Young-Suk Lee


2023

pdf bib
Ensemble-Instruct: Instruction Tuning Data Generation with a Heterogeneous Mixture of LMs
Young-Suk Lee | Md Sultan | Yousef El-Kurdi | Tahira Naseem | Asim Munawar | Radu Florian | Salim Roukos | Ramón Astudillo
Findings of the Association for Computational Linguistics: EMNLP 2023

Using in-context learning (ICL) for data generation, techniques such as Self-Instruct (Wang et al., 2023) or the follow-up Alpaca (Taori et al., 2023) can train strong conversational agents with only a small amount of human supervision. One limitation of these approaches is that they resort to very large language models (around 175B parameters) that are also proprietary and non-public. Here we explore the application of such techniques to language models that are much smaller (around 10B–40B parameters) and have permissive licenses. We find the Self-Instruct approach to be less effective at these sizes and propose new ICL methods that draw on two main ideas: (a) categorization and simplification of the ICL templates to make prompt learning easier for the LM, and (b) ensembling over multiple LM outputs to help select high-quality synthetic examples. Our algorithm leverages the 175 Self-Instruct seed tasks and employs separate pipelines for instructions that require an input and instructions that do not. Empirical investigations with different LMs show that: (1) Our proposed method yields higher-quality instruction tuning data than Self-Instruct, (2) It improves performances of both vanilla and instruction-tuned LMs by significant margins, and (3) Smaller instruction-tuned LMs generate more useful examples than their larger un-tuned counterparts.

2022

pdf bib
DocAMR: Multi-Sentence AMR Representation and Evaluation
Tahira Naseem | Austin Blodgett | Sadhana Kumaravel | Tim O’Gorman | Young-Suk Lee | Jeffrey Flanigan | Ramón Astudillo | Radu Florian | Salim Roukos | Nathan Schneider
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Despite extensive research on parsing of English sentences into Abstract Meaning Representation (AMR) graphs, which are compared to gold graphs via the Smatch metric, full-document parsing into a unified graph representation lacks well-defined representation and evaluation. Taking advantage of a super-sentential level of coreference annotation from previous work, we introduce a simple algorithm for deriving a unified graph representation, avoiding the pitfalls of information loss from over-merging and lack of coherence from under merging. Next, we describe improvements to the Smatch metric to make it tractable for comparing document-level graphs and use it to re-evaluate the best published document-level AMR parser. We also present a pipeline approach combining the top-performing AMR parser and coreference resolution systems, providing a strong baseline for future research.

pdf bib
Learning Cross-Lingual IR from an English Retriever
Yulong Li | Martin Franz | Md Arafat Sultan | Bhavani Iyer | Young-Suk Lee | Avirup Sil
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present DR.DECR (Dense Retrieval with Distillation-Enhanced Cross-Lingual Representation), a new cross-lingual information retrieval (CLIR) system trained using multi-stage knowledge distillation (KD). The teacher of DR.DECR relies on a highly effective but computationally expensive two-stage inference process consisting of query translation and monolingual IR, while the student, DR.DECR, executes a single CLIR step. We teach DR.DECR powerful multilingual representations as well as CLIR by optimizing two corresponding KD objectives. Learning useful representations of non-English text from an English-only retriever is accomplished through a cross-lingual token alignment algorithm that relies on the representation capabilities of the underlying multilingual encoders. In both in-domain and zero-shot out-of-domain evaluation, DR.DECR demonstrates far superior accuracy over direct fine-tuning with labeled CLIR data. It is also the best single-model retriever on the XOR-TyDi benchmark at the time of this writing.

pdf bib
Maximum Bayes Smatch Ensemble Distillation for AMR Parsing
Young-Suk Lee | Ramón Astudillo | Hoang Thanh Lam | Tahira Naseem | Radu Florian | Salim Roukos
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

AMR parsing has experienced an unprecendented increase in performance in the last three years, due to a mixture of effects including architecture improvements and transfer learning. Self-learning techniques have also played a role in pushing performance forward. However, for most recent high performant parsers, the effect of self-learning and silver data augmentation seems to be fading. In this paper we propose to overcome this diminishing returns of silver data by combining Smatch-based ensembling techniques with ensemble distillation. In an extensive experimental setup, we push single model English parser performance to a new state-of-the-art, 85.9 (AMR2.0) and 84.3 (AMR3.0), and return to substantial gains from silver data augmentation. We also attain a new state-of-the-art for cross-lingual AMR parsing for Chinese, German, Italian and Spanish. Finally we explore the impact of the proposed technique on domain adaptation, and show that it can produce gains rivaling those of human annotated data for QALD-9 and achieve a new state-of-the-art for BioAMR.

pdf bib
SYGMA: A System for Generalizable and Modular Question Answering Over Knowledge Bases
Sumit Neelam | Udit Sharma | Hima Karanam | Shajith Ikbal | Pavan Kapanipathi | Ibrahim Abdelaziz | Nandana Mihindukulasooriya | Young-Suk Lee | Santosh Srivastava | Cezar Pendus | Saswati Dana | Dinesh Garg | Achille Fokoue | G P Shrivatsa Bhargav | Dinesh Khandelwal | Srinivas Ravishankar | Sairam Gurajada | Maria Chang | Rosario Uceda-Sosa | Salim Roukos | Alexander Gray | Guilherme Lima | Ryan Riegel | Francois Luus | L V Subramaniam
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge Base Question Answering (KBQA) involving complex reasoning is emerging as an important research direction. However, most KBQA systems struggle with generalizability, particularly on two dimensions: (a) across multiple knowledge bases, where existing KBQA approaches are typically tuned to a single knowledge base, and (b) across multiple reasoning types, where majority of datasets and systems have primarily focused on multi-hop reasoning. In this paper, we present SYGMA, a modular KBQA approach developed with goal of generalization across multiple knowledge bases and multiple reasoning types. To facilitate this, SYGMA is designed as two high level modules: 1) KB-agnostic question understanding module that remain common across KBs, and generates logic representation of the question with high level reasoning constructs that are extensible, and 2) KB-specific question mapping and answering module to address the KB-specific aspects of the answer extraction. We evaluated SYGMA on multiple datasets belonging to distinct knowledge bases (DBpedia and Wikidata) and distinct reasoning types (multi-hop and temporal). State-of-the-art or competitive performances achieved on those datasets demonstrate its generalization capability.

2021

pdf bib
A Semantics-aware Transformer Model of Relation Linking for Knowledge Base Question Answering
Tahira Naseem | Srinivas Ravishankar | Nandana Mihindukulasooriya | Ibrahim Abdelaziz | Young-Suk Lee | Pavan Kapanipathi | Salim Roukos | Alfio Gliozzo | Alexander Gray
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Relation linking is a crucial component of Knowledge Base Question Answering systems. Existing systems use a wide variety of heuristics, or ensembles of multiple systems, heavily relying on the surface question text. However, the explicit semantic parse of the question is a rich source of relation information that is not taken advantage of. We propose a simple transformer-based neural model for relation linking that leverages the AMR semantic parse of a sentence. Our system significantly outperforms the state-of-the-art on 4 popular benchmark datasets. These are based on either DBpedia or Wikidata, demonstrating that our approach is effective across KGs.

pdf bib
Bootstrapping Multilingual AMR with Contextual Word Alignments
Janaki Sheth | Young-Suk Lee | Ramón Fernandez Astudillo | Tahira Naseem | Radu Florian | Salim Roukos | Todd Ward
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We develop high performance multilingual Abstract Meaning Representation (AMR) systems by projecting English AMR annotations to other languages with weak supervision. We achieve this goal by bootstrapping transformer-based multilingual word embeddings, in particular those from cross-lingual RoBERTa (XLM-R large). We develop a novel technique for foreign-text-to-English AMR alignment, using the contextual word alignment between English and foreign language tokens. This word alignment is weakly supervised and relies on the contextualized XLM-R word embeddings. We achieve a highly competitive performance that surpasses the best published results for German, Italian, Spanish and Chinese.

pdf bib
Leveraging Abstract Meaning Representation for Knowledge Base Question Answering
Pavan Kapanipathi | Ibrahim Abdelaziz | Srinivas Ravishankar | Salim Roukos | Alexander Gray | Ramón Fernandez Astudillo | Maria Chang | Cristina Cornelio | Saswati Dana | Achille Fokoue | Dinesh Garg | Alfio Gliozzo | Sairam Gurajada | Hima Karanam | Naweed Khan | Dinesh Khandelwal | Young-Suk Lee | Yunyao Li | Francois Luus | Ndivhuwo Makondo | Nandana Mihindukulasooriya | Tahira Naseem | Sumit Neelam | Lucian Popa | Revanth Gangi Reddy | Ryan Riegel | Gaetano Rossiello | Udit Sharma | G P Shrivatsa Bhargav | Mo Yu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Structure-aware Fine-tuning of Sequence-to-sequence Transformers for Transition-based AMR Parsing
Jiawei Zhou | Tahira Naseem | Ramón Fernandez Astudillo | Young-Suk Lee | Radu Florian | Salim Roukos
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Predicting linearized Abstract Meaning Representation (AMR) graphs using pre-trained sequence-to-sequence Transformer models has recently led to large improvements on AMR parsing benchmarks. These parsers are simple and avoid explicit modeling of structure but lack desirable properties such as graph well-formedness guarantees or built-in graph-sentence alignments. In this work we explore the integration of general pre-trained sequence-to-sequence language models and a structure-aware transition-based approach. We depart from a pointer-based transition system and propose a simplified transition set, designed to better exploit pre-trained language models for structured fine-tuning. We also explore modeling the parser state within the pre-trained encoder-decoder architecture and different vocabulary strategies for the same purpose. We provide a detailed comparison with recent progress in AMR parsing and show that the proposed parser retains the desirable properties of previous transition-based approaches, while being simpler and reaching the new parsing state of the art for AMR 2.0, without the need for graph re-categorization.

2020

pdf bib
GPT-too: A Language-Model-First Approach for AMR-to-Text Generation
Manuel Mager | Ramón Fernandez Astudillo | Tahira Naseem | Md Arafat Sultan | Young-Suk Lee | Radu Florian | Salim Roukos
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Abstract Meaning Representations (AMRs) are broad-coverage sentence-level semantic graphs. Existing approaches to generating text from AMR have focused on training sequence-to-sequence or graph-to-sequence models on AMR annotated data only. In this paper, we propose an alternative approach that combines a strong pre-trained language model with cycle consistency-based re-scoring. Despite the simplicity of the approach, our experimental results show these models outperform all previous techniques on the English LDC2017T10 dataset, including the recent use of transformer architectures. In addition to the standard evaluation metrics, we provide human evaluation experiments that further substantiate the strength of our approach.

pdf bib
Pushing the Limits of AMR Parsing with Self-Learning
Young-Suk Lee | Ramón Fernandez Astudillo | Tahira Naseem | Revanth Gangi Reddy | Radu Florian | Salim Roukos
Findings of the Association for Computational Linguistics: EMNLP 2020

Abstract Meaning Representation (AMR) parsing has experienced a notable growth in performance in the last two years, due both to the impact of transfer learning and the development of novel architectures specific to AMR. At the same time, self-learning techniques have helped push the performance boundaries of other natural language processing applications, such as machine translation or question answering. In this paper, we explore different ways in which trained models can be applied to improve AMR parsing performance, including generation of synthetic text and AMR annotations as well as refinement of actions oracle. We show that, without any additional human annotations, these techniques improve an already performant parser and achieve state-of-the-art results on AMR 1.0 and AMR 2.0.

2018

pdf bib
IBM Research at the CoNLL 2018 Shared Task on Multilingual Parsing
Hui Wan | Tahira Naseem | Young-Suk Lee | Vittorio Castelli | Miguel Ballesteros
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

This paper presents the IBM Research AI submission to the CoNLL 2018 Shared Task on Parsing Universal Dependencies. Our system implements a new joint transition-based parser, based on the Stack-LSTM framework and the Arc-Standard algorithm, that handles tokenization, part-of-speech tagging, morphological tagging and dependency parsing in one single model. By leveraging a combination of character-based modeling of words and recursive composition of partially built linguistic structures we qualified 13th overall and 7th in low resource. We also present a new sentence segmentation neural architecture based on Stack-LSTMs that was the 4th best overall.

2016

pdf bib
Language Independent Dependency to Constituent Tree Conversion
Young-Suk Lee | Zhiguo Wang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

We present a dependency to constituent tree conversion technique that aims to improve constituent parsing accuracies by leveraging dependency treebanks available in a wide variety in many languages. The technique works in two steps. First, a partial constituent tree is derived from a dependency tree with a very simple deterministic algorithm that is both language and dependency type independent. Second, a complete high accuracy constituent tree is derived with a constraint-based parser, which uses the partial constituent tree as external constraints. Evaluated on Section 22 of the WSJ Treebank, the technique achieves the state-of-the-art conversion F-score 95.6. When applied to English Universal Dependency treebank and German CoNLL2006 treebank, the converted treebanks added to the human-annotated constituent parser training corpus improve parsing F-scores significantly for both languages.

2014

pdf bib
Confusion Network for Arabic Name Disambiguation and Transliteration in Statistical Machine Translation
Young-Suk Lee
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2011

pdf bib
Learning to Transform and Select Elementary Trees for Improved Syntax-based Machine Translations
Bing Zhao | Young-Suk Lee | Xiaoqiang Luo | Liu Li
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

2010

pdf bib
Constituent Reordering and Syntax Models for English-to-Japanese Statistical Machine Translation
Young-Suk Lee | Bing Zhao | Xiaoqian Luo
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

2006

pdf bib
IBM Arabic-to-English translation for IWSLT 2006
Young-Suk Lee
Proceedings of the Third International Workshop on Spoken Language Translation: Evaluation Campaign

2005

pdf bib
IBM Statistical Machine Translation for Spoken Languages
Young-Suk Lee
Proceedings of the Second International Workshop on Spoken Language Translation

2004

pdf bib
IBM spoken language translation system evaluation
Young-Suk Lee | Salim Roukos
Proceedings of the First International Workshop on Spoken Language Translation: Evaluation Campaign

pdf bib
Morphological Analysis for Statistical Machine Translation
Young-Suk Lee
Proceedings of HLT-NAACL 2004: Short Papers

2003

pdf bib
TIPS: A Translingual Information Processing System
Yaser Al-Onaizan | Radu Florian | Martin Franz | Hany Hassan | Young-Suk Lee | J. Scott McCarley | Kishore Papineni | Salim Roukos | Jeffrey Sorensen | Christoph Tillmann | Todd Ward | Fei Xia
Companion Volume of the Proceedings of HLT-NAACL 2003 - Demonstrations

pdf bib
Language Model Based Arabic Word Segmentation
Young-Suk Lee | Kishore Papineni | Salim Roukos | Ossama Emam | Hany Hassan
Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics

2001

pdf bib
Interlingua-Based Broad-Coverage Korean-to-English Translation in CCLINC
Young-Suk Lee | Wu Sok Yi | Stephanie Seneff | Clifford J. Weinstein
Proceedings of the First International Conference on Human Language Technology Research

1997

pdf bib
Simplification of nomenclature leads to an ideal IL for human language communication
Young-Suk Lee | Clifford Weinstein | Dinesh Tummala | Linda Kukolich | Stephanie Seneff
AMTA/SIG-IL First Workshop on Interlinguas

pdf bib
Ambiguity Resolution for Machine Translation of Telegraphic Messages
Young-Suk Lee | Clifford Weinstein | Stephanie Seneff | Dinesh Tummala
35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics

1996

pdf bib
Automatic English-to-Korean Text Translation of Telegraphic Messages in a Limited Domain
Clifford Weinstein | Dinesh Tummala | Young-Suk Lee | Stephanie Seneff
COLING 1996 Volume 2: The 16th International Conference on Computational Linguistics