
 Abstract—Direct material budgeting is an essential part of

financial planning processes. It often implies the need to pre-

dict quantities and prices of hundreds of thousands of materials

to be purchased by an enterprise in the upcoming fiscal period.

Distortion  effects  in  demand  projections  and  overall  uncer-

tainty cause the enterprises to rely on internal data to build

their forecasts.

In this paper we are dealing with material demand forecast-

ing and evaluate the feasibility of fuzzy time series forecasting

models as compared to classical forecasting models. Relevant

methods are shortlisted based on existing practice described in

academic research. Three datasets from industry are used to

evaluate the predictive performance of the shortlisted methods.

Our findings show an improvement in prediction accuracy of

up  to  47%  compared  to  naïve  approach.  Fuzzy  time  series

models are reported to be the most reliable forecasting method

for the analyzed intermittent time series in all three datasets.

I. INTRODUCTION

ODERN  digitalization  technologies  and  computa-

tional  methods provide new levers for business deci-

sion-support  impacting  financial  performance  of  an  enter-

prise. Many of those levers are to be found (either to origi-

nate or to be applied) in supply chain management. Chopra

and Meindl [1] state that the objective of a supply chain is

the maximization of the overall generated value, where value

is defined as the difference between sales revenue and total

incurred costs throughout the chain of decision-making units.

With shortened delivery timelines, those units are looking to

introduce supply chain forecasting (SCF) models in order to

meet customer’s demand with the highest possible efficiency

in terms of accuracy of the forecast and the work effort re-

quired for its generation. While this paper analyzes material

forecasting from requirements  planning perspective,  down-

stream demand forecasting has recently been outlined as a

symmetrically important business challenge with major im-

pact on profitability of an enterprise [2]. To find a suitable

approach to upstream SCF, the physiology of a supply chain

should  be  considered  from  three  different  perspectives:

length, depth and time. 
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When trying to quantify and  forecast  upstream demand

propagation, it is important to recognize the complexity of

the supply chain and different factors that may influence or

distort the projections. Lee et al. [3] defined Bullwhip Effect

as the amplification of demand variance that takes place as

the value proceeds through the chain nodes.  Main reasons

for  this  are  operational  inefficiencies  and  external  factors

that affect the deviation between expected and realized de-

mand quantities. 

It was noted by Chopra and Meindl [1] that one way to

handle incomplete information,  its  distortion effect  on de-

mand projections and operational inefficiency of manufac-

turers, would be the development of collaborative concepts

where information is shared between supply chain entities.

The  main  concepts  that  were  proposed  are  collaborative

forecasting and replenishment (CFAR) systems where inter-

change of decision-support models and strategies to facili-

tate forecasting processes is suggested [4].  Other concepts

that have emerged include Collaborative planning, forecast-

ing and replenishment (CPFR), Vendor Management Inven-

tory (VMI) and other information systems [5]. While unintu-

itive, it was shown that collaborative supply chain forecast-

ing can yield negative dynamics in the performance, widen-

ing  the  Bullwhip  Effect  and  burdening  the  procurement

function [6], [7]. 

Since collaborative forecasting mechanisms prove to be in-

effective both in terms of accuracy and incurred workload, it

is becoming increasingly relevant to explore possibilities for

the autonomous forecasting of demand. This research is based

on anonymized historical purchasing data from several indus-

try partners operating globally. In terms of the length of a sup-

ply chain, the dataset provides full visibility to the first-tier

suppliers  of  different  products,  while  lacking  an  extended

view to adjacent nodes of the supply chain, which represents a

typical setup for developing SCF process as a business appli-

cation. The main objective of this research is to evaluate and

compare  the  performance  of  different  forecasting
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methods in the SCF domain and, if possible, to identify 

methods of choice for material demand forecasting.  

II. METHODOLOGICAL BACKGROUND 

Time series forecasting, i.e. prediction of future or missing 

entries in a series of numerical values indexed in time order 

[8], is a broad research domain which is historically relevant 

for multiple application areas, incl. natural sciences, industrial 

engineering, economy, business and many others. Time series 

forecasting can be divided into three main methodological 

types [9]. These are 1) Explanatory models where the 

dependent variable is represented as a function of external 

factors (regressors or independent variables) and a causal 

relationship is assumed (or at least the ability to compute the 

values of the regressand from the values of the regressors) for 

modelling by fitting the function to existing data 2) 

Autoregressive models where the forecast is generated based 

on historical values of time series without external variables 

3) Mixed models, which contain explanatory and dynamic 

components, that include dynamic regressions, transfer 

function models, linear systems, vector alternatives of the 

above mentioned models, machine learning models etc. In 

this paper, autoregressive time series models are used due to 

a lack of numerical data points available in an independent 

enterprise SCF concerning additional explanatory variables. 

We selected three different model types to be fitted to the data 

and also considered a naïve benchmark model to be able to 
compare the performance of the selected models with a 

reference model. Given the type of the time series being 

forecasted, only models capable of reflecting seasonality in 

the time series were considered. 

A. Naïve benchmark 

 The naïve forecasting method is the basic estimation 

technique in which time series value from the last period is 

taken as the forecast for the next one, without attempting to 

adjust it or establish causal factors. It is represented as 

 

 𝑦𝑡+1 = 𝑦𝑡                   (1) 

 

where 𝑦𝑡 is time series in question and it is assumed that at 

time 𝑡 we need to make a forecast of the value of the time 

series for times 𝑡 + 𝑚, 𝑚 ∈ ℕ,𝑚 > 0. In other words we 

assume that the historical values of the time series being 

forecasted are known including the current value of the series, 

but no information is available after time 𝑡.  Predicting the last 

known value, that is 𝑦𝑡+𝑚 = 𝑦𝑡  for all 𝑚 > 0, is one of the 

most commonly used benchmark methods due to its 

simplicity. 

B. Holt-Winters exponential smoothing 

The exponential smoothing models were proposed as 

forecast generators through weighted average of previous 

observations while weights decrease exponentially over time 

periods (more historical values influence the forecast less than 

more recent ones). 

In Holt-Winters (HW) seasonal method [10]–[12] the time 

series are decomposed, and the series estimation formula is 

split into three equations: level, trend and seasonality. All of 

them consider different smoothing coefficients and comprise 

a system of simultaneous equations as follows: 

 

 {  
  𝑆𝑡 = 𝛼 𝑦𝑡𝐼𝑡−𝐿 + (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1)𝑏𝑡 = 𝛾(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛾)𝑏𝑡−1𝐼𝑡 = 𝛽 𝑦𝑡𝑆𝑡 + (1 − 𝛽)𝐼𝑡−𝐿𝑦𝑡+𝑚 = (𝑆𝑡 +𝑚𝑏𝑡)𝐼𝑡−𝐿+𝑚         (2) 

 

where 𝑦𝑡  is observation of the series, 𝑆𝑡 is the smoothed 

observation, 𝑏𝑡 is the trend factor, 𝐼𝑡 is the seasonal index, 𝑦𝑡+𝑚 is the forecast at 𝑚 periods ahead; 𝛼, 𝛽 and 𝛾 are 

smoothing parameters that are estimated so as to minimize the 

fitting error. The baseline value for trend can be computed as 

 

 𝑏0 = 1𝐿 (𝑦𝐿+1−𝑦1𝐿 + 𝑦𝐿+2−𝑦2𝐿 +⋯+ 𝑦𝐿+𝐿−𝑦𝐿𝐿 )     (3) 

 

where 𝐿 is the length of the season, 𝑦𝑡  are observation 

series, while the initial season factor is calculated as  

 

 𝐼0 = ∑ 𝑦𝑡+𝑝𝐿𝐴𝑝𝑁𝑝=𝑡𝑁                 (4) 

 

where 𝑡 is the time period, 𝑁 is the number of complete 

seasons we have the data for, 𝑦𝑡  are observation series and 𝐴𝑝 = ∑ 𝑦𝑖𝐿𝑖=1𝐿 , 𝑝 = 1,2, … , 𝑁. 

C. Seasonal Autoregressive Moving Average 

Autoregressive Moving Average (ARMA) model family 

consist of autoregressive (AR) and stochastic (MA) 

components [13]. Autoregressive components reflect the 

dynamic structure of the series describing its linear relation to 

order p while the moving average component is a linear 

combination of q lags of the error term. Alongside with 

exponential moving average models, they are commonly used 

in SCF for benchmarking purposes [2].  

ARMA models are formulated as follows and they require 

the time series to be weakly stationary. 

 

 𝑦𝑡 = 𝐶 + ∑ 𝜑𝑖𝑦𝑡−𝑖 + 𝜀𝑡 + ∑ 𝜃𝑗𝜀𝑡−𝑗𝑞𝑗=1𝑝𝑖=1      (5) 

 

where 𝑦𝑡  is the estimated series, 𝐶 is the constant term,  𝜑𝑖  
is the coefficient for the autoregressive component of order 𝑖, 𝜃𝑗 is the coefficient for the moving average component of 

order 𝑗, and 𝜀𝑡 is the error term. 

Seasonal autoregressive integrated moving average 

(SARIMA) model is an extension of the traditional integrated 

ARMA activating the pattern recognition potential through a 

set of new parameters: seasonal autoregressive component 

(P), seasonal integration (D) and seasonal moving average 

(Q).  These parameters are combined (the order of seasonal 

integration being set to 𝐷 = 0) in the following equation: 

2 SELECTED PAPERS OF THE KNOWCON. OLOMOUC, 2021



 

 

 

 

 

 𝑦𝑡 = 𝐶 + ∑ 𝜑𝑖𝑦𝑡−𝑖 +∑ 𝛾𝑘𝑦𝑡−𝑘𝐿 +𝑃𝑘=1 𝜀𝑡 +𝑝𝑖=1∑ 𝜃𝑗𝜀𝑡−𝑗𝑞𝑗=1 +∑ 𝜇𝑟𝜀𝑡−𝑟𝐿𝑄𝑟=1              (6) 

 

where, in addition to the terms from (5), we introduce 𝛾𝑘 

and 𝜇𝑟 as seasonal parameters to be estimated with the 

length of seasonal period 𝐿. 

D. Fuzzy time series model 

Fuzzy time series (FTS) is a concept from the fuzzy data 

analysis domain, which is based on the fundamental concept 

of a fuzzy set, introduced by Zadeh [14]. A fuzzy set is a 

flexible way to model uncertainty through assigning a gradual 

membership value 𝜇𝐴(𝑥) ∈ [0,1], 𝑥 ∈ 𝑈  to a specified set A 

for every element x of a universe of discourse U, instead of 

quantifying  phenomena with a single crisp value from the set {0,1}. 
In 1993 Song and Chissom [15] introduced fuzzy time 

series 𝐹(𝑡) on the subset of real numbers 𝑌(𝑡) (𝑡 = 0,1,2,…). 
A fuzzy time series 𝐹(𝑡) is a collection of fuzzy sets 𝐴𝑡(𝑡 =1,2, … ) with membership functions 𝜇𝐴𝑡(𝑥) (𝑡 = 1,2, … , 𝑛 ∈𝑌𝑡). The real time series can be transformed into their fuzzy 

representation with the appropriate membership function, 

universe of discourse, and assigning membership degree 

values for real numbers in question. 

The fuzzy time series forecasting models rely on the notion 

of fuzzy logical relationships (FLR). If 𝐴𝑖 and 𝐴𝑗 denote the 

fuzzy sets that form part of fuzzy time series 𝐹(𝑡), the logical 

relationship can be expressed with notation 𝐴𝑖  →  𝐴𝑗   (FTS 

model of order 1) or  [𝐴𝑖, 𝐴𝑘] → 𝐴𝑗 (high-order FTS model 

with 2 lags). In the examples above, 𝐴𝑖 and [𝐴𝑖 , 𝐴𝑘] are called 

left-hand side (LHS) of an FLR, while 𝐴𝑗 is its right-hand side 

(RHS). 

The FLRs observed from historical data can be organized 

into fuzzy logical relationship groups (FLRGs). They 

comprise the knowledge- or rule base that is further inferred 

to generate forecast for future or missing values. 

A simple FTS model generates forecast based on the 

following algorithm; let 𝐹(𝑡) = 𝐴𝑖, then 

• if 𝐴𝑖 → ∅, that is if there is no rule in the FLRG with 𝐴𝑖 as LHS, then 𝐹(𝑡 + 1) = 𝐴𝑖 and the defuzzified 

forecast 𝑌(𝑡 + 1) is the midpoint of 𝐴𝑖, if 

defuzzification is needed; 

• if 𝐴𝑖 → 𝐴𝑗 ∈ 𝐹𝐿𝑅𝐺, then 𝐹(𝑡 + 1) = 𝐴𝑗, 𝑌(𝑡 + 1) 
being the midpoint of 𝐴𝑗; 

• if 𝐴𝑖 → 𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑘 ∈ 𝐹𝐿𝑅𝐺, there is no single 

fuzzy representation of 𝐹(𝑡 + 1), there are more 

possible fuzzy-set outputs, and the defuzzified value, 

if needed, is derived directly as the arithmetic 

average of the midpoints of 𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑘. 

Weighted FTS (WFTS) is a model type that handles the 

scenario of 𝐴𝑖 → 𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑘 in a different way. The 

defuzzification of the forecast is then calculated as 

 

 𝑌(𝑡 + 1) = ∑ 𝑤𝑗𝑐𝑗𝑗∈𝑅𝐻𝑆             (7) 

 

with 

 

  𝑤𝑗 = #𝐴𝑗#𝑅𝐻𝑆  ∀𝐴𝑗 ∈ 𝑅𝐻𝑆            (8) 

 

where #𝐴𝑗 is the number of occurrences of 𝐴𝑗 in FLRs with 

the same LHS and #𝑅𝐻𝑆 is the total number of temporal 

patterns within that FLRG and 𝑐𝑗 is 𝑗th midpoint [16]. 

Probabilistic Weighted FTS (PWFTS) incorporate 

information about membership degrees of the LHSs of the 

FLRs. The knowledge base for PWFTS is given as 

 

 
𝜋1𝐴1→𝑤11𝐴1,…,𝑤1𝑖𝐴𝑖…𝜋𝑖𝐴𝑖→𝑤𝑖1𝐴1,…,𝑤𝑖𝑖𝐴𝑖                (9) 

 

where each weight 𝜋𝑖 is the normalized sum of all LHS values 

of membership functions where the LHS is fuzzy set 𝐴𝑖 [17]. 

Thus, 𝜋𝑖 can be interpreted as the empirical a priori 

probability of having 𝐴𝑖 as an LHS. The weight 𝑤𝑖𝑗  is the 

normalized sum of all RHS memberships where LHS is 𝐴𝑖 
and RHS is 𝐴𝑗, which can be understood as a conditional 

probability 𝑃(𝐹(𝑡 + 1) = 𝐴𝑗|𝐹(𝑡) = 𝐴𝑖). 
The forecasting procedure in PWFTS starts with the 

computation of probability distribution 

 

 𝑃(𝑌(𝑡)|𝑌(𝑡 − 1)) = ∑ 𝑃(𝑌(𝑡)|𝐴𝑗)∗∑ 𝑃(𝑌(𝑡 + 1)|𝐴𝑖 , 𝐴𝑗)𝑘𝑖=1∑ 𝑃(𝑌(𝑡)|𝐴𝑖)𝑘𝑖=1𝐴𝑗∈𝐴 =
∑ 𝜋𝑗𝜇𝐴𝑗(𝑌(𝑡))𝑍𝐴𝑗 ∗∑ 𝑤𝑖𝑗𝜇𝐴𝑖(𝑌(𝑡+1))𝑍𝐴𝑖𝑘𝑖=1∑ 𝜋𝑖𝜇𝐴𝑖(𝑌(𝑡))𝑍𝐴𝑖𝑘𝑖=1𝐴𝑗∈𝐴           (10) 

 

where, in addition to previous notations, 𝜇𝐴(𝑌) is degree of 

membership of continuous value 𝑌 to a fuzzy set 𝐴,  𝑍𝐴 is the 

total area under membership function of 𝐴, and  𝐴̃ is the set of 

all fuzzy sets considered on the given universe, for example 𝐴̃ can be a set of the fuzzy-set meanings of the linguistic 

values of a linguistic variable used to describe the values of 

the time series to be forecasted. The point forecast is then 

produced by 

 

 𝑌(𝑡 + 1) = ∑ 𝑃(𝑌(𝑡)|𝐴𝑗)∗𝐸[𝐴𝑗]∑ 𝑃(𝑌(𝑡)|𝐴𝑗)𝐴𝑗∈𝐴̃𝐴𝑗∈𝐴        (11) 

 

with 𝐸[𝐴𝑗] = ∑ 𝑤𝑖𝑗 ∗ 𝑚𝑝𝑖𝑖∈𝐴𝑗𝑅𝐻𝑆 , 𝑚𝑝 denoting a midpoint 

of a fuzzy set 𝐴𝑗. 
FTS represent a real alternative to the traditional 

econometrics methods since fuzzification of original time 

series makes the stationarity requirement redundant and 

reduces the allowed value domain to a finite number of fuzzy 

sets (or linguistic values the meanings of which are 
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represented as fuzzy sets) which works as an embedded 

normalization technique. 

III. DATA EXTRACTION AND PREPROCESSING 

Extraction and preprocessing of the data included such 

subtasks as 1) selection of appropriate time period, 2) 

temporal aggregation, 3) scoping (reducing dimensionality – 

due to computational reasons) the list of time series included 

in the analysis and 4) handling outliers.  

For the time period selection, three main criteria were 

considered: availability of data on codified direct purchases, 

potential to reveal annual seasonality and relevance for the 

business. Based on those criteria, the timeframe for the 

transactional dataset was set to January 2016 – November 

2020, the latter being the most recent reported period in the 

source data. The time step was one calendar month. Cross-

sectional aggregation was performed on a product-location 

level, which means that each time series represents monthly 

values of purchased quantities of a product by a given 

operating unit. 

Pareto principle also known as the “80-20” rule was 
considered to narrow down the focus of the quantitative 

research. The dominating share of spend originated from a 

relatively low number of biggest purchase items, hence the 

scope of research could be limited to comply with limitations 

of available computing resource. Depending on the industry 

partner, from 1.34% to 3.70% of available time series were 

such that they added up to 90% of cumulative spend, and thus 

were included to the research scope. Further filtering of the 

data is described assuming that 100% of original time series 

represent the reduced number. 

The underlying products of purchased quantity time series 

need to remain relevant to the business. We therefore only 

included the time series that contained non-zero values of 

quantity and spend in the last 12 months of the recorded 

period. Across the three partner datasets, 77.31-90.41% of 

time series fulfilled the requirements. 

In order to ensure availability of sufficient training data, we 

removed the series where the period between the earliest and 

the most recent observation was under 3 years. In the study, 

18.30-53.96% of the time series have enough observations. 

Combined with the previous filtering criterion, there is an 

overall acceptance rate of 17.99-50.99% of the initial number 

of time series for the subsequent analysis and experiments. 

IV. DESIGN OF EXPERIMENTS 

In this part, we describe the experiments conducted to 

evaluate the quality of the selected time series forecasting 

methods. 

Performance measurement 

For performance measure Root Mean Squared Error 

(RMSE) was selected. RMSE is defined as 

 

 𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑝𝑟𝑒𝑑𝑖−𝑦𝑖)2𝑛𝑖=1 𝑛           (12) 

 

where 𝑦𝑝𝑟𝑒𝑑𝑖  is the forecasted value of the series for time 𝑖,and 𝑦𝑖  is the corresponding original value for all the 

investigated values of 𝑖. 
Training and testing data 

An appropriate representation of data is essential in a 

quantitative study. Time series data are commonly split over 

temporal indices to ensure original order. 

First, we specify the forecast horizon i.e. the number of 

future observations that we want to generate as a model 

output. The business needs dictate that budgetary revisions 

are performed on a quarterly basis; thus the forecast horizon 

is specified to 3 months. 

In order to avoid potential bias related to seasonality or 

coincidence in externalities, multiple testing windows are 

included in the analysis as per availability and volume of 

original data. An expanded rolling window approach is 

adopted, meaning a gradual increase in the number of 

observations in the training dataset, shifting the index of the 

testing period in a way that provides additional dimension to 

the analysis of results by revealing the sensitivity of 

algorithms to the amount of training data. The resulting cuts 

of the original time series range between 36 and 58 

observations in length; we characterize the amount of training 

data as “low” if it represents a time period of less than 4 full 

years, and “high” otherwise. 
All things considered, the experiment for each series is 

carried out in the following steps: 

1. Identify the first and last period with non-zero 

normalized quantity values and remove leading and 

lagging null observations; 

TABLE I. 

COMPARISON OF PERFORMANCE OF DIFFERENT METHODS 

 HW RMSE SARIMA RMSE FTS RMSE Naive RMSE 

 
Mean Std. Mean Std. Mean Std. Mean Std. 

Company A 0.163 0.075 0.178 0.076 0.121 0.055 0.199 0.101 

Company B 0.165 0.084 0.179 0.087 0.125 0.069 0.219 0.123 

Company C 0.210 0.107 0.226 0.109 0.156 0.088 0.295 0.153 
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2. Split the resulting series into 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 expanding 

windows, starting with the first 33+3=36 months of 

data (33 observations for training and 3 for testing 

purposes) and incrementing the index of last 

observation included in the sample by [(𝑖𝑚𝑎𝑥 −36)/𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠  ] where  𝑖𝑚𝑎𝑥  is the largest integer 

index of the series (starting with 1, equal to number 

of observations) and 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠  is the target number 

of windows per series; 

3. Run all configurations of each model family 

(Exponential Smoothing, SARIMA or FTS) on each 

of the windows and store the results in such a format 

that it would include full information regarding the 

tested series, values of hyperparameters and 

observed RMSE. Apply the naïve forecast for 

benchmarking purposes.  

V. RESULTS 

In Table I, the methods are evaluated based on average 

RMSE error term and its standard deviation across time 

series. There is a visible improvement in prediction accuracy 

of all three methods compared to the naïve solution. 
The improvement is further validated with a visualization 

of RMSE in form of histograms (Figure 1), one per each 

dataset.  

If we compare individual performance of the models on 

time series level, we see that FTS would be the best choice in 

7947 cases representing almost 60% of the total count, 

followed by HW and Naïve benchmark with 2642 and 1624 
respectively while SARIMA would only be optimal in 1099 

cases. Looking at detailed specifications of the respective 

models, it is notable that in majority of cases SARIMA 

becomes a simple arithmetic average, serving as additional 

benchmark solution. 

FTS shows a higher and more stable prediction accuracy 

which may be explained by its ability to handle the 

intermittency by fuzzification of original series whereas other 

methods operate on a continuous scale. Zero values 

alternating with non-zero ones are translated into a discrete 

number of fuzzy sets, which reduces the noise in identifying 

sequential patterns. 

VI. CONCLUSION 

In scope of this research, we have tested such time series 

forecasting methods as Holt-Winters exponential smoothing, 

SARIMA and Fuzzy Time Series forecasting models, on three 

independent datasets containing historical direct material 

purchasing data of industry partners. The results reveal that 

using the Fuzzy Time Series approach, there is a potential to 

reveal hidden intrinsic and seasonal patterns and achieve a 

substantial improvement in accuracy compared to simple 

statistical forecast. 

Fuzzy Time Series models showed the best performance in 

all datasets because of their ability to reduce the noise caused 

by intermittency of the original series. Holt-Winters is a 

viable alternative showing stable improvement to the error 

 

 

Figure 1. RMSE histogram of HW (row 1), SARIMA (row 2) and FTS (row 3) against benchmark 
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metrics whereas SARIMA is not recommended in this case
due to insufficient amount of training data and its intermit-
tent  nature  which  results  in  a  notable  underperformance.
Fuzzy Time Series and Holt-Winters can be used to generate
automatic  forecasts  of  direct  material  purchases  when  the
amount of historical data is sufficient.
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