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Abstract—An optimal stochastic approach for multidimen-
sional integrals of smooth functions. This is the first time this
optimal stochastic approach has been compared with other
stochastic approaches for mid and high dimensions. The purpose
of the present study is to compare the optimal algorithm with
the lattice rules based on the generalized Fibonacci numbers of
the corresponding dimension and to discuss the advantages and
disadvantages of each method.

I. INTRODUCTION

The Monte Carlo method has proven to be very useful

tool for numerical analysis, particularly when the number

of dimension ranging from medium to large. Monte Carlo

simulation and quasi-Monte Carlo methods are the prevailing

methods used to solve multi-dimensional problems in different

areas. Both methods do not suffer from the ,,curse of the

dimensionality” [2] This is the first time to study optimal
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stochastic algorithms for computing multidimensional inte-

grals of smooth functions. The optimal approach has been

established by Atanasov and Dimov in [1] but there aren’t

any comparison with other stochastic approaches up to now.

II. DESCRIPTION OF THE OPTIMAL MONTE CARLO

ALGORITHM

Most Monte Carlo methods improve achieves better conver-

gence using the idea of dividing the area of integration [2].

In the case where, in addition to the idea of dividing the area

Ω = Us (but without the recursive element), the information

on the smoothness of the subintegral function is used, an

increase in the order of convergence is achieved. Our first

known results in this area with probability density p(x) = 1,

and splitting the area into equal parts in all directions are

obtained by Dupach ([4]).

Theorem 1: (Dupach, [4]). Let g(x) and all its first-order

partial derivatives
∂g

∂xk
are continuous in Ω and bounded, i.e.

for all 1 ≤ k ≤ s :

∣

∣

∣

∣

∂g

∂xk

∣

∣

∣

∣

≤ L, and there exist constants

c1, c2 > 0, for which are fulfilled the following conditions

pj ≤
c1
N

, j = 1, . . . , N, dj ≤
c2

N1/s
,
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where dj is the diameter of the subdomain Ωj , i.e. dj =
sup

x1,x2∈Ωj

|x1 − x2|. Then for the estimation of the variance

we obtain θ
∗

N in the case of M = N Nj = 1, j = 1, . . . ,M
and:

Dθ
∗

N ≤ c2L2N−1−2/s, where c = sc1c2.

Using Chebyshev’s inequality [?], [?], for the error θ
∗

N−I[g]
we obtain

P

{

|θ∗N − I[g]| < c L

ε
N−1/2−1/s

}

≥ 1− ε2, (1)

where ε is a small enough positive number.

Given the equation (1) it can be concluded that the probable

error θ
∗

N − I[g] decreases in order N−1/2−1/s, i.e. faster than

N−1/2. Obviously for large dimensions s the acceleration of

the convergence order is relatively insignificant.

The same result for the order of convergence can be

achieved in less favorable conditions, namely, only that the

corresponding function is continuous. The proof is made by

Dimov and Tonev ([3]), and the statement is formulated in the

following theorem:

Theorem 2: (Dimov, Tonev; [3]). Let g is continuous in

Ω ⊂ R
s and there exist constants c1, c2, c3, such that pj ≤

c1/N, dj ≤ c2N
−1/s and Sj(·, c3) ⊂ Ωj , j = 1, . . . , N (i.e.

M = N and Nj = 1), where Sj(·, c3) is sphere with radius

c3. Then for the probable error rN is fulfilled [2]:

rN ≤ 4
√
2
c1c2
c3

τ(g; dmax)Lq
N−1/2−1/s,

where dmax = max
j

dj τ(g; δ)Lq
is the average modulus of

continuity, that is,

τ(g; δ)Lq
= ||ω(g, ·; δ)||Lq

=

(
∫

Ω

(ω(g,x; δ))q dx

)1/q

,

1 ≤ q ≤ ∞, δ ∈ [0, dmax] and

ω(g,x; δ) = sup{|∆h g(t)| : t, t+h ∈ [x−δ/2, x+δ/2]∩Ω},
where ∆h is the difference (forward) of the function g in the

point t from first order, which in this case plays a role similar

to the derivative but in a discrete sense.

Similar to the one obtained by Dupach, a higher order

variance estimate can also be derived for a class of functions

whose higher order derivatives are constrained by adding

additional conditions for the choice of random points in the

subdomains. Rayna Georgieva proves the following theorem

[5]:

Theorem 3: Let we have domain Ω ∈ R
s and the division

of the domain Ω =
∑M

j=1 Ωj , where every subdomain Ωj is

centrally symmetric with center pj . Let ξ(j) is a random s-

dimensional point, uniformly distributed in Ωj , ξ(j)
′

is sym-

metric (about the center pj) with ξ(j), i.e. ξ(j) + ξ(j)
′

= 2 pj .

If the first and second partial derivatives of a function g(x)
are continuous in Ω and for all k, l = 1, . . . , s is fulfilled that

∂2g

∂xk ∂xl
≤ L dj = sup

x1,x2∈Ωj

|x1 − x2| ≤
c1

N1/s
,

then D θ
∗∗

N = c2 L
2 N−1−4/s, where θ

∗∗

N =
N
∑

j=1

Vj

2
[g(ξ(j))+

g(ξ(j)
′

)], Vj is the volume of the subdomain Ωj c =
(0.5s2cs+2

1 )2.

There are various Monte Carlo approaches for numerical

integration whose convergence order is O
(

N−
1

2
−

k
s

)

. For

k = 1 and k = 2 these methods can be constructed relatively

easily [2], following Dupach’s ideas for k = 1, described

above (see the Theorem 1). But the situation changes when

k ≥ 3. Using the method of controlling the variance on

interpolation polynomials, Atanasov and Dimov [1] formulate

conditions for constructing a method with optimal order of

convergence for s-dimensional functions from the class W k.

The optimal method requires m ∗ ns points and is briefly

described below [1].
For n, s, k ≥ 1 we define integration formula of type

Monte Carlo, depends on an integer parameter m ≥ 1 and
(

s+k−1
s

)

points in [0, 1]s by the following way. Points x(r) are

exactly a number of
(

s+k−1
s

)

and they must fulfil the condition,
that if for one polynom P (x), so that for the degree of the

polynom degP ≤ k is fulfilled P (x(r)) = 0, then P ≡ 0. If
N = ns for n ≥ 1 we divide s dimensional hypercube [0, 1]s

into ns
endless undercubes Kj , i.e. [0, 1]s = cn

s

i=1Kj and

Kj =
s
∏

i=1

[aji , b
j
i ), where bji − aji =

1
n for every i = 1, . . . , s..

For every cube Kj we calculate the coordinates of
(

s+k−1
s

)

points y(r), defined by y
(r)
i = ari +

1
nxi(r). We assume that

we choose m random points ξi(j, s) = (ξ1(j, p), . . . , ξs(j, p))
from every cube Kj , such that all the points ξi(j, p) are
independent uniformly distributed random points, we calculate
all f(y(r)) and f(ξi(j, p)), and we calculate the Lagrange
polynom of the function f in the point z using information
about the functional values in the points y(r). We denote the
polynom by Lk(f, z). For every polynom P of max degree
k − 1 we have that Lk(f, z) ≡ z. Now we approximate

∫
Kj

f(x)dx ≈

1

mns

m∑
s=1

[(ξ(j, p))−Lk(f, ξ(j, p))]+

∫
Kj

Lk(f, x)dx.

After that we sum for every j = 1, . . . , N and obtain:

I(f) ≈
1

mns

N∑
j=1

m∑
s=1

[(ξ(j, p))−Lk(f, ξ(j, p))]+
N∑

j=1

∫
Kj

Lk(f, x)dx.

∫
Kj

f(x)dx ≈

1

mns

m∑
s=1

[(ξ(j, p))−Lk(f, ξ(j, p))]+

∫
Kj

Lk(f, x)dx.

After that we sum for every j = 1, . . . , N and obtain:

I(f) ≈
1

mns

N∑
j=1

m∑
s=1

[(ξ(j, p))−Lk(f, ξ(j, p))]+
N∑

j=1

∫
Kj

Lk(f, x)dx.

III. NUMERICAL EXAMPLES

We will test the optimal method on multidimensional integrals
of smooth functions of different dimensions. We use the following
notations: A==Adaptive stochastic approach, L=Latin Hypercube
sampling, S=Sobol quasi-random sequence, F=Fibonacci lattice rule,
O=optimal approach. For more information about the description of
the different stochastic approaches, see [2], [6]. We must emphasise
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Table I
RELATIVE ERROR FOR THE 3 DIMENSIONAL INTEGRAL DIMENSIONAL

INTEGRAL

N A t F t S t L t O t

103 4.82e-3 0.17 1.21e-3 0.006 4.87e-4 0.47 6.14e-3 0.004 3.12e-5 0.81

104 1.07e-3 1.44 5.04e-4 0.07 1.56e-4 1.88 6.56e-4 0.06 2.05e-6 4.13

105 1.52e-4 10.9 5.34e-6 0.66 2.51e-5 15.6 1.34e-4 0.51 4.58e-7 31.62

106 5.11e-5 131 7.85e-7 7.02 7.43e-6 105.80 6.84e-5 5.22 6.72e-8 155

107 2.34e-5 1094 8.89e-8 79.7 1.58e-6 934 1.73e-5 17 5.34e-9 1053

Table II
RELATIVE ERROR FOR THE 3 DIMENSIONAL INTEGRAL

time(s) C A F S L O

1 1.05e-3 7.96e-3 2.34e-6 2.93e-4 5.11e-4 1.21e-5

5 6.84e-4 8.14e-4 8.47e-7 8.01e-5 7.32e-5 1.12e-6

10 4.79e-4 1.82e-4 4.89e-7 4.71e-5 4.32e-5 7.21e-7

100 1.57e-4 7.04e-5 6.53e-9 7.68e-6 5.32e-6 8.61e-8

on the fact this is the first time a comprehensive experimental
study with this optimal approach and other stochastic methods under
consideration has been done.

Example 1. s=3.∫

[0,1]3

exp(x1x2x3) ≈ 1.14649907. (2)

Example 2. s= 4.∫

[0,1]4

x1x
2
2e

x1x2 sin(x3) cos(x4) ≈ 0.1089748630. (3)

Example 3. s= 5.

∫

[0,1]5

exp(−100x1x2x3)(sin(x4)+cos(x5)) ≈ 0.1854297367. (4)

Example 4. s= 7.

∫

[0,1]7

e
1−

3∑

i=1

sin(π
2
.xi)

.arcsin(sin(1)+

7∑
j=1

xj

200
) ≈ 0.75151101. (5)

Example 5. s= 15.

∫

[0,1]15

(
10∑
i=1

x
2
i )(x11 − x

2
12 − x

3
13 − x

4
14 − x

5
15)

2
≈ 1.96440666. (6)

Example 6. s= 25.∫

[0,1]25

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
e
x5+···+x20x21 . . . x25 ≈ 108.808. (7)

Example 7. s= 30.∫

[0,1]30

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
e
x5+···+x20x21 . . . x30 ≈ 3.244540. (8)

For smooth integrands without computational peculiarities Fi-
bonacci lattice algorithm gives better results for lower dimensions,

Table III
RELATIVE ERROR FOR THE 4 DIMENSIONAL INTEGRAL

N A t F t S t L t O t

104 3.11e-4 1.97 2.61e-5 0.07 2.61e-5 2.14 5.29e-4 0.07 1.52e-5 4.81

105 2.44e-5 20.1 5.62e-6 0.99 5.93e-6 17.6 3.56e-4 0.60 7.96e-6 45.1

106 1.13e-5 210 5.86e-7 5.22 1.51e-6 193 4.36e-5 4.97 2.31e-7 352.6

107 8.11e-6 2035 8.38e-9 58 8.30e-7 1121 8.12e-6 47.1 8.16e-9 2651

Table IV
RELATIVE ERROR FOR THE 4 DIMENSIONAL INTEGRAL

time(s) C A F S L O

0.1 3.48e-3 3.59e-4 1.44e-5 4.07e-4 4.18e-4 4.22e-5

1 1.48e-3 2.85e-4 5.62e-6 3.54e-5 3.32e-4 2.31e-5

5 6.62e-4 9.18e-5 5.38e-7 5.26e-5 4.23e-5 1.12e-5

10 2.52e-4 1.36e-5 3.77e-7 6.50e-6 3.48e-5 7.53e-6

20 1.58e-4 2.08e-5 2.67e-8 4.55e-6 2.16e-5 6.54e-7

but it requires more random points when the dimensionality increases.
The MC algorithm based on Latin hypercube sampling has higher
accuracy for this case study with increasing the dimensionality of
the integral. The adaptive MC algorithm is slower, but it requires
smaller number of random points to achieve better accuracy even
for higher dimensions. The efficiency of the optimal C algorithm is
clearly seen for lower dimensions.

As the dimension increases, the computational time of the optimal
method decrease due to the increased computational time of the
Lagrangian interpolation polynomial. But for very high dimensions
25 and 30 the relative error for a fixed computational time is better
than this achieved by the other stochastic methods. From the Tables
it is obvious that for small dimensions the FIBO and Optimal method
achieves the best accuracy for a fixed preliminary given time - see
Tables II,IV,VI. For dimensions up to 10, the FIBO and Optimal
methods achieve the smallest relative error for a given number of
samples - see Tables I,III,V. The Optimal method is with 1 order
better than the FIBO method for a fixxed number of samples, but the
advantage of FIBO method is the significantly lower computational
time. It is seen that for dimensions 10 and 15, the Optimal method
gives relative errors for a fixed number of samples with at least 1

Table V
RELATIVE ERROR FOR THE 5 DIMENSIONAL INTEGRAL

N A t F t S t L t O t

103 2.15e-3 0.27 1.75e-4 0.007 5.29e-4 0.03 9.38e-3 0.007 2.75e-5 2.1

104 2.01e-3 2.43 1.28e-5 0.06 1.43e-4 0.3 3.44e-3 0.07 7.22e-6 2.3

105 6.91e-4 22.2 9.50e-6 0.61 2.36e-5 2.77 2.01e-3 0.69 2.36e-6 6.2

106 2.92e-4 219.5 5.47e-7 5.98 6.07e-6 24.2 1.80e-4 6.17 5.46e-7 20.0

107 8.21e-5 2043 8.71e-9 58.4 2.30e-6 245 2.46e-5 60.5 7.01e-8 105.1

Table VI
RELATIVE ERROR FOR THE 5 DIMENSIONAL INTEGRAL

time(s) A F S L O

0.1 3.16e-3 3.48e-3 1.09e-5 1.34e-4 3.21e-3

1 1.08e-3 2.08e-3 5.58e-6 7.21e-5 8.54e-4

5 8.79e-4 8.20e-4 8.71e-7 1.54e-5 3.25e-4

10 5.85e-4 7.51e-4 4.15e-7 9.32e-6 8.65e-5

20 3.99e-4 6.95e-4 8.37e-8 7.39e-6 5.02e-5
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Table VII
RELATIVE ERROR FOR THE 7 DIMENSIONAL INTEGRAL

N A t F t S t L t O t

104 1.07e-3 2.07 2.19e-3 0.11 2.27e-4 0.76 1.79e-3 0.13 2.13e-4 10.2

105 7.51e-4 19.3 6.19e-4 0.99 1.22e-4 7.45 2.53e-4 1.15 4.41e-5 40.2

106 6.30e-5 194 1.99e-5 9.81 4.71e-5 72.3 8.27e-5 10.32 1.27e-6 167.1

107 2.34e-5 1861 4.89e-7 94.2 9.45e-6 697 1.69e-5 101.2 1.45e-7 595.1

Table VIII
RELATIVE ERROR FOR THE 7 DIMENSIONAL INTEGRAL

time(s) A F S L O

0.1 2.38e-2 3.11e-2 2.38e-3 1.85e-3 2.37e-3

1 8.87e-3 2.88e-3 6.19e-4 1.85e-4 3.37e-4

5 5.16e-3 3.76e-3 8.81e-5 9.79e-5 1.38e-4

10 1.28e-3 6.71e-4 1.88e-5 8.36e-5 8.78e-5

20 2.03e-3 4.28e-4 3.87e-6 5.46e-5 6.87e-5

Table IX
RELATIVE ERROR FOR THE 15 DIMENSIONAL INTEGRAL

N A t F t S t L t O t

103 3.16e-3 9.24 5.34e-2 0.08 2.04e-3 0.98 1.06e-2 0.12 7.54e-3 27.4

104 1.49e-3 88 1.22e-3 0.93 2.89e-4 9.3 7.33e-3 1.07 6.51e-4 81.5

105 5.76e-4 847 3.08e-4 9.65 1.13e-4 93.8 1.54e-3 10.11 7.29e-5 242.1

106 1.29e-4 8235 1.37e-5 96.9 1.93e-5 935 1.14e-4 99.6 8.29e-6 720.2

order better than FIBO and Sobol, see Tables VII and IX, with FIBO

Table X
RELATIVE ERROR FOR THE 15 DIMENSIONAL INTEGRAL

time(s) A F S L O

1 9.96e-1 6.30e-3 1.10e-3 3.64e-3 3.51e-2

5 7.72e-2 1.68e-3 2.45e-4 7.32e-4 1.23e-2

10 1.33e-2 5.89e-3 9.48e-5 1.94e-4 9.63e-3

20 3.03e-2 1.66e-3 9.87e-6 4.05e-5 7.51e-3

100 8.11e-3 5.04e-4 8.17e-7 4.03e-6 9.51e-5

Table XI
RELATIVE ERROR FOR THE 25 DIMENSIONAL INTEGRAL

N O t,s S t,s L t,s

10
3 3.77e-3 2.03 1.47e-1 0.4 7.54e-1 0.02

10
4 3.18e-3 19.52 5.68e-2 5.64 5.39e-2 0.15

10
5 5.33e-5 181 7.21e-3 33.4 2.11e-2 1.07

10
6
3 3.11e-5 1234 2.89e-3 161 1.71e-4 8.21

Table XII
RELATIVE ERROR FOR THE 25 DIMENSIONAL INTEGRAL

time,sec O S L

1 7.24e-2 9.51e-2 2.11e-2

5 8.16e-3 5.76e-2 1.61e-2

10 5.18e-3 2.71e-2 9.58e-3

20 3.13e-3 8.28e-3 7.87e-3

Table XIII
RELATIVE ERROR FOR 30 DIMENSIONAL INTEGRAL

N O t,s S t,s L t,s

10
3 2.01e-2 5.4 1.18e-1 0.42 8.81e-1 0.02

10
4 6.53e-3 14.5 8.40e-2 4.5 6.19e-2 0.14

10
5 1.35e-3 145 1.18e-2 30.2 2.78e-2 1.16

10
6 2.11e-4 1290 9.20e-3 168 9.86e-3 8.61

Table XIV
RELATIVE ERROR FOR 30 DIMENSIONAL INTEGRAL

time,sec O S L

1 4.38e-1 1.01e-1 2.38e-2

5 1.16e-2 7.76e-2 1.81e-2

10 8.11e-3 5.71e-2 9.48e-3

20 4.63e-3 1.28e-2 7.87e-3

achieving better accuracy in much less time - see Tables VIII and X.
The adaptive algorithm is suitable for higher dimensions because of
the small number of samples to achieve the preliminary given relative
error. The Adaptive algorithm performs better than FIBO and Sobol
- see Tables XI and XIII. Analyzes show that for high 25 and 30
samples, the Optimal MC approach outperforms LHS and Sobol’s
quasi-Monte Carlo algorithm - see Tables XII and XIV, where the
LHS method produce better results than the Sobol QMC approach.
Here we do not test Adaptive approach, because of the significant
amount of time and FIBO method which gives unreliable relative
errors for the high dimensional case.

IV. CONCLUSIONS

The efficiency of the optimal Monte Carlo algorithm for the
calculation of multidimensional integrals has been presented. The
optimal approach appears to be an efficient stochastic solution to
solve this kind of problem, because we demonstrate here its relia-
bility for calculating integrals with smooth integrands in a relatively
small subregion of the original integration domain regardless of the
dimension.
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