Computational Linguistics, Volume 45, Issue 4 - December 2019
- Anthology ID:
- J19-4
- Month:
- December
- Year:
- 2019
- Address:
- Cambridge, MA
- Venue:
- CL
- SIG:
- Publisher:
- MIT Press
- URL:
- https://aclanthology.org/J19-4
- DOI:
Computational Psycholinguistics
Ronald M. Kaplan
Discourse in Multimedia: A Case Study in Extracting Geometry Knowledge from Textbooks
Mrinmaya Sachan
|
Avinava Dubey
|
Eduard H. Hovy
|
Tom M. Mitchell
|
Dan Roth
|
Eric P. Xing
To ensure readability, text is often written and presented with due formatting. These text formatting devices help the writer to effectively convey the narrative. At the same time, these help the readers pick up the structure of the discourse and comprehend the conveyed information. There have been a number of linguistic theories on discourse structure of text. However, these theories only consider unformatted text. Multimedia text contains rich formatting features that can be leveraged for various NLP tasks. In this article, we study some of these discourse features in multimedia text and what communicative function they fulfill in the context. As a case study, we use these features to harvest structured subject knowledge of geometry from textbooks. We conclude that the discourse and text layout features provide information that is complementary to lexical semantic information. Finally, we show that the harvested structured knowledge can be used to improve an existing solver for geometry problems, making it more accurate as well as more explainable.
Automatic Identification and Production of Related Words for Historical Linguistics
Alina Maria Ciobanu
|
Liviu P. Dinu
Language change across space and time is one of the main concerns in historical linguistics. In this article, we develop tools to assist researchers and domain experts in the study of language evolution. First, we introduce a method to automatically determine whether two words are cognates. We propose an algorithm for extracting cognates from electronic dictionaries that contain etymological information. Having built a data set of related words, we further develop machine learning methods based on orthographic alignment for identifying cognates. We use aligned subsequences as features for classification algorithms in order to infer rules for linguistic changes undergone by words when entering new languages and to discriminate between cognates and non-cognates. Second, we extend the method to a finer-grained level, to identify the type of relationship between words. Discriminating between cognates and borrowings provides a deeper insight into the history of a language and allows a better characterization of language relatedness. We show that orthographic features have discriminative power and we analyze the underlying linguistic factors that prove relevant in the classification task. To our knowledge, this is the first attempt of this kind. Third, we develop a machine learning method for automatically producing related words. We focus on reconstructing proto-words, but we also address two related sub-problems, producing modern word forms and producing cognates. The task of reconstructing proto-words consists of recreating the words in an ancient language from its modern daughter languages. Having modern word forms in multiple Romance languages, we infer the form of their common Latin ancestors. Our approach relies on the regularities that occurred when words entered the modern languages. We leverage information from several modern languages, building an ensemble system for reconstructing proto-words. We apply our method to multiple data sets, showing that our approach improves on previous results, also having the advantage of requiring less input data, which is essential in historical linguistics, where resources are generally scarce.
Syntactically Meaningful and Transferable Recursive Neural Networks for Aspect and Opinion Extraction
Wenya Wang
|
Sinno Jialin Pan
In fine-grained opinion mining, extracting aspect terms (a.k.a. opinion targets) and opinion terms (a.k.a. opinion expressions) from user-generated texts is the most fundamental task in order to generate structured opinion summarization. Existing studies have shown that the syntactic relations between aspect and opinion words play an important role for aspect and opinion terms extraction. However, most of the works either relied on predefined rules or separated relation mining with feature learning. Moreover, these works only focused on single-domain extraction, which failed to adapt well to other domains of interest where only unlabeled data are available. In real-world scenarios, annotated resources are extremely scarce for many domains, motivating knowledge transfer strategies from labeled source domain(s) to any unlabeled target domain. We observe that syntactic relations among target words to be extracted are not only crucial for single-domain extraction, but also serve as invariant “pivot” information to bridge the gap between different domains. In this article, we explore the constructions of recursive neural networks based on the dependency tree of each sentence for associating syntactic structure with feature learning. Furthermore, we construct transferable recursive neural networks to automatically learn the domain-invariant fine-grained interactions among aspect words and opinion words. The transferability is built on an auxiliary task and a conditional domain adversarial network to reduce domain distribution difference in the hidden spaces effectively in word level through syntactic relations. Specifically, the auxiliary task builds structural correspondences across domains by predicting the dependency relation for each path of the dependency tree in the recursive neural network. The conditional domain adversarial network helps to learn domain-invariant hidden representation for each word conditioned on the syntactic structure. In the end, we integrate the recursive neural network with a sequence labeling classifier on top that models contextual influence in the final predictions. Extensive experiments and analysis are conducted to demonstrate the effectiveness of the proposed model and each component on three benchmark data sets.
Scalable Micro-planned Generation of Discourse from Structured Data
Anirban Laha
|
Parag Jain
|
Abhijit Mishra
|
Karthik Sankaranarayanan
We present a framework for generating natural language description from structured data such as tables; the problem comes under the category of data-to-text natural language generation (NLG). Modern data-to-text NLG systems typically use end-to-end statistical and neural architectures that learn from a limited amount of task-specific labeled data, and therefore exhibit limited scalability, domain-adaptability, and interpretability. Unlike these systems, ours is a modular, pipeline-based approach, and does not require task-specific parallel data. Rather, it relies on monolingual corpora and basic off-the-shelf NLP tools. This makes our system more scalable and easily adaptable to newer domains. Our system utilizes a three-staged pipeline that: (i) converts entries in the structured data to canonical form, (ii) generates simple sentences for each atomic entry in the canonicalized representation, and (iii) combines the sentences to produce a coherent, fluent, and adequate paragraph description through sentence compounding and co-reference replacement modules. Experiments on a benchmark mixed-domain data set curated for paragraph description from tables reveals the superiority of our system over existing data-to-text approaches. We also demonstrate the robustness of our system in accepting other popular data sets covering diverse data types such as knowledge graphs and key-value maps.
Argument Mining: A Survey
John Lawrence
|
Chris Reed
Argument mining is the automatic identification and extraction of the structure of inference and reasoning expressed as arguments presented in natural language. Understanding argumentative structure makes it possible to determine not only what positions people are adopting, but also why they hold the opinions they do, providing valuable insights in domains as diverse as financial market prediction and public relations. This survey explores the techniques that establish the foundations for argument mining, provides a review of recent advances in argument mining techniques, and discusses the challenges faced in automatically extracting a deeper understanding of reasoning expressed in language in general.
How to Distinguish Languages and Dialects
Søren Wichmann
The terms “language” and “dialect” are ingrained, but linguists nevertheless tend to agree that it is impossible to apply a non-arbitrary distinction such that two speech varieties can be identified as either distinct languages or two dialects of one and the same language. A database of lexical information for more than 7,500 speech varieties, however, unveils a strong tendency for linguistic distances to be bimodally distributed. For a given language group the linguistic distances pertaining to either cluster can be teased apart, identifying a mixture of normal distributions within the data and then separating them fitting curves and finding the point where they cross. The thresholds identified are remarkably consistent across data sets, qualifying their mean as a universal criterion for distinguishing between language and dialect pairs. The mean of the thresholds identified translates into a temporal distance of around one to one-and-a-half millennia (1,075–1,635 years).