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Abstract—An optimization version of the van der Corput
sequence has been used in our sensitivity studies of the model
output results for some air pollutants with respect to the emission
levels and some chemical reactions rates. Sensitivity analysis of
model outputs to variation or natural uncertainties of model
inputs is very significant for improving the reliability of these
models. Clearly, the progress in the area of air pollution modeling,
is closely connected with the progress in reliable algorithms for
multidimensional integration.

I. INTRODUCTON

THE main goal of the present work is to develop and

investigate efficient stochastic algorithms for multiple

numerical integration providing sensitivity analysis (SA) that

means evaluating Sobol’ sensitivity indices (SIs) [1], [3], [5].

While the classical deterministic grid methods are efficient for

low dimensional integrands [2], they become computationally

intensive and even impracticable for high dimensions s because

the number of required integrand evaluations grows exponen-

tially. In contrast, the convergence rate of the plain Monte

Carlo (MC) integration methods does not depend on the num-

ber of dimensions s. That is why the Monte Carlo method is a

power tool in sensitivity analysis of large-scale systems [11].
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The Unified Danish Eulerian Model (UNI-DEM)[12], [13]

is in the focus of our investigation as one of the most advanced

large-scale mathematical models that describes adequately all

physical and chemical processes. UNI-DEM is a powerful

large-scale air pollution model for calculation the concen-

trations of a large number of pollutants and other chemical

species in the air. The calculations are done in a large spatial

domain, which covers completely the European region and the

Mediterranean, for certain time period (meteorological data

must be available for it) [2]. In this particular study we use

them for two of the most dangerous pollutants: the ozone

(O3) and the ammonia (NH3). Other accumulative functions

related to sone specific applications, maximal values, etc. are

also calculated, exported and used in various application areas

(environmental protection, agriculture, health care, etc.).

UNI-DEM is mathematically represented by the following

system of partial differential equations (PDE), in which the

unknown concentrations cs of a large number of chemical

species (pollutants and other chemically active components)

take part. The main physical and chemical processes (advec-

tion, diffusion, chemical reactions, emissions and deposition)

are represented in that system:
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+Es +Qs(c1,c2, . . . ,cq)− (k1s + k2s)cs, s = 1, . . . ,q.(3)
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where cs are the concentrations of the chemical species; u, v, w

are the wind components along the coordinate axes; Kx, Ky, Kz

– the diffusion coefficients; Es – the emissions; k1s, k2s –

dry / wet deposition coefficients; Qs(c1,c2, . . .cq) – non-linear

functions describing the chemical reactions between species

under consideration. The above PDE system is non-linear and

stiff. Both non-linearity and stiffness are introduced mainly by

the chemical scheme: the condensed CBM-IV (Carbon Bond

Mechanism) [13].

II. THE VAN DER CORPUT SEQUENCE

Let xi = (x
(1)
i ,x

(2)
i , . . . ,x

(s)
i ) for i = 1,2, . . .. The star discrep-

ancy is given by:
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where Es = [0,1)s
. Let m = . . .a3(m),a2(m),a1(m) be the

representation of m in base b . The radical inverse sequence

is given by:

m =
∞

∑
i=0

ai+1(m)bi
, φb(m) =

∞

∑
i=0

ai+1(m)b−(i+1) (5)

and it is fulfilled that

D∗
N = O

(

logN

N

)

(6)

The Van der Corput sequence is obtained when b = 2 [9].

The van der Corput sequence is often used to generate a

sequence of points which have a better covering property than

pseudorandom points. The van der Corput sequence generates

a sequence of points in [0,1] which never repeats. The elements

of the van der Corput sequence are strictly less than 1. The

van der Corput sequence writes an integer in a given base

b, and then its digits are ”reflected” about the decimal point.

This maps the numbers from 1 to N into a set of numbers

in [0,1], which are especially nicely distributed if N is one

less than a power of the base. The generation is quite simple.

Given an integer I, the expansion of I in base b is generated.

Then, essentially, the result R is generated by writing a decimal

point followed by the digits of the expansion of I, in reverse

order. This decimal value is actually still in base b, so it

must be properly interpreted to generate a usable value. In the

numerical experiments we will compare the standard van der

Corput sequence VDC2 with an optimization variant when we

increase the base to b = 24 - we use the notation VDCO. Such

comparison has been made for the first time for the particular

model.

The lattice sequence that we are going to use in our

experimental study, namely Fibonacci based lattice rule FIBO

and polynomial lattice sequence are described in [6], [7], [10].

III. SENSITIVITY STUDIES WITH RESPECT TO EMISSION

LEVELS

In this section we will present the results for the sensitivity

of UNI-DEM output (in particular, the ammonia mean

monthly concentrations) with respect to the anthropogenic

emissions input data variation are shown and discussed in

this section. The anthropogenic emissions input consists of 4

different components

EA − ammonia (NH3);
EN −nitrogen oxides (NO + NO2);

ES − sulphur dioxide (SO2);
EC − anthropogenic hydrocarbons.

The domain under consideration is the 4-dimensional hyper-

cube [0.5,1]4). Polynomials of second degree have been used

as an approximation tool. The input data have been generated

by the improved SA-DEM version, developed for the purpose

of our sensitivity studies (see the previous section).

Results of the relative error estimation for the quantities

f0, the total variance D, first-order (Si) and total (Stot
i ) sen-

sitivity indices are given in Tables I, II, III, respectively.

f0 is presented by a 4-dimensional integral, while the rest

of the above quantities are presented by 8-dimensional inte-

grals, following the ideas of correlated sampling technique to

compute sensitivity measures in a reliable way [8]. The four

different stochastic approaches used for numerical integration

are presented in separate columns of the tables.

A study of the computational efficiency of the stochas-

tic algorithms under consideration for evaluating sensitivity

measures presented by multidimensional integrals (total vari-

ance) or a ratio of multidimensional integrals (Sobol global

sensitivity indices) have been made. The results show that

the computational efficiency of the algorithms depends on

integrand dimension and magnitude of estimated quantity. The

order of relative error is different for different quantities of

interest (see column Reference value) for the same sample

size.

When n = 216 it can be seen that the modified lattice rule

LATM produce better results than the lattice rule based on

Fibonacci generalized numbers FIBO - see Table III. The

optimized van der Corput sequence produce worse results than

both of the lattice sequences FIBO and LATM. It can be seen

that the van der Corput sequence with base b = 2 gives worse

results by at least 1-2 orders to the optimized van der Corput

sequence with base b = 24 VDCO.

Most influential emissions about ammonia output concen-

trations are ammonia emissions themselves (about 89% for

Milan). The second most influential emissions about ammonia

output are sulphur dioxide emissions (about 11%).

IV. SENSITIVITY STUDIES WITH RESPECT TO CHEMICAL

REACTIONS RATES

In this section we will study the sensitivity of the ozone

concentration values in the air over Genova with respect to

the rate variation of some chemical reactions of the condensed

CBM-IV scheme ([12]), namely: # 1,3,7,22 (time-dependent)
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TABLE I
RELATIVE ERROR FOR THE EVALUATION OF f0 ≈ 0.048.

VDC2 VDCO FIBO LATM

# of samples Relative Relative Relative Relative
n error error error error

210 3.72e-04 1.64e-05 2.09e-04 8.46e-04

212 4.39e-04 5.11e-05 4.32e-05 1.79e-04

214 2.15e-03 4.45e-05 2.25e-05 2.62e-06

216 3.11e-04 5.56e-06 8.70e-06 4.14e-07

218 7.66e-05 1.03e-06 1.79e-06 1.17e-06

220 1.48e-04 3.56e-07 4.21e-07 1.15e-06

TABLE II
RELATIVE ERROR FOR THE EVALUATION OF THE TOTAL VARIANCE

D ≈ 0.0002.

VDC2 VDCO FIBO LATM

# of samples Relative Relative Relative Relative
n error error error error

210 9.21e-02 1.78e-02 1.63e-01 1.54e-02

212 6.37e-02 4.11e-03 2.39e-02 3.67e-03

214 4.26e-02 1.34e-03 2.90e-03 1.49e-03

216 2.22e-03 3.19e-04 2.65e-04 1.61e-03

218 2.22e-03 1.13e-04 3.01e-04 1.48e-03

220 7.58e-03 5.76e-05 1.19e-04 1.46e-03

and # 27,28 (time independent). The simplified chemical

equations of those reactions are:

[#1] NO2 +hν =⇒ NO+O;

[#3] O3 +NO =⇒ NO2;

[#7] NO2 +O3 =⇒ NO3;

[#22] HO2 +NO =⇒ OH +NO2;

[#27] HO2 +HO2 =⇒ H2O2;

[#28] OH +CO =⇒ HO2.

The domain under consideration is the 6-dimensional hyper-

cube [0.6,1.4]6).

Homma and Saltelli discuss in [4] which is the better

estimation of

f 2
0 =

(

∫

Ud
f (x)dx

)2

(7)

TABLE III
RELATIVE ERROR FOR ESTIMATION OF SENSITIVITY INDICES OF INPUT

PARAMETERS USING VARIOUS MONTE CARLO AND QUASI-MONTE

CARLO APPROACHES (n ≈ 65536).

Est. qnt. Ref. val. VDC2 VDCO FIBO LATM

S1 9e-01 3.13e-02 4.56e-04 3.62e-04 7.27e-04
S2 2e-04 1.28e+00 3.34e-02 1.74e-01 2.76e-02
S3 1e-01 9.13e-02 2.22e-03 3.22e-03 4.24e-03
S4 4e-05 8.30e-01 3.45e-02 4.87e-01 1.65e-02

Stot
1 9e-01 7.54e-03 1.16e-04 4.61e-04 5.14e-04

Stot
2 2e-04 4.69e+01 1.24e-01 3.45e-01 2.21e-01

Stot
3 1e-01 4.14e-02 1.10e-03 1.96e-03 6.41e-03

Stot
4 5e-05 5.54e+02 1.60e-01 5.06e-01 1.60e-01

in the expression for total variance and Sobol global sensitivity

measures. The first formula is

f 2
0 ≈

1

n

n

∑
i=1

f (xi,1, . . . ,xi,d) f (x′i,1, . . . ,x
′
i,d) (8)

and the second one is

f 2
0 ≈

{

1

n

n

∑
i=1

f (xi,1, . . . ,xi,d)

}2

(9)

where x and x′ are two independent sample vectors. In case

of estimating sensitivity indices of a fixed order, formula (8)

is better (as recommended in [4]), here we use it too.

The relative error estimation for the quantities f0, the

total variance D and some sensitivity indices are given in

Tables IV, V, VI respectively. The four different stochastic

approaches used for numerical integration are presented in

separate columns of the tables. The quantity f0 is presented

by 6-dimensional integral, while the rest are presented by 12-

dimensional integrals.

When n = 216 it can be seen that the van der Corput

sequences produce similar results to the modified lattice rule

LATM and Fibonacci generalized numbers FIBO - see Ta-

ble VI. When n = 216 the optimized van der Corput sequence

VDCO is far better than LATM and FIBO for same of the

sensitivity indices - see the value for S45 and S12 in Table VI.

Overall LATM produce better results than the Fibonacci based

lattice rule by at least one order - see Table VI. None of the

4 methods estimates S15 and S5 reliably, which has extremely

small reference values. This natural ”size effect” does not

destroy the accuracy of the corresponding total sensitivity

indices (which are much larger, so the influence of S5 and

S15 is negligible).

From these tables we can see the optimized van der Corput

sequence gives better results than both the lattice sequences

and the original van der Corput sequence with increasing the

dimensionality of the integral. The results obtained by the op-

timized van der Corput sequence are better for 12 dimensional

integrals compared with the results for 8 dimensional integrals.

To summarize, Tthe algorithm has been successfully applied

to compute global Sobol sensitivity measures corresponding

to the influence of several input parameters (six chemical

reactions rates and four different groups of pollutants) on the

concentrations of important air pollutants.

TABLE IV
RELATIVE ERROR FOR THE EVALUATION OF f0 ≈ 0.27.

VDC2 VDCO FIBO LATM

# of samples Relative Relative Relative Relative
n error error error error

210 1.25e-02 8.13e-04 2.08e-03 7.12e-03

212 1.70e-03 2.12e-04 1.40e-04 1.80e-03

214 3.56e-03 6.15e-05 3.98e-04 4.04e-05

216 8.66e-04 7.09e-05 2.61e-04 9.91e-06

218 4.63e-04 2.33e-06 7.29e-06 7.24e-06

220 7.85e-05 3.51e-07 4.57e-07 7.04e-06
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TABLE V
RELATIVE ERROR FOR THE EVALUATION OF THE TOTAL VARIANCE

D ≈ 0.0025.

VDC2 VDCO FIBO LATM

# of samples Relative Relative Relative Relative
n error error error error

210 2.23e-02 1.10e-02 6.73e+00 3.11e-02

212 2.04e-01 8.45e-03 5.27e-01 8.76e-02

214 3.94e-02 6.44e-04 1.02e-01 7.54e-04

216 1.05e-03 2.71e-04 1.97e-03 9.13e-04

218 1.27e-02 1.01e-04 4.53e-03 2.22e-03

220 1.53e-02 9.56e-05 9.33e-03 2.22e-03

TABLE VI
RELATIVE ERROR FOR ESTIMATION OF SENSITIVITY INDICES OF INPUT

PARAMETERS USING VARIOUS QMC APPROACHES (n ≈ 65536).

Est. qnt. Ref. val. VDC2 VDCO FIBO LATM

S1 4e-01 1.07e-01 1.92e-02 3.82e-02 1.50e-02
S2 3e-01 5.08e-02 7.45e-03 1.03e-02 2.14e-02
S3 5e-02 6.37e-04 5.22e-04 5.48e-01 8.28e-02
S4 3e-01 7.39e-02 4.71e-03 1.07e-02 6.81e-03
S5 4e-07 7.26e+02 9.00e+01 3.40e+03 2.07e+03
S6 2e-02 4.10e-01 5.56e-03 1.32e+00 1.19e-02

Stot
1 4e-01 8.89e-02 6.56e-02 7.92e-02 1.07e-02

Stot
2 3e-01 1.06e-02 1.41e-02 3.06e-02 2.28e-02

Stot
3 5e-02 1.25e-01 5.13e-02 1.31e+00 4.92e-02

Stot
4 3e-01 1.51e-01 8.23e-03 3.84e-01 1.93e-02

Stot
5 2e-04 3.45e+02 3.02e+00 8.85e+01 6.78e+00

Stot
6 2e-02 1.63e+00 4.87e-02 2.15e+00 7.63e-02

S12 6e-03 9.16e-01 1.34e-01 3.21e+00 2.21e-01
S14 5e-03 1.91e-01 1.23e-01 8.64e+00 1.31e+00
S15 8e-06 8.45e+02 1.72e+02 9.19e+02 9.62e+02
S24 3e-03 3.25e-01 1.88e-02 1.37e+01 5.63e-01
S45 1e-05 1.41e-01 4.23e-02 4.25e+01 3.87e+01

V. CONCLUSION

The computational efficiency (in terms of relative error

and computational time) of several stochastic algorithms for

multidimensional numerical integration has been studied to

analyze the sensitivity of UNI-DEM model output to varia-

tion of input emissions of the anthropogenic pollutants and

of rates of several chemical reactions. The algorithms have

been successfully applied to compute global Sobol sensitivity

measures corresponding to the influence of several input

parameters on the concentrations of important air pollutants.

The study has been done for the areas of several European

cities with different geographical locations. The novelty of the

proposed approaches is that the van der Corput sequence and

its optimized version have been applied for the first time to

sensitivity studies of the particular air pollution model. This

is also the first time the Fibonacci based lattice rule and the

modified lattice sequence based on transformation function are

compared with the van der Corput sequence and its optimized

version to the problem under consideration. The numerical

tests show that the presented optimized stochastic approach

is the most efficient for the multidimensional integrals under

consideration and especially for computing small by value

sensitivity indices.
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