrestricted use of registers a0-a2

and d0-d2 within any procedure. movmemO and setmemO

use no other registers, so no registers are pushed onto the

stack for later retrieval. This compiler also uses two-byte inte¬

gers. Pascal programmers will note the parameters are not

cleaned off the stack at procedure’s end, either.

If you are using the Alcyon compiler, all you need do to use

these procedures is assemble the included file and link it with

its host. Other compilers will doubtless have different linking

and register usage conventions.

The complete C protocol for using these procedures is:

movmem(source,destination,count)

char * source,* destination;

int count;

setmem(destination,count,value)

char *destination;

int count,value;

For movmemO, count bytes are moved from source to

destination. For setmemO, count repetitions of value are

placed at destination. Note that value is a byte, not a word,

value. For example, given a declaration like:

char stuff[100];

the call setmcm(stuff,sizeof(stufO,’a’) sets every element of

stuff to ‘a’s. The call movmem(&stuff[10],&stuff[6],20)

takes elements 10 through 29 of stuff and copies them to ele¬

ments 6 through 25.

More or less equivalent C source code looks like this:

/* initialize memory */

setmem(d,c,v)

register char *d;

register int c,v; {

while (c—)

*d+ + = v;

} /* end setmem */

/* move memory around */

movmem(s,d,c)

register char *s,*d;

register int c; {

if (s > d)

while (c~)

*d+ + = *s+ +;

else {

s + = c;

d + = c;

while (c—)

*—d; = *-s;

}
} /* end movmem */

Note that bad things happen if you send a negative value

for count.

setmemO is straightforward. Starting where it’s told, it

marches through memory, setting each consecutive location to

the value it’s told to use, until it’s told to stop.

movmemO works similarly, but a twist is encountered if

the source and destination areas overlap. For example, given

the following call, in which we move from a low address to a

high address:

movmem(&stuff[6], &stuff[10], 20)

If you start with stuff[6], by the time you get to stuff! 10] it

has already been polluted by stuff[6]. Effectively, you will

have copied the first four bytes five times. ►

STart, the ST Quarterly 65 Summer; 1986

PROCEDURES

Routines...
To avoid this problem, when working with overlapping

memory, you must manipulate the memory elements in re¬

verse order of the move. In the above example, start with

stuff[25] and finish with stuff[6], movmemC) is smart

enough to handle this for you, so you do not have to think

about it.

CLOCKING IT

Some time spent with the actual machine instructions gener¬

ated from the above C code quickly shows the speed advan¬

tage of assembly language. The heart of the movmem()

procedure,

while (c—)

*d+ 4- = *s+ +;

is compiled by DRl’s package into assembly code which looks

like this:

* (line 7) - a5 is s, a4 is d, d7 is c

moveloop: move.b (a5) + ,(a4) + * *d+ 4- = *s4- 4-

move d7,d0 * copy count

sub.w #l,d7 * decrement

* count

tst.w dO * finished?

bne moveloop * nope

Because compilers are not as quick to grasp the big picture

as people are, some extra steps are included. This fragment

would be better written something like this:

bra movecheck * check for

* zero count

moveloop: move.b (a5) + ,(a4) 4- * *d4- 4- = *s4- 4-

movecheck: dbf d7,moveloop * decrement

* count, continue

or, when possible, by longwords instead of bytes, like this:

bra movecheck

moveloop: moved (a5)4-,(a4)4-

movecheck: dbf d7,moveloop

A longword (four bytes) is the largest piece of memory the

ST’s processor can handle at once. Thus, it is the ST’s most ef¬

ficient chunk size for doing things like moving memory

around. The longword moves in the above code fragments will

move their four-byte chunks nearly three times faster than

their byte-by-byte siblings.

The speed difference becomes telling when very large

chunks of memory must be moved around. Using the above

code fragments, the Atari 520ST moves a chunk of memory

the size of its own screen at 150, 96 and 33 milliseconds.

Those figures are not a straight 8 MHz multiplication of the

number of clock cycles the MC68000 takes to perform the

steps listed. Overhead slows the ST down to an apparent

speed of about 7.3 MHz.

AND NOT ONLY THAT

Just a few more points before we plunge into our “printout”

module.

Whenever possible, everything is done with longwords in¬

stead of the bytes the procedures are defined as using. “When¬

ever possible” means two conditions must be met: the move

must be longer than four bytes, and it must involve even ad¬

dresses. The MC68000 is incapable of doing longword mem¬

ory I/O at an odd address. If the situation can’t meet both

conditions, or can’t be rearranged to meet them, the moves

must be done by the byte.

Thus, these procedures really do not represent the fastest

way to do the job. They spend too much time setting them¬

selves up and deciding the best way to go about their busi¬

ness. But they are completely general and work no matter what

parameters they are given to work with—unless, of course,

they are sent bogus addresses or negative counts or similarly

impolite things. Once they do decide on the best way to go

about their job, though, they do it as quickly as possible and

are an excellent compromise between generality and perform¬

ance. For an example of their usage, examine the code in

PRINTOUT.C, which we talk about next.

CONFESSIONS OF A FILE PRINTER

PRINTOUT.C, on your START disk, is the source code for a

self-contained, (nearly) stand-alone C module that reads stan¬

dard text files from a disk and displays them to either a

printer or the screen. The resulting display will be left-justified

and word-wrapped on the right margin. It is completely inde¬

pendent of text size and Atari ST screen configuration. On the

printer, PRINTOUT paginates when the page is full. On the

screen, it begins at the top of its own window and continues

to the bottom. When that bottom is reached, the window is

scrolled and printing continues smoothly. The patient human

watching all of this can pause or stop the display at any time.

PRINTOUT is a slightly modified version of a module in

Antic’s Disk Doctor. All printing in Disk Doctor is routed

through this unit, but the modified version here is slanted to¬

ward displaying help files. All that need be done to read and

show a help file is call showfile(), sending it the name of the

help file it should show.

Again, PRINTOUT was developed using DRI’s C Compiler.

If you use some other compiler, beware that the Alcyon crea¬

ture has some idiosyncrasies. Paramount among these is that it

STart, the ST Quarterly 66 Summer, 1986

does not exactly follow the C convention of interchangeable

pointers and integers; integers being only two-byte entities.

PRINTOUT needs six things it does not define itself. These

are: int schandle, the work screen handle returned by v_

opnvwkO at program initialization; int cellwidth, the cell

width of the current text font and size; int cellheight, its cell

height (see GEM’s vst_height() for details on these); and

ptsinf], a temporary int array which must be defined for any

GEM application, anyway, so why not use it?

The fifth and sixth items are initializations, not variables.

You must be sure the fill color is set to the background color,

and text alignment must be set to bottom.

To provide an example of hooking PRINTOUT to an ap¬

plication, there is a simple shell program called PRTSHELL.C

on your START disk. PRTSHELL.C will open a GEM virtual

workstation, take over the screen, arrange things the way

Picking up the

screen at any arbitrary point on

a line and moving it somewhere

else presents a fairly ugly

problem.

PRINTOUT wants them, display a menu bar, then wait for

menu messages. Two menus are included for your enjoyment.

One is the standard Desk Menu, the other is a Help Menu.

The first item under the Help Menu is “Quit”. The remain¬

ing two items are psuedo Help items titled “About Something”

and “About Something Else”. They both call showfile() from

PRINTOUT and display text from one of two files on the

START disk (labeled FILE.ONE and FILE.TWO).

PRINTOUT FROM INSIDE OUT

With a handy listing in front of you, notice that gemdefs.h is

included for its window manager #define’s, and osbind.h for

its library bindings. Note that PAGELENGTH and

PAGEWIDTH are also #define’s. They can just as easily be

variables carried over from the main unit. They are used only

when printing, not when displaying to the screen.

The first procedures of real interest are in the section

headed “Printing Routines.” The first of these is scrollQ,

which moves the entire display window up one line. It is the

only abstruse algorithm in the entire module, and many allow¬

ances are made for it elsewhere. It is best explained by first ex¬

amining the structure of the Atari ST’s screen.

Complication number one is that three different screen

configurations exist: low, medium and high-resolution. High-

resolution screens, capable of only two colors, are mapped in

memory very simply: bit by bit, a 0 in the screen memory

means that pixel of the screen is background color. A 1 means

it isn’t background. At 640 pixels wide, each line of the screen

is 640/8 or 80 bytes wide. Each consecutive line is stored

consecutively in memory. It’s all easy enough, until you con¬

sider color screens.

Each pixel of a medium-resolution screen is capable of

being one of four colors. In low-resolution, that’s 16 colors.

Strangely enough, that means each pixel of a medium-resolu¬

tion screen is described by two bits of screen memory, and

four bits in low-resolution. In fact, the screen is described in

groups of 16 pixels. Each group of sixteen pixels is described

by a group of two or four words of memory in medium of low-

resolution. Specifically, the nth pixel is described by the nth

bit of each word. In pictures, a memory map for a medium-

resolution screen with pixels a through z looks like this.

—word one— || —word two— || —word three ...

abcdefghijklmnopabcdefghijklmnopqrstuvwxyz ...

Now, back to scroll(). Clearly, picking up the screen at any

arbitrary point on a line and moving it somewhere else pres¬

ents a fairly ugly problem. Picking it up at pixels which hap¬

pen to fall on word boundaries is, however, fairly easy. For

this reason, only a subset of the display window is actually

scrolled. This is the part that begins at the leftmost part of the

window that falls on a 16-pixel boundary and continues for

the largest multiple of 16 pixels contained in the window. The

scrolled portion of the window also omits a few lines on top

and bottom for headers and messages and the like. Every

screen line begins on a 16-pixel boundary, so vertical move¬

ment is not a problem. This is the origin of scrollrect[], a

subset of the work area of the display window (windrect[J). It

was an intentional design consideration to use a subset of the

window, rather than define the window itself to sit on a word

boundary, because some border area was desired.

As mentioned before, a single line on a high-resolution

screen is 80 bytes, or 40 words, wide. It turns out that both

color screens are lines 80 words wide. Enter linesize.

To have the window show up anywhere on the screen, you

need only have it show up somewhere else in the openwind()

procedure. Since the scrolling area can then start nearly any¬

where, scrollO needs to know how far from the beginning of
►

STart, the ST Quarterly 67 Summer, 1986

PROCEDURES

Routines...

the line (left edge of the screen) scrollrect[] is located. Enter

linestart.

The window is also variable size, and a third thing scroll()

needs to know is how wide scrollrect[] is, in bytes. Enter

linewidth.

Note that linesize and linestart are defined as a number of

words, while linewidth is a number of bytes. This is because

the memory location of the screen is kept track of by an int

pointer, and so offsets from it are done by the word. The

movement of memory itself is accomplished by the earlier de¬

scribed movmemO, which works by the byte—so linewidth

follows suit.

To calculate linewidth and linestart, the appropriate

measurement in pixels is first divided by eight or sixteen,

which converts to bytes and words, respectively. Each is then

multiplied by the number of planes the current screen has:

one for high-resolution, two for medium and four for low.

scroll() accomplishes this with bit shifts instead of actual mul¬

tiplication and division, because it is more convenient and ten

times faster.

Once all this preliminary stuff is knocked out of the way,

scroll() begins one line (dy pixels) from the top of the scroll

area and, using sheer brute force (movmemO), grabs each line

of the window and moves it up dy pixels.

EVERYTHING ELSE

The remainder of PRINTOUT is best understood by watching

it print a hypothetical file. This is accomplished by calling

showfileO which opens the file and then keeps track of its

length. This is necessary because read() in some earlier ver¬

sions of the operating system choked when asked to read more

data than remained in a file. startprint() initializes all local

variables that need initialization, and in general prepares the

print session.

Our other previously described AL routine, setmem(), may

be found in centerhdr(). This is a minor function which cen¬

ters a string on the page. movmemO is used to move the

string to the right. setmem() fills the leftmost—or first part

of the string—with blanks.

Our file is now read sequentially and given to the mercies

of printstrO, piece by piece. printstr() can alter the value of

oktocontinue. Finally, endprint() releases all the memory

that startprintf) snatched and closes the window it opened.

Other things are cleaned up, and the show is over.

printstrO does the printing. It takes a null-terminated

string of arbitrary length and heritage and plasters it all over

the printer or screen, as requested by startprintf).

printstrO itself just searches for word boundaries and de¬

cides what will fit on each line of the display. All actual print¬

ing is done, one character at a time, by printchar().

printcharf) keeps track of the current column and line

numbers, which are the globals curcol and curline. When

curline gets too big it causes pagination, printcharf) lets

printstrO handle line breaks when curcol gets too big. If the

printing destination chosen is the printer, printcharf) calls

the appropriate bios trap that tells the printer about it. If

printing to the screen, however, it stores each character in a

one-line buffer called prnbuffer, at the index pbindex. The

buffer is only printed when a carriage return character is en¬

countered. scpixel is an indicator of vertical position, like

curline, but refers to the screen position instead of the line

number. When scpixel gets too big, scrolling happens,

scpixel is really used only for screen output and curline is re¬

ally used only for printer output, since screen output isn’t pagi¬

nated, but it could be, and their uses aren’t parallel; they are

two separate variables.

As each newline is encountered, printcharf) calls

checkeydownf), which polls the keyboard. If checkeydownf)

finds a keystroke waiting patiently for attention, it eats it and

pauses, stops or ignores it entirely depending on the key.

Pausing and stopping are accomplished through

statuslinef), which prints an appropriate message and waits

for additional keystrokes to eat.

CRITIQUE AND OVERVIEW

PRINTOUT’S most damning problem is that it is what mouse-

and-menu programmers are fond of calling “modal.” When

printing, all control of the computer is taken away from the no

doubt unappreciative human who paid for the thing. This is

not so bad, but when the printing pauses, and the mouse re¬

turns from wherever it was and the computer is once more

paying attention to the human, PRINTOUT is off in its own

little world, waiting for one thing and one thing only: a key¬

stroke telling it to continue. There is no accessing any menu or

other control device on the screen.

The advantage corresponding to all this rampant modalism

is that PRINTOUT is a self-contained module which works al¬

most by itself with no supervision from the main one. Making

PRINTOUT nonmodal would of course necessitate a very inti¬

mate intertwining of its code with the main module, and it

could hardly be published in its current incarnation as generic

printing code. ■

start, the ST Quarterly 68 Summer, 1986

Of
Diagnostics
>sing.iimuhM

Procedures for the 68000

BY JIM DUNION

A detailed look at the art of debugging the 68000, plus a
dream list of what the best-dressed 68000 debugger may
be wearing this season.

■ M forking in the department of Neurosurgery at Emery University and Grady

If IW Memorial Hospital in Atlanta showed me the similarity between the medical

W W diagnostic process and the process of debugging a computer program. I was

struck by the importance physicians place on information they see with their own eyes,

and indeed, many of the recent advances in medical diagnosis come from instruments

that provide images of our internal bodily processes.

Similarly, it makes sense to improve debugging tools by improving our ability to “see”

what’s going on inside our programs at any instant. One reason debugging is so difficult is

that bugs usually involve some assumption that proves to be untrue. We intend to do one

thing, but in reality we do something else. This mindset makes it hard to locate bugs,

because we’re so sure that it couldn’t possibly be in a certain part of the code. One way of

countering this in debugging is to put as much information as possible on the screen and

let our visual system recognize when things don’t look right. You’ve probably noticed how

much easier it is to recognize the right answer on a multiple choice test than it is to

generate the right answer in a fill-in-the-blank test. ►

STart, the ST Quarterly 69 Summer, 1986

CHIPS

BUG, BUG, WHERE’S THE BUG?

You’re writing a program, and when you test it, it doesn’t

work. What now? At the risk of seeming simplistic, there are

two things to do: Determine the bug’s symptoms, and discover

where the bug occurs.

As a general rule, fixing a software bug is usually easy;

finding it is the problem. Some of the basic tools we use to

find it are:

• A breakpoint mechanism: A way of setting a point in memory

so that, if the program tries to execute that particular instruc¬

tion, control transfers to the debugging system.

• A register display routine: To figure out what’s going wrong

in a program, the first step is to examine the processor

registers.

• A memory display routine: Next in importance to the proc¬

essor state is the current state of memory. We obviously need

an easy way to examine exactly what’s out in memory.

• A single-step mechanism: We want to make the processor

execute a single instruction at a time, returning control to us

after each instruction. Then we can “watch” precisely what is

happening in the program, and see when it goes wrong.

• A trace mechanism: An elaboration of the single-step mecha¬

nism. Here we want to run the program in an interpretive

mode, automatically making certain tests, recording machine

states, and so on.

So far everything I’ve said applies more or less equally to all

computer systems and languages. The closer to assembly lan¬

guage you work, the more you have to know about the proc¬

essor itself. In the Atari 520 (or 1040) ST, that means the

68000. For many of us, the 68000 is the second or third mi¬

croprocessor we have worked with, so what we really need to

know is what aspects of 68000 assembly language program¬

ming are different from that of other processors. When you

stop and think about it, the areas where any processor differs

from others can be grouped into several main classes:

1. Register-Set Architecture.

2. Addressing Modes.

3. Instruction Set.

4. Special Event Handling.

The next sections discuss features in each of these areas

that are likely to be unique to the 68000.

REGISTER-SET ARCHITECTURE

The first thing we notice in looking at the 68000’s register-set

architecture is how many registers there are: seventeen 32-bit

registers in addition to a 32-bit program counter and a 16-bit

status register. The data registers D0-D7 are the true general

purpose registers of the 68000. The next group, address regis¬

ters A0-A6, is used mainly for address operations. There are

some restrictions governing which instructions work with the

address registers. Also, some operations on these registers

don’t affect status register bits. All in all, even though the ad¬

dress registers seem at first to be just like the data registers,

they are, in fact, quite different.

The status register is divided into two bytes, the system

byte and the user byte. These two registers contain a total of

10 bits of status information. Of these 10 bits, two are es¬

pecially meaningful for debugging purposes, the S bit and the

T bit. The S bit determines which of two possible states the

68000 is in, either Supervisor or User. In Supervisor mode,

there are several privileged instructions that can be executed,

but they will generate an error in user mode. The S bit also

determines which of two possible stack pointers will be used.

The T bit, or Trace bit, is very important to debugging.

When this bit is on, an exception (i.e., internal interrupt) is

generated after each instruction. In effect, this is a built-in,

single-step mechanism.

ADDRESSING MODES

The 68000 has 14 available addressing modes, most of which

can be used with any instruction. The main classes of ad¬

dressing modes include:

• Register Direct Addressing.

• Absolute Data Addressing.

• Program Counter Relative Addressing.

• Register Indirect Addressing.

• Immediate Data Addressing.

• Implied Addressing.

Most of these modes are familiar to you from other sys¬

tems, but there are a few things to notice. For instance, the

Postincrement Register Indirect and the Predecrement Register

Indirect modes are specifically included to provide for stack

processing. Remember, however, that postincrement changes

the address register after using the contents, as opposed to be¬

fore with the preincrement mode. Also, the size of the incre¬

ment is determined by the size of the instruction (e.g., byte

instructions increment by 1, word instructions by 2, and long

word by 4). Take care in using either of these modes with reg¬

ister A7 (the stack pointer). Since the system uses this register

(and the implied stack) for address storage in subroutine link¬

age, the system always expects this register to be aligned on

an even address. So even for byte-sized operations, the value

of A7 will be adjusted by two.

One of the 68000 addressing capability’s features is the

ability to write position independent code, i.e., object code

that can be moved around and still execute without change.

The 68000 allows this by providing an addressing mode that

STart, the ST Quarterly 70 Simmer, 1986

CHIPS

is relative to the program counter. Several other processors al¬

low relative branches, but in the 68000 even JUMPS and sub¬

routine calls can be made relative to the program counter.

This is not to say that there aren’t some quirks in 68000

addressing. The 68000 designers also put in some features to

encourage reentrant code. For instance, you can read data rel¬

ative to the program counter, but you can’t alter data. Ob¬

viously, this is to protect the program from overwriting itself.

Self-modifying code is considered outmoded these days. Data

can be referenced, relative to a base address set up in a regis¬

ter, to encourage separation of program data and code.

Though most instructions work with most addressing modes,

there are exceptions.

INSTRUCTION SET

The 68000 instruction set has only 56 instructions. But the

ability for these instructions to work in many of the address¬

ing modes and on several different data sizes makes them

seem more numerous. For instance, the CLR command (which

is a quick way of setting a location to 0) can be written sev¬

eral ways:

CLR (A3)

CLR.B (A3)

CLR.W (A3)

CLR.L (A3)

Clears the word pointed to by A3

Clears the byte pointed to by A3

Clears the word pointed to by A3

Clears the long word pointed to by A3

Care must be taken in sizing the data field on which you

wish to operate, especially when the destination operand is a

register. If you are operating on less than the full-sized regis¬

ter, the remaining portion is unaffected. In practical terms,

this means the register’s upper bits might not contain what

you think. There is a little bit of a “gotcha” here, in that byte

operations work on the bottom 8 bits of a register, but on the

top 8 bits of a memory location.

Another feature, sign extend, comes from having instruc¬

tions that work on variable size data. In the CMPA instruction

(CoMPare Address, works only with word and long sizes), if

you choose the word size, the sign (i.e., bit 15) is sign-ex¬

tended to the full 32 bits and then the comparison is made.

This can lead to some non-intuitive situations. For instance,

CMPA.W #$FFFF,A1

would set the Z condition code if A1 contained -1

(SFFFFFFFF), and would not set Z if A1 contained SFFFF. It

is always a good idea to use long versions of instructions when

placing addresses into address registers.

Several instructions are specifically included for high-level

language support. Some of these can aid the debugging proc¬

ess. When taking a “snapshot” of the processor state during a

program execution, there is always the question of which reg¬

isters to save before the snap-shot subroutine executes. The

MOVEM copies a specified set of registers to memory or back

again. This instruction is very flexible, and able to save or re¬

store any arbitrary group of registers. The machine language

instruction actually contains a 16-bit register mask where each

bit set to “1” indicates that the corresponding register should

be saved or restored. Be careful when using this instruction to

move 16-bit words from memory to address registers; they will

be sign extended to 32 bits.

The DBcc (Decrement and Branch on condition) is a useful

loop control command. Remember that the condition specified

is the one that makes the program exit the loop, rather than

stay in the loop. If the condition is not met, the counter will

be decremented and tested for -1. If your loops are off by 1,

this would be a good place to check.

An instruction is provided for multiprocess communica¬

tion. In time-sharing situations, there is a classic problem

known as the “deadly embrace,” which can occur when two

processes that are interrupt-driven both try to exert control at

the same time. If a section of code first tries to read a status

value, then takes control based upon the value’s state, there

could be trouble. What happens, for instance, if an interrupt

occurs after the reading of the value, but before it is set to a

new value? It depends. To help avoid such pitfalls, the TAS

(Test and Set) instruction allows you to read, test and set a

value all in one instruction. This allows the code to set a sem¬

aphore.

If you’ve come to the 68000 from a less powerful proc¬

essor, there will be numerous pleasant surprises for you. Ex¬

amples are: The bit-testing and setting instructions (BCFIG,

BCLR and BTST), the multiply and divide instructions, the ex¬

change register instruction, some of the conditional branch in¬

structions, and the data movement instructions.

The 68000 contains conditional branching instructions that

test individual status register bits. There are also conditional

branch instructions that on other processors require several

instructions, including BLT, BGE, BLS, BLE and BGT. The most

complicated of these are the “Branch if Less than or Equal”

(BLE) and “Branch if Greater Than” (BGT). BLE will jump if

the Z bit is set, or if the N bit is set and the V bit is not set.

The Bit TeST instruction, BTST, is a weird little instruction

used for testing if a specified bit is set. The weird thing is that

the instruction’s action depends upon whether the destination

is a memory location or a data register. The low order bit is

specified as bit 0, and the high order bit as bit 7. Numbers

larger than 7 are regarded as modulo 8. Memory is addressed,

then, by bytes. If, however, a data register is the destination,

then bit numbers range from 0 to 31, allowing all the register’s

►

STart, the ST Quarterly 71 Summer, 1986

CHIPS

bits to be tested. If the number is larger than 31 it is consid¬

ered to be modulo 32.

Take care with the other bit-oriented instructions also. The

68000 uses memory-mapped I/O, so it is tempting to want to

use an instruction like BSET to set a bit in a peripheral status

register. What really happens in a BSET instruction however,

is a read-alter-write sequence. Some peripherals are set up to

become active whenever their address appears on the address

bus. Thus, some subtle bugs can occur when you try to acti¬

vate individual bits. A better approach is to use a MOVE in¬

struction to set the register all at once.

SPECIAL EVENT HANDLING

In the 68000, interrupts and other special events are known

as exceptions. Exceptions are caused by external events

known as interrupts; those caused by internal events are

traps. The 68000 designers included several features to aid de¬

tection of program bugs. Specific hardware traps detect the fol¬

lowing conditions:

• Word Access with an Odd Address.

• Illegal Instructions.

• Unimplemented Instructions.

• Illegal Memory Access (Bus Error).

• Divide by Zero.

• Overflow Condition Code (Separate Instruction TRAPV).

• Register Out of Bounds (CHK Instruction).

• Spurious Interrupt.

Also, programmers may use the 16 TRAP instructions to

provide applications-oriented error detection and correction

routines.

Finally, the CHecK register against bounds (CHK) instruc¬

tion checks array bounds by verifying that a data register con¬

tains a valid subscript. A trap occurs if the register contents

are negative or greater than a limit.

BUILDING A BETTER DEBUGGER

Having examined 68000 features that can affect the debug¬

ging process, we return to the problem of using Atari ST fea¬

tures to aid in debugging. Color graphics and animation come

to mind immediately. One example is to switch screens be¬

tween the normal program display screen and a special debug¬

ger screen, which works because the ST has registers that

determine where the video RAM (i.e., what the screen dis¬

plays) is located. Visuals can be done in monochrome or color.

I’m partial to color, and sacrifice resolution in order to use

color to signify special events (e.g., a data value changing).

The real challenge is to find ways to use the machine’s graphic

capability to display what the processor is doing. Indeed, nu¬

merous instruments are available to do this including: logic

analyzers, signature analyzers, and performance analyzers.

Let’s look at what we might call a program execution space

display. Suppose we create a graphic display where a vertical

line represents the memory space available to your system.

Test the program in “trace” mode and it could display a col¬

ored pixel along the memory space line to indicate where the

program counter is set. These pixels may even be tracked

horizontally, creating a histogram of how many times a partic¬

ular instruction has been executed. Just by watching such a

display, we could get an intuitive “feel” for where the program

is spending its time.

Similarly, a series of icons could be created that stand for

some of the routines the program might execute. The trace

program could highlight the icon of each routine as the routine

is entered, thereby displaying the program’s rough flow. This

might not tell us the details of what went wrong, but it could

provide some clues of where we should look more closely.

PROCESSOR AND MEMORY

Once we have built a better display mechanism we still need

ways of setting up a particular machine state and controlling

the processor. Every debugger available has instructions for

setting processor registers to specific values, and for depositing

values to memory. However, some are easier than others. A

powerful addition in this area is to allow symbolic references

to variables from the debugging tool. Typically this means that

the debugger must have access to the symbol table used by the

assembler or linker or have a provision for defining symbols

interactively.

A second way of improving our processor and state control

is to allow conditional breakpoints. Simple, unconditional

breakpoints are helpful. But ones with which you can, for ex¬

ample, say “Break" if an instruction tries to write to location

TEST, are much better. Other types of conditional breakpoints

are ones that break on specific instructions, program branches

to specific ranges, and data accesses within specific ranges.

A speed control mechanism for single-step mode is also

quite useful. Sometimes we just want to watch the overall flow

of the program, while at other times we want to watch the de¬

tails of specific instructions as they are executed.

We should also take advantage of the function keys and Mr.

Mouse. These controls can trigger special kinds of debugger

displays or processor control. The special function keys can be

used for:

• Returning to the program under test.

• Single stepping the program.

• Switching screens between the program and debugger. ►

STart, the ST Quarterly 72 Summer, 1986

CHIPS

A
DEBUGGING
GLOSSARY

ASCII Chart - A table showing each keycode's ASCII

value. Some debuggers provide this as a convenience

for low-level I/O debugging.

Assembler - A program that translates mnemonics

meaningful to a programmer to executable object

code.

In-line Assembler - A provision allowing a debug¬

ger user to deposit values in memory by using

mnemonics without having to return to the assembler.

Sometimes called an immediate assembler.

Backtracking - The ability to "go backwards" in time

and undo the effects of preceding instructions. Re¬

quires a buffer to store the preceding instructions and

some processor or memory state information.

Breakpoint - A point where execution of the tested

program stops and control returns to the debugger.

Conditional Breakpoints - The ability to specify

a set of conditions that determine whether a break¬

point will be triggered.

Sticky Breakpoints - Breakpoints that remain in

place even after they have been triggered. They must

be explicitly cleared.

Calculator - A provision to do some degree of arith¬

metic or expression evaluation directly in the debug¬

ger (e.g. calculating an effective address).

Decimal Arithmetic - Arithmetic capabilities in base

10.

Hex Arithmetic - Hexadecimal (base 16) capability.

Compare Capability - The ability to compare a

given memory range to another memory range. Done

properly, such a feature will show at what point the

comparison fails, if it does.

Communication Ports - The ability to use an exter¬

nal communication port for communicating with the

debugger. This is usually important for debugging ap¬

plications that run on systems where there is limited

ability to control the screen memory.

Debugger Isolation - Provides some degree of

isolation between the debugger and the system under

test. This is usually seen in systems with additional

memory cards or In-Circuit Emulators.

Disassembler (Unassembler) - A program that

converts between object code and assembly lan¬

guage mnemonics. Most debuggers have a provision

for displaying a portion of memory in disassembly for¬

mat.

Fill Memory - The ability to set a range of memory to

a specified value or pattern.

Firewalling - A preventative debugging technique

where modules are isolated from each other and in¬
teract only by affecting a group of variables.

Hardware Assisted Debugger - A debugging

system that is provided with some additional hard¬

ware. Examples might be extra RAM, a hardware

switch that generates an interrupt, or an In-Circuit Em¬

ulator system.

Help Screens - Display screens internal to the de¬

bugger that explain its functions.

In Circuit Emulators (ICEs) - A hardware assisted

debugger that is in fact a complete external computer.

Usually includes a cable and integrated-circuit plug-in

device that replaces the target processor. In effect,

the external computer system "emulates" the micro¬

processor under test.

Interrupts - Various conditions, or exceptions (as they

are called on the 68000), that cause a hardware in¬

terrupt to be generated. These cause jumps through a

vector table to interrupt processing code.

Linkers - Programs that load object code modules

and resolve external symbol references.

Logic Analyzers - An instrument that monitors the

busses of microprocessor systems, as well as allowing

probes of other locations inside the system. A display

much like an oscilloscope is created, showing the logic

state over time for the line or point being monitored.

Map Files - Intermediate files produced by some as¬

semblers that detail local symbols, local routines, ex¬

ternal symbols and routines that are referenced, etc.

Move Memory - The ability to move a block of

memory from one location to another.

Non-Maskable Interrupt - (NMI) an interrupt that

can't be ignored by the processor. In the 68000, this

can be implemented by setting the interrupt priority to

7.
NMI Switch - A "breakout" type of switch that is

wired to generate a Non-Maskable (Highest Priority)

interrupt. This is usually intended to return control to ►

STart. the ST Quarterly 73 Summer. 1986

CHIPS

the debugger after the program under test has

bombed.

Overlays - Additional portions of executable code

that are brought in and "overlay" the code currently in

memory. This is one technique for creating programs

that are bigger than the physical memory size.

Patching - The ability to make local temporary

changes to object code for quick testing.

Code Insertion - The ability to patch a section of

new code without affecting the existing code.

Performance Analyzer - A device or program

that captures processor execution information. Typ¬

ically used to determine where the processor is

spending its time, how many times particular routines

are called, or specific timing information about a code

fragment.

Protected RAM - RAM that is provided with some

debuggers where the debugging system can maintain

information that is protected from the program under

test.

Reduced Speed Execution - Ability to run the

program under test in a reduced speed interpretive

mode where the action of the processor is slowed

down so the user can roughly follow what is

happening.

Screen Toggle - Ability to switch back and forth be¬

tween a user-program screen display and the debug

display.

Search Capability - The ability to search through

memory for a given value or pattern. Usually updates

a display to show the next memory range where a

match is found.

Signature Analyzers - A testing device that cre¬

ates a visual display representing what the processor

is doing. Particular programs turn out to have repeat-

able, easily recognizable patterns.

Single Step - Ability to cause the processor to ex¬

ecute a single instruction and then return control to

the debugger.

Single Step Past Calls - Ability to place a break¬

point beyond a subroutine call so that the processor

executes a subroutine and then returns to the debug¬

ger after returning from the subroutine.

Sleeping Debugging Instructions - Diagnostic

instructions or routines that are normally inactive, and

which "wake up" and execute when a predefined ab¬

normal condition occurs.

Source Level Debuggers - Debuggers that have

some provision for reading source level code files and

correlating those with the object code currently being

debugged. A display is usually provided that shows

the source language statement that contributed the in¬

structions currently being executed. More sophisti¬

cated source level debuggers allow for breakpoints to

be set at the source level.

Snap Shots - A static representation of the processor

and memory state at any instant. Gives the debugger

user a picture of what's going on in the processor at

that instant.

Symbols - A sequence of characters that stands for

either a memory location or a data value. The ability

to use symbols makes debugging much easier.

Public Symbols - Symbols that are defined in gen¬

eral function libraries and are available to all program

users.

Symbolic Debugging - The ability of the debugger

to refer to a symbol table to make disassembly for¬

mats closer to assembly or other source languages.

Trace - The ability to monitor the processor and/or

memory state after each instruction is executed. This

is used for single stepping, conditional breakpoints,

creating log files, and backtracking.

Watchpoints - Conditional types of breakpoints

where certain conditions are monitored, and if they

are satisfied, then control returns to the debugger.

Windows - A portion of a screen display (usually rec¬

tangular) that can be set up to monitor particular

memory ranges, symbols, or other types of data

structures.

Wolf Fence Method - A debugging technique

where a bug is located by successively fencing it in

smaller and smaller areas of code.

• Activating special data displays.

• Scrolling a symbol table display.

• Changing the representation of memory window displays.

• Saving the current state to a disk file.

• Activating trace mode.

• Turning on a buffer mechanism to store instructions that

have been executed.

The mouse can quickly point to exactly which register to

change, which symbol to monitor, the speed of execution, or

where in memory we want to look. The combination of a high-

STart, the ST Quarterly 74 Summer, 1986

quality graphic display and a pointing device that can quickly

indicate any spot in that display is a powerful one indeed.

ONE STEP BEYOND

All of the features discussed so far can be found on existing

debuggers if you look hard enough (though no one debugger

has all of them). So what’s the next step? Use your imagina¬

tion. Are there other ways to visually represent the processor’s

activity? You bet there are. And I haven’t even mentioned the

possibilities of adding sound. The 68000 is a very powerful

processor and the Atari ST combines this processor with ex¬

cellent graphic capability.

We’ve just begun to tap the possibities of this combination

in all areas of programming, including debugging. It still takes

too long to go from an idea to a working program. Too much

time is spent exorcising bugs. Don’t you think it’s time our

programming tools were a little more sophisticated? It wouldn’t

surprise me a bit to see a whole new class of debugging pro¬

grams emerge soon for the Atari ST. And not a minute too

soon.

(Editor’s note: Jim Dunion is currently putting the finishing

touches on STDDT, his debugger for the Atari ST. It will be inter¬

esting to see if Jim can fit all the features mentioned in this arti¬

cle into STDDT.)

REFERENCE:

• M68000 16/32-bit Microprocessor Programmer’s Reference

Manual (fourth edition), by Motorola, Prentice-Hall, En¬

glewood, NJ

• Motorola Data Sheets:

68000—#AD1-814

68008—#ADl-939

68010—#ADl-942

• 68000 Assembly Language Programming, by Kane, Hawkins,

and Levanthal, Osborne/McGraw-Hill, Berkeley, CA

• Programming the M68000, by Tim King and Brian Knight,

Addison-Wesley, Reading, MA

• The Motorola MC68000 Microprocessor Family, by Thomas

L. Harmon and Barbara Lawson, Prentice-Hall, Englewood

Cliffs, NJ

• The 68000: Principles and Programming, by Leo J. Scanlon,

Howard W. Sams & Co., Indianapolis, IN ■

Remember, START is not complete without its disk. To

order, see handy order form.

CP
T UUt V/UUUl lUV/UUUl

WE SPECIALIZE IN ST SOFTWARE

JOIN OUR ST OWNER’S CLUB
FOR FREQUENT SOFTWARE AND

HARDWARE UPDATES. CALL NOW!

ATARI ST SOFTWARE

DEGAS.$ 25.00
CHECKMINDER.... 39.00
H & D BASE.59.00
HIPPO PIXEL.27.95
LATTICE ‘C.109.95
M-DISK..24.95
P/C INTERCOM.... 69.95

REGENT BASE $59.95
REGENT SPELL 35.95
REGENT WORD 35.95
SILENT SERVICE... 23.95
ST COPY (CCI).27.95
THE PAWN.29.95
TYPESETTER ST ... 24.95

WE CARRY THE MOST EXTENSIVE AND
COMPREHENDABLE LINE OF MIDI SOFT¬
WARE, HARDWARE, AND ACCESSORRIES.

CALL NOW FOR AVAILABILITY!

HARDWARE
CASIO CZ-101 MIDI SYNTHESIZER.$309.00
CITIZEN MSP-10 DOT MATRIX PRINTER 265.00
HAYES 1200 BAUD MODEM.375.00
HIPPO EPROM BURNER.109.00
HIPPO ST SOUND DIGITIZER.109.00
HIPPO ST VIDEO DIGITIZER.109.00
QMI 1200 BAUD MODEM.159.00

We guarantee to beat any advertised price Call

the Bozos, then call your ST EXPERTS!

WE’RE FAST, WE’RE FRIENDLY

CALL OR WRITE TO BE PLACED ON MAILING LIST
FOR NEW PRODUCT INFO AND MEMBERSHIP

P.O. Box 3025, Northridge, CA 91323

STart, the ST Quarterly 75 Summer, 1986

COmPUTER CRERTH3HS
YOUR ATARI 520ST SOFTWARE SUPPORT CENTER

HOLMES A DUCKWORTH
Toolbox.
Forth .
HAD Base.

INFOCOM
Ballyhoo .
Zorkl .

Antic . Call tor
programs a

BATTERIES INCLUDED
Degas.
Paperclip Elilo.
Homepak .

DRAGON GROUP
4X Forth .

ELECTRIC SOFTWARE
GST Macro Assembler ..

GEM Screen Editor Ci
ELECTRONIC ARTS

Marble Madness. C
Financial Cookbook.

HABA
Business Letters .

Hippo'C'Compiler .
Checkminder.
HABA Writer .
Phone Book .
HabadiskflO Meg) 6
Habaview .

Haba Calc & Graph Ca
Haba Mailroom Ca
Haba Word Ca
Habamerge Ca

HIPPOPOTAMUS SOFTWARE
Hippo Computer

Hippoconcept.
Hippopixel .
Hippoclean.

Hippo Fonts I
Hippo ST Sound Digitize
Hippo Video Digitizer
Hippo Eprom Burner

Cutthroats .
Deadline .
Enchanter.
Hitchhiker's Guide
Seastalker .

MARK OF THE UNICORN
PC Intercom .
Final Word .

DO S Shell.
D.F.T.
The Animator .
Personal Money Mgr.

MIRAGE
Express Word Proc. .

OASIS
Sundog .

OSS
Personal Diskit .
Personal Pascal.

ST Talk.
QUICKVIEW SYSTEMS
Zoomracks.

SIERRA
Kings Quest II.
Ultima II.
Winnie The Pooh .
Black Cauldron .

SPINNAKER/TELLARIUM
Homework Helper Math ,.

SST SYSTEMS
Chat .

SUBLOGIC
Flight Simulator .
Jet.

TDI SOFTWARE
Modula • 2/ST ..
Andra/ST .
UCSD Pascal ...

UNISON WORLD

Business Tools
Cornerman
Easy Record
Major Motion
Mi-Dupe
Mighty Mail

Atari ST Basic Training
Atari ST Graphic & Sound
Atari ST Logo
Atari ST Peeks & Pokes
Atari ST for Beginners

Atari ST GEM Reference
Atari ST Internals
Atari ST Machine Language
Atari ST Tips & Tricks
Atari ST from Basic to C

FLOPPY DISKS AS LOW AS 590 EA.

5V4"

Bulk

Black Generic Bulk

SS/DD 1 DS/DD

20-69 .69 ea. .89 ea.

70+ .59 ea. .79 ea.

3W Verbatim Sony Sony

Bulk/Bx. (5) SS/DD SS/DD DS/DD

20-69/2-6 1.59 ea. 11.90 bx. 16.90 bx.

70+/7+ 1.49 ea. 10.90 bx. 15.90 bx.

ATARI 520ST
Personal Computer System

ATARI HARDWARE
CALL FOR PRICES!!

PACKAGE # 1
Atari 520 STM Computer & SF 354 Disk Drive

PACKAGE #2
Atari 520 STM Computer, SF 314 Disk Drive

and SC 124 Monochrome Monitor

PACKAGE #3
Atari 520 STM Computer, SF 354 Disk Drive

and SC 124 Monochrome Monitor

PACKAGE #4
Atari 520 STM Computer, SF 354 Disk Drive

and SC 1224 Color Monitor

PACKAGE #5
Atari 520 STM Computer, SF 314 Disk Drive

and SC 1224 Color Monitor

Call for Package Prices!
Let Us Design A System

To Fit Your Needs!!

ATARI PERIPHERAL PRODUCTS
SF 354 SS/DD Disk Drive. 149

SF 314 DS/DD Disk Drive. 209
SM 124 Monochrome Monitor. 149

SC 1224 Color Monitor . 329

SHD 204 5i" 20 MB Hard Disk Call
TOS Operating System 25

Installed 45
One MEG Upgrade with purchase

of System 100

THIRD PARTY PRODUCTS

Haba 5i" Hard Disk 669
Shanner DS-2000 349
520 Station 29

To order call TOLL FREE

1-800-824-7506
ORDER LINE ONLY

, „ - COMPUTER CREATIONS, Inc.
P.O.BOX 493-DAYTON, OHIO 45459

For information, order inquiries, or for Ohio orders (513) 435-6868
ler Lines Open 9:00 a.m. to 8:00 p.m. Mon.-Fri.; 10 a.m. to 4:00 p.m. Sat. (Eastern Standard Time). Minimum S15 per order. C.O.D. (add $3 00) Pleas
(ree number to verify prices and availability of product. Prices and availability are subject to change without notice. We ship C.O.D to Continer
ude 4‘fcshipping on all Hardware orders (min. $4.00). Software and accessories add $3.00 shiDDina and handlino in r.nntinBntai usxr

ping, (mm. $5.00)
oany checks allow

ST ASSEMBLERS
O N A START COMPARIS

BY CHRISTOPHER F. CHABRIS

year ago, the only way a programmer could do serious

development work with the 520ST was with Atari’s so-

called “Developer’s Kit” at $300.00. Now, there are sev¬

eral high-level language compilers and four macro assemblers.

We’ll compare those assemblers and the “standard” Digital

Research AS68 program supplied in the developer’s kit.

First, though, let’s briefly review the function of an as¬

sembler in software development. An assembler is a program

that translates a source text file composed of mnemonic com¬

mands into machine language for a particular microprocessor.

On an 8-bit Atari computer, this is exactly what happens.

With the ST, the process can be different. Usually the as¬

sembler produces something called “object code,” an inter¬

mediate file consisting of machine language instructions that

cannot be loaded and executed directly by the computer. In¬

stead, it must first be processed by a program called a linker.

Why is this? Why not make the assembler simply produce

executable files straightaway, like MAC/65 for the 8-bit ma¬

chines? There are a couple reasons.

First, due to the MC68000’s speed and rich instruction set,

most commercial programs that run on a 68000-based com¬

puter are written in a high-level language like C or Pascal and

compiled to run. Although the resulting program runs slower

than its equivalent written originally in assembly language, the

68000’s speed makes the difference virtually invisible to the

user. Software houses prefer to use high-level languages be¬

cause programs can be developed faster and are easier to port

to other computers. Indeed, much of the early ST software was

originally developed for other computers in C.

Second, because of the increasing complexity of applica¬

tions software and the large size of the 68000 instructions

themselves, executable program code is becoming larger. So,

modular programming techniques are gaining popularity, and

it is not uncommon to have several programmers working si¬

multaneously on the same final product.

These reasons combine to produce the concept of separate

compilation—dividing a large program into smaller modules

and compiling them separately only when a change is made.

We can create libraries of common procedures just once, in¬

stead of each time we compile the program that uses them.

Compilers usually produce either an object file (as does Per¬

sonal Pascal from O.S.S.) or an assembly language file (as does

Alcyon C from the developer’s kit). In the latter case, the code

would have to be assembled into an object file. In either case,

compiling a module results in an object code file output. This

is where the linker comes in.

The linker can combine one or more object code files into

an executable program under a given operating system. Since

the object files are supposed to adhere to a standard format,

the linker is even able to combine code from different lan¬

guages into one program. This scheme makes it easy to write

most of an application in a high-level language and code the

high-performance sections in assembly language. A notable ex¬

ample is the Unix operating system, which is about 90 percent

C and 10 percent assembly language.

For the assembly language programmer, this adds another ►

STakt. the ST Quarterly 17 Summer, 1986

REVIEW

step to the development cycle, but saves time in large projects.

Atari supplies the standard DRI LINK68 program with the de¬

veloper’s kit. Since the linker component defines a develop¬

ment system’s object code formats, assemblers and compilers

that produce code acceptable to this linker can be used to¬

gether in the same programming environment.

WHAT IS AVAILABLE?

In addition to the Atari/DRI developer’s kit tools, the following

assembly language development products were available in

April 1986:

• A-SEKA, Kuma Computers Ltd., version 020386 ($39.95)

• GST-ASM, GST Holdings Ltd., version 1.00 ($59.95)

• Macro Assembler, Metacomco, version 10.195 ($79.95)

• DevpacST, HiSoft, preliminary version 0.99 ($79.95)

These products were developed by British firms. Each in¬

cludes a non-protected single-sided disk, and there the sim¬

ilarities end. Some include printed manuals, some use GEM

features, and some have debugging facilities. I tested the four

products on a 520ST with TOS in ROM, SC1224 color

monitor, and two single-sided SF354 disk drives.

All four products, as well as DRI’s AS68, use Motorola

standard mnemonics and conventions. While they are for the

most part correct, please do not get the impression that they

are compatible with each other! I attempted to perform an in¬

formal benchmark to compare the five by assembling and

linking an off-the-shelf 31K assembly language source file,

(STerminal by Jeremy E. San, from the Antic public domain li¬

brary). First I tried AS68 to set the performance standard for

the others and everything worked fine (it took 3:19 minutes to

assemble and a total of 4:21 minutes to create a runnable pro¬

gram file). However, none of the other programs completely ac¬

cepted the source file, and all for different reasons! The moral

is this: choose one assembler and stick with it. Otherwise, you

will suffer the same headaches I did attempting to convert

source code from one program’s format to another. This

shouldn’t be a problem for developers who want to program

from the ground up exclusively in assembly language. Needless

to say, none of the four third-party assemblers can be directly

substituted for AS68 when developing C programs with the

developer’s kit.

Interestingly, Metacomco packaged the GST linker with its

Macro Assembler. The documentation covers both the GST

and DRI linkers thoroughly, but only users with developer’s

kits will have access to the latter. GST-Link is incompatible

with the DRI standard object file format, although Metacomco

provides a utility to convert DRI format files to GST (but not

vice versa). I’ll look at the GST-Link program and the whole

linker issue separately after the assemblers.

Atari provides the SID (Symbolic Interactive Debugger)

utility of CP/M 68K fame with the developer’s kit. I find it in¬

adequate for all but the simplest tasks, compared even to the

tools available on the 8-bit computers. Both A-SEKA and De¬

vpacST include debuggers, while GST-ASM and Metacomco do

not.

For program editing on the ST, many developers prefer to

use old-fashioned, pre-GEM screen editors that offer speed

and familiarity at the expense of ease of use. New program¬

mers may prefer a GEM-based text editor that uses menus to

issue commands. Atari has been supplying the Micro EMACS

editor, a microcomputer version of a popular Unix tool.

A-SEKA

A-SEKA is the least expensive of the assemblers for several

good reasons. Its scant 34-page manual lacks an index and is

provided only as a text file on the disk, so you must print it

out from the GEM Desktop.

A-SEKA is by far the fastest assembler available for the ST;

the manual claims a rate of 30,000 lines per minute, “even for

large files,” and this is believable. All source and object code is

kept in memory until you explicitly write it out to the disk, a

scheme that recalls MAC/65 on the 8-bit machines. In fact,

the entire package is similar to such products. It has no screen

editor, only a cumbersome, anachronistic line editing scheme.

The development process with A-SEKA looks like this: type

in your source code line-by-line, correcting and revising with

the Edit command; assemble it into memory; execute (and de¬

bug) the program using the Go command; repeat this process.

Usually, code is assembled directly without linking. Some sort

of built-in linker is provided, but the manual becomes foggy

here. Apparently, the assembler can produce “linker code” (as

opposed to executable code), which can later be combined

with other such code into one executable program.

A-SEKA is outdated. While its fast response would be

useful for learning 68000 assembly language, and perhaps for

writing games, it currently cannot be used for serious develop¬

ment work. It demands revision, meaningful examples, and a

completely new manual.

GST-ASM

GST-ASM comes packaged in a green binder and slipcase with

170 pages of unindexed, detailed documentation. It does the

best job of all four in providing a complete, self-contained de¬

velopment system for AL programmers. Unfortunately, it is

missing a debugger and documentation of TOS/GEM routines.

The latter is available in the Abacus book series, but there is

no good standalone debugger available as of this writing.

GST has included GST-EDIT, an excellent windowing text

STart, the ST Quarterly 78 Summer, 1986

REVIEW

editor reminiscent of its 1ST Word word processor, with its

own 30-page manual. Here is an example of “overdocumenta¬

tion,” if such a thing is possible. If we could just give some of

the extra to A-SEKA! GST-EDIT allows up to four simul¬

taneously open files with a single cut/paste buffer between

them. On-line help is available through a pull-down menu.

Although GST-EDIT is now my favorite text editor (replac¬

ing Micro EMACS), it has its problems. While scrolling up and

down through a file is fast enough, jumping to the beginning

or end is horrendously slow. More menu selections should have

keyboard equivalents for faster operation. Ideally, the Help and

Undo keys should also be supported. Most serious, however, is

the omission of a Print command in the File menu. I had to

write a program to print text files with pagination. This is a

problem with all ST editors I have encountered.

The whole package is tied together by an “executive” shell

program from which the components can be called, either

separately or in batch operations (such as assembling a source

file and chaining directly to the linker with default options).

Everything makes good, clean use of GEM elements, and as¬

sembling and linking speed are comparable to the Atari devel¬

oper’s kit programs, if not better. The option of using the

assembler module as a TOS program without GEM overhead is

a nice touch, enabling the use of batch file processing. Initially,

however, the shell will provide a convenient programming

environment.

The assembler itself is complete and, like the rest of the

package, well thought-out. Macros, conditional assembly, sym¬

bol table and cross-reference listings, and include files are all

supported. Clearly this assembler was designed to support

high-level languages—there is a COMMON directive that the

manual connects to Fortran! The standard EQU, XREF, XDEF,

DC, DCB, and DS pseudo-ops are available, as well as many

others. The macro facility is extensive, including several

“pseudo-functions” such as .LEN and .1NSTR that can be used

in string substitutions. GST thoughtfully includes a library of

useful macros for conditionals, loops, stack handling, and sub¬

routines. Assembler errors are all carefully documented, but

TOS errors are not. (They are usually fatal anyway, the manual

claims)

GST has done an excellent job of making assembly lan¬

guage development accessible to ST users. Let’s hope they’re

working on a debugger of similar quality!

METACOMCO

Metacomco, an acclaimed system software developer in the

68000 world, has done a good job with its ST Macro As¬

sembler package. It is the only package to provide an example

source listing of a program that makes GEM calls, but like the

others provides no real documentation.

ED is Metacomco’s standard, simple, full-screen TOS-based

editor, and is similar to Micro EMACS. It is adequate for work¬

ing with assembly language source files, but takes some get¬

ting used to. It has some nice features, such as the ability to

specify the text buffer’s size and to continue executing a com¬

mand (such as search and replace) until an error condition

arises.

The assembler came closest of the four to functioning as a

replacement for DRI’s AS68. It has all the features of GST-

ASM, plus local labels; but the macro facility is much weaker

and no library of macros is provided. Strangely, two directives

that do absolutely nothing are provided, yet there is no EVEN

pseudo-op to make sure the following code begins at an even

address. The manual documents the LINK68 linker, which is

not supplied on the enclosed disk. However, the instructions

for assembling the sample programs (provided in printed form

only—aargh!) apply only to LINK68 and reference libraries

not included on the disk. GST-LINK and its manual, identical

to that in the GST-ASM package, are included. Metacomco’s

manual is typeset and carefully indexed, but does not accu¬

rately reflect the contents of the disk. This is a vanilla pro¬

gram—I suppose it lives up to its claim of being “full

specification” but it is not as complete as GST-ASM. (Of course

it beats A-SEKA!)

HISOFT DEVPACST

HiSoft, a well-known European developer, was still working

on their DevpacST in April 1986. I was furnished with a copy

of version 0.99. (The final release is to be 1.00). Even so, the

manual was bound and the packaging complete. DevpacST

strikes a middle ground between the fast, loose, in-memory

approach of A-SEKA and the formal edit-assemble-link para¬

digm of AS68, GST-ASM, and Metacomco’s Macro Assembler.

Its editor and debugger are both window-based, but it does

not provide a linker.

EdST makes full use of GEM but provides only one text ed¬

iting window. The amount of free memory and the current row

and column are displayed at the window’s top. On my 520ST

with TOS in ROM, there were only about 60,000 free bytes—

a small buffer when it is the only one you have to work with.

For large programs the editor’s restrictions could be severely

limiting. EsST allows several methods of command entry in¬

cluding: drop-down menus, keyboard equivalents, and Word¬

Star-like equivalents.

When you are ready to assemble your source file, you just

choose the Assemble command (Alt-A) and a 2-pass assembly

process occurs. The assembler supports the same standard fea¬

tures as the others, but the options for listing generation, mac-
►

STart, the ST Quarterly 79 Summer, 1986

REVIEW

ros, and conditional assembly are even more limited than

Metacomco’s. There is not much to say here except that the as¬

sembler still had a couple of serious bugs in version 0.99. The

assembler and editor are only available from the GenST shell,

and no linker is employed.

The highlight of DevpacST is the MonST debugger. It uses

four non-GEM windows: 68000 register value display, hex¬

adecimal memory dump, disassembly (normally of instruc¬

tions near the Program Counter value), and command entry/

response. After loading MonST, you are prompted to enter the

name of the program you want to work with, which is then

loaded into memory. MonST preserves the program’s screen

and requires only about 12K of memory. MonST is automati¬

cally invoked whenever an exception occurs. You can set and

clear breakpoints; single-step; view the program’s screen; dis¬

assemble, search, examine, and modify memory; and modify

the processor registers. This is a good first debugging tool.

An assembler is

not an intuitive program... you

cannot usually “pick it up” as

you go along.

The short, 40-page manual is poorly written, even com¬

pared to A-SEKA’s documentation. It needs expanding, rewrit-

ting, and proofreading. One nice touch is a list of known bugs

in version 0.90. HiSoft promises various improvements in ver¬

sion 1.00 of DevpacST, including bug fixes, GEM AES and

VDI constant and macro definitions, source to a complete ap¬

plication (this would be revolutionary!), external references,

and the ability to produce linkable object files. I cannot recom¬

mend the current version, but 1.00 should compare favorably

with GST-ASM and Metacomco if HiSoft delivers on its prom¬

ises. Perhaps they will also index the manual...

GST-LINK

GST-LINK, which is included with GST-ASM, Metacomco’s

Macro Assembler, and other language products from both

companies, supports an object file format that is fully docu¬

mented in the manual. It normally takes its input from a con¬

trol file specifying which files are to be linked in what order to

form the executable program. The control file language in¬

cludes commands for setting the stack size, extracting mod¬

ules manually and automatically from library files, and

defining new labels (useful for correcting typographical differ¬

ences between modules being linked). GST-LINK also pro¬

duces executable programs directly without the annoyingly

necessary RELMOD application used by LINK68.

GST-LINK is becoming popular in ST software develop¬

ment and is generally superior to LINK68, found in the devel¬

oper’s kit, but the incompatibility between the object file

formats accepted by the two may cause problems.

For the programmer who is selecting one and only one lan¬

guage development environment, the question of linker com¬

patibility is relatively unimportant. However, if you have any

intention of combining languages, porting between develop¬

ment environments, or using standard libraries provided only

as object files (for example, the LIBF Motorola fast floating¬

point library supplied by Atari in the developer’s kit), the lack

of a standard could complicate and retard ST development

progress. I like GST-LINK (although LINK68 and the Personal

Pascal linker have been adequate for all my needs so far), but a

standard format is needed.

SUMMING IT UP

1 recommend GST-ASM as the most professional and complete

package, and as the best value. Metacomco’s Macro Assembler

is comparable and desirable for use with its other language

products. DevPacST in its current version is unacceptable, al¬

though its debugger is useful and version 1.00 has potential.

A-SEKA is woefully inadequate unless you want to learn

68000 assembly language in an interactive environment. But if

you already have Atari’s developer’s kit, you could safely stick

with good old AS68 and LINK68 without falling behind the

competition. 1 hope GST-EDIT is released separately for users

who do not need the entire package.

Documentation is one of the most important aspects of a

language environment. Before purchasing any of these pack¬

ages, including the Atari developer’s kit, carefully examine the

documentation to make sure it provides you with enough in¬

formation to effectively use the product. An assembler is not

an intuitive program like a GEM-based word processor—you

cannot usually “pick it up” as you go along. Unfortunately,

none of the packages include sufficient examples or informa¬

tion on accessing system routines for a programmer to get

started without other sources. C source code is much more

plentiful than assembler in the ST world, so you should be

prepared to do some work before you begin programming. The

rewards of a successful GEM program in fast 68000 assembly

language will be well worth the effort!

STart, the ST Quarterly 80 Summer, 1986

Software for
the Atari 520ST®

J

LIST OF MANUFACTURERS

Atari Corp., 1196 Borregas Avenue, P.O. Box 3427,

Sunnyvale, CA 94088-3427, (408) 745-2000

Kuma Computers Ltd., 12 Horseshoe Park, Pangbourne, Berks

RG8 7JW, United Kingdom, 07357 4335

GST Holdings Ltd., 91 Hight Street, Longstanton, Cambridge,

England

Metacomco, 26 Bristol Square, Bristol BS2 8RZ, United

Kingdom

HiSoft, 180 High Street North, Dunstable LU6 1AT, United

Kingdom, 0582 696241

The Kuma, GST, and Metacomco assemblers are available in

The Catalog in this issue.

REFERENCE:

• Introducing 520ST Assembly Language by Christopher

Chabris, Antic magazine, December 1985

• Atari ST Internals by K. Gerits, L. Englisch, and R.

Bruckmann, Abacus Software, Grand Rapids, MI

• Atari ST GEM Programmer’s Reference by Norbert

Szczepanowski and Bernd Gunther, Abacus Software, Grand

Rapids, MI

• Atari ST Machine Language by B. Grohmann, P. Seidler, and

H. Slibar, Abacus Software, Grand Rapids, Ml

• COMPLJTEIs ST Programmer’s Guide by The Editors of

COMPUTE!, COMPUTE! Books, Greensboro, NC

• 68000 Microprocessor Handbook, 2nd ed., by William

Cramer and Gerry Kane, Osborne/McGraw-Hill, Berkeley,

CA

• 68000, 60010, 68020 Primer by Stan Kelly-Bootle and Bob

Fowler, Howard W. Sams & Co., Indianapolis, IN

• Mastering the 68000 Microprocessor by Phillip R. Robinson,

Tab Books, Ridge Summit, PA ■

START is a magazine with its programs on disk. Nor¬

mally you will find the disk bound into the magazine and

for sale on the newsstands at a combined price of $14.95.

But we know that some of you ST enthusiasts want to

read START first, without paying $14.95, so we have

provided a limited number of copies without disk for

$4.00 each.

If this is your situation, you can complete your copy of

this collector’s issue of START by ordering the companion

disk direct from us, for $10.95 plus $2.00 shipping and

handling. See the handy order form.

H&DBase
Relational Database Management

Language for the Atari 52QST® Computer

H&D Base is a Relational Database Management Language
which allows novice and expert users alike to manipulate any
type of data through the use of straight-forward, English-like
commands.

For the novice, H&D Base is an interactive data storage and
retrieval package suitable for maintaining phone directories,
club rosters, genealogies and more.

For experienced users, it is a system development package
containing its own programming language. A skilled
programmer can use H&D Base to create a system for handling
inventories, accounts payable and receivable, glient lists, and
other programs which would normally be written in more
cumbersome languages.

Regardless of the level of user expertise, H&DBase is the

perfect tool for data management.

PROGRAM HIGHLIGHTS:
• Comprehensive Manual: Introduction, Starting-up, Tutorial,

Reference, Appendices & Index Sections plus Reference Card

• On-screen “Help” System
• Elementary Text Editor

• Powerful Report Generator with Saved Report Forms

• Sort on any Field to any Level
• Full Math Capability on any Field or Variable

• Disk Based System: Only Size Limitation is Disk Capacity

• Compatible with most •dBASEir® Command Files

Compatible with all “SDF” and ‘‘Delimited’' Data Files

• Over 275 FORTH Commands (including “calls" to the GEM®
Interface - Atari "Developer's Kit" required)

• Add Your Own Commands

• Create Auto-run Applications

• Includes Sample.CEM Mailing List Program (written in
H&DBase)

• Run-time Developer’s Package Available
• Source Level Maintenance

• Not Copy Protected

SUGGESTED LIST PRICE: $99.95

ALSO AVAILABLE FOR THE ATARI 520ST1 :
Tbolbox - Volume One - $39-95 - Five Invaluable Utilities
H&D Forth - S49.$>-> FORTH Pjpgramming Language

For information: (800) 641-1441

in California, call: (800) 641-1442

STart, the ST Quarterly 81 Summer; 1986

K'W gives you the POWER with these
■ OWER^ _

v^vstems products for the ST . . .

PowerEdit is a powerful and easy-to-use text editor. Edit up to
20 files in from 1 to 8 windows. Move or copy data within a
file or to a different file. Global change, search, auto save, and
much, much more. Documentation on disk. 44.95

PowerAssist detects and reports on abnormal termination of
programs. Lists and/or prints register contents, memory con¬
tents, addresses, and a detailed error description. Errors may be
corrected, and the program restarted or normally terminated.
Documentation on disk. 29.95

PowerVision provides NEOCHROME slide presentation devel¬
opment capability, with special effects, and variable display,
i.e., corner to corner, top to bottom, side to side, etc. Data
compression is performed, so 40 or more pictures may be stored
on one disk. Documentation on disk. 24.95

PowerHouse is a home/business financial package which in¬
cludes ammortization schedules, present and future values,
annuities and sinking funds, budgeting, simple and compound
interest, checking account tracking, investment tracking and
Documentation on disk. 29.95

PowerWriter/iyiulti-lingual is a word processing system
with multi-lingual support. English, Russian, German, Hebrew,
and more, including define your own. Documentation on disk.

49.95

- 15% Discount for ordering 2 or more different products -
Send check or M.O., or call collect for VISA/MC or COD orders.

— WA. State Res. add appl. sales tax -

43328 S. E. 176th North Bend, WA 98045

Machl™ for the Atari ST

Machl: multi-tasking Forth-83/GEM development system

With everything you need to develop stand-alone applications,
including: integrated GEM editor, full GEM and DOS support,
Motorola assembler, examples, and our 300 page manual.

Machl is interactive, so it allows you to experiment with the
ST without going thru the compile-link-execute cycle. But
when you do load in programs, look how we stack up:

n Sieve Compile Link Execute

Machl 00.7 00.0 4.41
Megamax C 70 24 3.83
Hippo C 58.4 1:37 8.4

C's w/o register variables

(That's three times the execution speed of other Forth's)
Note the turnaround time. It simply takes less time to
develop your programs or finished products with Machl.

Palo Alto Shipping
PO Box 7430
Menlo Park, CA 94026
800/44-FORTH (Sales)
415/854-2749 (Dev. Support)

Available July 15,1986

$59.95
plus $5 S/H
CA Res. add 6.5%
VISA/MC COD

Original Macintosh version
(vl .2) available for $49,95

Now available for

ATARI ST, AMIGA, APPLE, IBM

ATARIsoo/xLa/xEa and COMMODORE 64/128

THE MOST EFFECTIVE WAY TO

LEARN TOUCH TYPING!

„ TYPING TUTOR +
l=i WORD INVADERS

- = Two great programs in one package Learn to
■ use your keyboard quickly and properly.

TYPING TUTOR starts with the ‘home keys'
and automatically evaluates your typing per¬
formance, introducing you to new keys in

many gradual steps as your skills develop. WORD INVADERS
puts real excitement into your touch typing practice while rein¬
forcing proper typing techniques.

“This is the best typing tutor we have seen yet; ★★★★+"
INFO-64

“Best typing tutor I’ve seen-Better than Mastertype"
Microcomputer Courseware Evaluation

“WORD INVADERS is fantastic”
Editors of Consumer Guide

ATARI ST
AMIGA
IBM PC, PCjr

Disk $34.95

APPLE lie, lie
ATARI 800/XLs/XEs
COMMODORE 64/128

Disk $24.95

ACADEfflV Shipping and handling $1.00 per
SOFTl/MRE order. CA residents add 6% tax.

P.O. Box 6277 San Rafael, CA 94903 (415)499-0850

II

ATARI
CARTRIDGE

YOUR
PROGRAM

IN SINGLE OR LARGE QUANTITIES, PROVIDES:
‘LOW COST, DISKLESS APPLICATIONS
‘PROGRAM COPY PROTECTION
‘DATA DURABILITY AND RELIABILITY

1 10 1000

TYPICAL 64K $69 $49 $29
PRICING 128K $159 $139 $49

ANSI VT100 CARTRIDGE
FULL TERMINAL EMULATION WITH USER CONFIGURATION
PLUG. DOES NOT REQUIRE DISK DRIVE.

916-265-4668
• 12 month warranty • Free UPS 2ND DAY AIR

• Quantity discounts (Continental US) Hawaii add $3

PAYMENT: VISA OR MASTERCARD. Checks held 14 days, C.O.D. add S2. California
add appropriate tax.

- - COMPUTER SYSTEMS

UNIX FOR THE ST
MICRO C-SHELL

BY RUSS WETMORE

Micro C-Shell

David Beckemeyer Development Tools

592 Jean St. #304

Oakland, CA 94610

(415) 658-5318

$49.95

rhe GEM environment is an excellent computer interface,

especially for the novice user. However, sometimes an in¬

terface such as the GEM Desktop can be a hinderance.

Programmers need more power than such a simple interface

can support, and most types of utilities a developer needs are

text oriented, not icon-based.

Micro C-Shell is a type of program commonly called a

“CLI,” for Command Line Interpreter and presents the user

with a more traditional interface for disk files management. It

isn’t necessarily easy to use (though it is easy to learn) or

pretty on the eyes, but it is fast and can perform several differ¬

ent tasks with one command line.

Micro C-Shell is based for the most part on a CLI written

for Unix machines, called “csh,” short for “C-Shell.” It is called

a shell because it acts like one, sitting over the normal operat¬

ing system interface. It provides the user with a powerful, uni¬

fied environment.

Csh was developed at the computer science department of

the University of California at Berkeley. The Berkeley group

has a long-standing reputation for its innovative additions to

Unix’s functionality. (Unix, by the way, is an operating system

developed at Bell Labs, widely used on mini- and micro-com¬

puters.) Although part of csh’s allure is it’s ease of use in

multi-user environments, its power makes it perfectly viable

on single-user machines.

Beckemeyer’s Micro C-Shell package also includes many

useful utilities found on Unix systems. Non-programmers will

find many of these utilities useful (such as the line/word/char¬

acter counter and file string search facilities) but it is the se¬

rious developer who will appreciate the added power these

programs provide.

Micro C-Shell doesn’t use the GEM interface at all (except

for an occasional error alert) and takes its input from the key¬

board. You enter commands at the Micro C-Shell prompt. The

commands may either be “built-in” to the shell, or be separate

utilities on the disk (with a .PRG extender). Micro C-Shell is

provided with the commands and utilities described in the ac¬

companying sidebar.

Some of these commands are separate programs loaded in

by the shell - you can add whatever commands you like to

Micro C-Shell just by adding new programs. Those listed here

are only the ones supplied in the currently sold package.

f all Micro C-Shell did was perform the commands listed

above, it would be a great package. The more advanced

features of the shell, however, are what make it especially

valuable and powerful.

Typically, Unix systems have three assigned, default “de- •

vices” available to programs:

Standard Input

Standard Output

Standard Error

All three of these devices are normally set to the “console” de¬

vice - the monitor screen for output and the keyboard for in¬

put. However, a program can redirect these to any other

supported device. For example, you can optionally send

output normally intended for the screen to the printer, to a ►

start, the ST Quarterly 83 Summer, 1986

REVIEW

disk file, or even to another program! (This is the subtle

reason for the third device, the Standard Error device. This

allows a program to send error or prompting messages to a

device usually guaranteed to be the screen, even if the

standard output is routed elsewhere. The standard error device

can sometimes, however, be redirected just like the others -

for example, if you’d like error messages sent to the printer

instead.)

Unix uses the analogy of “pipes” in dealing with data. The

“flow” of information can be redirected to another location,

“piped” to another program, and even sent two different ways

at once using a “tee”.

Let’s take an example. You want a directory listing sent to a

disk file, instead of the screen, so that you can edit it into

some documents. The standard directory command is:

% Is

(The “%” character is the standard Micro C-Shell prompt; you

only would type the “Is” followed by a carriage return.) This

prints a listing of all files and directories in the working direc¬

tory to the standard output device, normally the monitor

screen. In this case, you follow the command with a “>” char¬

acter, followed by the file you’d like the standard output sent

to, as in:

% Is >a:directry.txt

Now, instead of the directory being printed on the screen, it

will be written to a file on drive A called DIRECTRY.TXT You

could, in turn, take the edited DIRECTRY.TXT file and print it

to the printer using the “lpr” command.

When you send the standard output to another program,

that program must be a “filter.” This is a program which takes

some input, manipulates it in some way, then outputs the re¬

sult. Filters take their input either from a command line as a

normal command, or from the standard input. Thus, when

you send the standard output of one program to another, that

data becomes the standard input for the next program. (Again,

using the pipes analogy, this would resemble a filter in a pipe

which removes dirt from a stream of water before passing the

water on somewhere else.)

With “pipes” we can reduce this process to one command.

If we were to type the following command:

% Is | lpr

the “|” character (ASCII 124) tells the shell that we want the

standard output from the Is program sent (or “piped”) as stan¬

dard input to the lpr program.

Piping can get quite involved, and if used correctly can per¬

form some powerful tasks. For example, the command

MICRO C-SHELL COMMANDS
alias Lets you define a sort of "macro" which replaces

a given key word.

cat "Concatenates" (appends together) one or more

disk files and prints them to the standard output device.

cc A short cut for programmers using the C language

compiler sold in the developer's kit from Atari. It allows

you to run a C source file through all of the various

subprograms necessary to produce a linkable object

file.

cd Changes to a new "working" directory or sub¬

directory. It's like opening a folder with the Desktop

program.

chmod Allows you to change the "permissions" of

files. You can make files "read only," "hidden" from

directory searches, and designate "system" files.

cmp Compares two disk files and tells you if they differ,

and if so, the line number and byte position of the first

difference.

cp Makes a copy of one or more disk files.

date Allows you to change the real-time clock to a

given date and time.

df Tells you how much free space you have on a given

disk.

dif f Compares two text files. If they differ, it can

construct a script telling what lines must change in each

file to make them equal. This script can be interpreted

directly by the "sed" command, which will perform the

necessary editing for you. This command is very useful

for programmers - if you make a number of changes to

a working source code file (and possibly forget

everything you've changed) diff can tell you after the

fact what those changes were.

echo Echoes the "tail" (the words following a

sequence:

% grep -n register *.c | pr -h “found register:” | lpr

does the following:

1. finds each file in the working directory with a “.c” ex¬

tender (typical of C source files).

2. in each file in turn, finds each line which contains the

word “register” (including the line numbers where they were

found).

3. formats the output into page size chunks with the

phrase, “found register:” at the top of each page.

4. ships the whole kit’n’kaboodle to the printer.

A “tee” sends output two different directions at once, much

STart, the ST Quarterly Summer. 1986

REVIEW

command itself) expanding all shell variables and

wildcard file designators.

fcp Does a track-by-track copy of an entire disk.

fmt Formats a disk.

gem Assuming there is enough RAM left, this

command allows you to directly run a GEM-based

program from the shell prompt. This keeps you from

exiting to the Desktop to run a GEM-based program.

grep "grep" is shorthand for "Global Regular

Expression Printer." It searches files for a string pattern.

There are many different options, allowing you to

search for a wide range of expressions. One common

use for programmers is to find a label's occurance over

a range of source code files.

head Prints a given number of lines at the "head" or

start of one or more text files.

history A very powerful command, which tells you up

to the last 16 commands that you have entered. These

past commands can be referenced by number, or by

name, and you can edit a past command. It lets you

correct typing mistakes on long command lines, instead

of typing the whole line again. It also lets you perform

the same function over a range of files.

logout Exits to whatever program loaded Micro C-

Shell (normally the Desktop program).

Ipr This function is called a "filter" and prints one or

more text files to the printer. You can specify page

length and width, and make the printer pause between

pages for single sheet entry.

Is List the contents of a directory. There are several

options to this command, allowing for a wide range of

directory formats.

mkdir Makes a new directory or sub-directory.

more Takes a text file and prints it out one screen at a

like its analogous “tee pipe fitting”.

For example:

% Is -l | tee directry.txt

sends a long directory listing to both the screen and the disk

file called DIRECTRY.TXT in the working directory. Adding

one more pipe,

% Is -11 tee directry.txt | lpr

sends to both the disk file and the printer.

As mentioned above, you can create “aliases” for a string.

This, in effect, extends the “language” of the shell. For exam¬

ple, let’s say that you have your working assembler source files

time, pausing so that you can peruse the file at your

leisure. You can also search for strings, backup to

previous positions, and so on.

mv Moves (or renames) files. When you move a file

from one directory to another, it deletes the original

copy of the file so that only the destination copy exists.

This is unlike the Desktop program, which only lets you

copy a file to another drive or folder. When you

"move" a file within the same directory, you are

effectively renaming it.

pr Prints one or more files to the standard output

device, with or without an optional header line.

pwd Tells you the present "working" directory (that is,

the current default directory).

rm Deletes one or more files from the disk.

rmdir Deletes one or more directories from the disk,

which must be emptied first.

sed The "Stream EDitor." This program copies a file to

the standard output device, using a script file (see diff)

which sed uses to make on the fly editing changes

while it's printing. This is a short cut method of loading

a file manually into a text editor and keying in the

changes yourself, diff can create such scripts, and sed

in turn rounds out an automated editing process.

set Allows you to set a shell variable. Some shell

variables are used by the shell itself. You can create

your own variables to reference in command lines.

tail Prints a given number of lines from the "tail" or end

of one or more text files.

tee tee copies a file from the standard input device to

both a named file or device and the standard output

device.

wc Provides the number of words, lines, and/or

characters in a text file.

in the following subdirectory:

A: \ ASSEMBLR \ SOURCES \ WORKING

In Desktop terminology, this would be the folder WORKING,

inside the folder SOURCES, inside the folder ASSEMBLR, on

drive A. If all of your source files have an “.ASM” extender,

you could get a long directory—listing filenames, sizes and

modification dates—using the following command:

% Is -1 a: \assemblrXsources\ working*.asm

If you’re going to be doing that a lot, though, it’s a pain to type

it every time. You could, instead, type:

% alias asmdir Is -1 a:\assemblr\sources\working*.asm

STart. the ST Quarterly 85 Summer, 1986

RtVIUW

which makes “asmdir” a synonym of that long command line.

From then on, every time you enter:

% asmdir

at the shell prompt, its alias is substituted in its place and you

get the directory you’re looking for.

Micro C-Shell also maintains its own set of variables,

which you can alter and add to. The following are defined by

the system:

$path A collection of pathnames. Whenever you type in a

command, if it needs to be loaded, the shell looks in every

directory in the Spath variable to find it. This helps keep

you from having to know the location of every utility on

every disk - the shell just keeps referring to Spath until it

finds what it’s looking for or runs out of places to look.

Sprompt The shell prompt. Normally a “%” character, you

can change this to whatever you like.

$ include, Stemp, Ssymb: These three are used by the cc

command for use with the Alcyon C compiler and the AS68

assembler, and describe the pathnames for C #include files,

assembler temporary files, and where the AS68 symbol file

can be found, respectively.

Shome The “home” directory. If you jump around between

directories a lot, but want to use one particularly as a

“home base”, you can easily set it by typing % cd Shome

Scwd The current directory. This variable can’t be changed,

but can be referenced like any other.

icro C-Shell always remembers the last 16 commands

entered. The history command prints them out for

you. You can refer to any of these commands, and ex¬

ecute them again, by typing “!” followed by the command’s

history number, as in:

% history

11s -1

2 cd tools

3 history

% !1

executes the command “Is -1” again. You can also refer to pre¬

vious commands by strings; that is:

% !ls

given the above history would do the same thing. (The shell

looks backwards through the list until it finds one that begins

with the string you’ve given, executing the first one it finds.)

You can refer to the immediately preceding command by

typing:

% !!

and by referring to a previous command by its offset as a

negative value from the current history number. So, above,

we’re at history number 4 at the second prompt, and typing:

% !-3

would also execute the “Is -1” command.

Another powerful feature is the ability to edit previous com¬

mands. Let’s say that you want a directory and type:

% Is -1 a:\assemblr\sources\workjng*.asm

Oops! The third subdirectory is supposed to be “working” in¬

stead of “workjng”, and the shell tells you it can’t find what

you’ve asked. Instead of retyping the whole line, just to correct

one error, you can type:

% A workj ng a work ing

which repeats the preceding word again.

There are other ways to edit previous commands, and

you’re not limited to just the most recently typed. For example:

% !10:gs/tmp/temp

executes the command with history number 10, substituting

all occurances of “tmp” with “temp.”

The Micro C-Shell disk comes with a new “standard I/O” li¬

brary for Alcyon C programmers. This library fixes many of

the problems with the libraries supplied by Atari, and is also

faster and smaller.

The manual, though brief, is good. It is split into two parts:

the first half is a short tutorial for newcomers, and the second

half is a reference manual describing each of the commands in

turn.

This package has its faults. It could definitely use more doc¬

umentation. Some of the commands don’t work as advertised

in the manual, and indeed, some aren’t documented at all.

In general, though, Micro C-Shell is worth every penny, es¬

pecially if you’re a developer. It has saved me hours of hassle,

and I find more innovative ways to use it every day. I recom¬

mend it without hesitation.

REFERENCE:

• A User Guide to the Unix system by R. Thomas and Jean

Yates, OSBORNE/McGraw-Hill, Berkeley, CA.

• Introducing the Unix system by FI. McGilton and Rachel

Morgan, BYTE/McGraw-FIill, New York, NY.

• The Unix Programming Environment by B.W. Kernighan and

Rob Pike, Prentice-FIall, Englewood Cliffs, NJ. ■

STart, the ST Quarterly 86 Summer, 1986

c.c.s.
Discount Prices

187 Crosby Ave.. Kenmore. f\
Personalized Mail Order Service

Y. 14217 • (716) 873-4349

Atari 520 ST Package
monochrome - $659.95, color - $799.95

1040 ST - call
Disk Drive

SF314 Double Side - $219.95
Atari 20MG Hard Drive - $729.95

Printers
Panasonic - 1080 - $229.95, 1091 - $259.95
Cannon P40 - $259.95

Modems
Avatex (300-1200 BD) - $109.95
Haba Modem (300-1200 BD) - $189.95
MPP-1200ST - $199.95
SIGNALMAN EXPRESS

(300-1200 BD) - $279.95
Cables

RS-232 Parallel - $19.95
RS-232-C Serial - $14.95

SOFTWARE
Activision

Borrowed Time - $39.95
Hacker - $34.95
Mindshadow - $39.95
Music Studio - $49.95

Batteries Included
D E G A S. (Graphic Art Sys.) - $29.95
Home Pak - $39.95
The Isgur Portfolio Sys - $199.95

Infocom
Ballyhoo - $32.95
Spellbreaker - $34.95
Mind Forever Voyaging - $32.95

Mark of the Unicorn
P C. Intercom Emulator for

Mainframe - $99.95
Final Word - $99.95
Hex - $29.95

Migraph
Easy Draw - $119.95

Mirage Concepts
H&D Tool Box - $29.95
H&D Forth - $34.95
H&D Base - $79.95

o.s.s.
Disk Editor - S59.95
Personal Pascal - $59.95
Personal Prolog - $74.95

Polarware
Crimson Crowns - $29.95
Transylvania - $29.95
OO-TOPOS $29.95
The Coveted Mirror - $29.95

Professional Software
VIP $129.95

Quick View Sys.
Zoomracks - $64.95

Regent Software
Regent Word - $39.95
Regent Spell - $39.95
Regent Base - $79.95

Sierra On Line
King's Quest I or II - $39.95
Ultima II - $44.95
Black Cauldron - $39.95

Spinmaker
Winnie the Pooh - $21.95
Donald Duck - $21.95
Homework Helper Math or

Writing - $39.95
Unison World

Print Master - $29.95
Art Gallery I - $24.95

Write for catalog and list of printing ribbons. Shipping: Add $2.50 for software. $5
each for hardware. International orders pay actual charges. Terms: COD orders
accepted. All orders will be shipped UPS or best way. No refunds or exchanges. Add
4% for VISA and MasterCharge

HippoVision B&W Video Digitizer. $139.95
Digitize video images from your TV, VCR or standard video camera

into the ST and use NEOchrome or Degas to edit the picture. Have

fun editing friends’ faces, cartoons, movies, etc.

Hippopotamus Software, Inc.

985 University Ave. #12,

Los Gatos, CA 95030 408/395-3190 HIPPOPOTAMUS

ATARI ST USERS!*
ENTERTAINMENT JACKPOT

20 BIG PROGRAMS WRITTEN IN ST BASIC
72 PAGE MANUAL INCLUDED

ALL FOR ONLY $34.95

THE VISITOR
Text adventure with graphics. Your smart
but odd companion must rendezvous with
its mother ship.

BOMB SQUAD
Text adventure with graphics. Find the ter¬
rorists' bombs in time.

ADVENTURE CREATOR
Write your own adventure games. Exten¬
sive how-to-do-it instructions. A "frame¬
work program" is provided so you can fill
in the details of your own games. The pro¬
gram is analyzed in detail A powerful, fast
machine language parser routine is pro¬
vided and explained BASIC graphics sub¬
routines included.

THERAPIST
"Talk to" your ST in natural English and it

responds like a counselor. Similar to the
famous ELIZA but "smarter"

MANSION
Text adventure Find the second Mona

3-D TIC TAC TOE
Challenging complexity

COLOR MONITOR
REQUIRED

(Disk and Manual).
Only $34.95 (943.95 Canadian). M O..
VISA. MASTERCARD (include expiry).

•T M Atari Corp.

THE WRITER
Watch your ST write poetry and prose,
personalize the vocabulary and charac¬
ters for party entertainment.

CASINO
Lose your money at home
Includes: Roulette. Blackjack. Craps.
Cards — Faro. Baccarat. Draw Poker, Slot
Machine. Wheel of Fortune. Keno.

OTHELLO
Beat the computer.

CHECKERS

CRIBBAGE
The popular card game.

BACKGAMMON
The ST is aggressive

MENTAL
A great "psychic" illusion. The ST seems
to possess amazing abilities.

ANALYSIS
Convincing "personalityanalyses" — just
forfun. Mimics such things as "color anal¬
ysis" machines and explains how they

I CHARGE CARD ORDERS ONLY
| Ph 800 628-2828 Ext 635

MARTIN CONSULTING
94 Macalester Bay
Winnipeg. Manitoba
Canada R3T 2X5
(204) 269-3234

RESOURCES

BY DEWITT ROBBELOTH
EXECUTIVE EDITOR

u ooks about the ST are essential for

the serious programmer, and fortunately,

considering the ST’s newness, a number

of them are available. Unfortunately,

some were rushed to market and are not

as complete or accurate as they should

be. Nevertheless, several are respectable

sources of technical information that

will significantly shorten the time you

spend getting up to speed on the ST.

Probably the best and most useful

volume out so far is Atari ST Internals,

$19.95, one of a series of ST books pub¬

lished in the U.S. by Abacus Software,

P.O. Box 7219, Grand Rapids, MI 49510

(616/241-5510). ST Internals includes

information about the 68000 processor

and how it is used in the ST (including

instruction set and addressing modes),

the ST’s custom chips, the disk control¬

ler, and many other I/O situations. It de¬

scribes GEMDOS and has a complete

listing of BIOS, the interface between

GEMDOS and the hardware of the

computer.

The ST found an early and avid fol¬

lowing in Germany, and that’s why ST

Internals, like all of the Abacus ST

books, was written in German (for Data

Becker GmbH), then translated into

English for the Abacus edition. The

translation is very readable, but many

typos have slipped in, raising some con¬

cern about the accuracy of technical in¬

formation. But again, there is so much

good information here you can’t afford

not to have it.

The next most important Abacus

book is the Atari GEM Programmer’s

Reference, $19.95. As the title suggests,

it is a reasonably complete guide to

GEM, and the best thing you can get

this side of the development documenta¬

tion. Of course, if you want the full doc¬

umentation, it costs $300 from Atari

Corp. This includes 1,500 binder pages

from Atari and Digital Research, Inc.,

designers of the GEM environment. Your

$300 also buys six disks that contain

the Alcyon C Compiler and Linker from

DRI, a resource construction set,

“DOODLE” (an application that explains

and exercises GEM), plus tools and

debuggers. The devoted programmer

willing to pony up this much cash

should order the ST Developer’s Kit from

Atari Corp., 1196 Borregas Avenue,

Sunnyvale, CA 94088.

There are nine other Abacus titles for

the ST, of varying interest and impor¬

tance. Atari ST Tricks and Tips, $19.95,

concentrates on utilities and cookbook

effects, especially from ST Basic. ST

Graphics and Sound, $19.95, and ST

Peeks and Pokes, $16.95, also look very

helpful. Several on the Abacus list do

not merit our recommendation. Present¬

ing the Atari ST, $16.95, is too super¬

ficial to be of value, especially if you

have the better books of the series. Atari

ST for Beginners, $16.95, is really for

beginners. Atari ST Logo, $19.95, is a

waste due to the relative inadequacy of

ST Logo. There is an ST Basic Training

Guide, $16.95, and an ST Basic to C,

$19.95, which we have not seen.

One Abacus ST book, Atari ST Ma¬

chine Language, $19.95, is an acceptable

introduction to this important topic, and

offers the reader instructive assembly

listings for the ST. But any programmer

serious about AL will want to have

68000 Assembly Language Programming,

$19.95, from Osborne/McGraw Hill.

This book by Lance Leventhal, et al., is

the bible for working with the 68000

chip and is widely available at technical

book stores.

Another Osborne/McGraw Hill title is

The Atari ST User’s Guide, $15.95, by

John Heilborn, who helped write Atari’s

ST documentation. His book is well il¬

lustrated for the beginner or others un¬

familiar with the iconic desktop, but it

focuses on Logo, which is not the lan¬

guage of choice for many ST users.

Two books by COMPUTE! Publica¬

tions deserve mention. The Elementary

Atari ST, $16.95, by William B. Sanders

is an introduction to the machine, ST

Basic, sound and graphics, files and I/O,

Logo and Forth. Not nearly as detailed

as ST Internals, it is still probably a bet¬

ter introduction than Presenting the

Atari ST. COM PUT El’s ST Programmer’s

Guide, $16.95, by the editors of COM¬

PUTE! deals primarily with ST Basic

and ST Logo, and for those languages it

is a useful handbook.

Many other languages are available

for the ST, and more are coming. Interest

in the several implementations of C for

the ST is growing, for which we recom¬

mend Prentice-Hall’s book The C Pro¬

gramming Language, $24.95, by

Kernighan and Ritchie, who developed

the language. Other C books include

The C Primer, $17.95, by Hancock and

Krieger (a Byte Book), and Learning to

Program in C, $25.00, by Thomas Plum,

published by Plum Hall Inc., 1 Spruce

Ave., Cardiff, NJ 08232.

Pascal is also quite popular, and in

that area the UCSD Pascal Handbook,

$18.95, is available from Prentice-Hall,

Englewood Cliffs, NJ, or from Tecan

Software Systems, 1410 39th St.,

Brooklyn, NY 11218. Tecan is also the

source for a complete Pascal package for

the ST, $79.95, which includes the lan¬

guage in software, plus the extensive and

definitive p-System documentation sup¬

porting UCSD Pascal. ■

STari, the ST Quarterly Summer. 1986

A D V E R T 1 $ E R _S
INDEX

ABBYS.49
ACADEMY SOFTWARE.82
BATTERIES INCLUDED.BC
BECKMEYER DEVELOPMENT TOOLS.89
BLACKPATCH SYSTEMS.19
CENTRAL POINT SOFTWARE.7
COAST TO COAST.75
COMPUTER CREATIONS.76
COMPUTER PALACE.59
COMPUTER TOOL BOX.90
CONSUMER COMPUTER SOFT.87
DISKCLONE.27
ELECTRONIC ONE.89
HIPPOPOTAMUS.87
MARTIN CONSULTING.87
MICHTRON.91
MIGRAPH .43
MILLER COMPUTER PROD.2
MIRAGE.81
NODE COMPUTER.82
OSS.4
PALO ALTO SHIPPING.82
POWER SYSTEMS.82
PROCO.49
REGENT.27
SUPRA.11
SHANNER.3,28
SIERRA ON LINE.10
SOFTWARE DISCOUNTERS OF AMERICA.31
START.18
TDI.87
XLENT.51
This list is provided as a courtesy to our advertisers and readers. START does not
guarantee accuracy or comprehensiveness.

ADVERTISING REPRESENTATIVES

JOHN TAGGART-ADVERTISING DIRECTOR

524 Second St.

San Francisco, CA 94107

(415) 957-0886

ROBERT JOHNS (Northwest)

524 Second St.

San Francisco, CA 94107

(415) 957-0886

THE PATTIS GROUP (Midwest)

LOUISE GRAUEL

JILL KROTICH

4761 W. Touhy Ave.

Lincolnwood, IL 60646

(312) 679-1100

GARLAND ASSOCIATES

PETER|HARDY (East Coast)

10 Industrial Park Rd.

Hingham, MA 02043

(617) 749-5852

CHARLES DURHAM & ASSOCIATES

CHARLES DURHAM (Southwest)

2082 SE Bristol St., Suite 216

Santa Ana, CA 92707

(714) 756-1984

ELECTRONIC ONE*
ATARI 520 ST

78800
• COLOR MONITOR
• 360 K DISK DRIVE
• BUILT IN TOS
• 512 K KEYBOARD
• 8 DIFFERENT

SOFTWARE TITLES
ST. SOFTWARE

FLIGHT
SIMULATOR.29.99
JET.29.99
MINEWHEEL.24.99
MUSIC STUDIO.29.99
STRIP POKER.24.99
BRIDGE 40 . 24.99
FINANCIAL
COOKBOOK.39.99

HOW TO ORDER: CASHIER CHECK, MONEY ORDER, MASTER-
CARDJor VISA* (Add 4% for charge cards)...NO PERSONAL
CHECKS. ..NO C.O.D.'s. ..SHIPPED U.P.S. PRICES SUBJECT TO
CHANGE.
SHIPPING: Prompt one day shipping on in-stock merchandise. Ohio resi¬
dents add 5.5% sales tax. Add $3.00 on all orders under $100.00.. .Add
$5.00 on all orders over $100.00.
INTERNATIONAL: Actual freight charge on all orders outside the con¬
tinental United States including A.P.O.

CALL OR WRITE FOR FREE CATALOG

CALL ELECTRONIC ONE (614) 864-9995

ST. HARDWARE

DISK DRIVE ..
V 314

.. 159.99

DSDD.219.99
SHD 204
SV." HARD DRIVE . 649.99
SMI 24
12" HIGH RES
MONITOR.149.99
SC 1224
12" MED RES
RGB MONITOR. 299.99

ST. SOFTWARE
1ST WORD.32.99
DB MASTER ONE... 32.99
2 KEY
ACCOUNTING.32.99
NEOGRROME.32.99

PLANETARIUM. 19.99
JOUST. 19.99
CP/M EMULATOR 29.99
BORROWED TIME ... 29.99
HACKER.29.99
DEGAS.29.99
SILENT SERVICE.29.99
UNIVERSE II.47.99
CRIMSON CROWN .. 29.99
FORBIDDEN
QUEST.29.99
ZOOMRACKS.49.99
HOMEWORK
HELPER. 19.99

Software Tools
Unix™-like Utilities for the Atari ST

MICRO C-Shell $49.95
Unix-like C shell with many Unix-like

Utilities included. Aliases, history,

I/O redirection, pipes, shell variables,

wildcards, C-like command scripts.

MICRO Make $34.95
Unix-like software maintenance utility.

Multitasking Software!
MT C-Shell $129.95
Fully Multitasking C-Shell with job control and
builtin line printer spooler.

MICRO RTX $69.95
Real-time multitasking OS. TOS compatibility!
Process control, communication, time-slicing.

MT C-Shell $99.95 until August 31, 1986!

Beckemeyer Development Tools
592 Jean Street #304
Oakland, CA 94610

Telephone: 415/658-5318

STart, the ST Quarterly 89 Summer, 1986

ncBiicom

A COMPLETE Communications System
Now you can tap any of the countless
telephone data based INFO sources,
EXTRACT and FILE that data away for
use later. Suddenly, your computer is

the smartest terminal around because
INTELLICOM emulates such ter¬
minals as:

• Digital VT52/VT100
• TeleVideo 910 • ADM3 A/5

• ADDS Viewpoint/25

• CompuServe Executive

• TeleVideo 925

Now you can transfer both binary and

text files, using simple ASCII, ASCII
Capture, Xon/Xoff, XMODEM (both

Checksum and CRC are supported),

KERMIT or CompuServe A Protocols.
Operate at any speed up to 9600 baud
without ever being outdated as higher
speed/lower priced modems are
introduced.

Simple menu selections, with a built in
HELP facility keep it easy forever.

Autodial directories and auto login are
supported along with simultaneoas
printing.

Additional features: Variable Buffer
Size reduces disk activity, while
utilizing RAM capacity. Customizing
utility program included to ease instal¬

lation and use. Persistence feature for
autodialing and auto login.

Auto login script files can be used to
support almost any smart modem and/or
automatically log into your favorite
remote system. User defined function
keys. Color support. Remote access.

Best of all, the entire versatile
INTELLICOM package costs you

only $69.95. FOR YOUR 520 ST!!

INTELLICOM is currently being used
by ARMCO Steel, General Motors,
Smithsonian Institute and countless
other large corporations and government
agencies worldwide. INTELLICOM is

also available for use on IBM PC, Jr.,
AT and other true IBM compatibles as

well as the Sanyo 550 series.

DON’T DELAY!
ORDER TODAY!

RETURN UPS SHIPMENT
GUARANTEED! HURRY!

MasterCard/VISA/COD orders accepted
Specify computer and DOS version when
ordering. Connecticut residents add 7'/2% sales
tax Add $5 shipping for all orders.

INCLUDES FREE
SUBSCRIPTION TO

OFFICIAL AIRLINES
GUIDES

SAVE $50.00!

1325 East Main Street, Waterbury, CT 06705
In Connecticut call: 597-0273

NEW for the ST . . . from MichTron

CORNERMAN $49.95

What Sidekick did for the IBM, Cornerman does better for
your Atari ST! This utility gives you a host of useful
desk-top tools in one simple, neat package. With every¬
thing from a built in clock to a full function calculator, a
cluttered desk is a thing of the past. And as a Desktop
Accessory, Cornerman is a available nearly anywhere
within GEM.

■ REAL-TIME CLOCK in digital or analog form.
■ NOTEPAD lets you write and store notes for handy

future reference and reminders.
■ ASCII TABLE shows the ST’s symbols with their

decimal & hex values. Great for programmers!
■ PHONE BOOK stores all your important names &

numbers, dials through your modem and even records
elapsed calling time!

■ 16 DIGIT CALCULATOR: works in binary, octal,
decimal, and hex; 3 memory registers; math and logic
functions; base conversions; "tape" printer output.

■ DOS WINDOW for easy access to MichTron’s Dos
Shell program.

■ 15-SQUARES GAME simply for entertainment.
■ Doesn’t interfere with other programs.

MICHTRON UTILITIES $59.95

What would a utility be worth that could turn back time
and end frustration? Before you find out the hard way that
such a utility would be priceless, prepare yourself with
MichTron Utilities. This utility searches for and retrieves
deleted files and lost data. Change file contents, attributes,
file and volume names, or any individual bytes on disk!
Just type the new data or click on selector buttons. You
can also format individual disk tracks and copy individual
sectors to repair damaged disks. A new 10 sector format
utility lets you add 80K of storage capacity to you disks.

Personal Money Manager $49.95

This personal accountant will keep accurate totals for as
many expenses, income sources and accounts as you need.
Print checks and other kinds of reports for a true picture of
your current financial status. You can form projected bud¬
gets for future expenses and income. Fast and powerful,
the Money Manager uses the GEM system for simplicity.

Sfczrq'
U. .v: ///,•/• LA
Lxxzjz£zj:jLr ■■’*■** \

/.^irn I ITlTrftn^ !lu\ Yv. \
UTILITIES: t^g- " ^ ^ 1

THE ANIMATOR ($39.95) - Animate Neo or Degas
pictures for business presentations, or just for fun.

BBS ($49.95) - Complete Bulletin Board System
BUSINESS TOOLS ($49.95) - Over 200 attorney-

prepared business forms, letters, and contracts.
CALENDAR ($29.95) - Desktop appointment calendar.
D.F.T. ($49.95) - Transfer files between the ST and IBM.
DOS SHELL ($39.95) - Mimics the MS-DOS command

structure: "global" commands, batch files, and more.
ECHO ($39.95) - Uses X-10 modules for a wireless

remote-control system for home or office
Introduction To LOGO ($49.95) - Easy tutorial lets you

leam to program in Logo.
KISSED ($39.95) - Debugger features full-screen editing,

miniassembler/disassembler, help function and more.
M-DISK ($39.95) - RAM-disk emulator gives you the

equivalent power of an extra disk drive!
MI-DUPE II ($39.95) - Fast, easy file duplication.
MI-TERM ($49.95) - Advanced communication program

lets your ST talk to virtually any other system.
MIGHTY MAIL ($49.95) - Complete mailing-list mana¬

ger features multi-level sorts and conditional "flags" for

specialized reports.
SOFT-SPOOL ($49.95) - Frees your ST to print &

compute at the same time.

ARCADE GAMES:

GOLD RUNNER ($39.95) - Infiltrate enemy gold mines.
63 screens test your skill and logic (color monitor).

MAJOR MOTION ($39.95) - Race down the highway,
destroying enemy spies as you gain new weapons and
defenses (color monitor).

MISSION MOUSE ($39.95) - Avoid the prowling cats as
you climb to the next goal (monochrome monitor).

TIME BANDIT ($39.95) - Collect the Treasures of Time!
Choose from a multitude of worlds: 13 unique arcade
lands and 3 complete arcade/adventures (color monitor).

STRATEGY GAMES:

FLIP SIDE ($39.95) - Play Reversi against live or
computer foes.

CARDS ($39.95) - Blackjack, Cribbage, Klondike, Poker
Squares, and Solitaire (medium or high res only).

All reasonably priced, with more coming every day. Ask for our latest catalog!

Dealer inquiries welcome • Visa and Mastercard accepted • Add $3.00 shipping and handling to each order.

576 S. Telegraph, Pontiac, MI 48053
Orders and Information (313) 334-5700 MichTron

BATTERIES INCLUDED Atari

-st
k. Software

Integral Solutions
THE i S G U R

■ Portfolio sr*
system MnikSkupinkcr

Investment management program designed for private
investors and professionals. On-line portfolio updating.
Analytical functions for moiv profitable decisions.
A PC Magazine editor’s choke! Available: Now!

Mill-scale telecommunications program. Easy to use and
virtually error-proof Includes 50.000 woid spelling checker
and three levels of macros. Available: Now!

s l B and Sin e \hlslmm

Next generation word-pmcxsseir. All the high-pmducUvily
features plus a real-time spell checker, idea processing,
integrated text/graphics, much more!
Available: 3rd Quarter 1986.

1)1-SKIN* kntkktainmTnt■<;rai»iik:aktssystkm

Ity Vim Hudson

The artistic standard for the ST! beautiful graphics
program for business and pleasure. All the key drawing/
painting functions, text integration, and graphic
design tools! Available': Now!

Scheduling ft 'lime-keeping tool for home and business.
Y, Your day, week, month, year at a glance.iMany incredible

uses! Available: Now!

THUNDER!»
/ ise this unieiue real time spelling checker desk accessory
within any ST CEM application. 50,000 word real time
speiling checker. Abbreviations function completes a word
when you enter the first letters. Amazing siH'C'd.
Available': Hid Quarter 1986.

[LIVvrv^-XHWl/7
hSTTiTi^pffllS
ST version of InfoWorld’s best buy of the Year Award!
3 integrated programs on one disk, 'telecommunications.
Word-processor. Information manager. The easy answer to
time key software needs. Available': 3rd Quarter 1986.

THE SPREADSHEET

In Mini I’oiicr. Mnriin Hexmerund.luson hnemun

'hvo in one! Sophisticated lull featured spreadsheet
program. \ll the key Math. Slats. Logical and Financ ial
functions. 1000 \ 1000worksheet. Hiis Desk acc'e'ssory
version on same disk! Available: 3rd Quarter 1986.

wVwJM SSESe
TIIE ultimate relational data base'. Easy to ham. Unieiue
new feature's. Power and serphisticalion you can use right
away. For busine'ss er personal use'.
Mailable': IIh Quarter 1986.

2Vc: c
Second-generation graphics program mates presentation-
quality visuals. Full range of design/color functions. Multiple'
workscreens, new fonts, many other enhancements. The
deluxe Degas Elite is totally compatible with all other Degas
files! Integrate your Degas Elite picture's with PaperCllp Elite
text files. Available': 3rd Quarter 1986.

MTW/A r— f r M M Kettle'll W ilson

Serious graphics/charting and statistics desk package', lie
charts, 2 and 3 dimensional barcharts, area graphs, much
mote. Change designs without re-entering data. Make
beautiful presentations. Available': 4th Quarter 1986.

Other managewenl program I'orprofessionals. Mr actions
include Daily Reroids, Automatic billing. Accounts
Receivable', billing breakdowns and mom!
Available': 4th Quarter 1986.

Jm+ hS TALK, TIME ft HILLING, PAPERCLIP ELITE, CONSULTANT,
DEGAS ELITE, DEGAS, PORTFOLIO. DTS SPREADSHEET, IIOMEPAK.

n% '4* THUNDER AND D/GRAPII ARE ALL FILE COMPATIBLE. OF COURSE!
WRITE TO US FOR FUU COLOUR CATALOG OF OUR PRODUCTS FOR COMMODORE. ATARI. APPLE AND IBM SYSTEMS. FOR TECHNICAL

nAII UDICC SUPPORT OR PRODUCT INFORMATION PLEASE PHONE (4161 881-1816. JO MURAL STREET. RICHMOND Hill, ONTARIO L4B IBS CANADA
- «'<» 881-1141. TELEX: 06-186-266. I7B7S SKY PARK NORTH. SUITE P, IRVINE. CALIFORNIA. USA 12714, (4161 881-1816. Tele.: 501-111. 1186

|Mf—I ■ BATTERIES INCLUDED. APPLE, ATARI, COMMODORE AND IBM ARE REGISTERED TRADEMARKS RESPECTIVELY OF APPLE COMPUTERS INC.,
IINl_ L_l_J I -V COMMODORE BUSINESS MACHINES INC., AND IBM BUSINESS MACHINES INC

T*Wj

Integral
Solutions

THE $2.00

CATALOG
SPRING

are actively

seeking new software for

worldwide distribution.

YOUR SUPPORT AND OUR COM

MITMENT TO GUARANTEED SATIS

FACTION, HAS MADE THIS THE

MOST TALKED ABOUT CATALOG

FOR ATARI USERS
WE PUT YOU FIRST in every decision we make. You
wanted to be the first to have up to the minute news,
information and innovative software... We delivered
a catalog with your Antic magazine. Antic made sure
you were the firST to get ST software . . . with a spe¬
cial ST section in the magazine. We listened to you
when you asked for more ways to be in contact with
our customer service and technical team. Thanks to
you we have been able to expand our ANTIC ON
LINE through CompuServe and open our telephone
lines five days a week 8:00 AM through 1:00 PM
Pacific time.

At Antic our customers come first. To make sure
that you get first rate customer service we have listed
a few helpful guidelines:

TO ORDER: Call Toll Free (800) 443-0100 ext. 133.
This number has been dedicated to order taking
only. When ordering please refer to the product
code (e.g. ST0202) listed with each product.

2JT] VISA and |££i MasterCard accepted.

CUSTOMER SERVICE: Write or call:
Antic Customer Service
524 Second St.
San Francisco, CA 94107
(415) 957-0886 M-F 8AM-1 PM Pacific time

Please include your name, address, daytime phone and
a clear explanation of your inquiry. For technical ques¬
tions be sure to include hardware configuration infor¬
mation.
Retain all receipts and record method of payment.

FOREIGN AND ALASKA: Please call or write
our corporate headquarters listed above in the cus¬
tomer service section.
□ Check shipping and handling charges on the
order form.

COMPUSERVE: Log on to ANTIC ONLINE—
type GO ANTIC
□ New Product Information
□ BBCS Sysop Corner
□ Customer Service
□ Ordering Information
□ Antic Catalog Service

Thanks to you we’re able to provide better service and deliver Atari XL/XE and 520 ST software at the best
value possible. We’re only a phone call away. Call us today.

UNCONDITIONAL
GUARANTEE OF
COMPLETE
SATISFACTION
We unconditionally guarantee

every product we sell to be free of

defects and to operate properly. If

you are not completely satisfied, or

if any item is defective, just contact

our customer service department by

mail, or phone, within 30 days of re¬
ceipt of merchandise to arrange for

a prompt replacement. Only returns

in new condition, with the original

packaging materials will be ac¬
cepted.

UPGRADE POLICY
All Antic APX Classics programs are
backed by an excellent upgrade
policy. Just send in your current
original program disk with proof of

purchase and specify the revision

you want.

We will copy the new version

directly onto the original disk.

Please include a $5.00 upgrade and
handling fee and send it to Antic
Catalog Upgrades—Customer Serv¬

ice Department.

PRODUCT WARRANTY
Antic Publishing, Inc. warrants that

the products sold in this catalog will
operate properly and be free of

defects for a period of 30 days.
Should you require warranty serv¬

ice, assistance or information,

contact:

Antic Customer Service

Antic Publishing

524 Second St.
San Francisco, CA 94107

(415) 957-0886

NOTE: You must send your warranty

card to Antic to be covered by this
warranty.

2 ANTIC CATALOG

We proudly distribute world class ST products

it »ou‘
efra®°e

"“mgrav'>ic9
have been

ieS b vHePovV'
dlnleedot^e
d *9 c„atePotl

3pS

rom starships to solar sys¬
tems, skyscrapers to your
front stoop. Create and ani¬
mate views of your own 3-D
objects. And no keyboarding

here—CAD-3D is entirely GEM-based.
It’s got to be seen to be believed.
DESIGNERS: Visualize ideas instantly—

speeds up design process.
DOODLERS: Relax with true creativ¬

ity. Save images for later
use or alter them with
any popular ST paint
program.

CAD-3D features include:
□ Works with monochrome or color

monitor. Monochrome mode gives 16
levels of shading, color gives choice of
1 color/15 shades or 2 colors/7 shades
each.

□ View objects in see-thru or hidden
wireframe form or solid form with
true light shading. Change object
form with one mouse click.

□ Three independent user-defined light
sources plus ambient lighting.

□ Built-in 3D primitives (cubes, spheres,
toroids).

□ Assemble up to twenty 3D objects
into a scene and view from any per¬
spective.

□ "Glue" objects together to create
more complex objects.

□ Create radially symmetrical objects
or expand 2D shapes into 3D shapes
with one simple operation.

□ Animation capability—“record" view
sequences for viewing with separate
display program (included).

□ Spin and Extrude functions allow
even the novice 3D experimenter to

create a wide variety of beautiful
shapes.

□ Independent scaling and rotation of
objects or groups of objects.

□ "Camera View" includes zoom lens
and variable perspective.

□ GEM user interface allows use of
four views at once, or one large view.
Four-view mode is user-definable.

□ Saves completed images in DEGAS,
Neochrome or COLR Object Editor
format.

□ Print your objects with a graphics
printer.

□ Detailed printed user manual.

Requires TOS In ROM
ST0214 $49.95

Available May 15.

ANTIC CATALOG 13

FLASH™
Hi I .HI by Joe Chiazzese and Alan Page

CANADA

“FLASH is the only
telecommunications
program I use."

Ron Luhs,
Founder of
CompuServe’s
SIG * Atari and
Atari Developers
Forum.

verybody knows that Antic
is passionately involved in
telecommunications. For
the ST, we searched for the
finest possible terminal pro¬

gram. The best we had seen in other
fields was Crosstalk™ on the IBM and
Smartcomm™ on the Mac. We wanted
something better. It had to be something
that would reduce the most complex
telecom problems to one mouse-click.

Good news. We found it.
... And It uses GEM.

FLASH goes far beyond any communi¬
cations software currently offered for
any computer. Here is a sampling (a very
small sampling) of what you can count on
from this extraordinary—PROGRAM¬
MABLE—terminal program.

□ Hassle-free, GEM-based memo EDI¬
TOR. Use your mouse or cursor keys
(features block move, undo, search,
merge files, and more).

□ FLASH allows you to scroll back and
forth at high speed to review your ses¬
sion—edit it, print it, send it, or save
it to disk.

□ FLASH COmmand Language (FLASH
l COL) to automate log-ons, file trans-
| fers, and unattended operations.

FREE OFFER!
FREE! Try FLASH now
and get $15.00 of
CompuServe ac¬
cess time, FREE.

Order now and
you 'll get a Compu¬
Serve IntroPak; your
free Introductory
subscription to the
CompuServe Infor¬
mation Service with
a 30-page Compu¬
Serve mini-manual.
Plus $15.00 worth of
CompuServe ac¬
cess time.

Here’s what you get on CompuServe
(with no surcharge) if you own an Atari
ST.

ANTIC ONLINE
Get your technical questions answered

by Tim Oren. Originally with Digital
Research, Tim wrote the GEM Resource
Construction Set.

Read two new chapters a month of
Tim Oren’s PRO*GEM tutorial. Available
exclusively on-line.

ATARI 16-BIT FORUM
All of the best ST public domain

programs. Gossip with ST users and
programmers from Great Britain to Aus¬
tralia. Even reach the authors of FLASH
in Canada.

ATARI DEVELOPERS
FORUM

Developers drop in daily to find out
about the latest tools and talk of the
trade. Includes the ANTIC ON-LINE
SOFTWARE SIG.

□ VT100 keypad editing emulation (full
24 line x 80 character display).

□ CompuServe Vidtex high-resolution
graphics terminal emulation. Save
Vidtex graphics as DEGAS files and
modify or print them out.

□ Supports Xmodem (CRC) and ASCII
TEXT protocols.

□ Extensive DOS functions at your
fingertips. Two clocks: Built-in real¬
time system clock and elapsed timer.

□ 20 editable function keys. Chain them
together using FLASHCOL, creating
totally automated macros.

□ Translation tables can independently
filter any incoming or outgoing char¬
acters. Configure your ST to act like
any other micro, terminal, or even
mainframes. Plus, use filters to create
your own secret codes and encrypt
files.

□ High-res flip flop between 24 and 48
lines in monochrome.

□ Printed manual by Ian Chadwick.

ST0220 $39.95

Crosstalk™ Mlcrostuf
Smartcomm™ Hayes

VIDTEX ONLINE
GRAPHICS

Digitized pictures of Hollywood stars,
FBI 10 most wanted list, weather maps,
and the new Antic On-Line Art Gallery.
With Antic, on CompuServe, you can
step into the future of telecommuni¬
cations.

ARTIFICIAL INTELLIGENCE

FRANCE

An Expert Systems
Package For Your ST

&
EXPERT
OPINION™

ANTIC WANTS YOU!
PUBLISHING OFFER.

A New Opportunity.

A ntic is looking for people to create use¬
ful knowledge bases using EXPERT
OPINION. If you’re an expert on a
subject (any subject), get EXPERT
OPINION—write a knowledge base
.. .And if itb very good, and has broad
appeal, we'll publish it for you in this
catalog. Write to me, Catalog Product
Manager, for more details (my address
is on the back page). Give me your expert
opinions. I’ll try to help you publish some
of your knowledge bases on a commer¬
cial basis.

XPERT OPINION and your expertise can turn your
computer into an expert on any subject.

EXPERT OPINION is a full-featured expert sys¬
tem for the Atari ST. (Note: Expert systems are

powerful, intelligent programs. They use a reasoning process
to develop quick, pragmatic answers for a wide range of com¬
plex problems currently requiring human expertise.) Currently,
expert systems are used in the fields of medicine, economics,
and geological surveying.

WITH THE MANUAL PROVIDED AND SUGGESTED SUPPLE¬
MENTARY READING MATERIAL, YOU CAN BUILD YOUR
OWN KNOWLEDGE BASE—EXPERT OPINION DOES THE
REST.

Once you’ve built your knowledge base, EX PERT OPINION is
easy-to-use because it’s based on a powerful natural language
interface, so you can give your input—and get your answers
in plain English. EXPERT OPINION can explain how it arrived
at a particular conclusion by listing the rules used. Plus, it is the
only expert system presently available for micro-computers
which can clearly explain why a particular question is being
asked (it backtracks up to 10 levels).

ORDER NOW! FREE BONUS!
TWO QUICK-START EXAMPLES:
Finance Knowledge Base—30 rules
Palmistry Knowledge Base—150 rules.

ST0219 $99.95

EXPERT OPINION offers more ways to solve a problem than
any other expert system:
□ DEDUCTION—Use this mode if you have some initial data

about the problem (also known as Forward Chaining).
□ VERIFICATION OF A HYPOTHESIS-Your computer

asks you questions about your hypothesis (also known as
Backward Chaining).

□ EXPERTISE (totally new technique)—A combination of the
above, for situations where you have no initial data about
the problem, and no hypothesis (Mixed Chaining Mode).

EXPERT OPINION features:
□ Dictionary linked to each knowledge base.
□ Unlimited number of knowledge bases.
□ Extensive printed manual includes: How To Use an Expert

System, How to Construct a Knowledge Base, plus a
“Theory” chapter, Glossary, Bibliography, and more.

□ User-friendly command structure and [Help] functions for
simple usage.

WARNING: This is a sophisticated computer science tool requir¬
ing study to use it effectively. We recommend the following
books to help you use the program to its fullest:
THE COGNITIVE COMPUTER, Addison Wesley 1984
EXPERT SYSTEMS, Wiley Press 1985
INTRODUCTION TO ARTIFICIAL INTELLIGENCE,

Addison Wesley 1985

Mind Soft,

toll. Credit card holders, call toll-free, 24 hours-a-day orders

free |2| 2E 800-443-0100, ext. 133 (Continental U.S. and Hawaii) ONLY!

16 ANTIC CATALOG

Orthographic

Mollweide

Perspective

Foucault

Flamsteed

Conical

Mercator

* > Polyconic

Azimuthal
Equidistant

US.A

Werner

Cylindrical

Written for the Atari ST
by Harry Koons and David Chenette Put yourself anywhere in the

world — even your own
hometown. And now view
that land mass from any al¬
titude—in full perspective!

Design a wide variety of maps with your
Atari ST, then print them out on a graph¬
ics printer.

Using advanced CAD system algorithms,
MAPS and LEGENDS takes less than a
minute to do what used to take hours for
computers—and weeks by hand. It fea¬
tures ultra-fast drawing of world maps
from one of 11 perspectives, three reso¬
lutions, up to 16 colors.

ENTIRELY GEM-BASED
FEATURES INCLUDE:
□ DRAWING TOOLS

• Multiple Patterns
• Variable Size Pen and Eraser
• Text (3 sizes, includes Antic’s

Font Accessory and over a
dozen fonts)

• Fills (both solid and patterned)
• Make any size maps using

window sliders and size button.
Put up to 10 different maps and
perspectives on one screen!

□ OPTIONS MENU:
• TEXT Mode (place labels

anywhere)
• LOCATE Mode: Reads geo¬

graphic coordinates from map,
and distance and bearing from
any point on the Earth.

• STATE BOUNDARIES (for U.S.
maps)

• GRATICULE Mode (variable-size
grid)

□ DEGAS and Neo compatible. Use your
maps as basic elements in the most
popular ST graphics packages.

□ Works with color and monochrome
systems.

□ EDUCATIONAL AND
PRACTICAL:
• For Educators from K thru 12,

and university levels too. Teach
your children to recognize land

masses, oceans, other points of
interest.

• Next time you go on a trip,
make a map to go with your
itinerary. (Very impressive).

• Complete documentation
reference file (includes:
glossary, bibliography, and
technical notes).

ST0202 $34.95

NOTE: When we first saw this program
at Antic, we were impressed. It performs
functions usually found on cartography
systems that cost $700 and up (plus, it’s
GEM-based, so anyone can use it). After
it was in the office for a few weeks, ev¬
eryone began making maps. The edito¬
rial, art, circulation, marketing and ac¬
counting departments all found creative
uses for it and everyone loved it because
it was so much fun. So, we decided that
it should be in the catalog, but we couldn’t
decide on the price. We settled on $34.95,
with a huge documentation file on the
disk, because everyone ought to be able
to afford a copy.

ANTIC CATALOG 17

+
*

+
*

FINALLY! GEM DEVELOPMENT AND LEARNING TOOLS AT A SUPER VALUE!

UNITED KINGDOM A-SEKA by Kuma
(68000 Assembler, Editor, Debugger)

When you want it NOW.

A-SEKA—For Speed.

By Andelos Systems/Kuma, UK

Sometimes you just need to get that
code running faster. A high-level
language application needs a burst
of energy. Or maybe it’s arcade
action—high end stuff. A-SEKA does
it fast, because it is all in RAM. All of
it: The Assembler, Editor and Moni¬
tor/Debugger. Those who know
how can create exciting codes
mighty fast. And if you’re learning
Assembly, you won’t ever have to
wait for your latest attempt to go
through the assemble and link
process.

A-SEKA assembles source codes at over
30,000 lines per minute! And since it can
assemble and link simultaneously, you
can run your code instantly. Of course,
A-SEKA is also a macro assembler and
uses standard Motorola mnemonics. But
what really sets it apart is its powerful
machine language monitor, disassembler
and symbolic debugger.

DEBUGGER FEATURES:
• Symbol table access.
• Arithmetic operations. Input in

any base.
• Disassembles 16 lines at a time.
• Motorola mnemonics.
• Single step. Trace.
• Multiple breakpoints. Memory

inspect and modify.
• Line assembler.
• Examine registers.

AND MORE. . .
All this, for under $35! You’re probably
saying to yourself, “Sounds great, but
what’s the catch?” OK, here it is. RAM-
based assemblers can only assemble pro¬
grams which are small enough to fit into
the edit and code buffers of random ac¬
cess memory at the same time. On the ST,
that’s quite large, but there will always be
a limit (there is no size limit for our other
assemblers).

ST0216 $34.95

NOTE: In a recent product review in Page
6, the original British magazine for Atari
users, the reviewer said, "A-SEKA is most
useful to the programmer interested in
learning 68000 assembler. It provides
everything you will need.. .’’

A-RAM" by Kuma
Take a look at our RAMdisk.
(Random Access Memory

^ disk emulator)
W's a remarkable value.

By Roddy Pratt, UK

Can your RAMdisk partition any size
disk emulator you want?
► A-RAM can.
Can it work with TOS in ROM?
► A-RAM can.
Can your RAMdisk accelerate your
floppy write speed by turning off the
verify mode?
► A-RAM can.
Can you have multiple RAMdisks
present at the same time?
► You guessed it. A-RAM can.

A RAMdisk is an area of memory set
aside as a buffer that responds to most of
the available disk commands—only
much faster. Everybody needs a great
RAMdisk, and A-RAM is powerful,
simple and flexible enough for every
application.

ST0215 $19.95

toll Credit card holders, call toll-free, 24 hours-a-day orders

free 800-443-0100, ext. 133 (Continental U.S. and Hawaii) ONLY!

18 ANTIC CATALOG

*
+

+
+

UNITED KINGDOM

Here is the compiler that
1ST WORD was written in.

Do you want to write GEM-based
programs for the Atari ST? With
GSTC you can—without spending
hundreds of dollars on expensive
compilers. Now you can add win¬
dows, dialogs, and all the GEM forms
to any program — it’s easy with
GSTC. Use your mouse and pull¬
down menus to write C programs
within a desktop menu-driven
“shell” environment. GSTC allows
compile-assemble-link and assem-
ble-link operations to be batched,
avoiding tedious and error-prone
command line entry. And it all fits on

one single-sided disk. No excessive
disk swaps.

At the heart of the GSTC package is
the remarkable GEM Superstructure
Library. This enables the beginner to
write GEM applications software at
once, without the complex learning
curve associated with GEM AES and
VDI. Open a fully-functioning window
with one call. GSTC is fast—providing
compile and linkage turn-around times
speedy enough for the most impatient
hacker!

GSTC features include:
• GEM Text Editor
• Linker
• C Compiler
• GEM “shell”

• 68000 Assembler
• GEM Superstructure Library
• GEM bindings, (Standard Unix, GEM

VDI, GEM AES, GEM XBIOS, TOS)
• Comprehensive printed user manual

ST0217 $79.95
NOTE: We searched all over the world
to find the best introductory C compiler.
When we discovered that GSTC was used
to write 1ST WORD, we decided that it
was just what we were looking for. This
compiler is very powerful and remark¬
ably easy to use. But at present, it doesn’t
have structures or a floating point library.
If you’re writing a program that uses very
serious math, you may need to look at
Lattice C. But if you’re only writing a
word processor, GSTC will do the job.

GST-LINK
GST-LINK is supplied with GSTC and
GST-ASM and enables separately com¬
piled or assembled program modules to
be linked together and to extract any
run-time library routines from the GEM
libraries. GST-LINK features include:
• Relocatable, compact, binary format
• Optional SID debugger symbols
• Automatic run-time relocation of

modules by the TOS loader
• Comprehensive link map listing with

optional symbol table
• Optional global symbol cross reference

• Link operations driven from a batch
control file

GST-LINK is the linker that Metacomco
chose to use with all their products.

FREE! With every GSTC and
GST-ASM!

GST-EDIT
(Universal GEM Screen Editor)
GST-EDIT is to programming, what 1ST
WORD is to word processing. It’s a GEM-
based text editor which you can use for
writing programs in any language that

accepts ASCII files. If you know how to
use 1ST WORD, you’re already an expert
with GST-EDIT. Its features include:
• Up to four simultaneous files in

separate windows
• Block cut and paste between windows
• Comprehensive search and replace

functions
• Cursor movement by mouse or

keyboard
• Full on-screen help information

FREE! With every GSTC and
GST-AM!

A high-level Macro
Assembler with an
unbeatable combination
of price, performance,
and features.

GST-ASM is a Motorola-compatible
68000 macro assembler with ad¬
vanced features — including high-
level control flow instructions, very
powerful macro facilities and ex¬
tremely fast throughput. GST-ASM is
designed for the professional who
needs a sophisticated macro assem¬
bler to develop real-time software
products. And since it uses the GST
GEM interface, it’s a joy for begin¬
ner and intermediate programmers
as well.

GST-ASM features include:
• 68000 macro assembler
• Linker
• GEM text editor
• GEM “shell”
• Unique, high-level instruction macro

library (IF, WHILE, REPEAT, CASE,
etc.)

• Generates relocatable code
• Produces object code compatible with

Lattice C, Meta Pascal, and Meta
Assembler.

• Comprehensive printed user manual

ST0218 $59.95

ANTIC CATALOG T9

LATTICE C'“
The standard for the 68000. UNITED KINGDOM

COMPILER
• Full Kernighan and Ritchie imple¬

mentation
• Powerful data types (pointers,

arrays, structures, unions)
• Separate compilation
• Conditional compilation
• Macros

^ • LATTICE design
• True native code compiler

HT • Comprehensive error handling,
including warning messages

• Full floating point arithmetic
• Optimized to produce fast, com¬

pact code
• No runtime licenses required
• All C language features are sup¬

ported, including:
PRE PROCESSOR COMMANDS:
#include, ^define, #undef, #if, #ifdef,
#ifndef, #else, #endif, #line.
STORAGE CLASSES: extern,
static, auto, register, typedef.
TYPE DECLARATORS: int, char,
short, unsigned, long, float, double,
struct, union.

OBJECT MODIFIERS: ", [],().
Declarations may be arbitrarily
complex.
INITIALIZERS: Full range of ex¬
pressions accepted.
SCOPE RULES: Identifiers may be
redeclared at the beginning of any
block, but all “extern” objects must
be declared consistently within the
same module.
STATEMENT TYPES: All are sup¬
ported, including labels and goto.
OPERATORS: All are supported, in
the standard precedence, including
conditional and comma operators.

• Other features include comment nest¬
ing, variables up to 39 characters in
length and separate name lists for each
structure or union.

• Full Text Editor
• Complete Linker
• 270-PAGE MANUAL

• Use of the linker allows complete inter¬
face to GEM VDI and AES functions
and to library of Unix and utility func¬
tions. Libraries are provided for com¬
plete interface to these functions,
allowing all the features of the Atari
ST—icons, windows, graphics, etc.—
to be used. The graphics libraries are
included in source code form to aid
understanding and to allow the user
to change the libraries (if required).

• Compatible with two linkers. The ob¬
ject code produced by the compiler is
compatible with both the linker sup¬
plied with the kit and also with LINK68
from Digital Research.

ST0207 $149.95

Technical questions? Talk
with a Metacomco System
Software Engineer: Call
(408) 438-7201.

-r
-r
«r

* VX<s*

*'

Jr'

ANTIC CATALOG 21

NOW, the first all purpose graphics
design programming package is
available for the ST. An essential
time-saving tool developed for creat¬
ing software sprites and bit-mapped
game objects.

Your original art or favorite low-reso¬
lution picture from any ST paint program
can be sketched or modified. Invert, twist
or copy your objects. The zoom editing
feature gives your picture that profes¬
sional look. Your object is stored on disk
in a compatible format allowing you to
access your work from the programming
language of your choice.

Store up to 20 objects in memory at once
and instantly access four rainbow paint
palettes from RAM.

C.O.L.R. OBJECT EDITOR includes
object motion examples. This is the only
graphics programming tool of its kind
for the professional and hobbyist
programmer.

See the November issue of ANTIC for
more information on C.O.L.R. OBJECT
EDITOR.

"An all-purpose graphic design utility
package for ST program designers using
16-color mode.”

ST0201 $29.95

24 hours-a-day orders

(Continental U.S. and Hawaii) ONLYJ

by Dan Matejka

Learn the secrets of ST disk struc¬
ture, and if you’re adventurous, try
some “disk archeology.” Recover
deleted files automatically and re¬
pair damaged files and disks. Make
quick modifications to any ST single or
double-sided floppy or hard disk. Use
DISK DOCTOR to customize program
menus and messages. Search for char¬
acter strings or go to any sector instantly.
Quickly edit full sectors on-screen using
your mouse or cursor keys. Get direc¬
tory history, file attributes, and more.
DISK DOCTOR is perfect for the casual
user who just wants to repair a file, OR
he serious programmer who wants to

discover what’s really going on. Includes
on-disk Help and thorough technical
reference information.

ST0211 $29.95

22 ANTIC CATALOG

U.S.A.

RED
ALERT
Written by Stanley Crane
and Daniel Matejka But you

have some
options. A
few. Stra¬
tegically-

placed Ground-Based
Lasers and Antiballistic
Missile Silos are the
backbone of your de¬
fense. Your last space-
based Particle Beam
Weapon is available,
but you must allocate
your resources wisely
to use it.

NOTE: RED ALERT is an addicting game, but it’s also a
thought-provoking version of an SDI (Strategic Defense Initia¬
tive) nightmare scenario. (RED ALERT was developed by the
authors of DB Master.)

ST0223 $24.95

Your cities are under attack. It’s up to you to try and destroy
the Russian ICBM’s and MIRV’s—plus the missiles launched
from nuclear subs. RED ALERT features real-time animation,
on-screen help, auto-demo mode, color/monochrome compati¬
bility, three selectable levels of play, PLUS a unique construc¬
tion set which lets you customize North America with the cities
that you want to protect, and the positions of the Ground-Based
Lasers and Antiballistic Missile Silos.

Create Your Astrological Chart
Instantly Using Multiple House Systems!

STAR STRUCKM
—THE ASTROLO

By Harry Koons and David Chenette

tMEJS

-SB.® ' h n

Now your ST can instantly generate accurate nat¬
al charts for you, your family, and friends—the
way an astrologer would do it. Entirely GEM-
based, THE ASTROLOGER creates charts based
on the most popular types of house systems used

throughout history (Morinus, Equal Spaced, Porphory, and
more). On-screen help windows show you exactly what all of
the custom astrological icons mean.

Thorough on-line documentation is available for reference. All
aspects are displayed in graphic form. U.S. and world maps are
built into the program—locate your birthplace with the mouse
or key-in the exact coordinates. Charts can be printed out or
saved to disk in DEGAS format. Compatible with color and
monochrome monitors.

ST0222 $24.95

ANTIC CATALOG 23

An Electronic Jewish
mother created by a
former Playboy
cartoonist!

Just think. Your own computerized Jew¬
ish mother—on-screen in an overstuffed
chair; knitting, cajoling, dispensing ad¬
vice, and offering you encouragement—
or making you feel guilty, of course.
MOM is a full-color, computerized, car¬
toon character always ready to chat.
Dressed in granny glasses and fluffy slip¬
pers, she speaks to you by name and
brags about you to your friends.

MOM and ME uses extensive personality
files for a wide variety of human-like
responses, plus mouse-based response
functions for easy interaction.

ST0204 $345?
$19.95 this catalog only

(monochrome/color)

Written by Yakov Kirschen
and Just For You, Inc.

If you haven’t heard about

MURRAY or MOM yet, you

haven’t read:

New York Times

London Times

Los Angeles Times

San Francisco Chronicle

MOM
and ME “

On December 5,1985 the NEW YORK TIMES chatted with
MOM:

MOM: Are you getting enough exercise, Tom?
NYT: Yes MO.
MOM: By setting In front of the computer all day?
NYT: No Comment.
MOM: He's sulking againl Why don’t you go out to a

social function? Meet a nice girl.
NYT: I’m married, remember?
MOM: He’s married, sorry, I keep forgetting. So how Is

what’s-her-name?
NYT: Change the subject, Ma.
MOM: Mom was only trying to be polite, Tom.
NYT: I know Ma, I know.

MOM: Mom Is not waiting for an apology.
NYT: What are you talking about?
MOM: Insult me as much as you want, Tom. Mom loves

you.
NYT: When did I insult you?
MOM: I’m knitting a nice warm sweater for you, Tom.
NYT: You're changing the subject.
MOM: But you asked me to change the subject.
NYT: That was before.
MOM: You see how your Mom remembers?
NYT: What are you talking about?
MOM: The sweater, Tom, the sweater. You’re so forgetful.

You get it from your father’s side.
NYT: Cut It out, Mai
MOM: Mom has to go now, Tom. Be a good boy.

MURRAY
AND ME ”
Some people don’t want a Jewish
mother. How ’bout a Jewish uncle?
Meet MURRAY. The LONDON TIMES
called MURRAY and ME, “the first in a
new generation of Biotoons’’—Living
computerized, interactive cartoon char¬
acters that use your Atari ST to create an
artificial personality by using artificial
intelligence programming methods.
MURRAY is always ready to cheer you

up when you’re feeling blue (or take pot¬
shots at you when you’re on top of the
world).

NOTE: Here are the first two titles in a
whole new generation of Artificial In¬
telligence (AI) programs. These use a
behavioral interface with the computer
to illustrate how to teach a machine to re¬
spond differently to differing stimuli.
MOM and ME and MURRAY and ME are
the first steps towards an understanding
of software behavior engines and arti¬
ficial intelligence programs.

ST0203 $34.95
$19.95 this catalog only
(monocrochome/color)

toll 0 Credit card holders, call toll-free, 24 hours-a-day orders

FREE S' 800-443-0100, eXt. 133 (Continental U S andHawaMI & ONLYI

24 ANTIC CATALOG

ANTIC ARCHIVES

Mag Disk
H Progs/K No. No.

MAR ULTIMATE PRINTER GUIDE 8/61K AMS0385 ADS0385

Feature Programs: KWIK DUMP (Best Graphics Dump), FONT-
MAKER, CUSTOM PRINT (for Atari special char's, by Matt Rat¬
cliff), LABELMAKER, KEYBOARD MACRO COMMANDER,
TWO BIG GAMES, and Secrets of Atariwriter, Printer Guide, XL
Parallel Bus Revealed (part III) . . .

APR COMPUTER FRONTIERS 10/87K AMS0485 ADS0485

Feature Programs: S.A.M. SPEECH EDITOR, EIGHT QUEENS
PROBLEM (Solution), PRICE'S PAINTER GETS FRIENDLIER,
DOT MATRIX DIGITIZER, CRYPTOGRAPHY, MANEUVER,
CRAZY EIGHTS!, and Welcome to ANTIC ON-LINE, Expert Sys¬
tems, XL Parallel Bus Revealed (part IV), Profile: Nolan Bushnell

MAY 3RD ANNIVERSARY ISSUE 10/86K AMS0585 ADS0585

Feature Programs: SON OF INFOBITS (Database Editor),
TSCOPE AUTODIALER, ARENA RACER, BEER PARTY ATARI,
MODE MIXER, FADER II, AMAZING (Action! game), and ST:
Meet the 68000, GEM overview . . .

JUNE COMPUTER ARTS 10/173K AMS0686 ADS0686

Feature Programs: VIEW 3-D, GRAPHICS UTILITY PACKAGE
(For Atari BASIC), PICTURE ENHANCER, GUITAR TUTOR, THE
MUSICIAN, HELICOPTER ROUND-UP, TURBO TYPO II, and
MIDI overview, Logo music, GEM Seminar coverage, Profile: Ron
Luks (SIG'Atari) . . .

JULY COMPUTER CHALLENGES 8/145K AMS0785 ADS0785

Feature Programs: 3 Puzzles (CRYPTOQUOTES, SLIDE, NAME
THAT SONG), 4 Arcade Games (STAR VENTURE, DARKSTAR,
OVERFLOW, MINIATURE GOLF), and 130XE Bank Switching,
Everything About Every DOS, Profile: Joel Billings (SSI) . . .

AUG TELECOMPUTERS 9/117K AMS0885 ADS0885

Feature Programs: ATARI 'TOONS (BBS Cursor Art), WETMORE
ON THE 1030 MODEM, 1030 PROTERM, DISPLAY MASTER
(Special Effects), VALLIANT, and ST SECTION 1 (Kermit Trans¬
fers, Interior View, Desktop Intro), Profile: The Microbits Boys

SEPT POWER PROGRAMMING 10/60K AMS0985 ADS0985

Feature Programs: BASIC REVISION C CONVERTER, 16-BIT
MUSIC, 130XE ONE-PASS COPIER, MIRRORED DISPLAY
LISTS, SOUND EFFECTS LIBRARY, FINE SCROLLING WORLD
(Andrews, part 1), 8 QUEENS ACTION!, PAGE FLIPPING,
CRICKETS, and ST SECTION II (1st Address Map, Using GEM
Control Panel, Hi-res Art) . . .

OCT MIND TOOLS 8/54K AMS1085 ADS1085

Feature Programs: GRAPH 3-D, YOGA BREATHING, BANJO
PICKER, ALIEN ASYLUM, LEMONADE (APX hit economics
simualationl), FINE SCROLLING WORLD (part II), and ST SEC¬
TION III (CD-ROM IN DEPTH, 1st ST Benchmark, GEM COLOR
Program), S.A.T. Software Review . . .

NOV NEW COMMUNICATIONS 8/63K AMS1185 ADS1185

Feature Programs: MORSE CODE RECEIVER/TRANSLATER,
RAPID GRAPHICS MODE CONVERTER, 130XE MEMORY
MANAGEMENT, MORE TYPO II ENHANCEMENTS, VAMPIRE
RATS, FAST CURSOR MOVES, and Radio Modems and Soft¬
ware Overview, ST SECTION IV (ST Uses IBM Disk Files, ST
Sound) . . .

Mag Disk
_# Progs/K No. No.
DEC 4TH ANN. SHOPPERS GUIDE 6/71K AMS1285 ADS1285

Feature Programs: DISKIO PLUS (Enhancements Plus 2.5 Com¬
patibility), BBS CRASHBUSTER (Ratcliff), BUILD YOUR OWN
EPROM BURNER, BOX-IN (J.D. Casten), and 100 Best Atari
Products, Profile: Lucasfilm Design Team, ST SECTION V (Intro
To 520ST Assembly Lang., ST LOGO Exploration, ST Products
Guide) . . .

'86 JAN ATARI PRODUCT REVIVAL 7/69K AMS0186 ADS0186

Feature Programs: APPOINTMENT CALENDAR, DUNGEON
MASTER'S APPRENTICE, BINGO CALLER, SYSOP SANTA
CLAUS, WIREBALL, and Mapping the XL/XE (Ian Chadwick),
ST SECTION VI (ST FONT LOADER, TOS Roadmap, UK Soft¬
ware) . . .

FEB PRINTER POWER 26/57K AMS0286 ADS0286

Feature Programs: T-SHIRT MAKER, INSTANT-DOS, DOS 2.5
FOR AX LON, MULTI-COLORED PLAYERS, WARRIOR 3000,
1020 PLOTTER, BASIC ON/OFF SWITCHER. ST SEC VII
(FORTH ESCAPES, ST Disk Secrets, Crash Clues)

MAR PRACTICAL APPLICATIONS 25/49K AMS0386 ADS0386

Feature Programs: LIE DETECTOR, STICKWRITER, HOME
HEARING TEST, LUNAR LANDER CONST. SET, and Atari at
Work, New Owners Column. ST SEC VIII (MIDI DRIVER, LOGO
MODERNE, HIPPO SOUND).

APR COMPUTER MATHEMATICS 17/46K AMS0486 ADS0486

Feature Programs: FRACTAL ZOOM, GUESS THE ANIMAL,
LIFE REVISITED, 3-D TIC TAC TOE, V(ERSION) SAVER, and
New Users Column part 2. ST SEC IX (3-D FRACTALS, ST Car¬
tridges, GEM and BASIC-VDI)

MAY 4TH ANNIVERSARY ISSUE 17/68K AMS0586 ADS0586

Feature Programs: MOLECULAR WEIGHT CALC, MYGARDEN,
POSTERMAKER, JOYSTICK CURSOR, ROCKSLIDE, HEXCON-
VERTER, and New Users Column Part 3. ST SEC X (JoySTick,
ST PONG, and more).

BONUS THE CASTEN GAME DISK 10/80K ADS0001

The fabulous games of J.D. CASTEN, updated and improved in¬
cluding some never before published: ESCAPE FROM
EPSILON+ , RISKY RESCUE (regular and INDUSTRIAL ver¬
sions), ADVENT X-5, BOX-IN, BIFFDROP (normal and NIGHT¬
MARE versions), NEMESIS, CRAZY HAROLD'S ADROIT AD¬
VENTURE.

ANTIC ST SECTION COMPENDIUM #SB0101

A packed 3.5" disk! Includes object and source code for all ST
programs in the August, '85 through January, '86 issues. Featur¬
ing FONT LOADER Desk Accessory (and a baker's dozen of
fonts), SOUND.C (sound chip demo), COSINE (graphics), plus
LOGO programs and some in-house code that's never been seen
before.

ANTIC ST SECTION COMPENDIUM II ISB0102

Includes all programs from the ANTIC ST SECTION Feb 86
through May 86. Featuring FORTH ESCAPES, MIDI DRIVER,
HIPPO SOUND, LOGO MODERNE, 3-D FRACTALS, GEM AND
BASIC, VDI, JoySTick and ST PONG

Back issues are $5.00 each. Disks are $12.95 each. All Antic Archive programs are protected by international copyright laws and are not public domain.

TOLL

FREE

Credit card holders, call toll-free, 24 hours-a-day orders

2 800-443-0100, GXt. 133 (Continental U.S. and Hawaii) W ONLY,

ANTIC CATALOG 27

S/Terminal plus SOURCE!
Get on-line and transfer files with S/Termi¬

nal, a full-featured terminal program written

in 68000 assembly language. S/Terminal fea¬

tures Xmodem, Xon/Xoff, 300/1200/2400

baud support (and more, up to 19.2K baud),

and on-line help screen. ALL SOURCE

CODE IS INCLUDED, in addition to object

code. S/Terminal is designed for successful

Xmodem transfers under difficult conditions

and will work with CompuServe from foreign

countries. This disk also includes several C

source and object graphic examples, plus

five LOGO demos.

PD0057 $12.00

ST BASIC/LOGO SAMPLER 0fl
BASIC: IncludesMIDIREC.BAS-asimple

MIDI sequencer and sample song files,
BG.BAS —backgammon, Fractals in BASIC,

Biorythm's, and more. LOGO: Nearly a

dozen useful routines including complex

graphics. Plus two bonus desk accessories.

PD0078 $12.00

ST DOODLE plus SOURCE
The perfect GEM learning tool. PD paint pro¬

gram written in "C", including object and

source files for you to explore. Works in all

three resolution modes. Demonstrates GEM

drop-down menus, windows, scroll bars,

color selection, fill algorithm, three brush

sizes. Comes with NEOVERT—converts

your pictures from NEO to DOODLE format.

Learn how GEM and the ST work. . .with¬

out any typing!

PD0058 $12.00

DEGAS COMPETITION HI RES

WINNERS
The top eight monochrome entries from

Batteries Included's DEGAS art competi¬

tion. Includes a slide-show viewing

program —DEGAS is not required.

PD0076 $12.00

DEGAS COMPETITION COLOR

WINNERS
The top eight color entries from Batteries In¬

cluded's DEGAS art competition. Includes

a slide-show viewing program —DEGAS is

not required.

PD0077 $12.00

"Learn about Fractals and GEM with

"C" source code."

ST FRACTALS plus SOURCE!
Features MANDLEZOOM by Harry Koons.

Uses Mandelbrot algorithm to draw fractals

in GEM windows in any resolution. Then
zoom in with 2x,4x,8x, or16x magnifi¬

cation. Change fractal iteration values and

rescale fractals to enhance their color. Then

save your fractal picture to disk. Includes all

"C" source and object files. PLUS, a half

dozen other fractal programs that use differ¬

ent algorithms and display techniques (some
also with source code).

PD0068 $12.00

SOLID SOURCE CODE ##
Features Jim Luczak's VDI SAMPLER and

C PRIMER, which demonstrates C program¬

ming techniques and the use of VDI func¬

tions and their C BINDINGS. BICALC, a

desk accessory Binary-Hexadecimal-Deci¬

mal calculator. Plus two very fast versions of

LIFE, written in Assembler. All source and

object code is included and is well com¬

mented. And more!
PD0079 $12.00

YOU NEVER

GET A

SECOND

CHANCE
at making a first impression,
so give your graphics, letters
or reports color that's worth
remembering.

Exciting things are happen¬
ing in the world of Atari
graphics and data output.

Now you can add

the power of color

to your printouts. All of
our paper is 9V2" by 11"
with "clean-edge" perfo¬
rations that tear down to
a smooth 8V2" by 11"
We have colors and se¬
lections to satisfy the
most discriminating cre¬
ative, professional and
home user.

Get ready to unfold
the power of color!

Antic
^ ATARI Beiource

Premium Sampler Pak contains 160

sheets of 60 Id. paper, 20 each of
B brilliant colors: red, blue, green,

white, pink, parchment, and yellow,

200 matching greeting card size en¬

velopes, and 200 matching business

size envelopes.

CP0001 $19.95

Professional Pak contains 375

pieces: 250 sheets of paper: pearl

gray, aqua, buff, pewter gray, and

ivory (50 of each color), and 125

business size envelopes (25 of each

color).
CP0002 $24.95

The Pastel Sampler Pak contains 350

pieces: 200 sheets of paper (40 of

each color: dusty rose, winter green,

goldenrod, pastel yellow, ana pow¬

der blue), 75 greeting size enve¬

lopes (15 of each color), and 75

business size envelopes (15 of each

color).
CP0003 $12.95

28 ANTIC CATALOG

