Yang (Trista) Cao

Also published as: Yang Trista Cao


2024

pdf bib
Toxicity Detection is NOT all you Need: Measuring the Gaps to Supporting Volunteer Content Moderators through a User-Centric Method
Yang Trista Cao | Lovely-Frances Domingo | Sarah Gilbert | Michelle L. Mazurek | Katie Shilton | Hal Daumé Iii
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Extensive efforts in automated approaches for content moderation have been focused on developing models to identify toxic, offensive, and hateful content with the aim of lightening the load for moderators. Yet, it remains uncertain whether improvements on those tasks have truly addressed moderators’ needs in accomplishing their work. In this paper, we surface gaps between past research efforts that have aimed to provide automation for aspects of content moderation and the needs of volunteer content moderators, regarding identifying violations of various moderation rules. To do so, we conduct a model review on Hugging Face to reveal the availability of models to cover various moderation rules and guidelines from three exemplar forums. We further put state-of-the-art LLMs to the test, evaluating how well these models perform in flagging violations of platform rules from one particular forum. Finally, we conduct a user survey study with volunteer moderators to gain insight into their perspectives on useful moderation models. Overall, we observe a non trivial gap, as missing developed models and LLMs exhibit moderate to low performance on a significant portion of the rules. Moderators’ reports provide guides for future work on developing moderation assistant models.

pdf bib
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)
Yang (Trista) Cao | Isabel Papadimitriou | Anaelia Ovalle | Marcos Zampieri | Francis Ferraro | Swabha Swayamdipta
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)

pdf bib
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)
Anaelia Ovalle | Kai-Wei Chang | Yang Trista Cao | Ninareh Mehrabi | Jieyu Zhao | Aram Galstyan | Jwala Dhamala | Anoop Kumar | Rahul Gupta
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)

2022

pdf bib
What’s Different between Visual Question Answering for Machine “Understanding” Versus for Accessibility?
Yang Trista Cao | Kyle Seelman | Kyungjun Lee | Hal Daumé III
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In visual question answering (VQA), a machine must answer a question given an associated image. Recently, accessibility researchers have explored whether VQA can be deployed in a real-world setting where users with visual impairments learn about their environment by capturing their visual surroundings and asking questions. However, most of the existing benchmarking datasets for VQA focus on machine “understanding” and it remains unclear how progress on those datasets corresponds to improvements in this real-world use case. We aim to answer this question by evaluating discrepancies between machine “understanding” datasets (VQA-v2) and accessibility datasets (VizWiz) by evaluating a variety of VQA models. Based on our findings, we discuss opportunities and challenges in VQA for accessibility and suggest directions for future work.

pdf bib
On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextualized Language Representations
Yang Trista Cao | Yada Pruksachatkun | Kai-Wei Chang | Rahul Gupta | Varun Kumar | Jwala Dhamala | Aram Galstyan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Multiple metrics have been introduced to measure fairness in various natural language processing tasks. These metrics can be roughly categorized into two categories: 1) extrinsic metrics for evaluating fairness in downstream applications and 2) intrinsic metrics for estimating fairness in upstream contextualized language representation models. In this paper, we conduct an extensive correlation study between intrinsic and extrinsic metrics across bias notions using 19 contextualized language models. We find that intrinsic and extrinsic metrics do not necessarily correlate in their original setting, even when correcting for metric misalignments, noise in evaluation datasets, and confounding factors such as experiment configuration for extrinsic metrics.

pdf bib
Theory-Grounded Measurement of U.S. Social Stereotypes in English Language Models
Yang Trista Cao | Anna Sotnikova | Hal Daumé III | Rachel Rudinger | Linda Zou
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

NLP models trained on text have been shown to reproduce human stereotypes, which can magnify harms to marginalized groups when systems are deployed at scale. We adapt the Agency-Belief-Communion (ABC) stereotype model of Koch et al. (2016) from social psychology as a framework for the systematic study and discovery of stereotypic group-trait associations in language models (LMs). We introduce the sensitivity test (SeT) for measuring stereotypical associations from language models. To evaluate SeT and other measures using the ABC model, we collect group-trait judgments from U.S.-based subjects to compare with English LM stereotypes. Finally, we extend this framework to measure LM stereotyping of intersectional identities.

pdf bib
Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)
Apurv Verma | Yada Pruksachatkun | Kai-Wei Chang | Aram Galstyan | Jwala Dhamala | Yang Trista Cao
Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)

2021

pdf bib
Toward Gender-Inclusive Coreference Resolution: An Analysis of Gender and Bias Throughout the Machine Learning Lifecycle*
Yang Trista Cao | Hal Daumé III
Computational Linguistics, Volume 47, Issue 3 - November 2021

Correctly resolving textual mentions of people fundamentally entails making inferences about those people. Such inferences raise the risk of systematic biases in coreference resolution systems, including biases that can harm binary and non-binary trans and cis stakeholders. To better understand such biases, we foreground nuanced conceptualizations of gender from sociology and sociolinguistics, and investigate where in the machine learning pipeline such biases can enter a coreference resolution system. We inspect many existing data sets for trans-exclusionary biases, and develop two new data sets for interrogating bias in both crowd annotations and in existing coreference resolution systems. Through these studies, conducted on English text, we confirm that without acknowledging and building systems that recognize the complexity of gender, we will build systems that fail for: quality of service, stereotyping, and over- or under-representation, especially for binary and non-binary trans users.

pdf bib
Analyzing Stereotypes in Generative Text Inference Tasks
Anna Sotnikova | Yang Trista Cao | Hal Daumé III | Rachel Rudinger
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Toward Gender-Inclusive Coreference Resolution
Yang Trista Cao | Hal Daumé III
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Correctly resolving textual mentions of people fundamentally entails making inferences about those people. Such inferences raise the risk of systemic biases in coreference resolution systems, including biases that can harm binary and non-binary trans and cis stakeholders. To better understand such biases, we foreground nuanced conceptualizations of gender from sociology and sociolinguistics, and develop two new datasets for interrogating bias in crowd annotations and in existing coreference resolution systems. Through these studies, conducted on English text, we confirm that without acknowledging and building systems that recognize the complexity of gender, we build systems that lead to many potential harms.

2019

bib
Controlling the Specificity of Clarification Question Generation
Yang Trista Cao | Sudha Rao | Hal Daumé III
Proceedings of the 2019 Workshop on Widening NLP

Unlike comprehension-style questions, clarification questions look for some missing information in a given context. However, without guidance, neural models for question generation, similar to dialog generation models, lead to generic and bland questions that cannot elicit useful information. We argue that controlling the level of specificity of the generated questions can have useful applications and propose a neural clarification question generation model for the same. We first train a classifier that annotates a clarification question with its level of specificity (generic or specific) to the given context. Our results on the Amazon questions dataset demonstrate that training a clarification question generation model on specificity annotated data can generate questions with varied levels of specificity to the given context.